1
|
Yu M, Si C, Xinjue H, Pan Y, Dai Y, Jin C, Han T, Yu C, Zhang J. Biglycan deficiency alleviates intestinal fibrosis through BMP-7-mediated Smad1/5/8 signaling. J Crohns Colitis 2025; 19:jjaf065. [PMID: 40249230 DOI: 10.1093/ecco-jcc/jjaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 04/19/2025]
Abstract
BACKGROUND Biglycan (BGN) is a small proteoglycan rich in leucine, which plays a crucial role in the excessive production of extracellular matrix (ECM) and its association with fibrosis across various organs. Nevertheless, the precise contribution of BGN to intestinal fibrosis remains undisclosed. This study aimed to investigate the role and mechanism of BGN in intestinal fibrosis. METHODS Human Crohn's disease (CD) tissue samples were obtained from patients with Crohn's disease who underwent surgical resection of the intestine and were categorized as stenotic/nonstenotic regions. A dextran sodium sulfate (DSS)-induced mouse model of intestinal fibrosis was established. Bgn-/0 (BGN KO) mice and primary human intestinal fibroblasts were applied for the study of experimental fibrosis. Coimmunoprecipitation, immunofluorescence staining, western blot, and qRT-PCR were conducted to identify the regulatory effects of BGN on bone morphogenetic protein-7 (BMP-7) expression and intesinal fibrosis. RESULTS In both human CD samples and the DSS-induced mouse model of intestinal fibrosis, we observed a significant upregulation of BGN in areas activated by fibrosis. The genetic deletion of BGN resulted in the alleviation of intestinal fibrosis in mice administered DSS. The knockdown of BGN through siRNA significantly attenuated TGF-β1-induced ECM deposition and fibroblastic activation in primary human intestinal fibroblasts. Mechanistically, BGN directly interacted with and negatively regulated the anti-fibrotic protein BMP-7. Rescue experiments demonstrated that BGN facilitated intestinal fibrosis by modulating Smad1/5/8 phosphorylation and activating ECM deposition. CONCLUSION Our data indicate that BGN deficiency inhibits intestinal fibrosis through activation of the BMP-7-Smad1/5/8 signaling pathway. BGN and BMP-7 may become new biomarkers of intestinal fibrosis and novel targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Mengli Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Department of Gastroenterology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Chenqin Si
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 200054, China
| | - He Xinjue
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yuanyuan Pan
- Department of Gastroenterology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yiyang Dai
- Department of Gastroenterology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Chengfeng Jin
- Department of Gastroenterology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Tiemei Han
- Department of Gastroenterology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
2
|
Chen H, Li YY, Nio K, Tang H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules 2024; 14:1013. [PMID: 39199400 PMCID: PMC11353080 DOI: 10.3390/biom14081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors belonging to the transforming growth factor β(TGF-β) family. While initially recognized for their role in bone formation, BMPs have emerged as significant players in liver diseases. Among BMPs with various physiological activities, this comprehensive review aims to delve into the involvement of BMP9 specifically in liver diseases and provide insights into the complex BMP signaling pathway. Through an enhanced understanding of BMP9, we anticipate the discovery of new therapeutic options and potential strategies for managing liver diseases.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
TGF-β Inhibitors for Therapeutic Management of Kidney Fibrosis. Pharmaceuticals (Basel) 2022; 15:ph15121485. [PMID: 36558936 PMCID: PMC9783223 DOI: 10.3390/ph15121485] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022] Open
Abstract
Kidney fibrosis is a common pathophysiological mechanism of chronic kidney disease (CKD) progression caused by several underlying kidney diseases. Among various contributors to kidney fibrosis, transforming growth factor-β1 (TGF-β1) is the major factor driving fibrosis. TGF-β1 exerts its profibrotic attributes via the activation of canonical and non-canonical signaling pathways, which induce proliferation and activation of myofibroblasts and subsequent accumulation of extracellular matrix. Over the past few decades, studies have determined the TGF-β1 signaling pathway inhibitors and evaluated whether they could ameliorate the progression of CKD by hindering kidney fibrosis. However, therapeutic strategies that block TGF-β1 signaling have usually demonstrated unsatisfactory results. Herein, we discuss the therapeutic concepts of the TGF-β1 signaling pathway and its inhibitors and review the current state of the art regarding regarding TGF-β1 inhibitors in CKD management.
Collapse
|
4
|
Tang J, Liu F, Cooper ME, Chai Z. Renal fibrosis as a hallmark of diabetic kidney disease: Potential role of targeting transforming growth factor-beta (TGF-β) and related molecules. Expert Opin Ther Targets 2022; 26:721-738. [PMID: 36217308 DOI: 10.1080/14728222.2022.2133698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) worldwide. Currently, there is no effective treatment to completely prevent DKD progression to ESRD. Renal fibrosis and inflammation are the major pathological features of DKD, being pursued as potential therapeutic targets for DKD. AREAS COVERED Inflammation and renal fibrosis are involved in the pathogenesis of DKD. Anti-inflammatory drugs have been developed to combat DKD but without efficacy demonstrated. Thus, we have focused on the mechanisms of TGF-β-induced renal fibrosis in DKD, as well as discussing the important molecules influencing the TGF-β signaling pathway and their potential development into new pharmacotherapies, rather than targeting the ligand TGF-β and/or its receptors, such options include Smads, microRNAs, histone deacetylases, connective tissue growth factor, bone morphogenetic protein 7, hepatocyte growth factor, and cell division autoantigen 1. EXPERT OPINION TGF-β is a critical driver of renal fibrosis in DKD. Molecules that modulate TGF-β signaling rather than TGF-β itself are potentially superior targets to safely combat DKD. A comprehensive elucidation of the pathogenesis of DKD is important, which requires a better model system and access to clinical samples via collaboration between basic and clinical researchers.
Collapse
Affiliation(s)
- Jiali Tang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Fang Liu
- Department of Nephrology and Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Kim BY, Choi SH, Kim JY, Ko J, Yook JI, Kim HS, Lee EJ, Kikkawa DO, Yoon JS. Potential Therapeutic Role of Bone Morphogenic Protein 7 (BMP7) in the Pathogenesis of Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35671049 PMCID: PMC9187939 DOI: 10.1167/iovs.63.6.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated a role of bone morphogenic protein 7 (BMP7), a member of the TGF-β superfamily on pathogenic mechanism of Graves' orbitopathy (GO). The therapeutic effects of BMP7 on inflammation and fibrosis were evaluated in cultured Graves' orbital fibroblasts. Methods Expression of BMP7 was compared in cultured orbital tissue explants from GO (n = 12) and normal control (n = 12) subjects using real-time PCR. Orbital fibroblasts were cultured from orbital connective tissues obtained from GO (n = 3) and normal control patients (n = 3). Cells were pretreated with recombinant human BMP7 (rhBMP7) before stimulation with TGF-β, IL-1β, and TNF-α. Fibrosis-related proteins and inflammatory cytokines were analyzed by Western blotting. The activation of signaling molecules in inflammation and fibrosis was also analyzed. Results The expressions of BMP7 mRNA were lower in GO orbital tissues than control. Fibrosis-related proteins, fibronectin, collagen 1α, and α-SMA induced by TGF-β were suppressed by treating rhBMP7, and rhBMP7 upregulated TGF-β induced SMAD1/5/8 protein expression, whereas downregulated SMAD2/3. Increased pro-inflammatory molecules, IL-6, IL-8, and intercellular adhesion molecule-1 (ICAM-1) by IL-1β or TNF-α were blocked by rhBMP7 treatment, and the expression of phosphorylated NFκB and Akt was suppressed by rhBMP7 treatment. Conclusions BMP7 transcript levels were downregulated in Graves' orbital tissues. Exogenous BMP7 treatment showed inhibitory effects on the production of profibrotic proteins and proinflammatory cytokines in orbital fibroblasts. Our results provide a molecular basis of BMP7 as a new potential therapeutic agent through the opposing mechanism of profibrotic TGF-β/SMAD signaling and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Bo Yi Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Hyun Choi
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Don O Kikkawa
- Department of Ophthalmology, Division of Oculofacial Plastic and Reconstructive Surgery, University of California San Diego, La Jolla, California, United States
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Abstract
The fibrocartilage chondrocyte phenotype has been recognized to attribute to osteoarthritis (OA) development. These chondrocytes express genes related to unfavorable OA outcomes, emphasizing its importance in OA pathology. BMP7 is being explored as a potential disease-modifying molecule and attenuates the chondrocyte hypertrophic phenotype. On the other hand, BMP7 has been demonstrated to relieve organ fibrosis by counteracting the pro-fibrotic TGFβ-Smad3-PAI1 axis and increasing MMP2-mediated Collagen type I turnover. Whether BMP7 has anti-fibrotic properties in chondrocytes is unknown. Human OA articular chondrocytes (HACs) were isolated from end-stage OA femoral cartilage (total knee arthroplasty; n = 18 individual donors). SW1353 cells and OA HACs were exposed to 1 nM BMP7 for 24 h, after which gene expression of fibrosis-related genes and fibrosis-mediating factors was determined by RT-qPCR. In SW1353, Collagen type I protein levels were determined by immunocytochemistry and western blotting. PAI1 and MMP2 protein levels and activity were measured with an ELISA and activity assays, respectively. MMP2 activity was inhibited with the selective MMP-2 inhibitor OA-Hy. SMAD3 activity was determined by a (CAGA)12-reporter assay, and pSMAD2 levels by western blotting. Following BMP7 exposure, the expression of fibrosis-related genes was reduced in SW1353 cells and OA HACs. BMP7 reduced Collagen type I protein levels in SW1353 cells. Gene expression of MMP2 was increased in SW1353 cells following BMP7 treatment. BMP7 reduced PAI1 protein levels and -activity, while MMP2 protein levels and -activity were increased by BMP7. BMP7-dependent inhibition of Collagen type I protein levels in SW1353 cells was abrogated when MMP2 activity was inhibited. Finally, BMP7 reduced pSMAD2 levels determined by western blotting and reduced SMAD3 transcriptional activity as demonstrated by decreased (CAGA)12 luciferase reporter activity. Our data demonstrate that short-term exposure to BMP7 decreases the fibrocartilage chondrocyte phenotype. The BMP7-dependent reduction of Collagen type I protein expression seems MMP2-dependent and inhibition of Smad2/3-PAI1 activity was identified as a potential pathway via which BMP7 exerts its anti-fibrotic action. This indicates that in chondrocytes BMP7 may have a double mode-of-action by targeting both the hypertrophic as well as the fibrotic chondrocyte phenotype, potentially adding to the clinical relevance of using BMP7 as an OA disease-modifying molecule.
