1
|
García-Vázquez N, González-Robles TJ, Lane E, Spasskaya D, Zhang Q, Kerzhnerman MA, Jeong Y, Collu M, Simoneschi D, Ruggles KV, Róna G, Kaisari S, Pagano M. Stabilization of GTSE1 by cyclin D1-CDK4/6-mediated phosphorylation promotes cell proliferation with implications for cancer prognosis. eLife 2025; 13:RP101075. [PMID: 40272409 PMCID: PMC12021411 DOI: 10.7554/elife.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1-CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1-CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1's role in cell cycle control and oncogenesis beyond RB phosphorylation.
Collapse
Affiliation(s)
- Nelson García-Vázquez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Tania J González-Robles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Medicine, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Daria Spasskaya
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Marc A Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - YeonTae Jeong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Marta Collu
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Kelly V Ruggles
- Department of Medicine, New York University Grossman School of MedicineNew YorkUnited States
| | - Gergely Róna
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural SciencesBudapestHungary
| | - Sharon Kaisari
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
2
|
Yao S, Yue Z, Ye S, Liang X, Li Y, Gan H, Zhou J. Identification of MCM2-Interacting Proteins Associated with Replication Initiation Using APEX2-Based Proximity Labeling Technology. Int J Mol Sci 2025; 26:1020. [PMID: 39940790 PMCID: PMC11816892 DOI: 10.3390/ijms26031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
DNA replication is a crucial biological process that ensures the accurate transmission of genetic information, underpinning the growth, development, and reproduction of organisms. Abnormalities in DNA replication are a primary source of genomic instability and tumorigenesis. During DNA replication, the assembly of the pre-RC at the G1-G1/S transition is a crucial licensing step that ensures the successful initiation of replication. Although many pre-replication complex (pre-RC) proteins have been identified, technical limitations hinder the detection of transiently interacting proteins. The APEX system employs peroxidase-mediated rapid labeling with high catalytic efficiency, enabling protein labeling within one minute and detection of transient protein interactions. MCM2 is a key component of the eukaryotic replication initiation complex, which is essential for DNA replication. In this study, we fused MCM2 with enhanced APEX2 to perform in situ biotinylation. By combining this approach with mass spectrometry, we identified proteins proximal to the replication initiation complex in synchronized mouse ESCs and NIH/3T3. Through a comparison of the results from both cell types, we identified some candidate proteins. Interactions between MCM2 and the candidate proteins CD2BP2, VRK1, and GTSE1 were confirmed by bimolecular fluorescence complementation. This research establishes a basis for further study of the component proteins of the conserved DNA replication initiation complex and the transient regulatory network involving its proximal proteins.
Collapse
Affiliation(s)
- Sitong Yao
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Zhen Yue
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (S.Y.); (X.L.)
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| | - Jiaqi Zhou
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (Z.Y.); (H.G.)
| |
Collapse
|
3
|
García-Vázquez N, González-Robles TJ, Lane E, Spasskaya D, Zhang Q, Kerzhnerman M, Jeong Y, Collu M, Simoneschi D, Ruggles KV, Rona G, Kaisari S, Pagano M. Stabilization of GTSE1 by cyclin D1-CDK4/6-mediated phosphorylation promotes cell proliferation: relevance in cancer prognosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.26.600797. [PMID: 38979260 PMCID: PMC11230433 DOI: 10.1101/2024.06.26.600797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1-CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1-CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1's role in cell cycle control and oncogenesis beyond RB phosphorylation.
Collapse
Affiliation(s)
- Nelson García-Vázquez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Tania J González-Robles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Daria Spasskaya
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Marc Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - YeonTae Jeong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Marta Collu
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Kelly V Ruggles
- Department of Medicine, New York University Grossman School of Medicine, NYC, NY, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Sharon Kaisari
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
| |
Collapse
|
4
|
Dong J, Chen J, Wu Y, Yan J. GTSE1 promotes nasopharyngeal carcinoma proliferation and angiogenesis by upregulating STMN1. Cell Div 2024; 19:16. [PMID: 38698443 PMCID: PMC11064356 DOI: 10.1186/s13008-024-00119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant tumor with poor survival rate. G2 and S phase-expressed-1 (GTSE1) takes part in the progression of diverse tumors as an oncogene, but its role and potential mechanism in NPC remain unknown. METHODS The GTSE1 expression was analyzed by western blot in NPC tissues and cells. Knock-down experiments were conducted to determine the function of GTSE1 in NPC by cell counting kit-8, the 5-ethynyl-2'-deoxyuridine (EdU) incorporation experiment, cell scratch wound-healing experiment, transwell assays, tube forming experiment and western blot. In addition, the in vivo role of GTSE1 was addressed in tumor-bearing mice. RESULTS The expression of was increased in NPC. Silencing of GTSE1 suppressed cell viability, the percent of EdU positive cells, and the number of invasion cells and tubes, but enhanced the scratch ratio in NPC cells. Mechanically, downregulation of GTSE1 decreased the expressions of FOXM1 and STMN1, which were restored with the upregulation of FOXM1. Increased expression of STMN1 reversed the effects of the GTSE1 silencing on proliferation, migration, invasion and angiogenesis of NPC cells. Furthermore, knockdown of GTSE1 repressed the tumor volume and tumor weight of xenografted mice. CONCLUSION GTSE1 was highly expressed in NPC, and silencing of GTSE1 ameliorated the malignant processes of NPC cells by upregulating STMN1, suggesting a possible therapeutical target for NPC.
Collapse
Affiliation(s)
- Jiadi Dong
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China
| | - Jingjing Chen
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China.
| | - Yidong Wu
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China
| | - Jiangyu Yan
- Department of Otorhinolaryngology Head and Neck Surger, Ningbo Medical Center Lihuili Hospital, No. 57, Xingning, Yinzhou, 315000, Zhejiang, China
| |
Collapse
|
5
|
Tan K, Fang Z, Kong L, Cheng C, Hwang S, Xu M. Pan-cancer analyses reveal GTSE1 as a biomarker for the immunosuppressive tumor microenvironment. Medicine (Baltimore) 2023; 102:e34996. [PMID: 37653815 PMCID: PMC10470696 DOI: 10.1097/md.0000000000034996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
G2 and S phase-expressed-1 (GTSE1) has been reported to be associated with poor prognosis in many cancer types. However, the knowledge of GTSE1 across 33 cancer types remains scarce, and the mechanisms by which GTSE1 promotes cancer development remain incompletely understood. R language and TIMER2.0 were used to analyze the clinical relevance of GTSE1 across > 10,000 subjects representing 33 cancer types based on the cancer genome atlas databases. The expression of GTSE1 was upregulated in almost all cancer types and hyperactivity of GTSE1 is likely to induce DNA repair response and positively correlates with the tumor mutational burden and microsatellite instability which are both promising predictive biomarkers for immunotherapy. GTSE1 was upregulated in TP53 mutation patients. Additionally, GTSE1 also positively correlates with tumor purity and tumor infiltration of immune-suppressive myeloid-derived suppressor cells. Consistently, high expression of GTSE1 is associated with poor patient survival in many cancer types. Conclusion: Our study provides new insights into the diagnostic and prognostic role of GTSE1 in cancers and suggests therapeutic approaches for GTSE1-overexpressing cancers by targeting DNA repair response, and the tumor immune microenvironment.
Collapse
Affiliation(s)
- Ke Tan
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zixuan Fang
- Department of Clinical Medicine, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingzhen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Chen Cheng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Sydney Hwang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Digestive Disease Research Institute, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Wang C, Wen M, Xu J, Gao P, Liu S, Liu J, Chen Y, Zhou L. GTSE1 promotes the growth of NSCLC by regulating microtubule-associated proteins through the ERK/MAPK pathway. Thorac Cancer 2023; 14:1624-1634. [PMID: 37079439 PMCID: PMC10260487 DOI: 10.1111/1759-7714.14908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
The role of G2 and S phase-expressed-1 (GTSE1), a microtubule-localized protein, in non-small-cell lung cancer (NSCLC) remains unknown. We explored its role in NSCLC growth. GTSE1 was detected in NSCLC tissues and cell lines using quantitative real-time polymerase chain reaction. The clinical significance of GTSE1 levels was evaluated. Biological and apoptotic effects of GTSE1 were evaluated using transwell, cell-scratch, and MTT assays, and flow cytometry and western blotting, respectively. Its association with cellular microtubules was shown by western blotting and immunofluorescence. GTSE1 expression was upregulated in NSCLC tissues and cell lines. GTSE1 levels correlated with lymph node metastasis. Higher GTSE1 mRNA expression correlated with shorter progression-free survival. GTSE1-knockdown decreased proliferation, colony formation, invasion, and migration of NSCLC cells, and inhibited tau and stathmin-1 microtubule-associated protein expression, via the extracellular-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway, and microtubule disruption. GTSE1 may promote NSCLC growth by regulating tau and stathmin-1 through the ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Chuanlin Wang
- Department of Clinical NutritionYunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Department of Clinical NutritionYunnan Cancer CenterKunmingChina
| | - Meiyan Wen
- Department of Clinical NutritionYunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Department of Clinical NutritionYunnan Cancer CenterKunmingChina
| | - Jiali Xu
- Department of Clinical NutritionYunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Department of Clinical NutritionYunnan Cancer CenterKunmingChina
| | - Pengning Gao
- Department of Clinical NutritionYunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Department of Clinical NutritionYunnan Cancer CenterKunmingChina
| | - Shanling Liu
- Department of Clinical NutritionYunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Department of Clinical NutritionYunnan Cancer CenterKunmingChina
| | - Jiayu Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, School of Public HealthAnhui Medical UniversityHefeiChina
| | - Ying Chen
- Department of Clinical NutritionYunnan Cancer CenterKunmingChina
- Department of Thoracic SurgeryYunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Lan Zhou
- Department of Clinical NutritionYunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
- Department of Clinical NutritionYunnan Cancer CenterKunmingChina
| |
Collapse
|
7
|
Accumulation of Fat Not Responsible for Femoral Head Necrosis, Revealed by Single-Cell RNA Sequencing: A Preliminary Study. Biomolecules 2023; 13:biom13010171. [PMID: 36671556 PMCID: PMC9856115 DOI: 10.3390/biom13010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The etiology of osteonecrosis of the femoral head (ONFH) is not yet fully understood. However, ONFH is a common disease with high morbidity, and approximately one-third of cases are caused by glucocorticoids. We performed single-cell RNA sequencing of bone marrow to explore the effect of glucocorticoid on ONFH. Bone marrow samples of the proximal femur were extracted from four participants during total hip arthroplasty, including two participants diagnosed with ONFH for systemic lupus erythematosus (SLE) treated with glucocorticoids (the case group) and two participants with femoral neck fracture (the control group). Unbiased transcriptome-wide single-cell RNA sequencing analysis and computational analyses were performed. Seventeen molecularly defined cell types were identified in the studied samples, including significantly dysregulated neutrophils and B cells in the case group. Additionally, fatty acid synthesis and aerobic oxidation were repressed, while fatty acid beta-oxidation was enhanced. Our results also preliminarily clarified the roles of the inflammatory response, substance metabolism, vascular injury, angiogenesis, cell proliferation, apoptosis, and dysregulated coagulation and fibrinolysis in glucocorticoid-induced ONFH. Notably, we list the pathways that were markedly altered in glucocorticoid-induced ONFH with SLE compared with femoral head fracture, as well as their common genes, which are potential early therapeutic targets. Our results provide new insights into the mechanism of glucocorticoid-induced ONFH and present potential clues for effective and functional manipulation of human glucocorticoid-induced ONFH, which could improve patient outcomes.
