1
|
Alexander AK, Rodriguez KF, Chen YY, Amato C, Estermann MA, Nicol B, Xu X, Yao HHC. Single-nucleus multiomics reveals the gene regulatory networks underlying sex determination of murine primordial germ cells. eLife 2025; 13:RP96591. [PMID: 40063068 PMCID: PMC11893106 DOI: 10.7554/elife.96591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not well understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type-specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs toward a sex-specific fate.
Collapse
Affiliation(s)
- Adriana K Alexander
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Yu-Ying Chen
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Ciro Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Martin A Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Humphrey HC Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| |
Collapse
|
2
|
Alexander AK, Rodriguez KF, Chen YY, Amato CM, Estermann MA, Nicol B, Xu X, Hung-Chang Yao H. Single-nucleus multiomics reveals the gene-regulatory networks underlying sex determination of murine primordial germ cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581036. [PMID: 39386556 PMCID: PMC11463670 DOI: 10.1101/2024.02.19.581036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs towards a sex-specific fate.
Collapse
Affiliation(s)
- Adriana K. Alexander
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Karina F. Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yu-Ying Chen
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Martin A. Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Corti M, Lorenzetti S, Ubaldi A, Zilli R, Marcoccia D. Endocrine Disruptors and Prostate Cancer. Int J Mol Sci 2022; 23:1216. [PMID: 35163140 PMCID: PMC8835300 DOI: 10.3390/ijms23031216] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/22/2023] Open
Abstract
The role of endocrine disruptors (EDs) in the human prostate gland is an overlooked issue even though the prostate is essential for male fertility. From experimental models, it is known that EDs can influence several molecular mechanisms involved in prostate homeostasis and diseases, including prostate cancer (PCa), one of the most common cancers in the male, whose onset and progression is characterized by the deregulation of several cellular pathways including androgen receptor (AR) signaling. The prostate gland essentiality relies on its function to produce and secrete the prostatic fluid, a component of the seminal fluid, needed to keep alive and functional sperms upon ejaculation. In physiological condition, in the prostate epithelium the more-active androgen, the 5α-dihydrotestosterone (DHT), formed from testosterone (T) by the 5α-reductase enzyme (SRD5A), binds to AR and, upon homodimerization and nuclear translocation, recognizes the promoter of target genes modulating them. In pathological conditions, AR mutations and/or less specific AR binding by ligands modulate differently targeted genes leading to an altered regulation of cell proliferation and triggering PCa onset and development. EDs acting on the AR-dependent signaling within the prostate gland can contribute to the PCa onset and to exacerbating its development.
Collapse
Affiliation(s)
- Margherita Corti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Romano Zilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Via Appia Nuova 1411, 00178 Rome, Italy; (M.C.); (A.U.); (R.Z.)
| |
Collapse
|
5
|
Stallcup MR, Poulard C. Gene-Specific Actions of Transcriptional Coregulators Facilitate Physiological Plasticity: Evidence for a Physiological Coregulator Code. Trends Biochem Sci 2020; 45:497-510. [PMID: 32413325 DOI: 10.1016/j.tibs.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 01/14/2023]
Abstract
The actions of transcriptional coregulators are highly gene-specific, that is, each coregulator is required only for a subset of the genes regulated by a specific transcription factor. These coregulator-specific gene subsets often represent selected physiological responses among multiple pathways targeted by a transcription factor. Regulating the activity of a coregulator via post-translational modifications would thus affect only a subset of the transcription factor's physiological actions. Using the context of transcriptional regulation by steroid hormone receptors, this review focuses on gene-specific actions of coregulators and evidence linking individual coregulators with specific physiological pathways. Such evidence suggests that there is a 'physiological coregulator code', which represents a fertile area for future research with important clinical implications.
Collapse
Affiliation(s)
- Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90089-9176, USA.
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
6
|
Interplay Between SOX9, Wnt/β-Catenin and Androgen Receptor Signaling in Castration-Resistant Prostate Cancer. Int J Mol Sci 2019; 20:ijms20092066. [PMID: 31027362 PMCID: PMC6540097 DOI: 10.3390/ijms20092066] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.
Collapse
|
7
|
Peroxisome proliferator-activated receptor γ coactivator family members competitively regulate hepatitis b virus biosynthesis. Virology 2018; 526:214-221. [PMID: 30419515 DOI: 10.1016/j.virol.2018.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
Transcriptional coactivators represent critical components of the transcriptional pre-initiation complex and are required for efficient gene activation. Members of the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family differentially regulate hepatitis b virus (HBV) biosynthesis. Whereas PGC1α has been shown to be a potent activator of HBV biosynthesis, PGC1β only very poorly activates HBV RNA and DNA synthesis in human hepatoma (HepG2) and embryonic kidney (HEK293T) cells. Furthermore, PGC1β inhibits PGC1α-mediated HBV biosynthesis. These observations suggest that a potential competition between human hepatoma (HepG2) and embryonic kidney (HEK293T) cells PGC1α and PGC1β for common transcription factor target(s) may regulate HBV transcription and replication in a context and signal transduction pathway dependent manner.
Collapse
|
8
|
Schneider JA, Logan SK. Revisiting the role of Wnt/β-catenin signaling in prostate cancer. Mol Cell Endocrinol 2018; 462:3-8. [PMID: 28189566 PMCID: PMC5550366 DOI: 10.1016/j.mce.2017.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/14/2016] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
Abstract
The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer and compel us to reexamine the interaction of the AR and Wnt/β-catenin signaling pathways. This review includes newer areas of interest such as non-canonical Wnt signaling and the role of Wnts in prostate cancer stem cells. The effort to develop Wnt modulating therapeutics, both biologics and small molecules, is also discussed.
Collapse
Affiliation(s)
- Jeffrey A Schneider
- Departments of Urology, Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | - Susan K Logan
- Departments of Urology, Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
9
|
Ritz A, Avent B, Murali TM. Pathway Analysis with Signaling Hypergraphs. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1042-1055. [PMID: 28991726 PMCID: PMC5810418 DOI: 10.1109/tcbb.2015.2459681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Signaling pathways play an important role in the cell's response to its environment. Signaling pathways are often represented as directed graphs, which are not adequate for modeling reactions such as complex assembly and dissociation, combinatorial regulation, and protein activation/inactivation. More accurate representations such as directed hypergraphs remain underutilized. In this paper, we present an extension of a directed hypergraph that we call a signaling hypergraph. We formulate a problem that asks what proteins and interactions must be involved in order to stimulate a specific response downstream of a signaling pathway. We relate this problem to computing the shortest acyclic B-hyperpath in a signaling hypergraph-an NP-hard problem-and present a mixed integer linear program to solve it. We demonstrate that the shortest hyperpaths computed in signaling hypergraphs are far more informative than shortest paths, Steiner trees, and subnetworks containing many short paths found in corresponding graph representations. Our results illustrate the potential of signaling hypergraphs as an improved representation of signaling pathways and motivate the development of novel hypergraph algorithms.
Collapse
|
10
|
Triki M, Lapierre M, Cavailles V, Mokdad-Gargouri R. Expression and role of nuclear receptor coregulators in colorectal cancer. World J Gastroenterol 2017; 23:4480-4490. [PMID: 28740336 PMCID: PMC5504363 DOI: 10.3748/wjg.v23.i25.4480] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human cancers and the cause of about 700000 deaths per year worldwide. Deregulation of the WNT/β-catenin pathway is a key event in CRC initiation. This pathway interacts with other nuclear signaling pathways, including members of the nuclear receptor superfamily and their transcription coregulators. In this review, we provide an overview of the literature dealing with the main coactivators (NCoA-1 to 3, NCoA-6, PGC1-α, p300, CREBBP and MED1) and corepressors (N-CoR1 and 2, NRIP1 and MTA1) of nuclear receptors and summarize their links with the WNT/β-catenin signaling cascade, their expression in CRC and their role in intestinal physiopathology.
Collapse
|
11
|
Sikdar S, Datta S. A novel statistical approach for identification of the master regulator transcription factor. BMC Bioinformatics 2017; 18:79. [PMID: 28148240 PMCID: PMC5288875 DOI: 10.1186/s12859-017-1499-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/27/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transcription factors are known to play key roles in carcinogenesis and therefore, are gaining popularity as potential therapeutic targets in drug development. A 'master regulator' transcription factor often appears to control most of the regulatory activities of the other transcription factors and the associated genes. This 'master regulator' transcription factor is at the top of the hierarchy of the transcriptomic regulation. Therefore, it is important to identify and target the master regulator transcription factor for proper understanding of the associated disease process and identifying the best therapeutic option. METHODS We present a novel two-step computational approach for identification of master regulator transcription factor in a genome. At the first step of our method we test whether there exists any master regulator transcription factor in the system. We evaluate the concordance of two ranked lists of transcription factors using a statistical measure. In case the concordance measure is statistically significant, we conclude that there is a master regulator. At the second step, our method identifies the master regulator transcription factor, if there exists one. RESULTS In the simulation scenario, our method performs reasonably well in validating the existence of a master regulator when the number of subjects in each treatment group is reasonably large. In application to two real datasets, our method ensures the existence of master regulators and identifies biologically meaningful master regulators. An R code for implementing our method in a sample test data can be found in http://www.somnathdatta.org/software . CONCLUSION We have developed a screening method of identifying the 'master regulator' transcription factor just using only the gene expression data. Understanding the regulatory structure and finding the master regulator help narrowing the search space for identifying biomarkers for complex diseases such as cancer. In addition to identifying the master regulator our method provides an overview of the regulatory structure of the transcription factors which control the global gene expression profiles and consequently the cell functioning.