Collapse
|
7
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
8
|
Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond) 2021; 135:275-303. [PMID: 33480423 DOI: 10.1042/cs20201213] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Elevated expression of the multifunctional cytokine transforming growth factor β1 (TGF-β1) is causatively linked to kidney fibrosis progression initiated by diabetic, hypertensive, obstructive, ischemic and toxin-induced injury. Therapeutically relevant approaches to directly target the TGF-β1 pathway (e.g., neutralizing antibodies against TGF-β1), however, remain elusive in humans. TGF-β1 signaling is subjected to extensive negative control at the level of TGF-β1 receptor, SMAD2/3 activation, complex assembly and promoter engagement due to its critical role in tissue homeostasis and numerous pathologies. Progressive kidney injury is accompanied by the deregulation (loss or gain of expression) of several negative regulators of the TGF-β1 signaling cascade by mechanisms involving protein and mRNA stability or epigenetic silencing, further amplifying TGF-β1/SMAD3 signaling and fibrosis. Expression of bone morphogenetic proteins 6 and 7 (BMP6/7), SMAD7, Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene (SnoN), phosphate tensin homolog on chromosome 10 (PTEN), protein phosphatase magnesium/manganese dependent 1A (PPM1A) and Klotho are dramatically decreased in various nephropathies in animals and humans albeit with different kinetics while the expression of Smurf1/2 E3 ligases are increased. Such deregulations frequently initiate maladaptive renal repair including renal epithelial cell dedifferentiation and growth arrest, fibrotic factor (connective tissue growth factor (CTGF/CCN2), plasminogen activator inhibitor type-1 (PAI-1), TGF-β1) synthesis/secretion, fibroproliferative responses and inflammation. This review addresses how loss of these negative regulators of TGF-β1 pathway exacerbates renal lesion formation and discusses the therapeutic value in restoring the expression of these molecules in ameliorating fibrosis, thus, presenting novel approaches to suppress TGF-β1 hyperactivation during chronic kidney disease (CKD) progression.
Collapse
|
9
|
Cao A, Li J, Asadi M, Basgen JM, Zhu B, Yi Z, Jiang S, Doke T, El Shamy O, Patel N, Cravedi P, Azeloglu EU, Campbell KN, Menon M, Coca S, Zhang W, Wang H, Zen K, Liu Z, Murphy B, He JC, D’Agati VD, Susztak K, Kaufman L. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J Clin Invest 2021; 131:141279. [PMID: 33998601 PMCID: PMC8121508 DOI: 10.1172/jci141279] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Dachshund homolog 1 (DACH1), a key cell-fate determinant, regulates transcription by DNA sequence-specific binding. We identified diminished Dach1 expression in a large-scale screen for mutations that convert injury-resistant podocytes into injury-susceptible podocytes. In diabetic kidney disease (DKD) patients, podocyte DACH1 expression levels are diminished, a condition that strongly correlates with poor clinical outcomes. Global Dach1 KO mice manifest renal hypoplasia and die perinatally. Podocyte-specific Dach1 KO mice, however, maintain normal glomerular architecture at baseline, but rapidly exhibit podocyte injury after diabetes onset. Furthermore, podocyte-specific augmentation of DACH1 expression in mice protects from DKD. Combined RNA sequencing and in silico promoter analysis reveal conversely overlapping glomerular transcriptomic signatures between podocyte-specific Dach1 and Pax transactivation-domain interacting protein (Ptip) KO mice, with upregulated genes possessing higher-than-expected numbers of promoter Dach1-binding sites. PTIP, an essential component of the activating histone H3 lysine 4 trimethylation (H3K4Me3) complex, interacts with DACH1 and is recruited by DACH1 to its promoter-binding sites. DACH1-PTIP recruitment represses transcription and reduces promoter H3K4Me3 levels. DACH1 knockdown in podocytes combined with hyperglycemia triggers target gene upregulation and increases promoter H3K4Me3. These findings reveal that in DKD, diminished DACH1 expression enhances podocyte injury vulnerability via epigenetic derepression of its target genes.
Collapse
Affiliation(s)
- Aili Cao
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Morad Asadi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John M. Basgen
- Life Science Institute, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Bingbing Zhu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Tomohito Doke
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Osama El Shamy
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Niralee Patel
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Cravedi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Evren U. Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav Menon
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steve Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Barbara Murphy
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John C. He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vivette D. D’Agati
- Department of Pathology, Columbia University Medical Center, New York, New York, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lewis Kaufman
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
11
|
Yang P, Troncone L, Augur ZM, Kim SSJ, McNeil ME, Yu PB. The role of bone morphogenetic protein signaling in vascular calcification. Bone 2020; 141:115542. [PMID: 32736145 PMCID: PMC8185454 DOI: 10.1016/j.bone.2020.115542] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/10/2023]
Abstract
Vascular calcification is associated with atherosclerosis, chronic kidney disease, and diabetes, and results from processes resembling endochondral or intramembranous ossification, or from processes that are distinct from ossification. Bone morphogenetic proteins (BMP), as well as other ligands, receptors, and regulators of the transforming growth factor beta (TGFβ) family regulate vascular and valvular calcification by modulating the phenotypic plasticity of multipotent progenitor lineages associated with the vasculature or valves. While osteogenic ligands BMP2 and BMP4 appear to be both markers and drivers of vascular calcification, particularly in atherosclerosis, BMP7 may serve to protect against calcification in chronic kidney disease. BMP signaling regulators such as matrix Gla protein and BMP-binding endothelial regulator protein (BMPER) play protective roles in vascular calcification. The effects of BMP signaling molecules in vascular calcification are context-dependent, tissue-dependent, and cell-type specific. Here we review the current knowledge on mechanisms by which BMP signaling regulates vascular calcification and the potential therapeutic implications.
Collapse
Affiliation(s)
- Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Troncone
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary M Augur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie S J Kim
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Megan E McNeil
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
13
|
Kim S, Shin DH, Nam BY, Kang HY, Park J, Wu M, Kim NH, Kim HS, Park JT, Han SH, Kang SW, Yook JI, Yoo TH. Newly designed Protein Transduction Domain (PTD)-mediated BMP-7 is a potential therapeutic for peritoneal fibrosis. J Cell Mol Med 2020; 24:13507-13522. [PMID: 33079436 PMCID: PMC7701504 DOI: 10.1111/jcmm.15992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
While the bone morphogenetic protein‐7 (BMP‐7) is a well‐known therapeutic growth factor reverting many fibrotic diseases, including peritoneal fibrosis by peritoneal dialysis (PD), soluble growth factors are largely limited in clinical applications owing to their short half‐life in clinical settings. Recently, we developed a novel drug delivery model using protein transduction domains (PTD) overcoming limitation of soluble recombinant proteins, including bone morphogenetic protein‐7 (BMP‐7). This study aims at evaluating the therapeutic effects of PTD‐BMP‐7 consisted of PTD and full‐length BMP‐7 on epithelial‐mesenchymal transition (EMT)‐related fibrosis. Human peritoneal mesothelial cells (HPMCs) were then treated with TGF‐β1 or TGF‐β1 + PTD‐BMP‐7. Peritoneal dialysis (PD) catheters were inserted into Sprague‐Dawley rats, and these rats were infused intra‐peritoneally with saline, peritoneal dialysis fluid (PDF) or PDF + PTD‐BMP‐7. In vitro, TGF‐β1 treatment significantly increased fibronectin, type I collagen, α‐SMA and Snail expression, while reducing E‐cadherin expression in HPMCs (P < .001). PTD‐BMP‐7 treatment ameliorated TGF‐β1‐induced fibronectin, type I collagen, α‐SMA and Snail expression, and restored E‐cadherin expression in HPMCs (P < .001). In vivo, the expressions of EMT‐related molecules and the thickness of the sub‐mesothelial layer were significantly increased in the peritoneum of rats treated with PDF, and these changes were significantly abrogated by the intra‐peritoneal administration of PTD‐BMP‐7. PTD‐BMP‐7 treatment significantly inhibited the progression of established PD fibrosis. These findings suggest that PTD‐BMP‐7, as a prodrug of BMP‐7, can be an effective therapeutic agent for peritoneal fibrosis in PD patients.
Collapse
Affiliation(s)
- Seonghun Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Dong Ho Shin
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Bo Young Nam
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye-Young Kang
- Department of Internal Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jimin Park
- Department of Internal Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Meiyan Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Jung Tak Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, South Korea
| | - Seung Hyeok Han
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, South Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, South Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea.,MET Life Science, Seoul, Korea
| | - Tae-Hyun Yoo
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
14
|
Xing L, Chang X, Shen L, Zhang C, Fan Y, Cho C, Zhang Z, Jiang H. Progress in drug delivery system for fibrosis therapy. Asian J Pharm Sci 2020; 16:47-61. [PMID: 33613729 PMCID: PMC7878446 DOI: 10.1016/j.ajps.2020.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/22/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a necessary process in the progression of chronic disease to cirrhosis or even cancer, which is a serious disease threatening human health. Recent studies have shown that the early treatment of fibrosis is turning point and particularly important. Therefore, how to reverse fibrosis has become the focus and research hotspot in recent years. So far, the considerable progress has been made in the development of effective anti-fibrosis drugs and targeted drug delivery. Moreover, the existing research results will lay the foundation for more breakthrough delivery systems to achieve better anti-fibrosis effects. Herein, this review summaries anti-fibrosis delivery systems focused on three major organ fibrotic diseases such as liver, pulmonary, and renal fibrosis accompanied by the elaboration of relevant pathological mechanisms, which will provide inspiration and guidance for the design of fibrosis drugs and therapeutic systems in the future.
Collapse
Affiliation(s)
- Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Chang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lijun Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chenglu Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yatong Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chongsu Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Corresponding authors.
| | - Zhiqi Zhang
- Department of General Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081 China
- Corresponding authors.
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| |
Collapse
|
15
|
Ge W, Mi Y, Xu S, Li T, Lu Y, Jiang J. rhBMP‑7 suppresses TGF‑β1‑induced endothelial to mesenchymal transition in circulating endothelial cells by regulating Smad5. Mol Med Rep 2019; 21:478-484. [PMID: 31939623 DOI: 10.3892/mmr.2019.10842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 10/21/2019] [Indexed: 11/06/2022] Open
Abstract
Endothelial to mesenchymal transition (EndMT) has been confirmed to participate in several cardiovascular diseases. In addition, EndMT of circulating endothelial cells (CECs) contributes to the pathology of musculoskeletal injury. However, little is known about the molecular mechanism of CECs undergoing EndMT. In the present study, human CECs were isolated and identified using anti‑CD146‑coupled magnetic beads. CECs were exposed to transforming growth factor (TGF)‑β1 or TGF‑β1 + recombinant human bone morphogenetic protein 7 (rhBMP‑7) or TGF‑β1 + rhBMP‑7 + Smad5 antagonist Jun activation domain‑binding protein 1. Vascular endothelial (VE)‑cadherin and vimentin expression were detected by immunofluorescence staining in TGF‑β1‑treated CECs. The expression levels of von Willebrand factor (vWF), E‑selectin, VE‑cadherin, vimentin, fibronectin, α smooth muscle actin (α‑SMA) and Smad2/3 were detected by reverse transcription‑quantitative PCR or western blot analysis. It was identified that rhBMP‑7 attenuated TGF‑β1‑induced endothelial cell injury. TGF‑β1 could induce the EndMT process in CECs, as confirmed by the co‑expression of VE‑cadherin and vimentin. TGF‑β1 significantly reduced the expression of VE‑cadherin, and induced the expression of vimentin, fibronectin and α‑SMA. rhBMP‑7 reversed the effects of TGF‑β1 on the expression of these genes. Additionally, Smad5 antagonist reversed the effects of rhBMP‑7 on TGF‑β1‑induced EndMT, and upregulated rhBMP‑7‑inhibited Smad2/3 expression. In conclusion, TGF‑β1 could induce EndMT in CECs and rhBMP‑7 may suppress this process by regulating Smad5.