Collapse
|
8
|
Chen W, Wang H, Lu Y, Huang Y, Xuan Y, Li X, Guo T, Wang C, Lai D, Wu S, Zhao W, Mai H, Li H, Wang B, Ma X, Zhang X. GTSE1 promotes tumor growth and metastasis by attenuating of KLF4 expression in clear cell renal cell carcinoma. J Transl Med 2022; 102:1011-1022. [PMID: 36775416 DOI: 10.1038/s41374-022-00797-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors and is characterized by a poor prognosis. Although G2- and S -phase expressed-1 (GTSE1) is known to be involved in the progression and metastasis of various cancers, its significance and mechanism in ccRCC remain unknown. In the present study, we found that GTSE1 was overexpressed in ccRCC tissues, especially in metastatic samples. Moreover, high GTSE1 expression was positively correlated with higher pT stage, tumor size, clinical stage, and WHO/ISUP grade and worse prognosis. And GTSE1 expression served as an independent prognostic factor for overall survival (OS). In addition, GTSE1 knockdown inhibited ccRCC cell proliferation, migration, and invasion, and enhanced cell apoptosis in vitro and in vivo. GTSE1 was crucial for epithelial-mesenchymal transition (EMT) in ccRCC. Mechanistically, GTSE1 depletion could upregulate the expression of Krüppel-like factor 4 (KLF4), which acts as a tumor suppressor in ccRCC. Downregulation of KLF4 effectively rescued the inhibitory effect induced by GTSE1 knockdown and reversed the EMT process. Overall, our results revealed that GTSE1 served as an oncogene regulating EMT through KLF4 in ccRCC, and that GTSE1 could also serve as a novel prognostic biomarker and may represent a promising therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Weihao Chen
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanfeng Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongliang Lu
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yan Huang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yundong Xuan
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiubin Li
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Tao Guo
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Paediatrics, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Chenfeng Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Dong Lai
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Shengpan Wu
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenlei Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Haixing Mai
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Hongzhao Li
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Baojun Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xin Ma
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xu Zhang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
9
|
Silvestro S, Diomede F, Chiricosta L, Zingale VD, Marconi GD, Pizzicannella J, Valeri A, Avanzini MA, Calcaterra V, Pelizzo G, Mazzon E. The Role of Hypoxia in Improving the Therapeutic Potential of Mesenchymal Stromal Cells. A Comparative Study From Healthy Lung and Congenital Pulmonary Airway Malformations in Infants. Front Bioeng Biotechnol 2022; 10:868486. [PMID: 35774062 PMCID: PMC9237219 DOI: 10.3389/fbioe.2022.868486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) play an important role in the field of regenerative medicine thanks to their immunomodulatory properties and their ability to secrete paracrine factors. The use of MSCs has also been tested in children with congenital lung diseases inducing fibrosis and a decrease in lung function. Congenital malformations of the pulmonary airways (CPAM) are the most frequently encountered lung lesion that results from defects in early development of airways. Despite the beneficial properties of MSCs, interventions aimed at improving the outcome of cell therapy are needed. Hypoxia may be an approach aimed to ameliorate the therapeutic potential of MSCs. In this regard, we evaluated the transcriptomic profile of MSCs collected from pediatric patients with CPAM, analyzing similarities and differences between healthy tissue (MSCs-lung) and cystic tissue (MSCs-CPAM) both in normoxia and in cells preconditioned with hypoxia (0.2%) for 24 h. Study results showed that hypoxia induces cell cycle activation, increasing in such a way the cell proliferation ability, and enhancing cell anaerobic metabolism in both MSCs-lung and MSCs-CPAM-lung. Additionally, hypoxia downregulated several pro-apoptotic genes preserving MSCs from apoptosis and, at the same time, improving their viability in both comparisons. Finally, data obtained indicates that hypoxia leads to a greater expression of genes involved in the regulation of the cytoskeleton in MSCs-lung than MSCs-CPAM.
Collapse
Affiliation(s)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | | | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. D’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | - Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
- Pediatric Department, Children’s Hospital “Vittore Buzzi”, Milano, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, Milan, Italy
| | | |
Collapse
|
10
|
Xie C, Xiang W, Shen H, Shen J. GTSE1 is possibly involved in the DNA damage repair and cisplatin resistance in osteosarcoma. J Orthop Surg Res 2021; 16:713. [PMID: 34876170 PMCID: PMC8650252 DOI: 10.1186/s13018-021-02859-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background G2 and S phase-expressed-1 (GTSE1) negatively regulates the tumor-suppressive protein p53 and is potentially correlated with chemoresistance of cancer cells. This study aims to explore the effect of GTSE1 on the DNA damage repair and cisplatin (CDDP) resistance in osteosarcoma (OS). Materials and methods Expression of GTSE1 in OS was predicted in bioinformatics system GEPIA and then validated in clinically obtained tissues and acquired cell lines using RT-qPCR, immunohistochemical staining, and western blot assays. Gain- and loss-of-function studies of GTSE1 were performed in MG-63 and 143B cells to examine its function in cell cycle progression, DNA replication, and CDDP resistance. Stably transfected MG-63 cells were administrated into mice, followed by CDDP treatment to detect the role of GTSE1 in CDDP resistance in vivo. Results GTSE1 was highly expressed in patients with OS and correlated with poor survival according to the bioinformatics predictions. Elevated GTSE1 expression was detected in OS tissues and cell lines. GTSE1 silencing reduced S/G2 transition and DNA replication, and it increased the CDDP sensitivity and decreased the expression of DNA repair-related biomarkers in MG-63 cells. GTSE1 overexpression in 143B cells led to inverse trends. In vivo, downregulation of GTSE1 strengthened the treating effect of CDDP and significantly repressed growth of xenograft tumors in nude mice. However, overexpression of GTSE1 blocked the anti-tumor effect of CDDP. Conclusion This study demonstrates that GTSE1 is possibly involved in the DNA damage repair and cisplatin resistance in OS.
Collapse
Affiliation(s)
- Chaofan Xie
- Department of Orthopaedic, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, Guangdong, People's Republic of China.,Department of Orthopaedic, The Eighth Affiliated Hospital of Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Wei Xiang
- Department of Orthopaedic, The Eighth Affiliated Hospital of Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Huiyong Shen
- Department of Orthopaedic, The Eighth Affiliated Hospital of Sun Yat-Sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, People's Republic of China.
| | - Jingnan Shen
- Department of Muscularskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510000, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Chen L, Zhong Y, Yang X, Zhang Q, Wu X. Downregulation of GTSE1 leads to the inhibition of proliferation, migration, and Warburg effect in cervical cancer by blocking LHDA expression. J Obstet Gynaecol Res 2021; 47:3913-3922. [PMID: 34482592 DOI: 10.1111/jog.15000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/15/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023]
Abstract
AIM G2 and S phase-expressed-1 (GTSE1) has been identified to play a vital role in several kinds of cancers, but its role in cervical cancer development remains unknown. Herein, we aimed to reveal the role and underlying mechanism of GTSE1 in cervical cancer cell growth, migration, and aerobic glycolysis. METHODS GTSE1 expression levels in cervical cancer tissues and normal cervical tissues were determined by real time PCR and immunohistochemistry. Human short hairpin RNA was used to downregulate GTSE1 level in cervical cancer cells SiHa and HeLa cells. Colony formation, cell counting kit-8, and wound-healing assays were used for cell function evaluation. Lactate production, lactate dehydrogenase activity, and glucose concentration were tested to assess the Warburg effect. RESULTS GTSE1 expressions at both mRNA and protein levels were significantly elevated in cervical cancer tissues compared with normal tissues. Downregulation of GTSE1 induced significant repressions in cell colony formation, viability and migration, and Warburg effect, as well as reduced expression of lactate dehydrogenase isoform A (LDHA) at mRNA and protein levels. Additionally, downregulation of GTSE1 weakened the tumorigenesis of HeLa and SiHa cells in vivo. CONCLUSION This study demonstrated that downregulation of GTSE1 led to significant inhibitions in cell proliferation, migration, tumorigenesis, and Warburg effect in cervical cancer by blocking the expression of LHDA.