Collapse
Affiliation(s)
- Sinjini Sikdar
- Department of Biostatistics, University of Florida, Gainesville, FL, 32611, USA
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Suknuntha K, Thita T, Togarrati PP, Ratanachamnong P, Wongtrakoongate P, Srihirun S, Slukvin I, Hongeng S. Wnt signaling inhibitor FH535 selectively inhibits cell proliferation and potentiates imatinib-induced apoptosis in myeloid leukemia cell lines. Int J Hematol 2016; 105:196-205. [PMID: 27766528 DOI: 10.1007/s12185-016-2116-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Wnt signaling pathway plays a major role in leukemogenesis of myeloid leukemia. Aberrancy in its regulation results in hyperactivity of the pathway contributing to leukemia propagation and maintenance. To investigate effects of Wnt pathway inhibition in leukemia, we used human leukemia cell lines (i.e., K562, HL60, THP1, and Jurkat) and several Wnt inhibitors, including XAV939, IWP2 and FH535. Our results showed that leukemia cell lines (>95 % cells) had increased endogenous levels of β-catenin as compared to mononuclear cells from healthy donors (0 %). Among the tested inhibitors, FH535 demonstrated a markedly suppressive effect (IC50 = 358 nM) on mRNA levels of β-catenin target genes (LEF1, CCND1, and cMYC). In addition, FH535 significantly potentiated imatinib-induced apoptosis. Evaluation of erythrocyte and megakaryocyte lineage using flow cytometry demonstrated that the potentiation mechanism is independent of the developmental stage, and is more likely due to crosstalk between other pathways and β-catenin. FH535 also displayed antiproliferative properties in other cell lines used in this study. In summary, FH535 showed significantly high antiproliferative effects at submicromolar dosages, and additionally enhanced imatinib-induced apoptosis in human leukemia cell lines. Our results highlight its potential antileukemic promise when used in conjunction with other conventional therapeutic regimens.
Collapse
Affiliation(s)
- Kran Suknuntha
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Thanyatip Thita
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Piyanee Ratanachamnong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Sirada Srihirun
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Igor Slukvin
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53792, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
13
|
Strudwick XL, Waters JM, Cowin AJ. Flightless I Expression Enhances Murine Claw Regeneration Following Digit Amputation. J Invest Dermatol 2016; 137:228-236. [PMID: 27595936 DOI: 10.1016/j.jid.2016.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
The mammalian digit tip is capable of both reparative and regenerative wound healing dependent on the level of amputation injury. Removal of the distal third of the terminal phalange results in successful regeneration, whereas a more severe, proximal, amputation heals by tissue repair. Flightless I (Flii) is involved in both tissue repair and regeneration. It negatively regulates wound repair but elicits a positive effect in hair follicle regeneration, with Flii overexpression resulting in significantly longer hair fibers. Using a model of digit amputation in Flii overexpressing (FIT) mice, we investigated Flii in digit regeneration. Both wild-type and FIT digits regenerated after distal amputation with newly regenerated FIT claws being significantly longer than intact controls. No regeneration was observed in wild-type mice after severe proximal amputation; however, FIT mice showed significant regeneration of the missing digit. Using a three-dimensional model of nail formation, connective tissue fibroblasts isolated from the mesenchymal tissue surrounding the wild-type and FIT digit tips and cocultured with skin keratinocytes demonstrated aggregate structures resembling rudimentary nail buds only when Flii was overexpressed. Moreover, β-catenin and cyclin D1 expression was maintained in the FIT regenerating germinal matrix suggesting a potential interaction of Flii with Wnt signaling during regeneration.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia.
| | - James M Waters
- Women's and Children's Health Research Institute, North Adelaide, South Australia, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
14
|
Hulin JA, Nguyen TDT, Cui S, Marri S, Yu RT, Downes M, Evans RM, Makarenkova H, Meech R. Barx2 and Pax7 Regulate Axin2 Expression in Myoblasts by Interaction with β-Catenin and Chromatin Remodelling. Stem Cells 2016; 34:2169-82. [PMID: 27144473 PMCID: PMC5019118 DOI: 10.1002/stem.2396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/15/2016] [Accepted: 04/14/2016] [Indexed: 12/13/2022]
Abstract
Satellite cells are the resident stem cells of skeletal muscle; quiescent in adults until activated by injury to generate proliferating myoblasts. The canonical Wnt signalling pathway, mediated by T-cell factor/lymphoid enhancer factor (TCF/LEF) and β-catenin effector proteins, controls myoblast differentiation in vitro, and recent work suggests that timely termination of the Wnt/β-catenin signal is important for normal adult myogenesis. We recently identified the Barx2 and Pax7 homeobox proteins as novel components of the Wnt effector complex. Here, we examine molecular and epigenetic mechanisms by which Barx2 and Pax7 regulate the canonical Wnt target gene Axin2, which mediates critical feedback to terminate the transcriptional response to Wnt signals. Barx2 is recruited to the Axin2 gene via TCF/LEF binding sites, recruits β-catenin and the coactivator GRIP-1, and induces local H3K-acetylation. Barx2 also promotes nuclear localization of β-catenin. Conversely, Pax7 represses Axin2 promoter/intron activity and inhibits Barx2-mediated H3K-acetylation via the corepressor HDAC1. Wnt3a not only induces Barx2 mRNA, but also stabilises Barx2 protein in myoblasts; conversely, Wnt3a potently inhibits Pax7 protein expression. As Barx2 promotes myogenic differentiation and Pax7 suppresses it, this novel posttranscriptional regulation of Barx2 and Pax7 by Wnt3a may be involved in the specification of differentiation-competent and -incompetent myoblast populations. Finally, we propose a model for dual function of Barx2 downstream of Wnt signals: activation of myogenic target genes in association with canonical myogenic regulatory factors, and regulation of the negative feedback loop that limits the response of myoblasts to Wnt signals via direct interaction of Barx2 with the TCF/β-catenin complex. Stem Cells 2016;34:2169-2182.
Collapse
Affiliation(s)
- Julie-Ann Hulin
- Department of Clinical Pharmacology, Flinders University, Bedford Park, South Australia, Australia
| | - Thi Diem Tran Nguyen
- Department of Clinical Pharmacology, Flinders University, Bedford Park, South Australia, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - Shuang Cui
- Department of Clinical Pharmacology, Flinders University, Bedford Park, South Australia, Australia
| | - Shashikanth Marri
- Department of Molecular Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute, La Jolla, California, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute, La Jolla, California, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute, La Jolla, California, USA.,Howard Hughes Medical Institute, Salk Institute, La Jolla, California, USA
| | - Helen Makarenkova
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
15
|
Positive regulation of β-catenin-PROX1 signaling axis by DBC1 in colon cancer progression. Oncogene 2015; 35:3410-8. [PMID: 26477307 DOI: 10.1038/onc.2015.401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/16/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
Aberrant activation of Wnt/β-catenin pathway contributes to colorectal cancer (CRC) progression. However, little is known about regulatory mechanisms of the β-catenin activity in cancer progression. Here we investigated the role of DBC1, which was recently reported as a negative regulator of SIRT1 and a transcriptional coactivator, in the regulation of Wnt/β-catenin signaling. We identified the genome-wide targets of DBC1 and found that loss of DBC1 inhibits the expression of β-catenin target genes including PROX1, a transcription factor linked to CRC progression. Mechanistically, DBC1 stabilizes LEF1-β-catenin interaction by inhibiting SIRT1-mediated β-catenin deacetylation, thereby enhancing LEF1-β-catenin complex formation and long-range chromatin looping at the PROX1 locus. Furthermore, DBC1 is also required for the transcriptional activity of PROX1, suggesting that DBC1 has a dual function in regulating β-catenin-PROX1 signaling axis: as a coactivator for both β-catenin and PROX1. Importantly, loss of DBC1 inhibited growth and tumorigenic potential of colon cancer cells, and DBC1 expression correlated with shorter relapse-free survival in patients with advanced CRC. Our results firmly establish DBC1 as a critical positive regulator of β-catenin-PROX1 signaling axis and a key factor in β-catenin-PROX1-mediated CRC progression.