Collapse
Affiliation(s)
- Weili Ge
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Shasha Xu
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Tao Li
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Yifei Lu
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| |
Collapse
|
16
|
Dituri F, Cossu C, Mancarella S, Giannelli G. The Interactivity between TGFβ and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells 2019; 8:E1130. [PMID: 31547567 PMCID: PMC6829314 DOI: 10.3390/cells8101130] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Transforming Growth Factor beta (TGFβ) and Bone Morphogenic Protein (BMP) pathways intersect at multiple signaling hubs and cooperatively or counteractively participate to bring about cellular processes which are critical not only for tissue morphogenesis and organogenesis during development, but also for adult tissue homeostasis. The proper functioning of the TGFβ/BMP pathway depends on its communication with other signaling pathways and any deregulation leads to developmental defects or diseases, including fibrosis and cancer. In this review we explore the cellular and physio-pathological contexts in which the synergism or antagonism between the TGFβ and BMP pathways are crucial determinants for the normal developmental processes, as well as the progression of fibrosis and malignancies.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Carla Cossu
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
17
|
Shi H, Liu CB, Xiao HJ. Stable expression of constitutively activated ALK3 suppresses rat hepatic stellate cell activation. Shijie Huaren Xiaohua Zazhi 2019; 27:807-813. [DOI: 10.11569/wcjd.v27.i13.807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is related to activation of hepatic stellate cells (HSCs) and epithelial mesenchymal transformation (EMT), in which transforming growth factor-β1 (TGF-β1) plays a pivotal role, but bone morphogenetic protein-7 (BMP7) can antagonize TGF-β1. Currently, the TGF-β/BMPs-Smad signaling pathway is a hot topic of research in this field. ALK3 belongs to the constitutively activated type Ⅰ receptor of BMPs, and its role in the molecular mechanism of hepatic fibrosis is rarely studied.
AIM To detect the expression of Samd1, P-Smad1, and fibrosis-related genes E-cadherin, α-SMA, and col1A2 in cultured rat HSCs (HSC-T6) to investigate how BMP-7 antagonizes TGF-β1 in the development of liver fibrosis and its anti-hepatic fibrosis mechanisms.
METHODS After HSCs-T6 were transfected with constitutively active cDNA construct expressing ALK3, RT-PCR method was used to screen the cell line with stable ALK3 expression and detect the mRNA level of col1A2. MTT assay was used to examine the proliferation of HSC-T6 cells with high expression of ALK3. Western blot method was used to detect the expression of Smad1, P-Smad1, E-cadherin, α-SMA, and co1lA2. Optic microscopy was used to detect the morphological changes of HSC-T6 cells with high expression of ALK3.
RESULTS Compared with control cells, ALK3 high expression restrained the growth of HSC-T6 cells, suppressed the expression of α-SMA and col1A2, promoted the expression of P-Smad1 and E-cadherin, but had no significant effect on Samd1.
CONCLUSION BMP-7 competitively antagonizes TGF-β1 induced fibrosis by enhancing the phosphorylation of Samd1.
Collapse
Affiliation(s)
- Hui Shi
- Department of Gastroenterology, the First Affiliated Hospital of Hainan Medical College, Haikou 570000, Hainan Province, China,Key Laboratory of Tumor Microenvironment and Immunotherapy of Hubei Province, Three Gorges University, Yichang 443000, Hubei Province, China,Institute of Liver Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Chang-Bai Liu
- Key Laboratory of Tumor Microenvironment and Immunotherapy of Hubei Province, Three Gorges University, Yichang 443000, Hubei Province, China,Institute of Liver Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - He-Jie Xiao
- Institute of Liver Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| |
Collapse
|
18
|
Chen L, Zhou Q, Liu E, Zhang J, Duan L, Zhu D, Chen J, Duan Y. rSjp40 inhibits activated hepatic stellate cells by promoting nuclear translocation of YB1 and inducing BMP-7/Smad1/5/8 pathway. Parasit Vectors 2019; 12:279. [PMID: 31151477 PMCID: PMC6545069 DOI: 10.1186/s13071-019-3539-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Activation of hepatic stellate cells is the dominant pathogenic event during the process of liver fibrosis. Bone morphogenic protein (BMP)-7 has recently been identified as an anti-fibrotic factor and leads to phosphorylation of Smad1/5/8 in activated hepatic stellate cells. Its expression can be upregulated by the transcriptional activator, Y-Box protein-1 (YB1). Previous studies have found that the recombinant Schistosoma japonicum protein p40 (rSjp40) can inhibit the activation of hepatic stellate cells, and based on this evidence we attempted to investigate whether or not BMP-7 is involved in rSjp40’s inhibition. Methods A human hepatic stellate cell line, the LX-2 cell line, was cultured and treated with rSjp40. The role of BMP-7 was analyzed by Western blot. Results Our findings testified that knockdown of BMP-7 impaired rSjp40-induced downregulation of α-SMA and phosphorylation of Smad1/5/8 in LX-2 cells. Furthermore, rSjp40 upregulated expression of BMP-7 at both mRNA and protein levels depending on YB1. Interestingly, YB1 was translocated from the cytoplasm to the nucleus upon treatment of rSjp40. Conclusions These results suggest that rSjp40 inhibits the activation of hepatic stellate cells by promoting nuclear translocation of YB1 and inducing BMP-7/Smad1/5/8 pathway, which provide a new clue to guide ongoing research into the anti-fibrosis of rSjp40.
Collapse
Affiliation(s)
- Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qi Zhou
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ertao Liu
- Department of Orthopedics, Nantong Fourth People's Hospital, Nantong, 226005, Jiangsu, People's Republic of China
| | - Jiali Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lian Duan
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Knickmeyer MD, Mateo JL, Eckert P, Roussa E, Rahhal B, Zuniga A, Krieglstein K, Wittbrodt J, Heermann S. TGFβ-facilitated optic fissure fusion and the role of bone morphogenetic protein antagonism. Open Biol 2019; 8:rsob.170134. [PMID: 29593116 PMCID: PMC5881030 DOI: 10.1098/rsob.170134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/02/2018] [Indexed: 12/25/2022] Open
Abstract
The optic fissure is a transient gap in the developing vertebrate eye, which must be closed as development proceeds. A persisting optic fissure, coloboma, is a major cause for blindness in children. Although many genes have been linked to coloboma, the process of optic fissure fusion is still little appreciated, especially on a molecular level. We identified a coloboma in mice with a targeted inactivation of transforming growth factor β2 (TGFβ2). Notably, here the optic fissure margins must have touched, however failed to fuse. Transcriptomic analyses indicated an effect on remodelling of the extracellular matrix (ECM) as an underlying mechanism. TGFβ signalling is well known for its effect on ECM remodelling, but it is at the same time often inhibited by bone morphogenetic protein (BMP) signalling. Notably, we also identified two BMP antagonists among the downregulated genes. For further functional analyses we made use of zebrafish, in which we found TGFβ ligands expressed in the developing eye, and the ligand binding receptor in the optic fissure margins where we also found active TGFβ signalling and, notably, also gremlin 2b (grem2b) and follistatin a (fsta), homologues of the regulated BMP antagonists. We hypothesized that TGFβ is locally inducing expression of BMP antagonists within the margins to relieve the inhibition from its regulatory capacity regarding ECM remodelling. We tested our hypothesis and found that induced BMP expression is sufficient to inhibit optic fissure fusion, resulting in coloboma. Our findings can likely be applied also to other fusion processes, especially when TGFβ signalling or BMP antagonism is involved, as in fusion processes during orofacial development.
Collapse
Affiliation(s)
- Max D Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg D-79104, Germany
| | - Juan L Mateo
- Departamento de Informática, Universidad de Oviedo, Jesús Arias de Velasco, Oviedo 33005, Spain
| | - Priska Eckert
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany.,Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg D-79104, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Belal Rahhal
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | - Aimee Zuniga
- Developmental Genetics, University of Basel Medical School, Basel CH-4058, Switzerland
| | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| | | | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg D-79104, Germany
| |
Collapse
|
20
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
21
|
Wen XF, Chen M, Wu Y, Chen MN, Glogowska A, Klonisch T, Zhang GJ. Inhibitor of DNA Binding 2 Inhibits Epithelial-Mesenchymal Transition via Up-Regulation of Notch3 in Breast Cancer. Transl Oncol 2018; 11:1259-1270. [PMID: 30119050 PMCID: PMC6097462 DOI: 10.1016/j.tranon.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/23/2018] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the second leading cause of cancer death in women worldwide. Incurable metastatic breast disease presents a major clinical challenge and is the main cause of breast cancer-related death. The epithelial-mesenchymal transition (EMT) is a critical early promoter of metastasis. In the present study, we identified a novel role for the inhibitor of DNA binding 2 (Id2), a member of the basic helix-loop-helix protein family, during the EMT of breast cancer. Expression of Id2 was positively correlated with Notch3 in breast cancer cells. Low expression of Id2 and Notch3 was associated with worse distant metastasis-free survival in breast cancer patients. The present study revealed that Id2 activated Notch3 expression by blocking E2A binding to an E-box motif in the Notch3 promoter. The Id2-mediated up-regulation of Notch3 expression at both the mRNA and protein levels resulted in an attenuated EMT, which was associated with reduced motility and matrix invasion of ER-positive and -negative human breast cancer cells and the emergence of E-cadherin expression and reduction in the mesenchymal marker vimentin in triple-negative breast cancer cells. In summary, our findings identified Id2 as a suppressor of the EMT and positive transcriptional regulator of Notch3 in breast cancer. Id2 and Notch3 may serve as novel prognostic markers in a subpopulation of ER-positive breast cancer patients.
Collapse
Affiliation(s)
- Xiao-Fen Wen
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China; ChangJiang Scholar's Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Min Chen
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, China; Xiang'an Hospital, Xiamen University, 2000 East Xiang'an Rd, Xiamen, Fujian, China
| | - Yang Wu
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Min-Na Chen
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, China; ChangJiang Scholar's Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, China
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Guo-Jun Zhang
- ChangJiang Scholar's Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, China; Xiang'an Hospital, Xiamen University, 2000 East Xiang'an Rd, Xiamen, Fujian, China.
| |
Collapse
|
22
|
Herrera B, Addante A, Sánchez A. BMP Signalling at the Crossroad of Liver Fibrosis and Regeneration. Int J Mol Sci 2017; 19:ijms19010039. [PMID: 29295498 PMCID: PMC5795989 DOI: 10.3390/ijms19010039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) belong to the Transforming Growth Factor-β (TGF-β) family. Initially identified due to their ability to induce bone formation, they are now known to have multiple functions in a variety of tissues, being critical not only during development for tissue morphogenesis and organogenesis but also during adult tissue homeostasis. This review focus on the liver as a target tissue for BMPs actions, devoting most efforts to summarize our knowledge on their recently recognized and/or emerging roles on regulation of the liver regenerative response to various insults, either acute or chronic and their effects on development and progression of liver fibrosis in different pathological conditions. In an attempt to provide the basis for guiding research efforts in this field both the more solid and more controversial areas of research were highlighted.
