1
|
Wang H, Xie Y, Wang X, Geng X, Gao L. Characterization of the RACK1 gene of Aips cerana cerana and its role in adverse environmental stresses. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110796. [PMID: 35973656 DOI: 10.1016/j.cbpb.2022.110796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
Receptors for Activated C Kinase 1 (RACK1s) are a kind of multifunction scaffold protein that plays an important role in cell signal transductions and animal development. However, the function of RACK1 in the Chinese honeybee Apis cerana cerana is little known. Here, we isolated and identified a RACK1 gene from Apis cerana cerana, named AccRACK1. By bioinformatic analysis, we revealed a high nucleic acid homology between AccRACK1 and RACK1 of Apis cerana. RT-qPCR analyses demonstrated AccRACK1 was mostly expressed in 3rd instar larvae, darked-eyed pupae and adults (one and thirty days post-emergence), suggesting it might participate in the development of A. cerana cerana. Moreover, the expression of AccRACK1 was highest in the thorax, followed by the venom gland. Compared to the blank control group, AccRACK1 was induced by 24 and 44 °C, HgCl2 and pesticides (paraquat, pyridaben and methomyl) but inhibited by 14 °C, H2O2, UV light and cyhalothrin. Additionally, 0.05, 0.1, 1, 5 and 10 mg/ml PPN (juvenile hormone analogue pyriproxyfen) could promote the expression of AccRACK1, with 1 mg/ml showing the highest upregulation, suggesting it was regulated by hormones. Further study found that after knockdown of AccRACK1 by RNAi, the expression of the eukaryotic initiation factor 6 of A. cerana cerana (AcceIF6), an initiation factor regulating the initiation of translation, was inhibited, indicating AccRACK1 might affect cellular responses by translation. These findings, taken together, suggest AccRACK1 is involved in the development and responses to abiotic stresses of A. cerana cerana, and therefore, it may be of critical importance to the survival of A. cerana cerana.
Collapse
Affiliation(s)
- Hongfei Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yucai Xie
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xiaoqing Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xiaoshan Geng
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lijun Gao
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| |
Collapse
|
2
|
Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1. PLoS Genet 2021; 17:e1009640. [PMID: 34214075 PMCID: PMC8282090 DOI: 10.1371/journal.pgen.1009640] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/15/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Heterotrimeric G proteins were originally discovered through efforts to understand the effects of hormones, such as glucagon and epinephrine, on glucose metabolism. On the other hand, many cellular metabolites, including glucose, serve as ligands for G protein-coupled receptors. Here we investigate the consequences of glucose-mediated receptor signaling, and in particular the role of a Gα subunit Gpa2 and a non-canonical Gβ subunit, known as Asc1 in yeast and RACK1 in animals. Asc1/RACK1 is of particular interest because it has multiple, seemingly unrelated, functions in the cell. The existence of such “moonlighting” operations has complicated the determination of phenotype from genotype. Through a comparative analysis of individual gene deletion mutants, and by integrating transcriptomics and metabolomics measurements, we have determined the relative contributions of the Gα and Gβ protein subunits to glucose-initiated processes in yeast. We determined that Gpa2 is primarily involved in regulating carbohydrate metabolism while Asc1 is primarily involved in amino acid metabolism. Both proteins are involved in regulating purine metabolism. Of the two subunits, Gpa2 regulates a greater number of gene transcripts and was particularly important in determining the amplitude of response to glucose addition. We conclude that the two G protein subunits regulate distinct but complementary processes downstream of the glucose-sensing receptor, as well as processes that lead ultimately to changes in cell growth and metabolism. Despite the societal importance of glucose fermentation in yeast, the mechanisms by which these cells detect and respond to glucose have remained obscure. Glucose detection requires a cell surface receptor coupled to a G protein that is comprised of two subunits, rather than the more typical heterotrimer: an α subunit Gpa2 and the β subunit Asc1 (or RACK1 in humans). Asc1/RACK1 also serves as a subunit of the ribosome, where it regulates the synthesis of proteins involved in glucose fermentation. This manuscript uses global metabolomics and transcriptomics to demonstrate the distinct roles of each G protein subunit in transmitting the glucose signal. Whereas Gpa2 is primarily involved in the metabolism of carbohydrates, Asc1/RACK1 contributes to production of amino acids necessary for protein synthesis and cell division. These findings reveal the initial steps of glucose signaling and several unique and complementary functions of the G protein subunits. More broadly, the integrated approach used here is likely to guide efforts to determine the topology of complex G protein and metabolic signaling networks in humans.
Collapse
|
3
|
Garud A, Carrillo AJ, Collier LA, Ghosh A, Kim JD, Lopez-Lopez B, Ouyang S, Borkovich KA. Genetic relationships between the RACK1 homolog cpc-2 and heterotrimeric G protein subunit genes in Neurospora crassa. PLoS One 2019; 14:e0223334. [PMID: 31581262 PMCID: PMC6776386 DOI: 10.1371/journal.pone.0223334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
Receptor for Activated CKinase-1 (RACK1) is a multifunctional eukaryotic scaffolding protein with a seven WD repeat structure. Among their many cellular roles, RACK1 homologs have been shown to serve as alternative Gβ subunits during heterotrimeric G protein signaling in many systems. We investigated genetic interactions between the RACK1 homolog cpc-2, the previously characterized Gβ subunit gnb-1 and other G protein signaling components in the multicellular filamentous fungus Neurospora crassa. Results from cell fractionation studies and from fluorescent microscopy of a strain expressing a CPC-2-GFP fusion protein revealed that CPC-2 is a cytoplasmic protein. Genetic epistasis experiments between cpc-2, the three Gα genes (gna-1, gna-2 and gna-3) and gnb-1 demonstrated that cpc-2 is epistatic to gna-2 with regards to basal hyphae growth rate and aerial hyphae height, while deletion of cpc-2 mitigates the increased macroconidiation on solid medium observed in Δgnb-1 mutants. Δcpc-2 mutants inappropriately produce conidiophores during growth in submerged culture and mutational activation of gna-3 alleviates this defect. Δcpc-2 mutants are female-sterile and fertility could not be restored by mutational activation of any of the three Gα genes. With the exception of macroconidiation on solid medium, double mutants lacking cpc-2 and gnb-1 exhibited more severe defects for all phenotypic traits, supporting a largely synergistic relationship between GNB-1 and CPC-2 in N. crassa.