Collapse
|
16
|
Tong Z, Li M, Wang W, Mo P, Yu L, Liu K, Ren W, Li W, Zhang H, Xu J, Yu C. Steroid Receptor Coactivator 1 Promotes Human Hepatocellular Carcinoma Progression by Enhancing Wnt/β-Catenin Signaling. J Biol Chem 2015; 290:18596-608. [PMID: 26082485 PMCID: PMC4513118 DOI: 10.1074/jbc.m115.640490] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Indexed: 02/05/2023] Open
Abstract
Steroid receptor coactivator 1 (SRC-1) is a transcriptional coactivator not only for steroid receptors, such as androgen receptor and estrogen receptor, but also for other transcription factors. SRC-1 has been shown to play an important role in the progression of breast cancer and prostate cancer. However, its role in liver cancer progression remains unknown. In this study, we report that SRC-1 was overexpressed in 25 (62.5%) of 40 human hepatocellular carcinoma (HCC) specimens. Down-regulation of SRC-1 decreased HCC cell proliferation and impaired tumor maintenance in HCC xenografts. Knockdown of SRC-1 reduced protein levels of the proliferation marker proliferating cell nuclear antigen (PCNA) and the oncogene c-Myc. Knockout of SRC-1 in mice reduced diethylnitrosamine/CCl4-induced tumor formation in the liver and the expression of c-Myc and PCNA in liver tumors. SRC-1 promoted c-Myc expression, at least in part, by directly interacting with β-catenin to enhance Wnt/β-catenin signaling. Consistent with these results, the expression of SRC-1 was positively correlated with PCNA expression in human HCC specimens, and the expression levels of c-Myc in SRC-1-positive HCC specimens were higher than in SRC-1-negative HCC specimens. In addition, SRC-1 and SRC-3 were co-overexpressed in 47.5% of HCC specimens, and they cooperated to promote HCC cell proliferation. Simultaneous down-regulation of SRC-1 and SRC-3 dramatically inhibited HCC cell proliferation. Our results demonstrate that SRC-1 promotes HCC progression by enhancing Wnt/β-catenin signaling and suggest that SRC-1 is a potential therapeutic molecular target for HCC.
Collapse
Affiliation(s)
- Zhangwei Tong
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China, the Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming Li
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China, the Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Wei Wang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Pingli Mo
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Yu
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kun Liu
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China, the Department of Pathology, Chenggong Hospital of Xiamen University, Xiamen, China
| | - Wenjing Ren
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wengang Li
- the Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Hao Zhang
- the Cancer Research Center at Shantou University Medical College, Shantou, Guangdong 515041, China, and
| | - Jianming Xu
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Chundong Yu
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China, the Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China,
| |
Collapse
|
17
|
Stashi E, Lanz RB, Mao J, Michailidis G, Zhu B, Kettner NM, Putluri N, Reineke EL, Reineke LC, Dasgupta S, Dean A, Stevenson CR, Sivasubramanian N, Sreekumar A, Demayo F, York B, Fu L, O'Malley BW. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep 2014; 6:633-45. [PMID: 24529706 PMCID: PMC4096300 DOI: 10.1016/j.celrep.2014.01.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/05/2013] [Accepted: 01/22/2014] [Indexed: 01/31/2023] Open
Abstract
Synchrony of the mammalian circadian clock is achieved by complex transcriptional and translational feedback loops centered on the BMAL1:CLOCK heterodimer. Modulation of circadian feedback loops is essential for maintaining rhythmicity, yet the role of transcriptional coactivators in driving BMAL1:CLOCK transcriptional networks is largely unexplored. Here, we show diurnal hepatic steroid receptor coactivator 2 (SRC-2) recruitment to the genome that extensively overlaps with the BMAL1 cistrome during the light phase, targeting genes that enrich for circadian and metabolic processes. Notably, SRC-2 ablation impairs wheel-running behavior, alters circadian gene expression in several peripheral tissues, alters the rhythmicity of the hepatic metabolome, and deregulates the synchronization of cell-autonomous metabolites. We identify SRC-2 as a potent coregulator of BMAL1:CLOCK and find that SRC-2 targets itself with BMAL1:CLOCK in a feedforward loop. Collectively, our data suggest that SRC-2 is a transcriptional coactivator of the BMAL1:CLOCK oscillators and establish SRC-2 as a critical positive regulator of the mammalian circadian clock.
Collapse
Affiliation(s)
- Erin Stashi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jianqiang Mao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - George Michailidis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Statistics, University of Michigan, 500 South State Street, Ann Arbor, MI 48109, USA
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Nicole M Kettner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Erin L Reineke
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza Houston, TX 77030, USA
| | - Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Adam Dean
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Connor R Stevenson
- Department of Biochemistry and Molecular Biology, Trinity University, One Trinity Place, San Antonio, TX 78212-7200, USA
| | - Natarajan Sivasubramanian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Francesco Demayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Loning Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Singh PK, Doig CL, Dhiman VK, Turner BM, Smiraglia DJ, Campbell MJ. Epigenetic distortion to VDR transcriptional regulation in prostate cancer cells. J Steroid Biochem Mol Biol 2013; 136:258-63. [PMID: 23098689 PMCID: PMC4429754 DOI: 10.1016/j.jsbmb.2012.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 12/31/2022]
Abstract
The current study aimed to examine the gene specific mechanisms by which the actions of the vitamin D receptor (VDR) are distorted in prostate cancer. Transcriptional responses toward the VDR ligand, 1α,25(OH)2D3, were examined in non-malignant prostate epithelial cells (RWPE-1) and compared to the 1α,25(OH)2D3-recalcitrant prostate cancer cells (PC-3). Time resolved transcriptional studies for two VDR target genes revealed selective attenuation and repression of VDR transcriptional responses in PC-3 cells. For example, responses in PC-3 cells revealed suppressed responsiveness of IGFBP3 and G0S2. Furthermore, Chromatin Immunoprecipitation (ChIP) assays revealed that suppressed transcriptional responses in PC-3 cells of IGFBP3 and G0S2 were associated with selective VDR-induced NCOR1 enrichment at VDR-binding regions on target-gene promoter regions. We propose that VDR inappropriately recruits co-repressors in prostate cancer cells. Subsequent direct and indirect mechanisms may induce local DNA methylation and stable transcriptional silencing. Thus a transient epigenetic process mediated by co-repressor binding, namely, the control of H3K9 acetylation, is distorted to favor a more stable epigenetic event, namely DNA methylation. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- Prashant K. Singh
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Craig L. Doig
- Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Vineet K. Dhiman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Bryan M. Turner
- Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Dominic J. Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Moray J. Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Corresponding author. Tel.: +1 7168453037; fax: +1 7168458857. (M.J. Campbell)
| |
Collapse
|
19
|
Hoang T, Fenne IS, Madsen A, Bozickovic O, Johannessen M, Bergsvåg M, Lien EA, Stallcup MR, Sagen JV, Moens U, Mellgren G. cAMP response element-binding protein interacts with and stimulates the proteasomal degradation of the nuclear receptor coactivator GRIP1. Endocrinology 2013; 154:1513-27. [PMID: 23462962 PMCID: PMC5393311 DOI: 10.1210/en.2012-2049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor interacting protein (GRIP1) belongs to the p160 steroid receptor coactivator family that plays essential roles in nuclear receptor-dependent transcriptional regulation. Previously, we reported that the cAMP-dependent protein kinase (PKA) induces ubiquitination leading to degradation of GRIP1. Here we show that the cAMP response element-binding protein (CREB) downregulates GRIP1 and is necessary for the PKA-stimulated degradation of GRIP1, which leads to changes in the expression of a subset of genes regulated by estrogen receptor-α in MCF-7 breast cancer cells. Our data of domain-mapping and ubiquitination analyses suggest that CREB promotes the proteasomal breakdown of ubiquitinated GRIP1 through 2 functionally independent protein domains containing amino acids 347 to 758 and 1121 to 1462. We provide evidence that CREB interacts directly with GRIP1 and that CREB Ser-133 phosphorylation or transcriptional activity is not required for GRIP1 interaction and degradation. The basic leucine zipper domain (bZIP) of CREB is important for the interaction with GRIP1, and deletion of this domain led to an inability to downregulate GRIP1. We propose that CREB mediates the PKA-stimulated degradation of GRIP1 through protein-protein interaction and stimulation of proteasomal degradation of ubiquitinated GRIP1.
Collapse
Affiliation(s)
- Tuyen Hoang
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Clark EL, Hadjimichael C, Temperley R, Barnard A, Fuller-Pace FV, Robson CN. p68/DdX5 supports β-catenin & RNAP II during androgen receptor mediated transcription in prostate cancer. PLoS One 2013; 8:e54150. [PMID: 23349811 PMCID: PMC3547877 DOI: 10.1371/journal.pone.0054150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
The DEAD box RNA helicase p68 (Ddx5) is an important androgen receptor (AR) transcriptional co-activator in prostate cancer (PCa) and is over-expressed in late stage disease. β-Catenin is a multifunctional protein with important structural and signalling functions which is up-regulated in PCa and similar to p68, interacts with the AR to co-activate expression of AR target genes. Importantly, p68 forms complexes with nuclear β-Catenin and promotes gene transcription in colon cancer indicating a functional interplay between these two proteins in cancer progression. In this study, we explore the relationship of p68 and β-Catenin in PCa to assess their potential co-operation in AR-dependent gene expression, which may be of importance in the development of castrate resistant prostate cancer (CRPCa). We use immunoprecipitation to demonstrate a novel interaction between p68 and β-Catenin in the nucleus of PCa cells, which is androgen dependent in LNCaP cells but androgen independent in a hormone refractory derivative of the same cell line (representative of the CRPCa disease type). Enhanced AR activity is seen in androgen-dependent luciferase reporter assays upon transient co-transfection of p68 and β-Catenin as an additive effect, and p68-depleted Chromatin-Immunoprecipitation (ChIP) showed a decrease in the recruitment of the AR and β-Catenin to androgen responsive promoter regions. In addition, we found p68 immunoprecipitated with the processive and non-processive form of RNA polymerase II (RNAP II) and show p68 recruited to elongating regions of the AR mediated PSA gene, suggesting a role for p68 in facilitating RNAP II transcription of AR mediated genes. These results suggest p68 is important in facilitating β-Catenin and AR transcriptional activity in PCa cells.