Collapse
Affiliation(s)
- Longyi Chen
- Department of Gynecology, First People's Hospital of Kashi, Kashi Prefecture, Xinjiang Uygur Autonomous Region, China
| | - Youwen Zhong
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiuwei Yang
- Department of Gynecology, First People's Hospital of Kashi, Kashi Prefecture, Xinjiang Uygur Autonomous Region, China
| | - Qingyue Zhang
- Department of Gynecology, First People's Hospital of Kashi, Kashi Prefecture, Xinjiang Uygur Autonomous Region, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
12
|
Li SS, Chen DM, Chen LB, Wei H, Wang JL, Xiao J, Huang YH, Lian YF. GTSE1 promotes SNAIL1 degradation by facilitating its nuclear export in hepatocellular carcin oma cells. Mol Med Rep 2021; 23:454. [PMID: 33880590 PMCID: PMC8072310 DOI: 10.3892/mmr.2021.12093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Snail family transcriptional repressor 1 (SNAIL1) is a master inducer of the epithelial-to-mesenchymal transition (EMT) process, contributing to tumor metastasis and recurrence. Our previous study reported that G2 and S phase-expressed-1 (GTSE1) served a role in regulating SNAIL1 expression in hepatocellular carcinoma (HCC). However, the underlying mechanism remains unknown. Therefore, the present study aimed to reveal the regulatory mechanism of GTSE1 on SNAIL1 expression using in vitro assays performed in HCC cell models. It was demonstrated that endogenous SNAIL1 expression was downregulated and upregulated by GTSE1 overexpression or small interfering RNA-mediated knockdown, respectively. Via cycloheximide chase experiments, it was identified that GTSE1 overexpression increased the protein turnover of SNAIL1, while knockdown of GTSE1 reduced its degradation rate. Furthermore, it was demonstrated that GTSE1 overexpression induced the cytoplasmic expression of SNAIL1 using immunofluorescence and subcellular fractionation methods. The nuclear export inhibitor leptomycin B was able to decrease the cytoplasmic retention of SNAIL1 caused by GTSE1 overexpression. In addition, TGF-βI treatment increased both the mRNA and protein expression levels of GTSE1, and decreased the protein expression level of SNAIL1 without affecting its mRNA transcription in Huh7 cells. It was also found that TGF-β signaling could upregulate the transcription of GTSE1 expression by transactivating the Smad binding elements in the GTSE1 promoter. Moreover, the TGF-βI-induced decrease in SNAIL1 protein expression was GTSE1-dependent in Huh7 cells. In conclusion, the current study provides a novel mechanism via which GTSE1 affects the stability of SNAIL1 by regulating its subcellular localization in HCC cells.
Collapse
Affiliation(s)
- Shan-Shan Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dong-Mei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lu-Biao Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Huan Wei
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jia-Liang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
13
|
Yousef EH, El-Mesery ME, Habeeb MR, Eissa LA. Polo-like kinase 1 as a promising diagnostic biomarker and potential therapeutic target for hepatocellular carcinoma. Tumour Biol 2020; 42:1010428320914475. [PMID: 32252611 DOI: 10.1177/1010428320914475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma is a major cause of cancer mortality worldwide. The outcome of hepatocellular carcinoma depends mainly on its early diagnosis. To date, the performance of traditional biomarkers is unsatisfactory. Polo-like kinase 1 is a serine/threonine kinase that plays essential roles in cell cycle progression and deoxyribonucleic acid damage. Moreover, polo-like kinase 1 knockdown decreases the survival of hepatocellular carcinoma cells; therefore, polo-like kinase 1 is an attractive target for anticancer treatments. Nobiletin, a natural polymethoxy flavonoid, exhibits a potential antiproliferative effect against a wide variety of cancers. This study targets to identify a reliable diagnostic biomarker for hepatocellular carcinoma and provide a potential therapeutic target for its treatment. Polo-like kinase 1 levels were analyzed in 44 hepatocellular carcinoma patients, 33 non-hepatocellular carcinoma liver cirrhosis patients and 15 healthy controls using the enzyme-linked immunosorbent assay method. Receiver operating characteristics curve analysis was used to establish a predictive model for polo-like kinase 1 relative to α-fetoprotein in hepatocellular carcinoma diagnosis. Furthermore, in the in vitro study, gene expressions were assessed by quantitative polymerase chain reaction in two human hepatocellular carcinoma cell lines after treatment with doxorubicin and polo-like kinase 1 inhibitor volasertib (Vola) either alone or in combination with nobiletin. Cell viability was also determined using the crystal violet assay.: Serum polo-like kinase 1 levels in hepatocellular carcinoma patients were significantly higher than liver cirrhosis and control groups (p < 0.0001). Polo-like kinase 1 showed a reasonable sensitivity, specificity, positive predictive value, and negative predictive value in hepatocellular carcinoma diagnosis. Moreover, nobiletin improved inhibition of cell growth induced by Vola and doxorubicin. Regarding reverse transcription polymerase chain reaction results, nobiletin suppressed expressions of polo-like kinase 1 and proliferating cell nuclear antigen and elevated expressions of P53, poly (ADPribose) polymerase 1, and caspase-3. Nobiletin/doxorubicin and nobiletin/Vola showed a significant increase in caspase-3 activity indicating cell apoptosis. Polo-like kinase 1 may be a potential biomarker for hepatocellular carcinoma diagnosis and follow-up during treatment with chemotherapies. In addition, nobiletin synergistically potentiates the doxorubicin and Vola-mediated anticancer effect that may be attributed partly to suppression of polo-like kinase 1 and proliferating cell nuclear antigen expression and enhancement of chemotherapy-induced apoptosis.
Collapse
Affiliation(s)
- Eman H Yousef
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Horus University - Egypt, Damietta, Egypt
| | - Mohamed E El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Maha R Habeeb
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Lei X, Du L, Zhang P, Ma N, Liang Y, Han Y, Qu B. Knockdown GTSE1 enhances radiosensitivity in non-small-cell lung cancer through DNA damage repair pathway. J Cell Mol Med 2020; 24:5162-5167. [PMID: 32202046 PMCID: PMC7205821 DOI: 10.1111/jcmm.15165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is an important strategy for NSCLC. However, although a variety of comprehensive radiotherapy-based treatments have dominated the treatment of NSCLC, it cannot be avoided to overcome the growing radioresistance during radiotherapy. The purpose of this study was to elucidate the radiosensitizing effects of NSCLC via knockdown GTSE1 expression and its mechanism. Experiments were performed by using multiple NSCLC cells such as A549, H460 and H1299. Firstly, we found GTSE1 conferred to radioresistance via clonogenic assay and apoptosis assay. Then, we detected the level of DNA damage through comet assay and γH2AX foci, which we could clearly observe knockdown GTSE1 enhance DNA damage after IR. Furthermore, through using laser assay and detecting DNA damage repair early protein expression, we found radiation could induce GTSE1 recruited to DSB site and initiate DNA damage response. Our finding demonstrated that knockdown GTSE1 enhances radiosensitivity in NSCLC through DNA damage repair pathway. This novel observation may have therapeutic implications to improve therapeutic efficacy of radiation.
Collapse
Affiliation(s)
- Xiao Lei
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lehui Du
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pei Zhang
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Na Ma
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanjie Liang
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanan Han
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Baolin Qu
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
GTSE1, CDC20, PCNA, and MCM6 Synergistically Affect Regulations in Cell Cycle and Indicate Poor Prognosis in Liver Cancer. Anal Cell Pathol (Amst) 2019; 2019:1038069. [PMID: 32082966 PMCID: PMC7012210 DOI: 10.1155/2019/1038069] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
GTSE1 is well correlated with tumor progression; however, little is known regarding its role in liver cancer prognosis. By analyzing the hepatocellular carcinoma (HCC) datasets in GEO and TCGA databases, we showed that high expression of GTSE1 was correlated with advanced pathologic stage and poor prognosis of HCC patients. To investigate underlying molecular mechanism, we generated GTSE1 knockdown HCC cell line and explored the effects of GTSE1 deficiency in cell growth. Between GTSE1 knockdown and wild-type HCC cells, we identified 979 differentially expressed genes (520 downregulated and 459 upregulated genes) in the analysis of microarray-based gene expression profiling. Functional enrichment analysis of DEGs suggested that S phase was dysregulated without GTSE1 expression, which was further verified from flow cytometry analysis. Moreover, three other DEGs: CDC20, PCNA, and MCM6, were also found contributing to GTSE1-related cell cycle arrest and to be associated with poor overall survival of HCC patients. In conclusion, GTSE1, together with CDC20, PCNA, and MCM6, may synergistically promote adverse prognosis in HCC by activating cell cycle. Genes like GTSE1, CDC20, PCNA, and MCM6 may be promising prognostic molecular biomarkers in liver cancer.