Collapse
Affiliation(s)
- Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
23
|
Ribera J, Pauta M, Melgar-Lesmes P, Córdoba B, Bosch A, Calvo M, Rodrigo-Torres D, Sancho-Bru P, Mira A, Jiménez W, Morales-Ruiz M. A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury. Am J Physiol Gastrointest Liver Physiol 2017; 313:G492-G504. [PMID: 28798084 DOI: 10.1152/ajpgi.00428.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 01/31/2023]
Abstract
Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl4 A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high-resolution three-dimensional confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl4-treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the coexpression of CD31 and α-smooth muscle actin, compared with noncirrhotic livers. Bone morphogenetic protein-7 (BMP-7) inhibited the acquisition of EndMT induced by transforming growth factor-β1 (TGF-β1) treatment in cultured primary mouse liver endothelial cells from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9 ± 0.2 vs. 3.8 ± 0.3%, respectively; P < 0.05). The decrease of EndMT in cirrhotic livers correlated with a significant decrease in liver fibrosis (P < 0.05) and an improvement in the vascular disorganization rate (P < 0.05). We demonstrated the acquisition of the EndMT phenotype by a subpopulation of endothelial cells from cirrhotic livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization.NEW & NOTEWORTHY A subpopulation of liver endothelial cells from cirrhotic patients and mice with liver fibrosis undergoes endothelial-to-mesenchymal transition. Liver endothelial cells from healthy mice could transition into a mesenchymal phenotype in culture in response to TGF-β1 treatment. Fibrotic livers treated chronically with BMP-7 showed lower EndMT acquisition, reduced fibrosis, and improved vascular organization.
Collapse
Affiliation(s)
- Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Montse Pauta
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Bernat Córdoba
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Anna Bosch
- Advanced Optic Microscopy Unit, School of Medicine, Centres Científics i Tecnològics, University of Barcelona, Barcelona, Spain
| | - Maria Calvo
- Advanced Optic Microscopy Unit, School of Medicine, Centres Científics i Tecnològics, University of Barcelona, Barcelona, Spain
| | - Daniel Rodrigo-Torres
- Liver Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| | - Pau Sancho-Bru
- Liver Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| | - Aurea Mira
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain.,Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain.,Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; .,Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Cervantes-Garcia D, Cuellar-Juarez AG, Borrego-Soto G, Rojas-Martinez A, Aldaba-Muruato LR, Salinas E, Ventura-Juarez J, Muñoz-Ortega MH. Adenoviral‑bone morphogenetic protein‑7 and/or doxazosin therapies promote the reversion of fibrosis/cirrhosis in a cirrhotic hamster model. Mol Med Rep 2017; 16:9431-9440. [PMID: 29039539 PMCID: PMC5780000 DOI: 10.3892/mmr.2017.7785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis occurs in the presence of continuous insults, including toxic or biological agents. Novel treatments must focus on ceasing the progression of cellular damage, promoting the regeneration of the parenchyma and inhibition of the fibrotic process. The present study analyzed the effect of bone morphogenetic protein (BMP)-7 gene therapy with or without co-treatment with doxazosin in a model of liver cirrhosis in hamsters. The serum alanine aminotransferase, aspartate aminotransferase and albumin levels were analyzed spectrophotometrically. Tissue hepatic samples were analyzed by hematoxylin and eosin for parenchymal structure and Sirius red for collagen fiber content. BMP-7 and α-smooth muscle actin (SMA)-positive cells were detected by immunohistochemistry. BMP-7 and collagen type I content in hepatic tissue were analyzed by western blotting, and tissue inhibitor of metalloproteinases (TIMP)-2 and matrix metalloproteinase (MMP)-13 expression levels were detected by reverse transcription-quantitative polymerase chain reaction. The present study detected a significant reduction of collagen type I deposits in the group treated with adenoviral-transduction with BMP-7 and doxazosin. In animals with BMP-7 and doxazosin therapy, α-SMA-positive cells were 31.7 and 29% significantly decreased compared with animals with placebo, respectively. Adenoviral-BMP-7 transduction and/or doxazosin treatments actively induced decrement in type I collagen deposition via increased MMP-13 and reduced TIMP-2 expression. In conclusion, the adenovirus-BMP-7 gene therapy and the doxazosin therapy are potential candidates for the diminution of fibrosis in the liver, although combination of both therapies does not improve the individual anti-fibrotic effect once cirrhosis is established.
Collapse
Affiliation(s)
- Daniel Cervantes-Garcia
- Department of Microbiology, Basic Sciences Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico
| | | | - Gissela Borrego-Soto
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, 64710 Nuevo Leon, Mexico
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, 64710 Nuevo Leon, Mexico
| | - Liseth Rubi Aldaba-Muruato
- Department of Morphology, Basic Sciences Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico
| | - Eva Salinas
- Department of Microbiology, Basic Sciences Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico
| | - Javier Ventura-Juarez
- Department of Morphology, Basic Sciences Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico
| | - Martin Humberto Muñoz-Ortega
- Department of Chemistry, Basic Sciences Center, Autonomous University of Aguascalientes, 20131 Aguascalientes, Mexico
| |
Collapse
|
25
|
Higgins DF, Ewart LM, Masterson E, Tennant S, Grebnev G, Prunotto M, Pomposiello S, Conde-Knape K, Martin FM, Godson C. BMP7-induced-Pten inhibits Akt and prevents renal fibrosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3095-3104. [PMID: 28923783 DOI: 10.1016/j.bbadis.2017.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic protein-7 (BMP-7) counteracts pro-fibrotic effects of TGFβ1 in cultured renal cells and protects from fibrosis in acute and chronic renal injury models. Using the unilateral ureteral obstruction (UUO) model of chronic renal fibrosis, we investigated the effect of exogenous-rhBMP-7 on pro-fibrotic signaling pathways mediated by TGFβ1 and hypoxia. Mice undergoing UUO were treated with vehicle or rhBMP-7 (300μg/kg i.p.) every other day for eight days and kidneys analysed for markers of fibrosis and SMAD, MAPK, and PI3K signaling. In the kidney, collecting duct and tubular epithelial cells respond to BMP-7 via activation of SMAD1/5/8. Phosphorylation of SMAD1/5/8 was reduced in UUO kidneys from vehicle-treated animals yet maintained in UUO kidneys from BMP-7-treated animals, confirming renal bioactivity of exogenous rhBMP-7. BMP-7 inhibited Collagen Iα1 and Collagen IIIα1 gene expression and Collagen I protein accumulation, while increasing expression of Collagen IVα1 in UUO kidneys. Activation of SMAD2, SMAD3, ERK, p38 and PI3K/Akt signaling occurred during fibrogenesis and BMP-7 significantly attenuated SMAD3 and Akt signaling in vivo. Analysis of renal collecting duct (mIMCD) and tubular epithelial (HK-2) cells stimulated with TGFβ1 or hypoxia (1% oxygen) to activate Akt provided further evidence that BMP-7 specifically inhibited PI3K/Akt signaling. PTEN is a negative regulator of PI3K and BMP-7 increased PTEN expression in vivo and in vitro. These data demonstrate an important mechanism by which BMP-7 orchestrates renal protection through Akt inhibition and highlights Akt inhibitors as anti-fibrotic therapeutics.
Collapse
Affiliation(s)
- Debra F Higgins
- UCD Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Leah M Ewart
- UCD Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Enda Masterson
- UCD Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sadhbh Tennant
- UCD Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gleb Grebnev
- UCD Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marco Prunotto
- F. Hoffmann-La Roche, Dept of Metabolic and Vascular Disease, CH4070 Basel, Switzerland
| | - Sylvia Pomposiello
- F. Hoffmann-La Roche, Dept of Metabolic and Vascular Disease, CH4070 Basel, Switzerland
| | - Karin Conde-Knape
- F. Hoffmann-La Roche, Dept of Metabolic and Vascular Disease, CH4070 Basel, Switzerland
| | - Finian M Martin
- UCD Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Flevaris P, Khan SS, Eren M, Schuldt AJT, Shah SJ, Lee DC, Gupta S, Shapiro AD, Burridge PW, Ghosh AK, Vaughan DE. Plasminogen Activator Inhibitor Type I Controls Cardiomyocyte Transforming Growth Factor-β and Cardiac Fibrosis. Circulation 2017; 136:664-679. [PMID: 28588076 DOI: 10.1161/circulationaha.117.028145] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/15/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Fibrosis is the pathological consequence of stress-induced tissue remodeling and matrix accumulation. Increased levels of plasminogen activator inhibitor type I (PAI-1) have been shown to promote fibrosis in multiple organ systems. Paradoxically, homozygous genetic deficiency of PAI-1 is associated with spontaneous age-dependent, cardiac-selective fibrosis in mice. We have identified a novel PAI-1-dependent mechanism that regulates cardiomyocyte-derived fibrogenic signals and cardiac transcriptional pathways during injury. METHODS Cardiac fibrosis in subjects with homozygous mutation in SERPINE-1 was evaluated with late gadolinium-enhanced cardiac magnetic resonance imaging. A murine cardiac injury model was performed by subcutaneous infusion of either saline or Angiotensin II by osmotic minipumps. We evaluated blood pressure, cardiac function (by echocardiography), fibrosis (with Masson Trichrome staining), and apoptosis (with TUNEL staining), and we performed transcriptome analysis (with RNA sequencing). We further evaluated fibrotic signaling in isolated murine primary ventricular myocytes. RESULTS Cardiac fibrosis was detected in 2 otherwise healthy humans with complete PAI-1 deficiency because of a homozygous frameshift mutation in SERPINE-1. In addition to its suppressive role during spontaneous cardiac fibrosis in multiple species, we hypothesized that PAI-1 also regulates fibrosis during cardiac injury. Treatment of young PAI-1-/- mice with Angiotensin II induced extensive hypertrophy and fibrotic cardiomyopathy, with increased cardiac apoptosis and both reactive and replacement fibrosis. Although Angiotensin II-induced hypertension was blunted in PAI-1-/- mice, cardiac hypertrophy was accelerated. Furthermore, ventricular myocytes were found to be an important source of cardiac transforming growth factor-β (TGF-β) and PAI-1 regulated TGF-β synthesis by cardiomyocytes in vitro as well as in vivo during cardiac injury. Transcriptome analysis of ventricular RNA after Angiotensin II treatment confirmed that PAI-1 deficiency significantly enhanced multiple TGF-β signaling elements and transcriptional targets, including genes for extracellular matrix components, mediators of extracellular matrix remodeling, matricellular proteins, and cardiac integrins compared with wild-type mice. CONCLUSIONS PAI-1 is an essential repressor of cardiac fibrosis in mammals. We define a novel cardiomyocyte-specific regulatory mechanism for TGF-β production by PAI-1, which explains the paradoxical effect of PAI-1 deficiency in promoting cardiac-selective fibrosis. Thus, PAI-1 is a molecular switch that controls the cardiac TGF-β axis and its early transcriptional effects that lead to myocardial fibrosis.