Collapse
Affiliation(s)
- Emma L. Clark
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Richard Temperley
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy Barnard
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frances V. Fuller-Pace
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Craig N. Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Campbell MJ, Turner BM. Altered histone modifications in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:81-107. [PMID: 22956497 DOI: 10.1007/978-1-4419-9967-2_4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In human health and disease the choreographed actions of a wide armory of transcription factors govern the regulated expression of coding and nonprotein coding genes. These actions are central to human health and are evidently aberrant in cancer. Central components of regulated gene expression are a variety of epigenetic mechanisms that include histone modifications. The post-translational modifications of histones are widespread and diverse, and appear to be spatial--temporally regulated in a highly intricate manner. The true functional consequences of these patterns of regulation are still emerging. Correlative evidence supports the idea that these patterns are distorted in malignancy on both a genome-wide and a discrete gene loci level. These patterns of distortion also often reflect the altered expression of the enzymes that control these histone states. Similarly gene expression patterns also appear to reflect a correlation with altered histone modifications at both the candidate loci and genome-wide level. Clarity is emerging in resolving these relationships between histone modification status and gene expression -patterns. For example, altered transcription factor interactions with the key co-activator and co-repressors, which in turn marshal many of the histone-modifying enzymes, may distort regulation of histone modifications at specific gene loci. In turn these aberrant transcriptional processes can trigger other altered epigenetic events such as DNA methylation and underline the aberrant and specific gene expression patterns in cancer. Considered in this manner, altered expression and recruitment of histone-modifying enzymes may underline the distortion to transcriptional responsiveness observed in malignancy. Insight from understanding these processes addresses the challenge of targeted epigenetic therapies in cancer.
Collapse
Affiliation(s)
- Moray J Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | |
Collapse
|
22
|
Developmental fluoxetine exposure differentially alters central and peripheral measures of the HPA system in adolescent male and female offspring. Neuroscience 2012; 220:131-41. [DOI: 10.1016/j.neuroscience.2012.06.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/27/2012] [Accepted: 06/13/2012] [Indexed: 11/20/2022]
|
23
|
Mitani T, Harada N, Nakano Y, Inui H, Yamaji R. Coordinated action of hypoxia-inducible factor-1α and β-catenin in androgen receptor signaling. J Biol Chem 2012; 287:33594-606. [PMID: 22865883 DOI: 10.1074/jbc.m112.388298] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The androgen receptor (AR) acts as a ligand-dependent transcriptional factor and plays a critical role in the development and progression of androgen-dependent and castration-resistant prostate cancer. Castration results in hypoxia in prostate cancer cells, and hypoxia enhances transcriptional activity of AR through hypoxia-inducible factor (HIF)-1α at low serum androgen levels mimicking the castration-resistant stage. However, HIF-1α is necessary but not sufficient for hypoxia-activated AR transactivation, and the molecular mechanism that regulates AR function in castration-resistant prostate cancer remains unclear. Here, we report that β-catenin is required for HIF-1α-mediated AR transactivation in hypoxic LNCaP prostate cancer cells under low androgen conditions. HIF-1α and β-catenin coordinately enhanced AR N-terminal and C-terminal interaction. β-Catenin accumulated in the nucleus in the HIF-1α protein-positive cells of LNCaP xenografts in castrated mice. In LNCaP cells, when HIF-1α was knocked down or was exogenously expressed in the cytoplasm, hypoxia-induced nuclear localization of β-catenin was inhibited. β-Catenin formed a complex with HIF-1α both in the nucleus and in the cytoplasm. Hypoxia increased the amount of a complex composed of AR and β-catenin, and knockdown of HIF-1α attenuated the recruitment of AR and β-catenin to the androgen response elements (AREs) of androgen-responsive genes. Furthermore, together with β-catenin, HIF-1α bound to the AREs in the presence of androgen. These results demonstrate that (i) HIF-1α and β-catenin coordinately enhance AR transactivation by accelerating N-terminal and C-terminal interaction; (ii) HIF-1α promotes nuclear translocation of β-catenin in hypoxia; and (iii) AR, HIF-1α, and β-catenin form a ternary complex on AREs.
Collapse
Affiliation(s)
- Takakazu Mitani
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | | | | | | |
Collapse
|
24
|
Abstract
The Wnts are secreted cysteine-rich glycoproteins that have important roles in the developing embryo as well as in tissue homeostasis in adults. Dysregulation of Wnt signalling can lead to several types of cancer, including prostate cancer. A hallmark of the signalling pathway is the stabilization of the transcriptional co-activator β-catenin, which not only regulates expression of many genes implicated in cancer but is also an essential component of cadherin cell adhesion complexes. β-catenin regulates gene expression by binding members of the T-cell-specific transcription factor/lymphoid enhancer-binding factor 1 (TCF/LEF-1) family of transcription factors. In addition, β-catenin associates with the androgen receptor, a key regulator of prostate growth that drives prostate cancer progression. Wnt/β-catenin signalling can be controlled by secreted Wnt antagonists, many of which are downregulated in cancer. Activation of the Wnt/β-catenin pathway has effects on prostate cell proliferation, differentiation and the epithelial-mesenchymal transition, which is thought to regulate the invasive behaviour of tumour cells. However, whether targeting Wnt/β-catenin signalling is a good therapeutic option for prostate cancer remains unclear.
Collapse
|
25
|
Specific changes in the expression of imprinted genes in prostate cancer--implications for cancer progression and epigenetic regulation. Asian J Androl 2012; 14:436-50. [PMID: 22367183 DOI: 10.1038/aja.2011.160] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation, enhancer of zeste homologue 2 (EZH2) overexpression and altered patterns of histone modifications is associated with the progression of prostate cancer. DNA methylation, EZH2 and histone modifications also ensure the parental-specific monoallelic expression of at least 62 imprinted genes. Although it is therefore tempting to speculate that epigenetic dysregulation may extend to imprinted genes, expression changes in cancerous prostates are only well documented for insulin-like growth factor 2 (IGF2). A literature and database survey on imprinted genes in prostate cancer suggests that the expression of most imprinted genes remains unchanged despite global disturbances in epigenetic mechanisms. Instead, selective genetic and epigenetic changes appear to lead to the inactivation of a sub-network of imprinted genes, which might function in the prostate to limit cell growth induced via the PI3K/Akt pathway, modulate androgen responses and regulate differentiation. Whereas dysregulation of IGF2 may constitute an early change in prostate carcinogenesis, inactivation of this imprinted gene network is rather associated with cancer progression.
Collapse
|
26
|
Abstract
Wnts are conserved, secreted signaling proteins that can influence cell behavior by stabilizing β-catenin. Accumulated β-catenin enters the nucleus, where it physically associates with T-cell factor (TCF) family members to regulate target gene expression in many developmental and adult tissues. Recruitment of β-catenin to Wnt response element (WRE) chromatin converts TCFs from transcriptional repressors to activators. This review will outline the complex interplay between factors contributing to TCF repression and coactivators working with β-catenin to regulate Wnt targets. In addition, three variations of the standard transcriptional switch model will be discussed. One is the Wnt/β-catenin symmetry pathway in Caenorhabditis elegans, where Wnt-mediated nuclear efflux of TCF is crucial for activation of targets. Another occurs in vertebrates, where distinct TCF family members are associated with repression and activation, and recent evidence suggests that Wnt signaling facilitates a "TCF exchange" on WRE chromatin. Finally, a "reverse switch" mechanism for target genes that are directly repressed by Wnt/β-catenin signaling occurs in Drosophila cells. The diversity of TCF regulatory mechanisms may help to explain how a small group of transcription factors can function in so many different contexts to regulate target gene expression.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Structural basis of coactivation of liver receptor homolog-1 by β-catenin. Proc Natl Acad Sci U S A 2011; 109:143-8. [PMID: 22187462 DOI: 10.1073/pnas.1117036108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We report the three-dimensional structure of a β-catenin armadillo repeat in complex with the liver receptor homolog-1 (LRH-1) ligand binding domain at 2.8 Å resolution as the first structure of β-catenin in complex with any nuclear receptor. The surface of β-catenin that binds LRH-1 partly overlaps defined contact sites for peptide segments of β-catenin partners, including T-cell factor-4. The surface of LRH-1 that engages β-catenin is comprised of helices 1, 9, and 10 and is distinct from known interaction surfaces of LRH-1, including corepressor and coactivator binding sites. Targeted mutagenesis of amino acids forming both sides of the LRH-1/β-catenin interface reveals that they are essential for stable interactions between these proteins in solution. The LRH-1 binding site in β-catenin is also required for association with androgen receptor, providing evidence that the observed LRH-1/β-catenin interaction may be prototypic.