Collapse
|
16
|
Lin F, Xie YJ, Zhang XK, Huang TJ, Xu HF, Mei Y, Liang H, Hu H, Lin ST, Luo FF, Lang YH, Peng LX, Qian CN, Huang BJ. GTSE1 is involved in breast cancer progression in p53 mutation-dependent manner. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:152. [PMID: 30961661 PMCID: PMC6454633 DOI: 10.1186/s13046-019-1157-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/29/2019] [Indexed: 12/24/2022]
Abstract
Background With the rapid development of the high throughput detection techniques, tumor-related Omics data has become an important source for studying the mechanism of tumor progression including breast cancer, one of the major malignancies worldwide. A previous study has shown that the G2 and S phase-expressed-1 (GTSE1) can act as an oncogene in several human cancers. However, its functional roles in breast cancer remain elusive. Method In this study, we analyzed breast cancer data downloaded from The Cancer Genome Atlas (TCGA) databases and other online database including the Oncomine, bc-GenExMiner and PROGgeneV2 database to identify the molecules contributing to the progression of breast cancer. The GTSE1 expression levels were investigated using qRT-PCR, immunoblotting and IHC. The biological function of GTSE1 in the growth, migration and invasion of breast cancer was examined in MDA-MB-231, MDA-MB-468 and MCF7 cell lines. The in vitro cell proliferative, migratory and invasive abilities were evaluated by MTS, colony formation and transwell assay, respectively. The role of GTSE1 in the growth and metastasis of breast cancer were revealed by in vivo investigation using BALB/c nude mice. Results We showed that the expression level of GTSE1 was upregulated in breast cancer specimens and cell lines, especially in triple negative breast cancer (TNBC) and p53 mutated breast cancer cell lines. Importantly, high GTSE1 expression was positively correlated with histological grade and poor survival. We demonstrated that GTSE1 could promote breast cancer cell growth by activating the AKT pathway and enhance metastasis by regulating the Epithelial-Mesenchymal transition (EMT) pathway. Furthermore, it could cause multidrug resistance in breast cancer cells. Interestingly, we found that GTSE1 could regulate the p53 function to alter the cell cycle distribution dependent on the mutation state of p53. Conclusion Our results reveal that GTSE1 played a key role in the progression of breast cancer, indicating that GTSE1 could serve as a novel biomarker to aid in the assessment of the prognosis of breast cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1157-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fen Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yu-Jie Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Xin-Ke Zhang
- Department of pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Tie-Jun Huang
- Department of Nuclear Medicine, The Second People's Hospital of Shenzhen, Shenzhen, People's Republic of China
| | - Hong-Fa Xu
- Zhuhai Precision Medicine Center, Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Yan Mei
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hu Liang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hao Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Si-Ting Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Fei-Fei Luo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yan-Hong Lang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
17
|
Matsushita Y, Furutani Y, Matsuoka R, Furukawa T. Hot water extract of Agaricus blazei Murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:319. [PMID: 30514293 PMCID: PMC6280349 DOI: 10.1186/s12906-018-2385-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/26/2018] [Indexed: 02/18/2023]
Abstract
Background Pancreatic cancer is one of the most aggressive human malignancies. The development of a novel drug to treat pancreatic cancer is imperative, and it is thought that complementary and alternative medicine (CAM) could yield such a candidate. Agaricus blazei Murrill is a CAM that has been tested as an anticancer drug, but its efficacy against pancreatic cancer is poorly understood. To study the potential of A. blazei in the treatment of pancreatic cancer, we examined the effects of its hot water extract on the proliferation and global gene expression profile of human pancreatic cancer cells. Methods Three distinct human pancreatic cancer cell lines, MIAPaCa-2, PCI-35, and PK-8, and the immortalized human pancreatic duct-epithelial cell line, HPDE, were employed. The cells were incubated with the appropriate growth medium supplemented with the hot water extract of A. blazei at final concentrations of 0.005, 0.015%, or 0.045%, and cellular proliferation was assessed for five consecutive days using an MTT assay. Apoptosis was examined by using flow cytometry and the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Caspase-dependent apoptosis was assayed using immunoblotting. Global gene expression profiles were examined using a whole human genome 44 K microarray, and the microarray results were validated by using real-time reverse transcription PCR. Results The hot water extract of A. blazei significantly inhibited the proliferation of cultured pancreatic cancer cells through the induction of G0/G1 cell cycle arrest and caspase-dependent apoptosis; the effect was the smallest in HPDE cells. Furthermore, significant alterations in the global gene expression profiles of pancreatic cancer cells occurred following treatment with the hot water extract of A. blazei. Genes associated with kinetochore function, spindle formation, and centromere maintenance were particularly affected, as well as cyclins and cyclin-dependent kinases that are essential for cell cycle progression. In addition, proapoptotic genes were upregulated. Conclusions The hot water extract of A. blazei may be useful for the treatment of pancreatic cancer and is a potential candidate for the isolation of novel, active compounds specific for mitotic spindle dysfunction. Electronic supplementary material The online version of this article (10.1186/s12906-018-2385-4) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Xu T, Ma M, Chi Z, Si L, Sheng X, Cui C, Dai J, Yu S, Yan J, Yu H, Wu X, Tang H, Yu J, Kong Y, Guo J. High G2 and S-phase expressed 1 expression promotes acral melanoma progression and correlates with poor clinical prognosis. Cancer Sci 2018; 109:1787-1798. [PMID: 29660787 PMCID: PMC5989838 DOI: 10.1111/cas.13607] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/23/2018] [Accepted: 04/08/2018] [Indexed: 02/07/2023] Open
Abstract
G2 and S‐phase expressed 1 (GTSE1) regulates cell cycle progression in human cancers. However, its significance and mechanism of action in acral melanoma (AM) remain unknown. In the present study, we found that GTSE1 expression was upregulated in advanced stage/metastatic AM tissues and metastatic cell lines, and correlated with higher stage (P = .028) and poor disease‐free survival (DFS) in patients with AM (P = .003). Cox regression assays validated GTSE1 expression to be an independent prognostic factor of DFS for patients with AM (P = .004). Ectopic expression of GTSE1 enhanced primary AM cell proliferation, invasion, and migration. Loss‐of‐function in GTSE1 attenuated metastatic AM cell proliferation and metastatic ability in vitro and in vivo. We additionally observed that inhibition of migration and invasion occurred concomitantly with a GTSE1 knockdown‐mediated increase in E‐cadherin and decreases in N‐cadherin and Slug. We further showed that integrin subunit alpha 2 (ITGA2) interacts with GTSE1 and is a downstream effector of GTSE1. Further, ITGA2 levels were positively correlated with GTSE1 expression in human AM tissues. Ectopic ITGA2 expression rescued siGTSE1‐mediated inhibition of migration and invasion, thereby restoring epithelial‐to‐mesenchymal transition (EMT). In conclusion, GTSE1 expression promotes AM progression and correlates with clinical outcomes of patients with AM, and may represent a promising therapeutic target to suppress AM progression.
Collapse
Affiliation(s)
- Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sifan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junya Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiayi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
19
|
Tipton AR, Wren JD, Daum JR, Siefert JC, Gorbsky GJ. GTSE1 regulates spindle microtubule dynamics to control Aurora B kinase and Kif4A chromokinesin on chromosome arms. J Cell Biol 2017; 216:3117-3132. [PMID: 28821562 PMCID: PMC5626529 DOI: 10.1083/jcb.201610012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022] Open
Abstract
In mitosis, the dynamic assembly and disassembly of microtubules are critical for normal chromosome movement and segregation. Microtubule turnover varies among different mitotic spindle microtubules, dictated by their spatial distribution within the spindle. How turnover among the various classes of spindle microtubules is differentially regulated and the resulting significance of differential turnover for chromosome movement remains a mystery. As a new tactic, we used global microarray meta-analysis (GAMMA), a bioinformatic method, to identify novel regulators of mitosis, and in this study, we describe G2- and S phase-expressed protein 1 (GTSE1). GTSE1 is expressed exclusively in late G2 and M phase. From nuclear envelope breakdown until anaphase onset, GTSE1 binds preferentially to the most stable mitotic spindle microtubules and promotes their turnover. Cells depleted of GTSE1 show defects in chromosome alignment at the metaphase plate and in spindle pole integrity. These defects are coupled with an increase in the proportion of stable mitotic spindle microtubules. A consequence of this reduced microtubule turnover is diminished recruitment and activity of Aurora B kinase on chromosome arms. This decrease in Aurora B results in diminished binding of the chromokinesin Kif4A to chromosome arms.
Collapse
Affiliation(s)
- Aaron R Tipton
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - John R Daum
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Joseph C Siefert
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
20
|
GTSE1 promotes cell migration and invasion by regulating EMT in hepatocellular carcinoma and is associated with poor prognosis. Sci Rep 2017; 7:5129. [PMID: 28698581 PMCID: PMC5505986 DOI: 10.1038/s41598-017-05311-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
G2 and S phase-expressed-1 (GTSE1) regulates G1/S cell cycle transition. It was recently reported to be overexpressed in certain human cancers, but its significance and mechanism(s) in hepatocellular carcinoma (HCC) remain unknown. Here, we showed preferential GTSE1 upregulation in human HCC tissues and cell lines that positively correlated with Ki67. GTSE1 knockdown by short hairpin RNA resulted in deficient colony-forming ability and depleted capabilities of HCC cells to migrate and invade. Conversely, exogenous GTSE1 overexpression enhanced colony formation and stimulated HCC cell migration and invasion. Furthermore, GTSE1 silencing was associated with the downregulation of N-cadherin, β-catenin, and Snail, whereas GTSE1 overexpression caused the opposite effects. GTSE1 upregulated Snail via both transcription and protein degradation pathways. Additionally, GTSE1 modulated the sensitivity of HCC to 5-fluorouracil therapy. High GTSE1 correlates with chemo-resistance, while low GTSE1 increases drug sensitivity. Kaplan-Meier survival analysis indicated that high GTSE1 levels were significantly associated with poor overall survival. In conclusion, high expression of GTSE1 is commonly noted in HCC and is closely correlated with migration and invasion by epithelial-to-mesenchymal transition (EMT) modulation. Activated GTSE1 significantly interferes with chemotherapy efficacy and influences the probability of survival of patients with HCC. GTSE1 may thus represent a promising molecular target.
Collapse
|
21
|
Kumar S, Sharma G, Chakraborty C, Sharma AR, Kim J. Regulatory functional territory of PLK-1 and their substrates beyond mitosis. Oncotarget 2017; 8:37942-37962. [PMID: 28415805 PMCID: PMC5514964 DOI: 10.18632/oncotarget.16290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/03/2017] [Indexed: 12/04/2022] Open
Abstract
Polo-like kinase 1 (PLK-1) is a well-known (Ser/Thr) mitotic protein kinase and is considered as a proto-oncogene. As hyper-activation of PLK-1 is broadly associated with poor prognosis and cancer progression, it is one of the most extensively studied mitotic kinases. During mitosis, PLK-1 regulates various cell cycle events, such as spindle pole maturation, chromosome segregation and cytokinesis. However, studies have demonstrated that the role of PLK-1 is not only restricted to mitosis, but PLK-1 can also regulate other vital events beyond mitosis, including transcription, translation, ciliogenesis, checkpoint adaptation and recovery, apoptosis, chromosomes dynamics etc. Recent reviews have tried to define the regulatory role of PLK-1 during mitosis progression and tumorigenesis, but its' functional role beyond mitosis is still largely unexplored. PLK-1 can regulate the activity of many proteins that work outside of its conventional territory. The dysregulation of these proteins can cause diseases such as Alzheimer's disease, tumorigenesis etc. and may also lead to drug resistance. Thus, in this review, we discussed the versatile role of PLK-1 and tried to collect data to validate its' functional role in cell cycle regulation apart from mitosis.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Garima Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Ashish Ranjan Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| |
Collapse
|
22
|
Gutteridge REA, Ndiaye MA, Liu X, Ahmad N. Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol Cancer Ther 2016; 15:1427-35. [PMID: 27330107 PMCID: PMC4936921 DOI: 10.1158/1535-7163.mct-15-0897] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/06/2016] [Indexed: 01/06/2023]
Abstract
Polo-like kinase 1 (Plk1) overexpression has been shown to occur in a wide range of tumors, prompting research and development of Plk1 inhibitors as a means of cancer treatment. This review discusses recent advances in the development of Plk1 inhibitors for cancer management. Plk1 inhibition has been shown to cause mitotic block and apoptosis of cells with higher mitotic index and therefore higher Plk1 expression. The potential of Plk1 inhibitors as cancer therapeutics has been widely investigated. However, a complete understanding of Plk1 biology/mechanism is yet to be fully achieved. Resistance to certain chemotherapeutic drugs has been linked to Plk1 overexpression, and Plk1-mediated mitotic events such as microtubule rearrangement have been found to reduce the efficacy of chemotherapeutic agents. The Plk1 inhibitor volasertib has shown considerable promise in clinical studies, having reached phase III trials. However, preclinical success with Plk1 inhibitors has not translated well into clinical success. In our view, combined therapies targeting other relevant pathways together with Plk1 may be vital to combat issues observed with monotherapy, especially resistance. In addition, research should also be directed toward understanding the mechanisms of Plk1 and designing additional next generations of specific, potent Plk1 inhibitors to target cancer. Mol Cancer Ther; 15(7); 1427-35. ©2016 AACR.