Collapse
Affiliation(s)
- Panagiotis Flevaris
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.)
| | - Sadiya S Khan
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.)
| | - Mesut Eren
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.)
| | - Adam J T Schuldt
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.)
| | - Sanjiv J Shah
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.)
| | - Daniel C Lee
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.)
| | - Sweta Gupta
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.)
| | - Amy D Shapiro
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.)
| | - Paul W Burridge
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.)
| | - Asish K Ghosh
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.)
| | - Douglas E Vaughan
- From Division of Cardiology, Department of Medicine (P.F., S.S.K., M.E., A.J.T.S., S.J.S., D.C.L., A.K.G., D.E.V.); Feinberg Cardiovascular Research Institute (P.F., S.S.K., S.J.S., D.C.L., A.K.G., D.E.V.), Department of Pharmacology (A.J.T.S., P.W.B.), Northwestern University Feinberg School of Medicine, Chicago, IL; and Indiana Hemophilia and Thrombosis Center, Indianapolis (S.G., A.D.S.).
| |
Collapse
|
27
|
Zhang YQ, Wan LY, He XM, Ni YR, Wang C, Liu CB, Wu JF. Gremlin1 Accelerates Hepatic Stellate Cell Activation Through Upregulation of TGF-Beta Expression. DNA Cell Biol 2017; 36:603-610. [PMID: 28467108 DOI: 10.1089/dna.2017.3707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Gremlin1, the antagonist of bone morphogenetic protein-7 and one of the target genes of transforming growth factor (TGF)-β signal pathway, plays an important role in embryonic development and its expression decreases along with aging. To explore the expression of gremlin1 in liver fibrosis and the causal link between gremlin1 and hepatic stellate cell (HSC) activation, we detected the expression of gremlin1 in mice with hepatic fibrosis induced by porcine serum using real time quantitative PCR (RT-qPCR) and immunohistochemical staining. The hepatic fibrosis mice were evaluated by the external feature of the liver, histology, hepatic function, collagen deposition, and the expression of fibrosis-related genes (genes COLIα2 and COLIVα2) in the liver. In the HSC-T6, western blotting was used to analyze the expression of α-smooth muscle actin (α-SMA), COL1α, and TGF-β1 in conditions of overexpression of gremlin1 or gremlin1 being knocked down by specific siRNA, respectively. The results showed that the mRNA expression of the gremlin1 gene was significantly increased consistent with increased expression of COLIα2 and COLIVα2 in the liver tissue of the hepatic fibrosis mice. Increased expression of gremlin1 coincided with the same area of the collagen deposition. Furthermore, the results also showed that the expression of α-SMA, COLIα1, and TGF-β1 was consistent with the expression of gremlin1 not only in the HSC-T6 overexpressing gremlin1 but also in the HSC-T6 that gremlin1 is knocked down by specific siRNA. The findings suggest that gremlin1 might play an important role in the progression of hepatic fibrosis and that it modulates HSC activation.
Collapse
Affiliation(s)
- Yan-Qiong Zhang
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
| | - Lin-Yan Wan
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
- 3 Digestive Medicine, The First People's Hospital of Yichang , Hubei, China
| | - Xiao-Min He
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| | - Yi-Ran Ni
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
| | - Chang Wang
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| | - Chang-Bai Liu
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| | - Jiang-Feng Wu
- 1 Department of Anatomy, Medical College, China Three Gorges University , Yichang, China
- 2 Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University , Yichang, China
| |
Collapse
|
28
|
Chung JK, Park SA, Hwang HS, Kim KS, Cho YJ, You YS, Kim YS, Jang JW, Lee SJ. Effects of exogenous recombinant human bone morphogenic protein-7 on the corneal epithelial mesenchymal transition and fibrosis. Int J Ophthalmol 2017; 10:329-335. [PMID: 28393020 DOI: 10.18240/ijo.2017.03.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/18/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate the effect of exogenous recombinant human bone morphogenic protein-7 (rhBMP-7) on transforming growth factor-β (TGF-β)-induced epithelial mesenchymal cell transition (EMT) and assessed its antifibrotic effect via topical application. METHODS The cytotoxic effect of rhBMP-7 was evaluated and the EMT of human corneal epithelial cells (HECEs) was induced by TGF-β. HECEs were then cultured in the presence of rhBMP-7 and/or hyaluronic acid (HA). EMT markers, fibronectin, E-cadherin, α-smooth muscle actin (α-SMA), and matrix metaloproteinase-9 (MMP-9), were evaluated. The level of corneal fibrosis and the reepithelization rate were evaluated using a rabbit keratectomy model. Expression of α-SMA in keratocytes were quantified following treatment with different concentrations of rhBMP-7. RESULTS Treatment with rhBMP-7 attenuated TGF-β-induced EMT in HECEs. It significantly attenuated fibronectin secretion (31.6%; P<0.05), the α-SMA protein level (72.2%; P<0.01), and MMP-9 expression (23.6%, P<0.05) in HECEs compared with cells grown in the presence of TGF-β alone. E-cadherin expression was significantly enhanced (289.7%; P<0.01) in the presence of rhBMP-7. Topical application of rhBMP-7 combined with 0.1% HA significantly reduced the amount of α-SMA+ cells by 43.18% (P<0.05) at a concentration of 2.5 µg/mL and by 47.73% (P<0.05) at 25 µg/mL, compared with the control group, without disturbing corneal reepithelization. CONCLUSION rhBMP-7 attenuates TGF-β-induced EMT in vitro, and topical application of rhBMP-7 reduces keratocyte myodifferentiation during the early wound healing stages in vivo without hindering reepithelization. Topical rhBMP-7 application as biological eye drops seems to be feasible in diseases involving TGF-β-related corneal fibrosis with corneal reepithelization disorders.
Collapse
Affiliation(s)
- Jin Kwon Chung
- Department of Ophthalmology, Soonchunhyang University College of Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea
| | | | | | | | | | | | | | | | - Sung Jin Lee
- Department of Ophthalmology, Soonchunhyang University College of Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea
| |
Collapse
|
29
|
Rosenbloom J, Macarak E, Piera-Velazquez S, Jimenez SA. Human Fibrotic Diseases: Current Challenges in Fibrosis Research. Methods Mol Biol 2017; 1627:1-23. [PMID: 28836191 DOI: 10.1007/978-1-4939-7113-8_1] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human fibrotic diseases constitute a major health problem worldwide owing to the large number of affected individuals, the incomplete knowledge of the fibrotic process pathogenesis, the marked heterogeneity in their etiology and clinical manifestations, the absence of appropriate and fully validated biomarkers, and, most importantly, the current void of effective disease-modifying therapeutic agents. The fibrotic disorders encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis (SSc), sclerodermatous graft vs. host disease, and nephrogenic systemic fibrosis, as well as numerous organ-specific disorders including radiation-induced fibrosis and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse and in several instances have remained elusive, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrotic tissue in affected organs causing their dysfunction and ultimate failure. Despite the remarkable heterogeneity in the etiologic mechanisms responsible for the development of fibrotic diseases and in their clinical manifestations, numerous studies have identified activated myofibroblasts as the common cellular element ultimately responsible for the replacement of normal tissues with nonfunctional fibrotic tissue. Critical signaling cascades, initiated primarily by transforming growth factor-β (TGF-β), but also involving numerous cytokines and signaling molecules which stimulate profibrotic reactions in myofibroblasts, offer potential therapeutic targets. Here, we briefly review the current knowledge of the molecular mechanisms involved in the development of tissue fibrosis and point out some of the most important challenges to research in the fibrotic diseases and to the development of effective therapeutic approaches for this often fatal group of disorders. Efforts to further clarify the complex pathogenetic mechanisms of the fibrotic process should be encouraged to attain the elusive goal of developing effective therapies for these serious, untreatable, and often fatal disorders.
Collapse
Affiliation(s)
- Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edward Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sergio A Jimenez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Morita W, Snelling SJB, Dakin SG, Carr AJ. Profibrotic mediators in tendon disease: a systematic review. Arthritis Res Ther 2016; 18:269. [PMID: 27863509 PMCID: PMC5116130 DOI: 10.1186/s13075-016-1165-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
Background Tendon disease is characterized by the development of fibrosis. Transforming growth factor beta (TGF-β), bone morphogenic proteins (BMPs) and connective tissue growth factor (CTGF) are key mediators in the pathogenesis of fibrotic disorders. The aim of this systematic review was to investigate the evidence for the expression of TGF-β, BMPs and CTGF along tendon disease progression and the response of tendon cells to these growth factors accordingly. Method We conducted a systematic screen of the scientific literature using the Medline database. The search terms used were “tendon AND TGF-β,” “tendon AND BMP” or “tendon AND CTGF.” Studies of human samples, animal tendon injury and overuse models were included. Results Thirty-three studies were included. In eight studies the expression of TGF-β, BMPs or CTGF was dysregulated in chronic tendinopathy and tendon tear patient tissues in comparison with healthy control tissues. The expression of TGF-β, BMPs and CTGF was increased and showed temporal changes in expression in tendon tissues from animal injury or overuse models compared with the healthy control (23 studies), but the pattern of upregulation was inconsistent between growth factors and also the type of animal model. No study investigated the differences in the effect of TGF-β, BMPs or CTGF treatment between patient-derived cells from healthy and diseased tendon tissues. Tendon cells derived from animal models of tendon injury showed increased expression of extracellular matrix protein genes and increased cell signaling response to TGF-β and BMP treatments compared with the control cells (two studies). Conclusion The expression of TGF-β, BMPs and CTGF in tendon tissues is altered temporally during healing in animal models of tendon injury or overuse, but the transition during the development of human tendon disease is currently unknown. Findings from this systematic review suggest a potential and compelling role for TGF-β, BMPs and CTGF in tendon disease; however, there is a paucity of studies analyzing their expression and stimulated cellular response in well-phenotyped human samples. Future work should investigate the dynamic expression of these fibrotic growth factors and their interaction with tendon cells using patient samples at different stages of human tendon disease. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1165-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wataru Morita
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, OX3 7LD, UK. .,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Headington, Oxford, OX3 7LD, UK.
| | - Sarah Jane Bothwell Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, OX3 7LD, UK.,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Headington, Oxford, OX3 7LD, UK
| | - Stephanie Georgina Dakin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, OX3 7LD, UK.,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Headington, Oxford, OX3 7LD, UK
| | - Andrew Jonathan Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford, OX3 7LD, UK.,NIHR Oxford Biomedical Research Unit, Botnar Research Centre, University of Oxford, Windmill Road, Headington, Oxford, OX3 7LD, UK
| |
Collapse
|
31
|
Cassar L, Nicholls C, Pinto AR, Chen R, Wang L, Li H, Liu JP. TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence. Protein Cell 2016; 8:39-54. [PMID: 27696331 PMCID: PMC5233610 DOI: 10.1007/s13238-016-0322-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/03/2016] [Indexed: 01/09/2023] Open
Abstract
Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene.