Collapse
|
28
|
Kantardzhieva A, Peppi M, Lane WS, Sewell WF. Protein composition of immunoprecipitated synaptic ribbons. J Proteome Res 2011; 11:1163-74. [PMID: 22103298 DOI: 10.1021/pr2008972] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synaptic ribbon is an electron-dense structure found in hair cells and photoreceptors. The ribbon is surrounded by neurotransmitter-filled vesicles and considered to play a role in vesicle release. We generated an objective, quantitative analysis of the protein composition of the ribbon complex using a mass spectrometry-based proteomics analysis. Our use of affinity-purified ribbons and control IgG immunoprecipitations ensure that the identified proteins are indeed associated with the ribbon complex. The use of mouse tissue, where the proteome is complete, generated a comprehensive analysis of the candidates. We identified 30 proteins (comprising 56 isoforms and subunits) associated with the ribbon complex. The ribbon complex primarily comprises proteins found in conventional synapses, which we categorized into 6 functional groups: vesicle handling (38.5%), scaffold (7.3%), cytoskeletal molecules (20.6%), phosphorylation enzymes (10.6%), molecular chaperones (8.2%), and transmembrane proteins from the presynaptic membrane firmly attached to the ribbon (11.3%). The 3 CtBP isoforms represent the major protein in the ribbon whether calculated by molar amount (30%) or by mass (20%). The relatively high quantity of phosphorylation enzymes suggests a very active and regulated structure. The ribbon appears to comprise a concentrated cluster of proteins dealing with vesicle creation, retention and distribution, and consequent exocytosis.
Collapse
Affiliation(s)
- A Kantardzhieva
- Eaton-Peabody Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, 243 Charles Street, Boston, Massachusetts 02114, United States
| | | | | | | |
Collapse
|
29
|
Zhuo M, Zhu C, Sun J, Weis WI, Sun Z. The beta-catenin binding protein ICAT modulates androgen receptor activity. Mol Endocrinol 2011; 25:1677-88. [PMID: 21885566 DOI: 10.1210/me.2011-1023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Androgens have important roles in the development of the prostate gland and in prostate cancer. Since the finding that β-catenin is a cofactor of the androgen receptor (AR) and can augment AR signaling, several proteins have been found to affect AR signaling through their interaction with β-catenin. Here, we investigated inhibitor of β-catenin and T-cell factor (ICAT), a β-catenin binding protein that inhibits the canonical Wnt/β-catenin signaling pathway, in AR signaling. We demonstrated that expression of ICAT in two AR positive prostate cancer cell lines, LNCaP and LAPC4, augments ligand-dependent AR-mediated transcription. In contrast, short hairpin RNA knockdown of ICAT and β-catenin specifically blocks enhanced AR-mediated transcription by ICAT. Using both stable expression of ICAT and short hairpin RNA knockdown of ICAT expression approaches, we further showed that ICAT enhances expression of endogenous PSA and KLK2, two androgen response genes, and ligand-induced cell growth. In addition, we identified that ICAT and AR can form a ternary complex with β-catenin using in vitro glutathione S-transferase protein pulldown assays. Moreover, we detected the endogenous protein complex containing ICAT, AR, and β-catenin in prostate cancer cells using immunoprecipitation assays. Recruitment of endogenous ICAT onto the promoter region of the human PSA gene, an AR downstream target promoter, was also identified in LNCaP cells. Finally, using in vitro protein binding assays, we examined the effect of full-length and truncated ICAT on the AR-β-catenin interaction and observed that addition of full-length ICAT retained the interaction between β-catenin and AR proteins. Intriguingly, the truncated ICAT comprising the N-terminal helical domain showed a more pronounced effect on β-catenin binding to AR proteins. Our findings suggest a novel molecular mechanism underlying the cross talk between androgen and Wnt signaling pathways.
Collapse
Affiliation(s)
- Ming Zhuo
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305-5328, USA
| | | | | | | | | |
Collapse
|
30
|
Kim K, Burghardt R, Barhoumi R, Lee SO, Liu X, Safe S. MDM2 regulates estrogen receptor α and estrogen responsiveness in breast cancer cells. J Mol Endocrinol 2011; 46:67-79. [PMID: 21169420 PMCID: PMC3069690 DOI: 10.1677/jme-10-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Murine double minute clone 2 (MDM2) is a multifunctional protein, which modulates nuclear receptor-mediated transactivation. In this study, we show that MDM2 significantly enhanced estrogen receptor α (ERα) and ERα/specificity protein-mediated transactivation in MCF-7 and ZR-75 breast cancer cells. This was demonstrated by both MDM2 overexpression and knockdown experiments by RNA interference. ERα interacted with wild-type MDM2 and deletion mutants of MDM2 containing amino acids 1-342 (C-terminal deletion) and 134-490 (N-terminal deletion), but not 134-342. In contrast, only wild-type but not mutant MDM2 enhanced ERα-mediated transactivation. Protein-protein interactions in vitro were 17β-estradiol (E(2)) independent, whereas fluorescent resonance energy transfer experiments in living cells showed that E(2) enhanced ERα-MDM2 interactions. Subsequent RNA interference and mammalian two-hybrid experiments suggested that MDM2 did not directly interact with endogenous coactivators such as the steroid receptor coactivators but played a role in enhancing ERα-mediating gene expression and estrogen responsiveness through interactions with ERα.
Collapse
Affiliation(s)
- Kyounghyun Kim
- Department of Veterinary Physiology and Pharmacology Texas A&M University College Station, TX 77843
- Institute of Biosciences and Technology Texas A&M University Health Science Center Houston, TX 77030
| | - Robert Burghardt
- Department of Veterinary Integrative Biosciences Texas A&M University College Station, TX 77843
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences Texas A&M University College Station, TX 77843
| | - Syng-ook Lee
- Institute of Biosciences and Technology Texas A&M University Health Science Center Houston, TX 77030
| | - Xinyi Liu
- Department of Biochemistry and Biophysics Texas A&M University College Station, TX 77843
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology Texas A&M University College Station, TX 77843
- Institute of Biosciences and Technology Texas A&M University Health Science Center Houston, TX 77030
| |
Collapse
|
31
|
Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Bresolin N, Clerici M, Sironi M. The landscape of human genes involved in the immune response to parasitic worms. BMC Evol Biol 2010; 10:264. [PMID: 20807397 PMCID: PMC2940816 DOI: 10.1186/1471-2148-10-264] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 08/31/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure. RESULTS Here we propose that candidate susceptibility genes for parasitic worm infections can be identified by searching for SNPs that display a strong correlation with the diversity of helminth species/genera transmitted in different geographic areas. By a genome-wide search we identified 3478 variants that correlate with helminth diversity. These SNPs map to 810 distinct human genes including loci involved in regulatory T cell function and in macrophage activation, as well as leukocyte integrins and co-inhibitory molecules. Analysis of functional relationships among these genes identified complex interaction networks centred around Th2 cytokines. Finally, several genes carrying candidate targets for helminth-driven selective pressure also harbour susceptibility alleles for asthma/allergy or are involved in airway hyper-responsiveness, therefore expanding the known parallelism between these conditions and parasitic infections. CONCLUSIONS Our data provide a landscape of human genes that modulate susceptibility to helminths and indicate parasitic worms as one of the major selective forces in humans.
Collapse
Affiliation(s)
- Matteo Fumagalli
- Scientific Institute IRCCS E, Medea, Bioinformatic Lab, Via don L, Monza 20, 23842 Bosisio, Parini, LC, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Beildeck ME, Gelmann EP, Byers SW. Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway. Exp Cell Res 2010; 316:1763-72. [PMID: 20138864 PMCID: PMC2878914 DOI: 10.1016/j.yexcr.2010.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 12/24/2022]
Abstract
Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.