Collapse
Affiliation(s)
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin. William S. Middleton Memorial VA Hospital, Madison, Wisconsin.
| |
Collapse
|
23
|
Guo L, Zhang S, Zhang B, Chen W, Li X, Zhang W, Zhou C, Zhang J, Ren N, Ye Q. Silencing GTSE-1 expression inhibits proliferation and invasion of hepatocellular carcinoma cells. Cell Biol Toxicol 2016; 32:263-74. [PMID: 27240802 PMCID: PMC4945688 DOI: 10.1007/s10565-016-9327-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
G2 and S phase-expressed-1 (GTSE1) was recently reported to upregulate in several types of human cancer, based on negatively regulate p53 expression. However, its expression and functional roles in hepatocellular carcinoma (HCC) remain unknown. In this study, GTSE1 was observed to be highly expressed in HCC specimens and cell lines both at messenger RNA (mRNA) and protein levels. Furthermore, high GTSE1 expression was positively associated with tumor size, venous invasion, advanced tumor stage, and short overall survival. Moreover, we generated stable GTSE1 knockdown HCC cell lines to explore the effects of GTSE1 silencing on the growth and invasion of HCC in vitro. In determining the pathway through which GTSE1 regulated cell proliferation and invasion, GTSE1 silencing was found to inhibit AKT phosphorylation and downregulated cell cycle-related protein. In addition, GTSE1 downregulation decreased the growth of xenografts. In conclusion, these results indicated for the first time that overexpression of GTSE1 was involved in the progress of HCC, enhancing proliferation and promoting cell invasion in HCC cells.
Collapse
Affiliation(s)
- Lei Guo
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Shumin Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Wanyong Chen
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Xiaoqiang Li
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Wentao Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Chenhao Zhou
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Jubo Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China
| | - Ning Ren
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China. .,Department of Liver Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| | - Qinghai Ye
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Fundan University, Ministry of Education, Shanghai, 200032, China. .,Department of Liver Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
24
|
Zekri ARN, Hassan ZK, Bahnassy AA, Khaled HM, El-Rouby MN, Haggag RM, Abu-Taleb FM. Differentially expressed genes in metastatic advanced Egyptian bladder cancer. Asian Pac J Cancer Prev 2016; 16:3543-9. [PMID: 25921176 DOI: 10.7314/apjcp.2015.16.8.3543] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bladder cancer is one of the most common cancers worldwide. Gene expression profiling using microarray technologies improves the understanding of cancer biology. The aim of this study was to determine the gene expression profile in Egyptian bladder cancer patients. MATERIALS AND METHODS Samples from 29 human bladder cancers and adjacent non-neoplastic tissues were analyzed by cDNA microarray, with hierarchical clustering and multidimensional analysis. RESULTS Five hundred and sixteen genes were differentially expressed of which SOS1, HDAC2, PLXNC1, GTSE1, ULK2, IRS2, ABCA12, TOP3A, HES1, and SRP68 genes were involved in 33 different pathways. The most frequently detected genes were: SOS1 in 20 different pathways; HDAC2 in 5 different pathways; IRS2 in 3 different pathways. There were 388 down-regulated genes. PLCB2 was involved in 11 different pathways, MDM2 in 9 pathways, FZD4 in 5 pathways, p15 and FGF12 in 4 pathways, POLE2 in 3 pathways, and MCM4 and POLR2E in 2 pathways. Thirty genes showed significant differences between transitional cell cancer (TCC) and squamous cell cancer (SCC) samples. Unsupervised cluster analysis of DNA microarray data revealed a clear distinction between low and high grade tumors. In addition 26 genes showed significant differences between low and high tumor stages, including fragile histidine triad, Ras and sialyltransferase 8 (alpha) and 16 showed significant differences between low and high tumor grades, like methionine adenosyl transferase II, beta. CONCLUSIONS The present study identified some genes, that can be used as molecular biomarkers or target genes in Egyptian bladder cancer patients.
Collapse
Affiliation(s)
- Abdel-Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt E-mail :
| | | | | | | | | | | | | |
Collapse
|
25
|
Subhash VV, Tan SH, Tan WL, Yeo MS, Xie C, Wong FY, Kiat ZY, Lim R, Yong WP. GTSE1 expression represses apoptotic signaling and confers cisplatin resistance in gastric cancer cells. BMC Cancer 2015. [PMID: 26209226 PMCID: PMC4514980 DOI: 10.1186/s12885-015-1550-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Platinum based therapy is commonly used in the treatment of advanced gastric cancer. However, resistance to chemotherapy is a major challenge that causes marked variation in individual response rate and survival rate. In this study, we aimed to identify the expression of GTSE1 and its correlation with cisplatin resistance in gastric cancer cells. Methods Methylation profiling was carried out in tissue samples from gastric cancer patients before undergoing neoadjuvent therapy using docetaxel, cisplatin and 5FU (DCX) and in gastric cancer cell lines. The correlation between GTSE1 expression and methylation in gastric cancer cells was determined by RT-PCR and MSP respectively. GTSE1 expression was knocked-down using shRNA’s and its effects on cisplatin cytotoxicity and cell survival were detected by MTS, proliferation and clonogenic survival assays. Additionally, the effect of GTSE1 knock down in drug induced apoptosis was determined by western blotting and apoptosis assays. Results GTSE1 exhibited a differential methylation index in gastric cancer patients and in cell lines that correlated with DCX treatment response and cisplatin sensitivity, respectively. In-vitro, GTSE1 expression showed a direct correlation with hypomethylation. Interestingly, Cisplatin treatment induced a dose dependent up regulation as well as nuclear translocation of GTSE1 expression in gastric cancer cells. Knock down of GTSE1 enhanced cisplatin cytotoxity and led to a significant reduction in cell proliferation and clonogenic survival. Also, loss of GTSE1 expression caused a significant increase in P53 mediated apoptosis in cisplatin treated cells. Conclusion Our study identifies GTSE1 as a biomarker for cisplatin resistance in gastric cancer cells. This study also suggests the repressive role of GTSE1 in cisplatin induced apoptosis and signifies its potential utility as a therapeutic target for better clinical management of gastric cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1550-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinod Vijay Subhash
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Shi Hui Tan
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Woei Loon Tan
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Mei Shi Yeo
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Chen Xie
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Foong Ying Wong
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Zee Ying Kiat
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Robert Lim
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| |
Collapse
|
26
|
Expanding the p53 regulatory network: LncRNAs take up the challenge. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015. [PMID: 26196323 DOI: 10.1016/j.bbagrm.2015.07.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are rapidly emerging as important regulators of gene expression in a wide variety of physiological and pathological cellular processes. In particular, a number of studies revealed that some lncRNAs participate in the p53 pathway, the unquestioned protagonist of tumor suppressor response. Indeed, several lncRNAs are not only part of the large pool of genes coordinated by p53 transcription factor, but are also required by p53 to fine-tune its response and to fully accomplish its tumor suppressor program. In this review we will discuss the current and fast growing knowledge about the contribution of lncRNAs to the complexity of the p53 network, the different mechanisms by which they affect gene regulation in this context, and their involvement in cancer. The incipient impact of lncRNAs in the p53 biological response may encourage the development of therapies and diagnostic methods focused on these noncoding molecules. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
27
|
Scolz M, Widlund PO, Piazza S, Bublik DR, Reber S, Peche LY, Ciani Y, Hubner N, Isokane M, Monte M, Ellenberg J, Hyman AA, Schneider C, Bird AW. GTSE1 is a microtubule plus-end tracking protein that regulates EB1-dependent cell migration. PLoS One 2012; 7:e51259. [PMID: 23236459 PMCID: PMC3517537 DOI: 10.1371/journal.pone.0051259] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/30/2012] [Indexed: 02/08/2023] Open
Abstract
The regulation of cell migration is a highly complex process that is often compromised when cancer cells become metastatic. The microtubule cytoskeleton is necessary for cell migration, but how microtubules and microtubule-associated proteins regulate multiple pathways promoting cell migration remains unclear. Microtubule plus-end binding proteins (+TIPs) are emerging as important players in many cellular functions, including cell migration. Here we identify a +TIP, GTSE1, that promotes cell migration. GTSE1 accumulates at growing microtubule plus ends through interaction with the EB1+TIP. The EB1-dependent +TIP activity of GTSE1 is required for cell migration, as well as for microtubule-dependent disassembly of focal adhesions. GTSE1 protein levels determine the migratory capacity of both nontransformed and breast cancer cell lines. In breast cancers, increased GTSE1 expression correlates with invasive potential, tumor stage, and time to distant metastasis, suggesting that misregulation of GTSE1 expression could be associated with increased invasive potential.
Collapse
Affiliation(s)
- Massimilano Scolz
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Per O. Widlund
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Silvano Piazza
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Debora Rosa Bublik
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Simone Reber
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Leticia Y. Peche
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Yari Ciani
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Nina Hubner
- Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Mayumi Isokane
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Martin Monte
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
| | - Jan Ellenberg
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (AWB); (AAH); (CS)
| | - Claudio Schneider
- Laboratorio Nazionale The Interuniversity Consortium for Biotechnology, Area Science Park, Trieste, Italy
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
- * E-mail: (AWB); (AAH); (CS)
| | - Alexander W. Bird
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (AWB); (AAH); (CS)
| |
Collapse
|
28
|
Bruinsma W, Raaijmakers JA, Medema RH. Switching Polo-like kinase-1 on and off in time and space. Trends Biochem Sci 2012; 37:534-42. [PMID: 23141205 DOI: 10.1016/j.tibs.2012.09.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/16/2012] [Accepted: 09/21/2012] [Indexed: 01/24/2023]
Abstract
Polo-like kinase (Plk)1 executes several essential functions to promote cell division. These functions range from centrosome maturation in late G2 phase to the regulation of cytokinesis, which necessitates precise separation of Plk1-dependent substrate phosphorylation over time. Multiple levels of control are in place to ensure that Plk1-dependent phosphorylation of its various substrates is properly coordinated in time and space. Here, we review the current knowledge on the mechanisms that enforce the temporal and spatial control of Plk1 activity, and how this results in coordinated phosphorylation of its many different substrates. We also review a number of newly discovered functions of Plk1 that provide more insights into the spatiotemporal control of Plk1-dependent substrate phosphorylation.