Collapse
Affiliation(s)
- Lucy Cassar
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Craig Nicholls
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Alex R Pinto
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Ruping Chen
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang Province, China
| | - Lihui Wang
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang Province, China
| | - He Li
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Jun-Ping Liu
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia. .,Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang Province, China.
| |
Collapse
|
32
|
Agirbasli M, Papila-Topal N, Ogutmen B, Deniz H, Cakalagaoglu F, Tuglular S, Akoglu E. The blockade of the renin-angiotensin system reverses tacrolimus related cardiovascular toxicity at the histopathological level. J Renin Angiotensin Aldosterone Syst 2016; 8:54-8. [PMID: 17703430 DOI: 10.3317/jraas.2007.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Introduction. In this study, we investigate the toxic effects of tacrolimus (FK506) on the cardiovascular system at the histopathological level in a rat model and whether these effects can be reversed by the blockade of the renin-angiotensin system (RAS) by either an angiotensin-converting enzyme inhibitor (ACE-inhibitors) or an angiotensin receptor antagonist (ARB). Methods and results. Thirty-one Wistar rats were divided into four groups. FK506 group was treated with FK506 intraperitoneally (i.p.), FK506+ACE-inhibitors and FK506+ARB groups were treated with either quinapril or valsartan orally in addition to FK506. Control group was treated with saline i.p. Histological and immunohistochemical staining of cardiovascular tissue in the FK506 group showed increased vacuolar degeneration (11.2 vs. 5.8, p=0.008), arterial hyalinosis (10.7 vs. 6. G 3, p=0.036), transforming growth factor-beta (TGF-β) (12.2 vs. 4.8, p=0.001) and vascular endothelial growth factor expression (VEGF) (10.7 vs. 6.3, p=0.036), elastic van Gieson (11.5 vs. 5.5, p=0.004), and periodic acid O Schiff stain scores (12.5 vs. 4.5, p<0.001) compared to the control group. Immunohistochemical scores showed that expression of TGF-β is up-regulated, and bone morphogenic protein (BMP-7) is down-regulated with FK506 toxicity. Adding RAS blockade with either an ACE-inhibitor or an ARB could reverse FK506 induced changes. Both FK506+ACE-inhibitors and FK506+ARB groups demonstrated decrease in arterial hyalinosis (22.1 vs. 14.4 (FK506+ACE-inhibitor) and 13.6 (FK506+ARB), p=0.09) and vacuolar degeneration (23.1 vs. 16.1 (FK506+ACE-inhibitor) and 12.4 (FK506+ARB), p=0.006) scores compared to the FK506 group. Conclusion. Blockade of RAS could reverse the histopathological signs of FK506 induced cardiac toxicity in a rat model.
Collapse
Affiliation(s)
- Mehmet Agirbasli
- Department of Cardiology, Marmara University Medical School, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ali IHA, Brazil DP. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses. Br J Pharmacol 2016; 171:3620-32. [PMID: 24758361 DOI: 10.1111/bph.12724] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily of secreted cysteine knot proteins that includes TGFβ1, nodal, activins and inhibins. BMPs were first discovered by Urist in the 1960s when he showed that implantation of demineralized bone into intramuscular tissue of rabbits induced bone and cartilage formation. Since this seminal discovery, BMPs have also been shown to play key roles in several other biological processes, including limb, kidney, skin, hair and neuronal development, as well as maintaining vascular homeostasis. The multifunctional effects of BMPs make them attractive targets for the treatment of several pathologies, including bone disorders, kidney and lung fibrosis, and cancer. This review will summarize current knowledge on the BMP signalling pathway and critically evaluate the potential of recombinant BMPs as pharmacological agents for the treatment of bone repair and tissue fibrosis in patients.
Collapse
Affiliation(s)
- Imran H A Ali
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
34
|
Manson SR, Austin PF, Guo Q, Moore KH. BMP-7 Signaling and its Critical Roles in Kidney Development, the Responses to Renal Injury, and Chronic Kidney Disease. VITAMINS AND HORMONES 2016; 99:91-144. [PMID: 26279374 DOI: 10.1016/bs.vh.2015.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is a significant health problem that most commonly results from congenital abnormalities in children and chronic renal injury in adults. The therapeutic potential of BMP-7 was first recognized nearly two decades ago with studies demonstrating its requirement for kidney development and ability to inhibit the pathogenesis of renal injury in models of CKD. Since this time, our understanding of CKD has advanced considerably and treatment strategies have evolved with the identification of many additional signaling pathways, cell types, and pathologic processes that contribute to disease progression. The purpose of this review is to revisit the seminal studies that initially established the importance of BMP-7, highlight recent advances in BMP-7 research, and then integrate this knowledge with current research paradigms. We will provide an overview of the evolutionarily conserved roles of BMP proteins and the features that allow BMP signaling pathways to function as critical signaling nodes for controlling biological processes, including those related to CKD. We will discuss the multifaceted functions of BMP-7 during kidney development and the potential for alterations in BMP-7 signaling to result in congenital abnormalities and pediatric kidney disease. We will summarize the renal protective effects of recombinant BMP-7 in experimental models of CKD and then propose a model to describe the potential physiological role of endogenous BMP-7 in the innate repair mechanisms of the kidneys that respond to renal injury. Finally, we will highlight emerging clinical approaches for applying our knowledge of BMP-7 toward improving the treatment of patients with CKD.
Collapse
Affiliation(s)
- Scott R Manson
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA.
| | - Paul F Austin
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Qiusha Guo
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Katelynn H Moore
- Department of Surgery, Division of Urology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
35
|
Abstract
Transforming growth factor-β (TGF-β) is the primary factor that drives fibrosis in most, if not all, forms of chronic kidney disease (CKD). Inhibition of the TGF-β isoform, TGF-β1, or its downstream signalling pathways substantially limits renal fibrosis in a wide range of disease models whereas overexpression of TGF-β1 induces renal fibrosis. TGF-β1 can induce renal fibrosis via activation of both canonical (Smad-based) and non-canonical (non-Smad-based) signalling pathways, which result in activation of myofibroblasts, excessive production of extracellular matrix (ECM) and inhibition of ECM degradation. The role of Smad proteins in the regulation of fibrosis is complex, with competing profibrotic and antifibrotic actions (including in the regulation of mesenchymal transitioning), and with complex interplay between TGF-β/Smads and other signalling pathways. Studies over the past 5 years have identified additional mechanisms that regulate the action of TGF-β1/Smad signalling in fibrosis, including short and long noncoding RNA molecules and epigenetic modifications of DNA and histone proteins. Although direct targeting of TGF-β1 is unlikely to yield a viable antifibrotic therapy due to the involvement of TGF-β1 in other processes, greater understanding of the various pathways by which TGF-β1 controls fibrosis has identified alternative targets for the development of novel therapeutics to halt this most damaging process in CKD.
Collapse
|
36
|
Merino D, Villar AV, García R, Tramullas M, Ruiz L, Ribas C, Cabezudo S, Nistal JF, Hurlé MA. BMP-7 attenuates left ventricular remodelling under pressure overload and facilitates reverse remodelling and functional recovery. Cardiovasc Res 2016; 110:331-45. [DOI: 10.1093/cvr/cvw076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/18/2016] [Indexed: 12/28/2022] Open
|
37
|
Hou F, Liu R, Liu X, Cui L, Wen Y, Yan S, Yin C. Attenuation of liver fibrosis by herbal compound 861 via upregulation of BMP-7/Smad signaling in the bile duct ligation model rat. Mol Med Rep 2016; 13:4335-42. [PMID: 27035233 DOI: 10.3892/mmr.2016.5071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 03/08/2016] [Indexed: 01/18/2023] Open
Abstract
Herbal compound 861 (Cpd 861) exerts an anti-fibrotic effect in patients with hepatic fibrosis; however, the anti-fibrotic mechanism has yet to be fully elucidated. The present study aimed to explore the mechanistic basis for the anti-fibrotic effect, with a focus on bone morphogenetic protein 7 (BMP-7)/Smad signaling in a bile duct ligation (BDL)-induced liver fibrosis rat model. Following the induction of hepatic fibrosis, rats induced by BDL were treated with 9 g/kg Cpd 861 daily or an equal volume of saline for 28 days. Serum samples were prepared for monitoring the levels of alanine transaminase, aspartate transaminase and total bilirubin, and direct bilirubin analyses and liver samples were used to investigate gene expression, protein localization and protein expression analysis using real‑time quantitative polymerase chain reaction, immunohistochemistry and western blotting. The results revealed the attenuation of liver fibrosis by Cpd 861 in the histological and biochemical experiments. BMP‑7 and phospho (p)‑Smad1/5/8 were localized predominantly in the cytoplasm of hepatocytes. In comparison with the saline‑treated BDL rats, Cpd 861 markedly upregulated the gene expression of BMP‑7 and Smad5, as well as the protein expression of BMP‑7 and Smad1/5. In addition, p-Smad1/5/8 protein expression was markedly increased by Cpd 861 in the BDL model. These results indicated that Cpd 861 alleviates hepatic fibrosis possibly via the upregulation and activation of BMP-7/Smad signaling in hepatic fibrotic rats.