Collapse
|
33
|
Gebhardt R, Hovhannisyan A. Organ patterning in the adult stage: the role of Wnt/beta-catenin signaling in liver zonation and beyond. Dev Dyn 2010; 239:45-55. [PMID: 19705440 DOI: 10.1002/dvdy.22041] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Wnt/beta-catenin signaling has been found to play key roles in metabolic zonation of adult liver, regeneration, and hepatocellular carcinogenesis. In this review, recent progress in this field is summarized, in particular the rapidly growing knowledge about the various interactions of beta-catenin with many transcription factors involved in controlling metabolism. These interactions may provide the basis for understanding how the wide range of activities of Wnt/beta-catenin signaling is differentially interpreted. Based on these results, a three-level mode for the molecular interpretation of beta-catenin activity gradients in liver is proposed favoring cell differentiation, metabolic zonation, and proliferation. While derangement of the combinatorial interplay of the various transcription factors with beta-catenin at the intermediary activity level may contribute to the development of metabolic diseases, extremely high activation of beta-catenin may eventually lead to initiation and progression of hepatocellular tumors.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
34
|
Ou CY, Kim JH, Yang CK, Stallcup MR. Requirement of cell cycle and apoptosis regulator 1 for target gene activation by Wnt and beta-catenin and for anchorage-independent growth of human colon carcinoma cells. J Biol Chem 2009; 284:20629-37. [PMID: 19520846 DOI: 10.1074/jbc.m109.014332] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant Wnt signaling promotes oncogenesis by increasing cellular levels of beta-catenin, which associates with DNA-bound transcription factors and activates Wnt target genes. However, the molecular mechanism by which beta-catenin mediates gene expression is still poorly understood. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1), which was recently shown to function as a transcriptional coactivator for nuclear receptors, also interacts with beta-catenin and enhances the ability of beta-catenin to activate expression of transiently transfected reporter genes. Furthermore, association of CCAR1 with the promoter of an endogenous Wnt/beta-catenin target gene in a colon cancer cell line depends on the presence of beta-catenin. Depletion of CCAR1 inhibits expression of several Wnt/beta-catenin target genes and suppresses anchorage-independent growth of the colon cancer cell line. Thus, CCAR1 is a novel component of Wnt/beta-catenin signaling that plays an important role in transcriptional regulation by beta-catenin and that, therefore, may represent a novel target for therapeutic intervention in cancers involving aberrantly activated Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Chen-Yin Ou
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
35
|
Olkku A, Mahonen A. Calreticulin mediated glucocorticoid receptor export is involved in beta-catenin translocation and Wnt signalling inhibition in human osteoblastic cells. Bone 2009; 44:555-65. [PMID: 19100874 DOI: 10.1016/j.bone.2008.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/15/2008] [Accepted: 11/17/2008] [Indexed: 11/29/2022]
Abstract
Wnt signalling pathway is a multicomponent cascade involving interaction of several proteins and found to be important for development and function of various cells and tissues. There is increasing evidence that the Wnt/beta-catenin pathway constitutes also one of the essential molecular mechanisms controlling the metabolic aspects of osteoblastic cells. However, in bone, glucocorticoids (GCs) have been reported to weaken Wnt signalling. Therefore, the aim of this study was to characterize the mechanisms behind the cross-talk of these two signalling pathways in human osteoblastic cells. Based on our findings, liganded glucocorticoid receptor (GR) modulated Wnt signalling pathway by decreasing beta-catenin's nuclear accumulation and increasing its relocalization to cell membranes rather than affecting its degradation in human osteoblastic cells. The region of GR responsible for this inhibitory effect located into an area, which harbours the DNA binding as well as nuclear export domains. In further studies, a chaperone protein calreticulin (CRT), known to bind the DNA binding domain of GR and regulate receptor export, was found to be involved in the GR-mediated downregulation of Wnt signalling: GR mutants containing incomplete CRT binding sites were not able to translocate beta-catenin to cell surface. In addition, the inhibitory effect of GCs on endogenous Wnt target gene, cyclin D1, was abolished, when the expression of CRT was attenuated by the RNAi technique. Furthermore, GR and beta-catenin were shown to exist in the same immunocomplex, while interaction between CRT and beta-catenin was observed only in the presence of GR as a mediator molecule. In addition, the GR mutant lacking CRT binding ability impaired the complex formation between beta-catenin and CRT. Together with GR, beta-catenin could thus be co-transported from the nucleus in a CRT-dependent way. These observations represent a novel mechanism for GCs to downregulate Wnt signalling pathway in human osteoblastic cells. Knowledge of these molecular mechanisms is important for understanding the network of multiple signalling cascades in bone environment. Functional Wnt signalling pathway is a prerequisite for proper osteoblastogenesis, and this modulative cross-talk between the steroid pathway and Wnt cascade could therefore explain some of the two-edged effects of GCs on osteoblastic differentiation and function.
Collapse
Affiliation(s)
- Anu Olkku
- Institute of Biomedicine, Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | | |
Collapse
|
36
|
Abstract
The androgen-signaling pathway plays an important role in the development and hormonal progression of prostate cancer to the castrate-resistant stage (also called androgen-independent or hormone refractory). The Wnt pathway and beta-catenin contribute to prostate biology and pathology. Here application of Affymetrix GeneChip analysis revealed the genomic similarity of the LNCaP hollow fiber model to clinical samples and identified genes with differential expression during hormonal progression. The fiber model samples clustered according to the expression profile of androgen-regulated genes to provide genomic evidence for the reactivation of the AR signaling pathway in castrate-resistant prostate cancer. Pathway-based characterization of gene expression identified activation of the Wnt pathway. Together with the increased expression of AR and beta-catenin, there was increased nuclear colocalization and interaction of endogenous AR and beta-catenin in castrate-resistant prostate cancer from castrated mice. Surprisingly, no interaction or colocalization of AR and beta-catenin could be detected in xenografts from noncastrated mice. These studies provide the first in vivo evidence to support aberrant activation of the AR through the Wnt/beta-catenin signaling pathway during progression of prostate cancer to the terminal castrate-resistant stage.
Collapse
Affiliation(s)
- Gang Wang
- Genome Sciences Centre, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia, V5Z 4E6, Canada
| | - Jun Wang
- Genome Sciences Centre, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia, V5Z 4E6, Canada
| | - Marianne D. Sadar
- Genome Sciences Centre, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, British Columbia, V5Z 4E6, Canada
| |
Collapse
|
37
|
Thorne JL, Campbell MJ, Turner BM. Transcription factors, chromatin and cancer. Int J Biochem Cell Biol 2008; 41:164-75. [PMID: 18804550 DOI: 10.1016/j.biocel.2008.08.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 01/26/2023]
Abstract
Transcription factors, chromatin and chromatin-modifying enzymes are key components in a complex network through which the genome interacts with its environment. For many transcription factors, binding motifs are found adjacent to the promoter regions of a large proportion of genes, requiring mechanisms that confer binding specificity in any given cell type. These include association of the factor with other proteins and packaging of DNA, as chromatin, at the binding sequence so as to inhibit or facilitate binding. Recent evidence suggests that specific post-translational modifications of the histones packaging promoter DNA can help guide transcription factors to selected sites. The enzymes that put such modifications in place are dependent on metabolic components (e.g. acetyl CoA, S-adenosyl methionine) and susceptible to inhibition or activation by environmental factors. Local patterns of histone modification can be altered or maintained through direct interaction between the transcription factor and histone modifying enzymes. The functional consequences of transcription factor binding are also dependent on protein modifying enzymes, particularly those that alter lysine methylation at selected residues. Remarkably, the role of these enzymes is not limited to promoter-proximal events, but can be linked to changes in the intranuclear location of target genes. In this review we describe results that begin to define how transcription factors, chromatin and environmental variables interact and how these interactions are subverted in cancer. We focus on the nuclear receptor family of transcription factors, where binding of ligands such as steroid hormones and dietary derived factors provides an extra level of environmental input.
Collapse
Affiliation(s)
- James L Thorne
- University of Birmingham Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
38
|
Song LN, Gelmann EP. Silencing mediator for retinoid and thyroid hormone receptor and nuclear receptor corepressor attenuate transcriptional activation by the beta-catenin-TCF4 complex. J Biol Chem 2008; 283:25988-99. [PMID: 18632669 DOI: 10.1074/jbc.m800325200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Catenin is a multifunctional mediator of cellular signaling and an oncogene. Nuclear beta-catenin, when complexed with members of the T-cell factor (TCF)/leukocyte enhancer factor family of DNA-binding proteins, mediates transcriptional activation important for embryonic development and adult cell homeostasis. Deregulation of intracellular levels of beta-catenin is an early event in the development of a variety of cancers. We observed that the proteins silencing mediator for retinoid and thyroid hormone receptor (SMRT) and the nuclear receptor corepressor (NCoR) are negative regulators of transcription induced by the beta-catenin-TCF4 complex. Overexpression of SMRT and NCoR attenuated the transcription of beta-catenin-TCF4-specific reporter gene and of CCND1, an endogenous beta-catenin target gene. Knockdown of endogenous SMRT or NCoR by short interfering RNA augmented the beta-catenin-TCF4-mediated reporter gene expression. Glutathione S-transferase pulldown experiments showed there was a direct physical association of SMRT and NCoR with both beta-catenin and TCF4. DNA-protein interaction studies revealed that the interactions between either SMRT or NCoR and beta-catenin or TCF4 occurred at the promoter regions of CCND1 and other target genes. These findings demonstrate an important role for corepressors SMRT and NCoR in the regulation of beta-catenin-TCF4-mediated gene transcription.
Collapse
Affiliation(s)
- Liang-Nian Song
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
39
|
Handeli S, Simon JA. A small-molecule inhibitor of Tcf/beta-catenin signaling down-regulates PPARgamma and PPARdelta activities. Mol Cancer Ther 2008; 7:521-9. [PMID: 18347139 DOI: 10.1158/1535-7163.mct-07-2063] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of the Wnt/beta-catenin signaling pathway occurs in several types of cancers and thus it is an attractive target for anticancer drug development. To identify compounds that inhibit this pathway, we screened a chemical library using a cell-based beta-catenin/Tcf-responsive reporter. We identified FH535, a compound that suppresses both Wnt/beta-catenin and peroxisome proliferator-activated receptor (PPAR) signaling. FH535 antagonizes both PPARgamma and PPARdelta ligand-dependent activation and shows structural similarity to GW9662, a known PPARgamma antagonist. The effect of FH535 on beta-catenin/Tcf activity is reduced in cells carrying a deletion of the PPARdelta gene, as well as by the PPARgamma agonist lysophosphatidic acid. Mechanistically, FH535 inhibits recruitment of the coactivators beta-catenin and GRIP1 but not the corepressors NCoR and SMRT. Its repression of beta-catenin recruitment, in comparison with GW9662, is linked to FH535's unique capability to inhibit the Wnt/beta-catenin signaling pathway. The antiproliferation effect of the compound observed on some transformed colon lung and liver cell lines is suggestive of its potential therapeutic value in the treatment of cancer.