Collapse
Affiliation(s)
- Wytse Bruinsma
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
29
|
Abstract
Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis. Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and, as a result, several mitotic kinase inhibitors have been developed. Despite promising preclinical results, targeting mitotic kinases for cancer therapy faces numerous challenges, including safety and patient selection issues. Therefore, there is an urgent need to better understand the molecular mechanisms underlying mitotic kinase signaling and its interactive network. Increasing evidence suggests that tumor suppressor p53 functions at the center of the mitotic kinase signaling network. In response to mitotic spindle damage, multiple mitotic kinases phosphorylate p53 to either activate or deactivate p53-mediated signaling. p53 can also regulate the expression and function of mitotic kinases, suggesting the existence of a network of mutual regulation, which can be positive or negative, between mitotic kinases and p53 signaling. Therefore, deciphering this regulatory network will provide knowledge to overcome current limitations of targeting mitotic kinases and further improve the results of targeted therapy.
Collapse
|
30
|
Wang S, Li W, Xue Z, Lu Y, Narsinh K, Fan W, Li X, Bu Q, Wang F, Liang J, Wu K, Cao F. Molecular imaging of p53 signal pathway in lung cancer cell cycle arrest induced by cisplatin. Mol Carcinog 2012; 52:900-7. [PMID: 22674879 DOI: 10.1002/mc.21930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 01/03/2023]
Abstract
Cisplatin is a commonly employed chemotherapy drug for lung malignancy. However its efficacy is limited by acquired drug resistance and lacking of an in vivo real-time monitoring approach. The aim of this study is to investigate the effect of cisplatin on lung adenocarcinoma cell line p53-RE-Fluc/A549 in vivo via non-invasive reporter gene by molecular imaging. For this study, we employed p53-RE-Fluc/A549 cells that overexpressed a vector with three tandem repeats of p53 response element followed by the luciferase reporter gene. P53 activity was evaluated by optical imaging and verified by Western blot after cells were exposed to 10 µM cisplatin for 72 h. The cell cycle was mainly blocked at the S- and G2/M-phases after cisplatin treatment, whereas no significant change was observed in cell apoptotic index. Increased expression of p21 and Bcl-2 as well as decreased expression of Bax were observed after cisplatin treatment by Western blotting. Longitudinal in vivo bioluminescent imaging (BLI) revealed that the p53 activity was increased from 24 to 48 h after transient cisplatin treatment in p53-RE-Fluc/A549-bearing nude mice. RNA sequencing further revealed that cell cycle and p53 signaling pathway genes, such as E2F1, CCNA2, CDK1, and CCNE2 were significantly downregulated after long-term cisplatin treatment. Thus, our study showed that cisplatin exerts its cytotoxic effect through blockage of the cell cycle and may be partly regulated by the p53 signaling pathway. Furthermore, molecular imaging is a useful tool to investigate the mechanism and evaluate the effect of chemotherapy drugs both in vivo and in vitro.
Collapse
Affiliation(s)
- Shenxu Wang
- Cardiology and Molecular Imaging Department, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhu JW, Zhang YX, Guan YB. Cancerous multi-drug resistance is reduced by Leptomycin B treatment in CCRF-CEM/Taxol cellsCancerous multi-drug resistance is reduced by Leptomycin B treatment in CCRF-CEM/Taxol cells. Health (London) 2012. [DOI: 10.4236/health.2012.410130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Hubert T, Vandekerckhove J, Gettemans J. Cdk1 and BRCA1 target γ-tubulin to microtubule domains. Biochem Biophys Res Commun 2011; 414:240-5. [PMID: 21951856 DOI: 10.1016/j.bbrc.2011.09.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/13/2011] [Indexed: 01/01/2023]
Abstract
DNA damage is a critical event that requires an appropriate cellular response. This is mediated by checkpoint proteins such as Cdk1 that controls S/G2 and G2/M transition. Cdk1 is required for BRCA1 transport to DNA damage sites inside the nucleus where BRCA1 functions as a scaffold to initiate a signaling cascade. BRCA1 is a multifunctional protein that also ubiquitinates γ-tubulin and, consequently, inhibits microtubule nucleation at the centrosome. Here, we report that γ-tubulin also localizes at confined areas in the microtubule network. Nocodazole-mediated microtubule depolymeration results in disappearance of this γ-tubulin fraction, while microtubule stabilization by taxol preserves this structure. Surprisingly, overexpression of Cdk1 or BRCA1 greatly expands the γ-tubulin coating of microtubules, suggesting that the microtubule-bound γ-tubulin is involved in DNA damage response. This is in accordance with numerous reports of microtubule-associated DNA damage proteins, such as p53, that are transported to the nucleus when DNA damage occurs. γ-Tubulin itself has been reported to form complexes with DNA repair proteins in the nucleus.
Collapse
Affiliation(s)
- Thomas Hubert
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
33
|
Park EJ, Kondratyuk TP, Morrell A, Kiselev E, Conda-Sheridan M, Cushman M, Ahn S, Choi Y, White JJ, van Breemen RB, Pezzuto JM. Induction of retinoid X receptor activity and consequent upregulation of p21WAF1/CIP1 by indenoisoquinolines in MCF7 cells. Cancer Prev Res (Phila) 2011; 4:592-607. [PMID: 21464033 DOI: 10.1158/1940-6207.capr-10-0004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinoid X receptor (RXR) has been targeted for the chemoprevention and treatment of cancer. To discover potential agents acting through RXRs, we utilized an RXR response element (RXRE)-luciferase reporter gene assay. Following extensive screening, 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline dihydrochloride (AM6-36) was found to induce RXRE-luciferase activities. AM6-36 inhibited COX-2 expression and anchorage-independent growth with 12-O-tetradecanoylphorbol 13-acetate-stimulated JB6 Cl41 cells, induced the expression of CD38 in HL-60 cells, and attenuated the growth of N-methyl-N-nitrosourea-induced mammary tumors in rats. Consistent with other reports describing the antiproliferative effects of RXR agonists in breast cancers, AM6-36 showed growth inhibition with cultured MCF7 breast cancer cells, accompanied by G(2)/M-phase arrest at lower concentrations and enhanced S-phase arrest at higher concentrations. On the basis of DNA microarray analysis, AM6-36 upregulated the expression of CDKN1A, a target gene of RXR, by 35-fold. In accord with this response, the expression of the corresponding protein, p21(WAF1/CIP1), was increased in the presence of AM6-36. Induction of p21 by AM6-36 was abrogated following transient knockdown of RXRα, demonstrating that the effect of AM6-36 on the expression of p21 is closely related to modulation of RXRα transcriptional activity. Intestinal permeability was suggested with Caco-2 cells and limited metabolism resulted when AM6-36 was incubated with human liver microsomes. Oral administration with rats resulted in 0.8 μg/mL, 4.3 μg/g, and 0.3 μg/g in serum, liver, and mammary gland, respectively. In sum, these data suggest that AM6-36 is a promising lead for the treatment or prevention of breast cancer and provide a strong rationale for testing in more advanced antitumor systems.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI 96720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chung YS, Cho S, Ryou HJ, Jee HG, Choi JY, Yoon K, Choi HJ, Lee KE, Suh YJ, Oh SK, Youn YK. Is there a treatment advantage when paclitaxel and lovastatin are combined to dose anaplastic thyroid carcinoma cell lines? Thyroid 2011; 21:735-44. [PMID: 21568723 DOI: 10.1089/thy.2010.0304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid carcinoma. The purpose of this study was to evaluate the combined cytotoxic effects of paclitaxel and lovastatin in ATC cell lines. METHODS ATC cells were treated with paclitaxel and lovastatin, separately or together, and the cytotoxicity of the compounds was determined by quantifying cell viability and apoptosis. We conducted an isobologram analysis to investigate the combined effect of the two drugs. RESULTS In 8505C cells, cellular viability was inhibited by lovastatin and paclitaxel in a concentration-dependent manner (p = 0.002 and p = 0.020, respectively). The IC(50) of lovastatin was 3.53 μM and that of paclitaxel was 5.98 nM. In BHT-101 cells, cellular viability was also inhibited in a concentration-dependent manner by lovastatin and paclitaxel (p = 0.020 and p = 0.032, respectively). The IC(50) of lovastatin was 17.13 μM and that of paclitaxel was 35.26 nM. In 8505C cells, paclitaxel and lovastatin alone induced apoptosis in a concentration-dependent manner. However, both an isobologram analysis on inhibition of viability and an analysis of apoptosis demonstrated antagonism between paclitaxel and lovastatin. In BHT-101 cells, however, neither drug had an apoptotic effect when used individually. There was a variable effect when used in combination, depending on the drug concentrations. CONCLUSIONS Paclitaxel and lovastatin were cytotoxic in two ATC cell lines and increased apoptosis in 8505C cells. However, in these cells, the combination of drugs resulted in antagonism that affected both the cytotoxicity of the compounds and the apoptosis of 8505C cells. The combination of paclitaxel and lovastatin did not enhance the treatment effect in ATC cell lines.
Collapse
Affiliation(s)
- Yoo Seung Chung
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hillegass JM, Blumen SR, Cheng K, MacPherson MB, Alexeeva V, Lathrop SA, Beuschel SL, Steinbacher JL, Butnor KJ, Ramos-Niño ME, Shukla A, James TA, Weiss DJ, Taatjes DJ, Pass HI, Carbone M, Landry CC, Mossman BT. Increased efficacy of doxorubicin delivered in multifunctional microparticles for mesothelioma therapy. Int J Cancer 2011; 129:233-44. [PMID: 20830711 PMCID: PMC3017728 DOI: 10.1002/ijc.25666] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 08/30/2010] [Indexed: 01/16/2023]
Abstract
New and effective treatment strategies are desperately needed for malignant mesothelioma (MM), an aggressive cancer with a poor prognosis. We have shown previously that acid-prepared mesoporous microspheres (APMS) are nontoxic after intrapleural or intraperitoneal (IP) administration to rodents. The purpose here was to evaluate the utility of APMS in delivering chemotherapeutic drugs to human MM cells in vitro and in two mouse xenograft models of MM. Uptake and release of doxorubicin (DOX) alone or loaded in APMS (APMS-DOX) were evaluated in MM cells. MM cell death and gene expression linked to DNA damage/repair were also measured in vitro. In two severe combined immunodeficient mouse xenograft models, mice received saline, APMS, DOX or APMS-DOX injected directly into subcutaneous (SC) MM tumors or injected IP after development of human MMs peritoneally. Other mice received DOX intravenously (IV) via tail vein injections. In comparison to DOX alone, APMS-DOX enhanced intracellular uptake of DOX, MM death and expression of GADD34 and TP73. In the SC MM model, 3× weekly SC injections of APMS-DOX or DOX alone significantly inhibited tumor volumes, and systemic DOX administration was lethal. In mice developing IP MMs, significant (p < 0.05) inhibition of mesenteric tumor numbers, weight and volume was achieved using IP administration of APMS-DOX at one-third the DOX concentration required after IP injections of DOX alone. These results suggest APMS are efficacious for the localized delivery of lower effective DOX concentrations in MM and represent a novel means of treating intracavitary tumors.