Collapse
Affiliation(s)
- Fei Hou
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ruixia Liu
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiaoya Liu
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lijian Cui
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yan Wen
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Songbiao Yan
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Chenghong Yin
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
38
|
Sureshbabu A, Muhsin SA, Choi ME. TGF-β signaling in the kidney: profibrotic and protective effects. Am J Physiol Renal Physiol 2016; 310:F596-F606. [PMID: 26739888 DOI: 10.1152/ajprenal.00365.2015] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is generally considered as a central mediator of fibrotic diseases. Indeed, much focus has been placed on inhibiting TGF-β and its downstream targets as ideal therapeutic strategies. However, pharmacological blockade of TGF-β has not yet translated into successful therapy for humans, which may be due to pleiotropic effects of TGF-β signaling. Equally, TGF-β signaling as a protective response in kidney injury has been relatively underexplored. An emerging body of evidence from experimental kidney disease models indicates multifunctionality of TGF-β capable of inducing profibrotic and protective effects. This review discusses recent advances highlighting the diverse roles of TGF-β in promoting not only renal fibrosis but also protective responses of TGF-β signaling. We review, in particular, growing evidence that supports protective effects of TGF-β by mechanisms which include inhibiting inflammation and induction of autophagy. Additional detailed studies are required to fully understand the diverse mechanisms of TGF-β actions in renal fibrosis and inflammation that will likely direct toward effective antifibrotic therapies.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York; and
| | - Saif A Muhsin
- New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York; and .,New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| |
Collapse
|
39
|
Zhang Y, Wang S, Liu S, Li C, Wang J. Role of Smad signaling in kidney disease. Int Urol Nephrol 2015; 47:1965-75. [DOI: 10.1007/s11255-015-1115-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/18/2015] [Indexed: 01/21/2023]
|
40
|
Matsubara T, Araki M, Abe H, Ueda O, Jishage KI, Mima A, Goto C, Tominaga T, Kinosaki M, Kishi S, Nagai K, Iehara N, Fukushima N, Kita T, Arai H, Doi T. Bone Morphogenetic Protein 4 and Smad1 Mediate Extracellular Matrix Production in the Development of Diabetic Nephropathy. Diabetes 2015; 64:2978-90. [PMID: 25995358 DOI: 10.2337/db14-0893] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 04/12/2015] [Indexed: 01/20/2023]
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease. It is pathologically characterized by the accumulation of extracellular matrix in the mesangium, of which the main component is α1/α2 type IV collagen (Col4a1/a2). Recently, we identified Smad1 as a direct regulator of Col4a1/a2 under diabetic conditions in vitro. Here, we demonstrate that Smad1 plays a key role in diabetic nephropathy through bone morphogenetic protein 4 (BMP4) in vivo. Smad1-overexpressing mice (Smad1-Tg) were established, and diabetes was induced by streptozotocin. Nondiabetic Smad1-Tg did not exhibit histological changes in the kidney; however, the induction of diabetes resulted in an ∼1.5-fold greater mesangial expansion, consistent with an increase in glomerular phosphorylated Smad1. To address regulatory factors of Smad1, we determined that BMP4 and its receptor are increased in diabetic glomeruli and that diabetic Smad1-Tg and wild-type mice treated with a BMP4-neutralizing antibody exhibit decreased Smad1 phosphorylation and ∼40% less mesangial expansion than those treated with control IgG. Furthermore, heterozygous Smad1 knockout mice exhibit attenuated mesangial expansion in the diabetic condition. The data indicate that BMP4/Smad1 signaling is a critical cascade for the progression of mesangial expansion and that blocking this signal could be a novel therapeutic strategy for diabetic nephropathy.
Collapse
Affiliation(s)
| | - Makoto Araki
- Department of Nephrology, Kyoto University, Kyoto, Japan
| | - Hideharu Abe
- Department of Nephrology, Tokushima University, Tokushima, Japan
| | - Otoya Ueda
- Chugai Pharmaceutical Co., Ltd., Shizuoka, Japan
| | | | - Akira Mima
- Department of Nephrology, Tokushima University, Tokushima, Japan
| | - Chisato Goto
- Chugai Research Institute for Medical Science, Inc., Shizuoka, Japan
| | - Tatsuya Tominaga
- Department of Nephrology, Tokushima University, Tokushima, Japan
| | | | - Seiji Kishi
- Department of Nephrology, Tokushima University, Tokushima, Japan
| | - Kojiro Nagai
- Department of Nephrology, Tokushima University, Tokushima, Japan
| | | | | | - Toru Kita
- Kobe City Medical Center General Hospital, Kyoto, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Toshio Doi
- Department of Nephrology, Tokushima University, Tokushima, Japan
| |
Collapse
|
41
|
Li RX, Yiu WH, Tang SCW. Role of bone morphogenetic protein-7 in renal fibrosis. Front Physiol 2015; 6:114. [PMID: 25954203 PMCID: PMC4407503 DOI: 10.3389/fphys.2015.00114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
Renal fibrosis is final common pathway of end stage renal disease. Irrespective of the primary cause, renal fibrogenesis is a dynamic process which involves a large network of cellular and molecular interaction, including pro-inflammatory cell infiltration and activation, matrix-producing cell accumulation and activation, and secretion of profibrogenic factors that modulate extracellular matrix (ECM) formation and cell-cell interaction. Bone morphogenetic protein-7 is a protein of the TGF-β super family and increasingly regarded as a counteracting molecule against TGF-β. A large variety of evidence shows an anti-fibrotic role of BMP-7 in chronic kidney disease, and this effect is largely mediated via counterbalancing the profibrotic effect of TGF-β. Besides, BMP-7 reduced ECM formation by inactivating matrix-producing cells and promoting mesenchymal-to-epithelial transition (MET). BMP-7 also increased ECM degradation. Despite these observations, the anti-fibrotic effect of BMP-7 is still controversial such that fine regulation of BMP-7 expression in vivo might be a great challenge for its ultimate clinical application.
Collapse
Affiliation(s)
- Rui Xi Li
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong China
| |
Collapse
|
42
|
Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res 2015; 165:512-30. [PMID: 25176603 PMCID: PMC4326607 DOI: 10.1016/j.trsl.2014.07.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
Renal fibrosis is the hallmark of virtually all progressive kidney diseases and strongly correlates with the deterioration of kidney function. The renin-angiotensin-aldosterone system blockade is central to the current treatment of patients with chronic kidney disease (CKD) for the renoprotective effects aimed to prevent or slow progression to end-stage renal disease (ESRD). However, the incidence of CKD is still increasing, and there is a critical need for new therapeutics. Here, we review novel strategies targeting various components implicated in the fibrogenic pathway to inhibit or retard the loss of kidney function. We focus, in particular, on antifibrotic approaches that target transforming growth factor (TGF)-β1, a key mediator of kidney fibrosis, and exciting new data on the role of autophagy. Bone morphogenetic protein (BMP)-7 and connective tissue growth factor (CTGF) are highlighted as modulators of profibrotic TGF-β activity. BMP-7 has a protective role against TGF-β1 in kidney fibrosis, whereas CTGF enhances TGF-β-mediated fibrosis. We also discuss recent advances in the development of additional strategies for antifibrotic therapy. These include strategies targeting chemokine pathways via CC chemokine receptors 1 and 2 to modulate the inflammatory response, inhibition of phosphodiesterase to restore nitric oxide-cyclic 3',5'-guanosine monophosphate function, inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 and 4 to suppress reactive oxygen species production, and inhibition of endothelin 1 or tumor necrosis factor α to ameliorate progressive renal fibrosis. Furthermore, a brief overview of some of the biomarkers of kidney fibrosis is currently being explored that may improve the ability to monitor antifibrotic therapies. It is hoped that evidence based on the preclinical and clinical data discussed in this review leads to novel antifibrotic therapies effective in patients with CKD to prevent or delay progression to ESRD.
Collapse
Affiliation(s)
- So-Young Lee
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Internal Medicine, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sung I Kim
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mary E Choi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
43
|
Antoine MH, Debelle F, Piccirilli J, El Kaddouri F, Declèves AE, De Prez E, Husson C, Mies F, Bourgeade MF, Nortier JL. Human bone morphogenetic protein-7 does not counteract aristolochic acid-induced renal toxicity. J Appl Toxicol 2015; 35:1520-30. [PMID: 25663515 DOI: 10.1002/jat.3116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022]
Abstract
Aristolochic acids (AA) are nephrotoxic and profibrotic agents, leading to chronic kidney disease. As some controversial studies have reported a nephroprotective effect of exogenous recombinant human bone morphogenetic protein (rhBMP)-7 in several models of renal fibrosis, we investigated the putative effect of rhBMP-7 to prevent progressive tubulointerstitial damage after AA intoxication in vitro and in vivo. In vitro, the toxicity of AA on renal tubular cells was demonstrated by an increase in vimentin as well as a decrease in β-catenin expressions, reflecting a dedifferentiation process. Increased fibronectin and interleukin-6 levels were measured in the supernatants. Enhanced α-SMA mRNA levels associated to decreased E-cadherin mRNA levels were also measured. Incubation with rhBMP-7 only prevented the increase in vimentin and the decrease in β-catenin expressions. In vivo, in a rat model of AA nephropathy, severe tubulointerstitial lesions induced by AA after 10 and 35 days (collagen IV deposition and tubular atrophy), were not prevented by the rhBMP-7 treatment. Similarly, rhBMP-7 did not ameliorate the significant increase in urinary concentrations of transforming growth factor-β. In summary, our in vitro data demonstrated a poor beneficial effect of rhBMP-7 to reverse cell toxicity while, in vivo, there was no beneficial effect of rhBMP-7. Therefore, further investigations are needed to confirm the exact role of BMP-7 in progressive chronic kidney disease.
Collapse
Affiliation(s)
- Marie-Hélène Antoine
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Frédéric Debelle
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Julie Piccirilli
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Fadoua El Kaddouri
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Anne-Emilie Declèves
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels.,Laboratory of Molecular Physiology (URPhyM), University of Namur, Namur
| | - Eric De Prez
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Cécile Husson
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Frédérique Mies
- Laboratory of Physiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Joëlle L Nortier
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| |
Collapse
|
44
|
Engineering TGF-β superfamily ligands for clinical applications. Trends Pharmacol Sci 2014; 35:648-57. [PMID: 25458539 DOI: 10.1016/j.tips.2014.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
TGF-β superfamily ligands govern normal tissue development and homeostasis, and their dysfunction is a hallmark of many diseases. These ligands are also well defined both structurally and functionally. This review focuses on TGF-β superfamily ligand engineering for therapeutic purposes, in particular for regenerative medicine and musculoskeletal disorders. We describe the key discovery that structure-guided mutation of receptor-binding epitopes, especially swapping of these epitopes between ligands, results in new ligands with unique functional properties that can be harnessed clinically. Given the promising results with prototypical engineered TGF-β superfamily ligands, and the vast number of such molecules that remain to be produced and tested, this strategy is likely to hold great promise for the development of new biologics.
Collapse
|
45
|
Lim AI, Chan LYY, Tang SCW, Yiu WH, Li R, Lai KN, Leung JCK. BMP-7 represses albumin-induced chemokine synthesis in kidney tubular epithelial cells through destabilization of NF-κB-inducing kinase. Immunol Cell Biol 2014; 92:427-35. [PMID: 24418819 DOI: 10.1038/icb.2013.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/28/2013] [Accepted: 12/12/2013] [Indexed: 01/28/2023]
Abstract
Protein overload activates proximal tubule epithelial cells (PTECs) to release chemokines. Bone morphogenetic protein-7 (BMP-7) reduces infiltrating cells and tissue damage in acute and chronic renal injuries. The present study examines the inhibitory effect and related molecular mechanism of BMP-7 on chemokine and adhesion molecule synthesis by PTECs activated with human serum albumin (HSA). The expression profiles of chemokines and adhesion molecules in cultured human PTECs were screened by PCR array. Expression of CXCL1, CXCL2 and vascular cell adhesion protein 1 (VCAM-1) by PTECs was significantly upregulated by HSA and reduced by BMP-7. HSA activated both the canonical and noncanonical nuclear factor (NF)-κB pathways in PTECs, as indicated by the increased nuclear translocation of NF-κB p50 and p52 subunits. The nuclear translocation of NF-κB p52 was completely abrogated by BMP-7, whereas NF-κB p50 activation was only partially repressed. BMP-7 increased the expression of cellular inhibitor of apoptosis 1 (cIAP1), tumor necrosis factor receptor-associated factor (TRAF)2 and TRAF3, but not of NF-κB-inducing kinase (NIK) that was significantly upregulated by HSA. Silencing NIK recapitulated the partial inhibitory effect on HSA-induced chemokine synthesis by BMP-7. Complete abolishment of the chemokine synthesis was only achieved by including additional blockade of the NF-κB p65 translocation on top of NIK silencing. Our data suggest that BMP-7 represses the NIK-dependent chemokine synthesis in PTECs activated with HSA through blocking the noncanonical NF-κB pathway and partially interfering with the canonical NF-κB pathway.