Collapse
Affiliation(s)
- Shlomo Handeli
- Clinical Research and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
40
|
Thompson BA, Tremblay V, Lin G, Bochar DA. CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes. Mol Cell Biol 2008; 28:3894-904. [PMID: 18378692 PMCID: PMC2423111 DOI: 10.1128/mcb.00322-08] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/22/2008] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent chromatin remodeling by the CHD family of proteins plays an important role in the regulation of gene transcription. Here we report that full-length CHD8 interacts directly with beta-catenin and that CHD8 is also recruited specifically to the promoter regions of several beta-catenin-responsive genes. Our results indicate that CHD8 negatively regulates beta-catenin-targeted gene expression, since short hairpin RNA against CHD8 results in the activation of several beta-catenin target genes. This regulation is also conserved through evolution; RNA interference against kismet, the apparent Drosophila ortholog of CHD8, results in a similar activation of beta-catenin target genes. We also report the first demonstration of chromatin remodeling activity for a member of the CHD6-9 family of proteins, suggesting that CHD8 functions in transcription through the ATP-dependent modulation of chromatin structure.
Collapse
Affiliation(s)
- Brandi A Thompson
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | |
Collapse
|
41
|
Jessen S, Gu B, Dai X. Pygopus and the Wnt signaling pathway: a diverse set of connections. Bioessays 2008; 30:448-56. [PMID: 18404694 DOI: 10.1002/bies.20757] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Identification of Pygopus in Drosophila as a dedicated component of the Wg (fly homolog of mammalian Wnt) signaling cascade initiated many inquiries into the mechanism of its function. Surprisingly, the nearly exclusive role for Pygopus in Wg signal transduction in flies is not seen in mice, where Pygopus appears to have both Wnt-related and Wnt-independent functions. This review addresses the initial findings of Pygopus as a Wg/Wnt co-activator in light of recent data from both fly and mammalian studies. We compare and contrast the developmental phenotypes of pygopus mutants to those characterized for known Wg/Wnt transducers and explore the data regarding a role for mammalian Pygopus 2 in tumorigenesis. We further analyze the roles of the two conserved domains of Pygopus proteins in transcription, and propose a model for the molecular mechanism of Pygopus function in both Wg/Wnt signaling and Wnt-independent transcriptional regulation.
Collapse
Affiliation(s)
- Shannon Jessen
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
42
|
Somatic Genetic Changes in Prostate Cancer. Prostate Cancer 2008. [DOI: 10.1007/978-1-60327-079-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Li LB, Louie MC, Chen HW, Zou JX. Proto-oncogene ACTR/AIB1 promotes cancer cell invasion by up-regulating specific matrix metalloproteinase expression. Cancer Lett 2007; 261:64-73. [PMID: 18162290 DOI: 10.1016/j.canlet.2007.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 01/07/2023]
Abstract
Overexpression of ACTR/AIB1 is frequently found in different cancers with distant metastasis. To address its possible involvement in tumor metastasis, we performed invasion assays to examine the effect of ACTR alteration on the invasiveness of breast cancer cells (MDA-MB-231 or T-47D) and found that high levels of ACTR are required for their strong invasiveness. Molecular analysis indicates that ACTR functions as a coactivator of AP-1 to up-regulate the expression of matrix metalloproteinases such as MMP-7 and MMP-10 and reduce cell adhesion to specific extracellular matrix proteins. These novel findings provide a mechanistic link between ACTR and MMPs, and suggest that ACTR may also play an important role in cancer progression by facilitating tumor invasion.
Collapse
Affiliation(s)
- Li B Li
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
44
|
Chen YH, Yang CK, Xia M, Ou CY, Stallcup MR. Role of GAC63 in transcriptional activation mediated by beta-catenin. Nucleic Acids Res 2007; 35:2084-92. [PMID: 17344318 PMCID: PMC1874623 DOI: 10.1093/nar/gkm095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/03/2007] [Accepted: 02/02/2007] [Indexed: 01/04/2023] Open
Abstract
Beta-catenin is a key mediator in the canonical Wnt signaling pathway, which plays important roles in multiple developmental processes. Inappropriate activation of this pathway leads to developmental defects and development of certain cancers. Upon Wnt signaling, beta-catenin binds TCF/LEF transcription factors. The TCF/LEF-beta-catenin complex then recruits a variety of transcriptional coactivators to the promoter/enhancer region of Wnt-responsive genes and activates target gene transcription. In this article, we demonstrate that GRIP1-associated coactivator 63 (GAC63), a recently identified nuclear receptor (NR) coactivator, interacts with beta-catenin. The N-terminus of GAC63 is the binding site for beta-catenin, whereas a C-terminal fragment of beta-catenin including armadillo repeats 10-12 binds to GAC63. Over-expression of GAC63 enhanced the transcriptional activity of beta-catenin, and also greatly enhanced TCF/LEF-regulated reporter gene activity in a beta-catenin-dependent manner. Endogenous GAC63 was recruited to TCF/LEF-responsive enhancer elements when beta-catenin levels were induced by LiCl. In addition, reduction of endogenous GAC63 level by small interfering RNA (siRNA) inhibited TCF/LEF-mediated gene transcription. Our findings reveal a new function of GAC63 in transcriptional activation of Wnt-responsive genes.
Collapse
Affiliation(s)
- Yong-Heng Chen
- Department of Pathology, Department of Biochemistry and Molecular Biology, and Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, California 90089, USA
| | - Catherine K. Yang
- Department of Pathology, Department of Biochemistry and Molecular Biology, and Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, California 90089, USA
| | - Meng Xia
- Department of Pathology, Department of Biochemistry and Molecular Biology, and Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, California 90089, USA
| | - Chen-Yin Ou
- Department of Pathology, Department of Biochemistry and Molecular Biology, and Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, California 90089, USA
| | - Michael R. Stallcup
- Department of Pathology, Department of Biochemistry and Molecular Biology, and Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
45
|
Terry S, Yang X, Chen MW, Vacherot F, Buttyan R. Multifaceted interaction between the androgen and Wnt signaling pathways and the implication for prostate cancer. J Cell Biochem 2006; 99:402-410. [PMID: 16741972 DOI: 10.1002/jcb.20983] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Androgen action in prostate and prostate cancer cells is dependent upon the androgen receptor (AR) protein that transcriptionally regulates the expression of androgen-dependent genes in the presence of a steroid ligand. Whereas the overall schema of androgen action mediated by this receptor protein appears to be relatively simple, androgen signaling is now known to be influenced by several other cell signal transduction pathways and here we review the evidence that the canonical Wnt signaling pathway also modulates androgen signaling at multiple levels. Wnt is a complex signaling pathway whose endpoint involves activation of transcription from LEF-1/TCF transcription factors and it is known to be involved in the development and progression of numerous human epithelial tumors including prostate cancer. beta-catenin protein, a particularly critical molecular component of canonical Wnt signaling is now known to promote androgen signaling through its ability to bind to the AR protein in a ligand-dependent fashion and to enhance the ability of liganded AR to activate transcription of androgen-regulated genes. Under certain conditions, glycogen synthase kinase-3beta (GSK-3beta), a protein serine/threonine kinase that regulates beta-catenin degradation within the Wnt signaling pathway, can also phosphorylate AR and suppress its ability to activate transcription. Finally, it was recently found that the human AR gene itself is a target of LEF-1/TCF-mediated transcription and that AR mRNA is highly upregulated by activation of Wnt signaling in prostate cancer cells. Paradoxically, Wnt activation also appears to stimulate Akt activity promoting an MDM-2-mediated degradation process that reduces AR protein levels in Wnt-stimulated prostate cancer cells. Collectively, this information indicates that the multifaceted nature of the interaction between the Wnt and the androgen signaling pathways likely has numerous consequences for the development, growth, and progression of prostate cancer.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM E03-37, Université Paris XII, Centre de Recherches Chirurgicales, Assistance Publique des Hopitaux Paris, Créteil, France
| | | | | | | | | |
Collapse
|
46
|
Karvonen U, Jänne OA, Palvimo JJ. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion. Exp Cell Res 2006; 312:3165-83. [PMID: 16860317 DOI: 10.1016/j.yexcr.2006.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
In addition to chromosomal proteins, histone deacetylases (HDACs) target transcription factors in transcriptional repression. Here, we show that the class II HDAC family member HDAC7 is an efficient corepressor of the androgen receptor (AR). HDAC7 resided in the cytoplasm in the absence of AR or a cognate ligand, but hormone-occupancy of AR induced nuclear transfer of HDAC7. Nuclear colocalization pattern of AR and HDAC7 was dependent on the nature of the ligand. In the presence of testosterone, a portion of HDAC7 localized to pearl-like nuclear domains, whereas AR occupied with antagonistic ligands cyproterone acetate- or casodex (bicalutamide) recruited HDAC7 from these domains to colocalize with the receptor in speckles and nucleoplasm in a more complete fashion. Ectopic expression of PML-3 relieved the repressive effect of HDAC7 on AR function by sequestering HDAC7 to PML-3 domains. AR acetylation at Lys630/632/633 was not the target of HDAC7 repression, since repression of AR function was independent of these acetylation sites. Moreover, the deacetylase activity of HDAC7 was in part dispensable in the repression of AR function. In sum, our results identify HDAC7 as a novel AR corepressor whose subcellular and subnuclear compartmentalization can be regulated in an androgen-selective manner.