Collapse
Affiliation(s)
- Jedd M. Hillegass
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| | - Steven R. Blumen
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| | - Kai Cheng
- Department of Chemistry, University of Vermont, Burlington, VT
| | | | - Vlada Alexeeva
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| | - Sherrill A. Lathrop
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| | - Stacie L. Beuschel
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| | | | - Kelly J. Butnor
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| | - Maria E. Ramos-Niño
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| | - Arti Shukla
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| | - Ted A. James
- Department of Surgery, University of Vermont College of Medicine, Burlington, VT
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT
| | - Douglas J. Taatjes
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, NYU School of Medicine, New York, NY
| | - Michele Carbone
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu, HI
| | | | - Brooke T. Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
36
|
Bahassi EM. Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions. Exp Biol Med (Maywood) 2011; 236:648-57. [PMID: 21558091 DOI: 10.1258/ebm.2011.011011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that play a pivotal role in cell cycle progression and in cellular response to DNA damage. The Plks are highly conserved from yeast to mammals. There are five Plk family members (Plk1-5) in humans, of which Plk1, is the best characterized. The Plk1 isoform is being aggressively pursued as a target for cancer therapy, following observations that this protein is overexpressed in human tumors and is actively involved in malignant transformation. The roles of Plks in mitotic entry, spindle pole functions and cytokinesis are well established and have been the subject of several recent reviews. In this review, we discuss functions of Plks other than their classical roles in mitotic progression. When cells incur DNA damage, they activate checkpoint mechanisms that result in cell cycle arrest and allow time for repair. If the damage is extensive and cannot be repaired, cells will undergo cell death by apoptosis. If the damage is repaired, cells can resume cycling, as part of the process known as checkpoint recovery. If the damage is not repaired or incompletely repaired, cells can override the checkpoint and resume cycling with damaged DNA, a process called checkpoint adaptation. The Plks play a role in all three outcomes and their involvement in these processes will be the subject of this review.
Collapse
Affiliation(s)
- El Mustapha Bahassi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0562, USA.
| |
Collapse
|
37
|
Liu XS, Song B, Liu X. The substrates of Plk1, beyond the functions in mitosis. Protein Cell 2010; 1:999-1010. [PMID: 21153517 PMCID: PMC4875153 DOI: 10.1007/s13238-010-0131-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/08/2010] [Indexed: 12/01/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of cell division in eukaryotic cells. In this short review, we briefly summarized the well-established functions modulated by Plk1 during mitosis. Beyond mitosis, we focused mainly on the unexpected processes in which Plk1 emerges as a critical player, including microtubule dynamics, DNA replication, chromosome dynamics, p53 regulation, and recovery from the G2 DNA-damage checkpoint. Our discussion is mainly based on the critical substrates targeted by Plk1 during these cellular events and the functional significance associated with each phosphorylation event.
Collapse
Affiliation(s)
- X. Shawn Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 USA
| | - Bing Song
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 USA
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 USA
| |
Collapse
|
38
|
Liu XS, Li H, Song B, Liu X. Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery. EMBO Rep 2010; 11:626-32. [PMID: 20577264 PMCID: PMC2920445 DOI: 10.1038/embor.2010.90] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 11/09/2022] Open
Abstract
In response to G2 DNA damage, the p53 pathway is activated to lead to cell-cycle arrest, but how p53 is eliminated during the subsequent recovery process is poorly understood. It has been established that Polo-like kinase 1 (Plk1) controls G2 DNA-damage recovery. However, whether Plk1 activity contributes to p53 inactivation during this process is unknown. In this study, we show that G2 and S-phase-expressed 1 (GTSE1) protein, a negative regulator of p53, is required for G2 checkpoint recovery and that Plk1 phosphorylation of GTSE1 at Ser 435 promotes its nuclear localization, and thus shuttles p53 out of the nucleus to lead to its degradation during the recovery.
Collapse
Affiliation(s)
- X Shawn Liu
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907, USA
| | - Hongchang Li
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907, USA
| | - Bing Song
- Department of Biological Sciences, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907, USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907, USA
| |
Collapse
|
39
|
Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. ACTA ACUST UNITED AC 2010; 189:739-54. [PMID: 20479470 PMCID: PMC2872919 DOI: 10.1083/jcb.200911091] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
QUBIC, a specific and highly sensitive method for detection of protein–protein interactions, is used to identify new partners for the mitotic spindle components pericentrin and TACC3. Protein interactions are involved in all cellular processes. Their efficient and reliable characterization is therefore essential for understanding biological mechanisms. In this study, we show that combining bacterial artificial chromosome (BAC) TransgeneOmics with quantitative interaction proteomics, which we call quantitative BAC–green fluorescent protein interactomics (QUBIC), allows specific and highly sensitive detection of interactions using rapid, generic, and quantitative procedures with minimal material. We applied this approach to identify known and novel components of well-studied complexes such as the anaphase-promoting complex. Furthermore, we demonstrate second generation interaction proteomics by incorporating directed mutational transgene modification and drug perturbation into QUBIC. These methods identified domain/isoform-specific interactors of pericentrin- and phosphorylation-specific interactors of TACC3, which are necessary for its recruitment to mitotic spindles. The scalability, simplicity, cost effectiveness, and sensitivity of this method provide a basis for its general use in small-scale experiments and in mapping the human protein interactome.
Collapse
Affiliation(s)
- Nina C Hubner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wu G, Feng X, Stein L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol 2010; 11:R53. [PMID: 20482850 PMCID: PMC2898064 DOI: 10.1186/gb-2010-11-5-r53] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/16/2010] [Accepted: 05/19/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One challenge facing biologists is to tease out useful information from massive data sets for further analysis. A pathway-based analysis may shed light by projecting candidate genes onto protein functional relationship networks. We are building such a pathway-based analysis system. RESULTS We have constructed a protein functional interaction network by extending curated pathways with non-curated sources of information, including protein-protein interactions, gene coexpression, protein domain interaction, Gene Ontology (GO) annotations and text-mined protein interactions, which cover close to 50% of the human proteome. By applying this network to two glioblastoma multiforme (GBM) data sets and projecting cancer candidate genes onto the network, we found that the majority of GBM candidate genes form a cluster and are closer than expected by chance, and the majority of GBM samples have sequence-altered genes in two network modules, one mainly comprising genes whose products are localized in the cytoplasm and plasma membrane, and another comprising gene products in the nucleus. Both modules are highly enriched in known oncogenes, tumor suppressors and genes involved in signal transduction. Similar network patterns were also found in breast, colorectal and pancreatic cancers. CONCLUSIONS We have built a highly reliable functional interaction network upon expert-curated pathways and applied this network to the analysis of two genome-wide GBM and several other cancer data sets. The network patterns revealed from our results suggest common mechanisms in the cancer biology. Our system should provide a foundation for a network or pathway-based analysis platform for cancer and other diseases.
Collapse
Affiliation(s)
- Guanming Wu
- Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Suite 800, Toronto, ON M5G 0A3, Canada
| | - Xin Feng
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Lincoln Stein
- Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Suite 800, Toronto, ON M5G 0A3, Canada
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
41
|
Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 2010. [DOI: 10.1083/jcb.200911091 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Protein interactions are involved in all cellular processes. Their efficient and reliable characterization is therefore essential for understanding biological mechanisms. In this study, we show that combining bacterial artificial chromosome (BAC) TransgeneOmics with quantitative interaction proteomics, which we call quantitative BAC–green fluorescent protein interactomics (QUBIC), allows specific and highly sensitive detection of interactions using rapid, generic, and quantitative procedures with minimal material. We applied this approach to identify known and novel components of well-studied complexes such as the anaphase-promoting complex. Furthermore, we demonstrate second generation interaction proteomics by incorporating directed mutational transgene modification and drug perturbation into QUBIC. These methods identified domain/isoform-specific interactors of pericentrin- and phosphorylation-specific interactors of TACC3, which are necessary for its recruitment to mitotic spindles. The scalability, simplicity, cost effectiveness, and sensitivity of this method provide a basis for its general use in small-scale experiments and in mapping the human protein interactome.
Collapse
Affiliation(s)
- Nina C. Hubner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alexander W. Bird
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter Bandilla
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony Hyman
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
42
|
Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 2010. [DOI: 10.1083/jcb.200911091 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Protein interactions are involved in all cellular processes. Their efficient and reliable characterization is therefore essential for understanding biological mechanisms. In this study, we show that combining bacterial artificial chromosome (BAC) TransgeneOmics with quantitative interaction proteomics, which we call quantitative BAC–green fluorescent protein interactomics (QUBIC), allows specific and highly sensitive detection of interactions using rapid, generic, and quantitative procedures with minimal material. We applied this approach to identify known and novel components of well-studied complexes such as the anaphase-promoting complex. Furthermore, we demonstrate second generation interaction proteomics by incorporating directed mutational transgene modification and drug perturbation into QUBIC. These methods identified domain/isoform-specific interactors of pericentrin- and phosphorylation-specific interactors of TACC3, which are necessary for its recruitment to mitotic spindles. The scalability, simplicity, cost effectiveness, and sensitivity of this method provide a basis for its general use in small-scale experiments and in mapping the human protein interactome.
Collapse
Affiliation(s)
- Nina C. Hubner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alexander W. Bird
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter Bandilla
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony Hyman
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
43
|
Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Biophys Biochem Cytol 2010. [DOI: 10.1083/jcb.200911091 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Protein interactions are involved in all cellular processes. Their efficient and reliable characterization is therefore essential for understanding biological mechanisms. In this study, we show that combining bacterial artificial chromosome (BAC) TransgeneOmics with quantitative interaction proteomics, which we call quantitative BAC–green fluorescent protein interactomics (QUBIC), allows specific and highly sensitive detection of interactions using rapid, generic, and quantitative procedures with minimal material. We applied this approach to identify known and novel components of well-studied complexes such as the anaphase-promoting complex. Furthermore, we demonstrate second generation interaction proteomics by incorporating directed mutational transgene modification and drug perturbation into QUBIC. These methods identified domain/isoform-specific interactors of pericentrin- and phosphorylation-specific interactors of TACC3, which are necessary for its recruitment to mitotic spindles. The scalability, simplicity, cost effectiveness, and sensitivity of this method provide a basis for its general use in small-scale experiments and in mapping the human protein interactome.