Collapse
Affiliation(s)
- Ai Ing Lim
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Loretta Y Y Chan
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Wai Han Yiu
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Ruixi Li
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Nephrology Center, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Joseph C K Leung
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
46
|
Gressner OA, Gao C. Monitoring fibrogenic progression in the liver. Clin Chim Acta 2014; 433:111-22. [PMID: 24607331 DOI: 10.1016/j.cca.2014.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/21/2014] [Accepted: 02/23/2014] [Indexed: 02/07/2023]
Abstract
The clinical course of chronic liver diseases is significantly dependent on the progression rate of fibrosis which is the unstructured replacement of injured parenchyma by extracellular matrix. Despite intensive studies, the clinical opportunities for patients with fibrosing liver diseases have not improved. This will be changed by increasing knowledge of new pathogenetic mechanisms, which complement the "canonical principle" of fibrogenesis. The latter is based on the activation of hepatic stellate cells and their transdifferentiation to myofibroblasts induced by hepatocellular injury and consecutive inflammatory mediators such as TGF-β. Stellate cells express a broad spectrum of matrix components. New mechanisms indicate that the heterogeneous pool of (myo-)fibroblasts can be supplemented by epithelial-mesenchymal transition (EMT) from cholangiocytes and potentially also from hepatocytes to fibroblasts, by influx of bone marrow-derived fibrocytes in the damaged liver tissue and by differentiation of a subgroup of monocytes to fibroblasts after homing in the damaged tissue. These processes are regulated by the cytokines TGF-β and BMP-7, chemokines, colony-stimulating factors, metalloproteinases and numerous trapping proteins. They offer innovative diagnostic and therapeutic options. As an example, modulation of TGF-β/BMP-7 ratio changes the rate of EMT, and so the simultaneous determination of these parameters and of the connective tissue growth factor (CTGF) in serum might provide information on fibrogenic activity. Also, proteomic and glycomic approaches of serum are under investigation to set up specific protein profiles in patients with liver fibrosis. The aim of this article is to present the current pathogenetic concepts of liver fibrosis and to discuss established and novel diagnostic approaches to reflect the process of hepatic fibrogenesis in the medical laboratory.
Collapse
Affiliation(s)
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
47
|
Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol 2013; 17:488-97. [DOI: 10.1007/s10157-013-0781-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/25/2013] [Indexed: 02/06/2023]
|
48
|
Abstract
TGF-β (transforming growth factor-β) and BMP-7 (bone morphogenetic protein-7), two key members in the TGF-β superfamily, play important but diverse roles in CKDs (chronic kidney diseases). Both TGF-β and BMP-7 share similar downstream Smad signalling pathways, but counter-regulate each other to maintain the balance of their biological activities. During renal injury in CKDs, this balance is significantly altered because TGF-β signalling is up-regulated by inducing TGF-β1 and activating Smad3, whereas BMP-7 and its downstream Smad1/5/8 are down-regulated. In the context of renal fibrosis, Smad3 is pathogenic, whereas Smad2 and Smad7 are renoprotective. However, this counter-balancing mechanism is also altered because TGF-β1 induces Smurf2, a ubiquitin E3-ligase, to target Smad7 as well as Smad2 for degradation. Thus overexpression of renal Smad7 restores the balance of TGF-β/Smad signalling and has therapeutic effect on CKDs. Recent studies also found that Smad3 mediated renal fibrosis by up-regulating miR-21 (where miR represents microRNA) and miR-192, but down-regulating miR-29 and miR-200 families. Therefore restoring miR-29/miR-200 or suppressing miR-21/miR-192 is able to treat progressive renal fibrosis. Furthermore, activation of TGF-β/Smad signalling inhibits renal BMP-7 expression and BMP/Smad signalling. On the other hand, overexpression of renal BMP-7 is capable of inhibiting TGF-β/Smad3 signalling and protects the kidney from TGF-β-mediated renal injury. This counter-regulation not only expands our understanding of the causes of renal injury, but also suggests the therapeutic potential by targeting TGF-β/Smad signalling or restoring BMP-7 in CKDs. Taken together, the current understanding of the distinct roles and mechanisms of TGF-β and BMP-7 in CKDs implies that targeting the TGF-β/Smad pathway or restoring BMP-7 signalling may represent novel and effective therapies for CKDs.
Collapse
|
49
|
Zhong L, Wang X, Wang S, Yang L, Gao H, Yang C. The anti-fibrotic effect of bone morphogenic protein-7(BMP-7) on liver fibrosis. Int J Med Sci 2013; 10:441-50. [PMID: 23471555 PMCID: PMC3590605 DOI: 10.7150/ijms.5765] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/26/2013] [Indexed: 02/06/2023] Open
Abstract
Background/Aims : Transforming growth factor-β1 (TGF-β1) plays an important role in the pathogenesis of liver fibrosis and cirrhosis. Recombinant human bone morphogenic protein-7 (rhBMP-7) alleviates renal fibrosis and improves kidney function. However, the beneficial effect of BMP-7 on hepatic fibrosis and cirrhosis remains unknown. The purpose of this study was to investigate the prophylactic and therapeutic effects of rhBMP-7 on liver fibrosis and the underlying mechanisms. Methods : Liver fibrosis in the rat model was induced by peritoneal injection of porcine-serum (0.5ml/kg body weight) twice a week over 8 weeks. The effect of rhBMP-7 on hepatic fibrosis was monitored in rhBMP-7 pre-treated and non-treated rats. Pathologic changes were determined by immunohistolocial staining. TGF-β1 expression was investigated by immunohistolocial staining, western blotting, and real-time PCR. Collagen secretion was measured by enzyme-linked immunosorbent assay. Results : Liver fibrosis was significantly reduced by rhBMP-7. The secretion of collagen type-I and -III was decreased by rhBMP-7 in hepatic stellate cells (HSCs) but not in hepatocytes. The anti-fibrotic effect of rhBMP-7 on liver fibrosis was resulted by blocking the nuclear accumulation of Smad2/3 or by inhibiting TGF-β1 expression in HSCs or hepatocytes. Conclusions : The anti-fibrogenic mechanism of rhBMP-7 in the rat liver fibrosis was depended on the reduction of TGF-β1 overexpression and the inhibition of TGF-β1 triggered intracellular signalling in hepatic cells.
Collapse
Affiliation(s)
- Lan Zhong
- Division of Gastroenterology, East Hospital of Tongji University School of Medicine, Shanghai 200120, China
| | | | | | | | | | | |
Collapse
|
50
|
Ehnert S, Zhao J, Pscherer S, Freude T, Dooley S, Kolk A, Stöckle U, Nussler AK, Hube R. Transforming growth factor β1 inhibits bone morphogenic protein (BMP)-2 and BMP-7 signaling via upregulation of Ski-related novel protein N (SnoN): possible mechanism for the failure of BMP therapy? BMC Med 2012; 10:101. [PMID: 22958403 PMCID: PMC3523027 DOI: 10.1186/1741-7015-10-101] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 09/07/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bone morphogenic proteins (BMPs) play a key role in bone formation. Consequently, it was expected that topical application of recombinant human (rh)BMP-2 and rhBMP-7 would improve the healing of complex fractures. However, up to 36% of fracture patients do not respond to this therapy. There are hints that a systemic increase in transforming growth factor β1 (TGFβ1) interferes with beneficial BMP effects. Therefore, in the present work we investigated the influence of rhTGFβ1 on rhBMP signaling in primary human osteoblasts, with the aim of more specifically delineating the underlying regulatory mechanisms. METHODS BMP signaling was detected by adenoviral Smad-binding-element-reporter assays. Gene expression was determined by reverse transcription polymerase chain reaction (RT-PCR) and confirmed at the protein level by western blot. Histone deacetylase (HDAC) activity was determined using a test kit. Data sets were compared by one-way analysis of variance. RESULTS Our findings showed that Smad1/5/8-mediated rhBMP-2 and rhBMP-7 signaling is completely blocked by rhTGFβ1. We then investigated expression levels of genes involved in BMP signaling and regulation (for example, Smad1/5/8, TGFβ receptors type I and II, noggin, sclerostin, BMP and activin receptor membrane bound inhibitor (BAMBI), v-ski sarcoma viral oncogene homolog (Ski), Ski-related novel protein N (SnoN) and Smad ubiquitination regulatory factors (Smurfs)) and confirmed the expression of regulated genes at the protein level. Smad7 and SnoN were significantly induced by rhTGFβ1 treatment while expression of Smad1, Smad6, TGFβRII and activin receptor-like kinase 1 (Alk1) was reduced. Elevated SnoN expression was accompanied by increased HDAC activity. Addition of an HDAC inhibitor, namely valproic acid, fully abolished the inhibitory effect of rhTGFβ1 on rhBMP-2 and rhBMP-7 signaling. CONCLUSIONS rhTGFβ1 effectively blocks rhBMP signaling in osteoblasts. As possible mechanism, we postulate an induction of SnoN that increases HDAC activity and thereby reduces the expression of factors required for efficient BMP signaling. Thus, inhibition of HDAC activity may support bone healing during rhBMP therapy in patients with elevated TGFβ serum levels.
Collapse
Affiliation(s)
- Sabrina Ehnert
- BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany
| | - Jian Zhao
- Department of Traumatology, MRI, Technische Universität München, Ismaninger Str. 22, D-81675 München, Germany
| | - Stefan Pscherer
- Department Nephrology, Klinikum Traunstein, Kliniken Südostbayern AG, Cuno-Niggl-Str. 3, D-83278 Traunstein, Germany
| | - Thomas Freude
- BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany
| | - Steven Dooley
- Department of Medicine II, University Hospital Mannheim, Ruprecht-Karls-Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68175 Mannheim, Germany
| | - Andreas Kolk
- Department of Oro- and Maxillofacial Surgery, MRI, Technische Universität München, Str. 22, D-81675 München, Germany
| | - Ulrich Stöckle
- BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany
| | - Andreas Klaus Nussler
- BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany
- Department of Traumatology, MRI, Technische Universität München, Ismaninger Str. 22, D-81675 München, Germany
| | - Robert Hube
- Department of Orthopaedic Surgery, OCM-Clinic Munich, Steinerstr. 6, D-81368 München, Germany
| |
Collapse
|