Collapse
Affiliation(s)
- Ulla Karvonen
- Biomedicum Helsinki, Institute of Biomedicine, University of Helsinki, PO Box 63, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
47
|
Mukherjee A, Soyal SM, Fernandez-Valdivia R, Gehin M, Chambon P, Demayo FJ, Lydon JP, O'Malley BW. Steroid receptor coactivator 2 is critical for progesterone-dependent uterine function and mammary morphogenesis in the mouse. Mol Cell Biol 2006; 26:6571-83. [PMID: 16914740 PMCID: PMC1592830 DOI: 10.1128/mcb.00654-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although the essential involvement of the progesterone receptor (PR) in female reproductive tissues is firmly established, the coregulators preferentially enlisted by PR to mediate its physiological effects have yet to be fully delineated. To further dissect the roles of members of the steroid receptor coactivator (SRC)/p160 family in PR-mediated reproductive processes in vivo, state-of-the-art cre-loxP engineering strategies were employed to generate a mouse model (PR(Cre/+) SRC-2(flox/flox)) in which SRC-2 function was abrogated only in cell lineages that express the PR. Fertility tests revealed that while ovarian activity was normal, PR(Cre/+) SRC-2(flox/flox) mouse uterine function was severely compromised. Absence of SRC-2 in PR-positive uterine cells was shown to contribute to an early block in embryo implantation, a phenotype not shared by SRC-1 or -3 knockout mice. In addition, histological and molecular analyses revealed an inability of the PR(Cre/+) SRC-2(flox/flox) mouse uterus to undergo the necessary cellular and molecular changes that precede complete P-induced decidual progression. Moreover, removal of SRC-1 in the PR(Cre/+) SRC-2(flox/flox) mouse uterus resulted in the absence of a decidual response, confirming that uterine SRC-2 and -1 cooperate in P-initiated transcriptional programs which lead to full decidualization. In the case of the mammary gland, whole-mount and histological analysis disclosed the absence of significant ductal side branching and alveologenesis in the hormone-treated PR(Cre/+) SRC-2(flox/flox) mammary gland, reinforcing an important role for SRC-2 in cellular proliferative changes that require PR. We conclude that SRC-2 is appropriated by PR in a subset of transcriptional cascades obligate for normal uterine and mammary morphogenesis and function.
Collapse
Affiliation(s)
- Atish Mukherjee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee YH, Stallcup MR. Interplay of Fli-I and FLAP1 for regulation of beta-catenin dependent transcription. Nucleic Acids Res 2006; 34:5052-9. [PMID: 16990252 PMCID: PMC1636430 DOI: 10.1093/nar/gkl652] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
β-catenin mediates Wnt/wingless signaling and transcriptional activation by lymphocyte enhancer binding factor 1/T cell factor (LEF1/TCF) proteins with the assistance of multiple coregulators, including positive cofactors like p300/CBP and negative cofactors like HDACs. We previously demonstrated that a developmentally essential protein, Flightless-I (Fli-I), serves as a coactivator for nuclear receptor-mediated transcription. To further understand the action mechanism of Fli-I, we investigated the functional roles of Fli-I and Fli-I leucine rich repeat associated protein 1 (FLAP1) in transcriptional activation by β-catenin and LEF1/TCF. β-catenin-dependent transcription was activated by exogenous FLAP1 but inhibited by Fli-I. Reduction of endogenous FLAP1 levels compromised transcriptional activation by LEF1/TCF, β-catenin and the p160 coactivator GRIP1. FLAP1 interacted directly with β-catenin, GRIP1 and p300 and enhanced their activity. Furthermore, FLAP1 was strongly synergistic with p300 in supporting transcriptional activation by β-catenin and LEF1/TCF, but Fli-I disrupted the synergy of FLAP1 with p300 and β-catenin. Thus the opposing effects of Fli-I and FLAP1 may be a key regulatory mechanism for β-catenin and LEF1/TCF-mediated transcription and thus for Wnt signaling, and some mutations of Fli-I may result in developmental defects, such as the flightless phenotype of Drosophila, by causing dysregulation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
| | - Michael R. Stallcup
- To whom correspondence should be addressed. Tel: +1 323 442 1145; Fax: +1 323 442 1224;
| |
Collapse
|
49
|
Yang CK, Kim JH, Stallcup MR. Role of the N-terminal activation domain of the coiled-coil coactivator in mediating transcriptional activation by beta-catenin. Mol Endocrinol 2006; 20:3251-62. [PMID: 16931570 PMCID: PMC1770943 DOI: 10.1210/me.2006-0200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The coiled-coil coactivator (CoCoA) is involved in transcriptional activation of target genes by nuclear receptors and the xenobiotic aryl hydrocarbon receptor, as well as target genes of the Wnt signaling pathway, which is mediated by the lymphocyte enhancer factor (LEF)/T cell factor transcription factors and the coactivator beta-catenin. The recruitment of CoCoA by nuclear receptors is accomplished by the interaction of the central coiled-coiled domain of CoCoA with p160 coactivators; the C-terminal activation domain (AD) of CoCoA is used for downstream signaling, whereas the function of the N-terminal region is undefined. Here we report that the N terminus of CoCoA contains another AD, which is necessary and sufficient for synergistic activation of LEF1-mediated transcription by CoCoA and beta-catenin. The N-terminal AD contains a p300 binding motif, which is important for synergistic cooperation of CoCoA and p300 as coactivators for LEF1 and beta-catenin. p300 contributes to the function of the CoCoA N-terminal AD primarily through its histone acetyltransferase activity. Moreover, in cultured cells, endogenous p300 is recruited to the promoter of an integrated reporter gene by the N terminus of CoCoA. Thus, the coactivator function of CoCoA for nuclear receptors and LEF1/beta-catenin involves differential utilization of two different CoCoA ADs.
Collapse
Affiliation(s)
| | | | - Michael R. Stallcup
- Corresponding Author to whom reprint requests should be addressed: Michael R. Stallcup, Department of Biochemistry and Molecular Biology, University of Southern California, 1333 San Pablo Street, MCA 51A, Los Angeles, CA 90089-9151. Phone: 323-442-1289; Fax: 323-442-1224. E-mail:
| |
Collapse
|
50
|
Yang X, Chen MW, Terry S, Vacherot F, Bemis DL, Capodice J, Kitajewski J, de la Taille A, Benson MC, Guo Y, Buttyan R. Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells. Oncogene 2006; 25:3436-44. [PMID: 16474850 PMCID: PMC2630384 DOI: 10.1038/sj.onc.1209366] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/08/2022]
Abstract
beta-Catenin, a component of the Wnt signaling pathway, is a coactivator of human androgen receptor (hAR) transcriptional activity. Here, we show that Wnt signaling also influences androgen-mediated signaling through its ability to regulate hAR mRNA and protein in prostate cancer (PCa) cells. Three functional LEF-1/TCF binding sites lie within the promoter of the hAR gene as shown by CHIP assays that captured beta-catenin-bound chromatin from Wnt-activated LNCaP cells. Chimeric reporter vectors that use the hAR gene promoter to drive luciferase expression confirmed that these LEF-1/TCF binding elements are able to confer robust upregulation of luciferase expression when stimulated by Wnt-1 or by transfection with beta-catenin and that dominant-negative TCF or mutations within the dominant TCF-binding element abrogated the response. Semi-quantitative and real time RT-PCR assays confirmed that Wnt activation upregulates hAR mRNA in PCa cells. In contrast, hAR protein expression was strongly suppressed by Wnt activation. The reduction of hAR protein is consistent with evidence that Wnt signaling increased phosphorylation of Akt and its downstream target, MDM2 that promotes degradation of hAR protein through a proteasomal pathway. These data indicate that the hAR gene is a direct target of LEF-1/TCF transcriptional regulation in PCa cells but also show that the expression of the hAR protein is suppressed by a degradation pathway regulated by cross-talk of Wnt to Akt that is likely mediated by Wnt-directed degradation of the B regulatory subunit of protein phosphatase, PP2A.
Collapse
Affiliation(s)
- X Yang
- Department of Urology, Columbia University Medical Center, New York, NY, USA
| | - M-W Chen
- Department of Urology, Columbia University Medical Center, New York, NY, USA
| | - S Terry
- INSERM E-03 37, Universite Paris XII, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris, Creteil, France
| | - F Vacherot
- INSERM E-03 37, Universite Paris XII, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris, Creteil, France
| | - DL Bemis
- Department of Urology, Columbia University Medical Center, New York, NY, USA
| | - J Capodice
- Department of Urology, Columbia University Medical Center, New York, NY, USA
| | - J Kitajewski
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
| | - A de la Taille
- INSERM E-03 37, Universite Paris XII, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris, Creteil, France
| | - MC Benson
- Department of Urology, Columbia University Medical Center, New York, NY, USA
| | - Y Guo
- Department of Urology, First Hospital, Peking University, Beijing, China
| | - R Buttyan
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
- Department of Urology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|