Collapse
Affiliation(s)
- Nina C. Hubner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alexander W. Bird
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter Bandilla
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony Hyman
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
44
|
Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 2010. [DOI: 10.1083/jcb.200911091 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Protein interactions are involved in all cellular processes. Their efficient and reliable characterization is therefore essential for understanding biological mechanisms. In this study, we show that combining bacterial artificial chromosome (BAC) TransgeneOmics with quantitative interaction proteomics, which we call quantitative BAC–green fluorescent protein interactomics (QUBIC), allows specific and highly sensitive detection of interactions using rapid, generic, and quantitative procedures with minimal material. We applied this approach to identify known and novel components of well-studied complexes such as the anaphase-promoting complex. Furthermore, we demonstrate second generation interaction proteomics by incorporating directed mutational transgene modification and drug perturbation into QUBIC. These methods identified domain/isoform-specific interactors of pericentrin- and phosphorylation-specific interactors of TACC3, which are necessary for its recruitment to mitotic spindles. The scalability, simplicity, cost effectiveness, and sensitivity of this method provide a basis for its general use in small-scale experiments and in mapping the human protein interactome.
Collapse
Affiliation(s)
- Nina C. Hubner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alexander W. Bird
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter Bandilla
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony Hyman
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
45
|
Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Biophys Biochem Cytol 2010. [DOI: 10.1083/jcb.200911091 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Protein interactions are involved in all cellular processes. Their efficient and reliable characterization is therefore essential for understanding biological mechanisms. In this study, we show that combining bacterial artificial chromosome (BAC) TransgeneOmics with quantitative interaction proteomics, which we call quantitative BAC–green fluorescent protein interactomics (QUBIC), allows specific and highly sensitive detection of interactions using rapid, generic, and quantitative procedures with minimal material. We applied this approach to identify known and novel components of well-studied complexes such as the anaphase-promoting complex. Furthermore, we demonstrate second generation interaction proteomics by incorporating directed mutational transgene modification and drug perturbation into QUBIC. These methods identified domain/isoform-specific interactors of pericentrin- and phosphorylation-specific interactors of TACC3, which are necessary for its recruitment to mitotic spindles. The scalability, simplicity, cost effectiveness, and sensitivity of this method provide a basis for its general use in small-scale experiments and in mapping the human protein interactome.
Collapse
Affiliation(s)
- Nina C. Hubner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alexander W. Bird
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter Bandilla
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony Hyman
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
46
|
Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 2010. [DOI: 10.1083/jcb.200911091 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Protein interactions are involved in all cellular processes. Their efficient and reliable characterization is therefore essential for understanding biological mechanisms. In this study, we show that combining bacterial artificial chromosome (BAC) TransgeneOmics with quantitative interaction proteomics, which we call quantitative BAC–green fluorescent protein interactomics (QUBIC), allows specific and highly sensitive detection of interactions using rapid, generic, and quantitative procedures with minimal material. We applied this approach to identify known and novel components of well-studied complexes such as the anaphase-promoting complex. Furthermore, we demonstrate second generation interaction proteomics by incorporating directed mutational transgene modification and drug perturbation into QUBIC. These methods identified domain/isoform-specific interactors of pericentrin- and phosphorylation-specific interactors of TACC3, which are necessary for its recruitment to mitotic spindles. The scalability, simplicity, cost effectiveness, and sensitivity of this method provide a basis for its general use in small-scale experiments and in mapping the human protein interactome.
Collapse
Affiliation(s)
- Nina C. Hubner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alexander W. Bird
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter Bandilla
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony Hyman
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
47
|
Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Biophys Biochem Cytol 2010. [DOI: 10.1083/jcb.200911091 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Protein interactions are involved in all cellular processes. Their efficient and reliable characterization is therefore essential for understanding biological mechanisms. In this study, we show that combining bacterial artificial chromosome (BAC) TransgeneOmics with quantitative interaction proteomics, which we call quantitative BAC–green fluorescent protein interactomics (QUBIC), allows specific and highly sensitive detection of interactions using rapid, generic, and quantitative procedures with minimal material. We applied this approach to identify known and novel components of well-studied complexes such as the anaphase-promoting complex. Furthermore, we demonstrate second generation interaction proteomics by incorporating directed mutational transgene modification and drug perturbation into QUBIC. These methods identified domain/isoform-specific interactors of pericentrin- and phosphorylation-specific interactors of TACC3, which are necessary for its recruitment to mitotic spindles. The scalability, simplicity, cost effectiveness, and sensitivity of this method provide a basis for its general use in small-scale experiments and in mapping the human protein interactome.
Collapse
Affiliation(s)
- Nina C. Hubner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alexander W. Bird
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter Bandilla
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Anthony Hyman
- Department of Microtubules and Cell Division, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
48
|
Bublik DR, Scolz M, Triolo G, Monte M, Schneider C. Human GTSE-1 regulates p21(CIP1/WAF1) stability conferring resistance to paclitaxel treatment. J Biol Chem 2010; 285:5274-81. [PMID: 20018861 PMCID: PMC2820756 DOI: 10.1074/jbc.m109.045948] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 12/10/2009] [Indexed: 11/06/2022] Open
Abstract
p21(CIP1/WAF1) belongs to the CIP/KIP family of Cdk inhibitors, and its expression is tightly controlled during the cell cycle, mainly by transcriptional and post-translational mechanisms. Fine regulation of p21(CIP1/WAF1) levels is critical for cell cycle control and for cellular response to stress. In the present work, we describe a novel mechanism to modulate p21(CIP1/WAF1) levels mediated by the human GTSE-1 (G(2) and S phase-expressed-1) protein. Our results provide evidence that hGTSE-1 protects p21(CIP1/WAF1) from proteasome-dependent degradation as part of a functional complex containing the Hsp90-binding TPR protein WISp39. We further show that the hGTSE-1 N-terminal portion is sufficient for p21(CIP1/WAF1) binding and stabilization. Finally, we demonstrate that hGTSE-1 mediated-p21(CIP1/WAF1) stabilization is clearly involved in the ability of cells to counteract cytotoxicity induced by the microtubule poison paclitaxel.
Collapse
Affiliation(s)
- Débora Rosa Bublik
- From the Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie and
| | - Massimiliano Scolz
- From the Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie and
| | - Gianluca Triolo
- the Genome Stability Laboratory, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34149 Trieste, Italy and
| | - Martín Monte
- From the Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie and
| | - Claudio Schneider
- From the Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie and
- the Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, P.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
49
|
Dongiovanni P, Fracanzani AL, Cairo G, Megazzini CP, Gatti S, Rametta R, Fargion S, Valenti L. Iron-dependent regulation of MDM2 influences p53 activity and hepatic carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009. [PMID: 20019189 DOI: 10.2353/amjpath.2010.090249.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron overload is a risk factor for hepatocarcinoma, but the pathways involved are poorly characterized. Gene expression analysis in immortalized mouse hepatocytes exposed to iron or the iron chelator deferoxamine revealed that iron downregulated, whereas deferoxamine upregulated, mRNA levels of mouse double minute gene 2 (MDM2), the ubiquitin ligase involved in the degradation of the oncosuppressor p53. Regulation of MDM2 by iron status was observed at protein levels in mouse hepatocytes and rat liver, and was associated with specular changes in p53 expression. Iron dependent regulation of MDM2/p53 was confirmed ex-vivo in human monocytes, by manipulation of iron pool and in a genetic model of iron deficiency, leading to modulation of p53 target genes involved in the antioxidant response and apoptosis. Iron status influenced p53 ubiquitination and degradation rate, and the MDM2 inhibitor nutlin increased p53 levels in iron-depleted cells. Furthermore, nutlin enhanced the antiproliferative activity of deferoxamine in HepG2 hepatoblastoma cells. The MDM2 -309T > G promoter polymorphism, determining increased MDM2 and lower p53 activity, was associated with higher risk of hepatocarcinoma in cirrhotic patients with hemochromatosis, and with HFE mutations in patients with hepatocarcinoma without hemochromatosis, suggesting an interaction between MDM2 and iron in the pathogenesis of hepatocarcinoma. In conclusion, iron status influences p53 activity and antioxidant response by modulating MDM2 expression. MDM2 inhibitors may enhance the antiproliferative activity of iron chelators.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Center of Metabolic and Liver Diseases, Department of Internal Medicine, University of Milano, Ospedale Policlinico Mangiagalli e Regina Elena Fondazione IRCCS, 20122 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dongiovanni P, Fracanzani AL, Cairo G, Megazzini CP, Gatti S, Rametta R, Fargion S, Valenti L. Iron-dependent regulation of MDM2 influences p53 activity and hepatic carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009. [PMID: 20019189 DOI: 10.2353/amjpath.2010.090249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron overload is a risk factor for hepatocarcinoma, but the pathways involved are poorly characterized. Gene expression analysis in immortalized mouse hepatocytes exposed to iron or the iron chelator deferoxamine revealed that iron downregulated, whereas deferoxamine upregulated, mRNA levels of mouse double minute gene 2 (MDM2), the ubiquitin ligase involved in the degradation of the oncosuppressor p53. Regulation of MDM2 by iron status was observed at protein levels in mouse hepatocytes and rat liver, and was associated with specular changes in p53 expression. Iron dependent regulation of MDM2/p53 was confirmed ex-vivo in human monocytes, by manipulation of iron pool and in a genetic model of iron deficiency, leading to modulation of p53 target genes involved in the antioxidant response and apoptosis. Iron status influenced p53 ubiquitination and degradation rate, and the MDM2 inhibitor nutlin increased p53 levels in iron-depleted cells. Furthermore, nutlin enhanced the antiproliferative activity of deferoxamine in HepG2 hepatoblastoma cells. The MDM2 -309T > G promoter polymorphism, determining increased MDM2 and lower p53 activity, was associated with higher risk of hepatocarcinoma in cirrhotic patients with hemochromatosis, and with HFE mutations in patients with hepatocarcinoma without hemochromatosis, suggesting an interaction between MDM2 and iron in the pathogenesis of hepatocarcinoma. In conclusion, iron status influences p53 activity and antioxidant response by modulating MDM2 expression. MDM2 inhibitors may enhance the antiproliferative activity of iron chelators.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Center of Metabolic and Liver Diseases, Department of Internal Medicine, University of Milano, Ospedale Policlinico Mangiagalli e Regina Elena Fondazione IRCCS, 20122 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|