Collapse
Affiliation(s)
- Amruta Garud
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Alexander J. Carrillo
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Logan A. Collier
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Arit Ghosh
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - James D. Kim
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Berenise Lopez-Lopez
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Shouqiang Ouyang
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Katherine A. Borkovich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Yin Z, Zhang X, Wang J, Yang L, Feng W, Chen C, Gao C, Zhang H, Zheng X, Wang P, Zhang Z. MoMip11, a MoRgs7-interacting protein, functions as a scaffolding protein to regulate cAMP signaling and pathogenicity in the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2018; 20:3168-3185. [PMID: 29727050 PMCID: PMC6162116 DOI: 10.1111/1462-2920.14102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/28/2022]
Abstract
The rice blast fungus Magnaporthe oryzae has eight regulators of G-protein signaling (RGS) and RGS-like proteins (MoRgs1 to MoRgs8) that exhibit both distinct and shared regulatory functions in the growth, differentiation and pathogenicity of the fungus. We found MoRgs7 with a unique RGS-seven transmembrane (7-TM) domain motif is localized to the highly dynamic tubule-vesicular compartments during early appressorium differentiation followed by gradually degradation. To explore whether this involves an active signal perception of MoRgs7, we identified a Gbeta-like/RACK1 protein homolog in M. oryzae MoMip11 that interacts with MoRgs7. Interestingly, MoMip11 selectively interacted with several components of the cAMP regulatory pathway, including Gα MoMagA and the high-affinity phosphodiesterase MoPdeH. We further showed that MoMip11 promotes MoMagA activation and suppresses MoPdeH activity thereby upregulating intracellular cAMP levels. Moreover, MoMip11 is required for the response to multiple stresses, a role also shared by Gbeta-like/RACK1 adaptor proteins. In summary, we revealed a unique mechanism by which MoMip11 links MoRgs7 and G-proteins to reugulate cAMP signaling, stress responses and pathogenicity of M. oryzae. Our studies revealed the multitude of regulatory networks that govern growth, development and pathogenicity in this important causal agent of rice blast.
Collapse
Affiliation(s)
- Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaofang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Jingzhen Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Lina Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Wanzhen Feng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Chen Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
5
|
Bolger GB. The RNA-binding protein SERBP1 interacts selectively with the signaling protein RACK1. Cell Signal 2017; 35:256-263. [PMID: 28267599 DOI: 10.1016/j.cellsig.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
The RACK1 protein interacts with numerous proteins involved in signal transduction, the cytoskeleton, and mRNA splicing and translation. We used the 2-hybrid system to identify additional proteins interacting with RACK1 and isolated the RNA-binding protein SERBP1. SERPB1 shares amino acid sequence homology with HABP4 (also known as Ki-1/57), a component of the RNA spicing machinery that has been shown previously to interact with RACK1. Several different isoforms of SERBP1, generated by alternative mRNA splicing, interacted with RACK1 with indistinguishable interaction strength, as determined by a 2-hybrid beta-galactosidase assay. Analysis of deletion constructs of SERBP1 showed that the C-terminal third of the SERBP1 protein, which contains one of its two substrate sites for protein arginine N-methyltransferase 1 (PRMT1), is necessary and sufficient for it to interact with RACK1. Analysis of single amino acid substitutions in RACK1, identified in a reverse 2-hybrid screen, showed very substantial overlap with those implicated in the interaction of RACK1 with the cAMP-selective phosphodiesterase PDE4D5. These data are consistent with SERBP1 interacting selectively with RACK1, mediated by an extensive interaction surface on both proteins.
Collapse
Affiliation(s)
- Graeme B Bolger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA; Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| |
Collapse
|
6
|
Nielsen MH, Flygaard RK, Jenner LB. Structural analysis of ribosomal RACK1 and its role in translational control. Cell Signal 2017; 35:272-281. [PMID: 28161490 DOI: 10.1016/j.cellsig.2017.01.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/28/2022]
Abstract
Receptor for Activated C-Kinase 1 (RACK1) belongs to the WD40 family of proteins, known to act as scaffolding proteins in interaction networks. Accordingly, RACK1 is found to have numerous interacting partners ranging from kinases and signaling proteins to membrane bound receptors and ion channels. Interestingly, RACK1 has also been identified as a ribosomal protein present in all eukaryotic ribosomes. Structures of eukaryotic ribosomes have shown RACK1 to be located at the back of the head of the small ribosomal subunit. This suggests that RACK1 could act as a ribosomal scaffolding protein recruiting regulators of translation to the ribosome, and several studies have in fact found RACK1 to play a role in regulation of translation. To fully understand the role of RACK1 we need to understand whether the many reported interaction partners of RACK1 bind to free or ribosomal RACK1. In this review we provide a structural analysis of ribosome-bound RACK1 to provide a basis for answering this fundamental question. Our analysis shows that RACK1 is tightly bound to the ribosome through highly conserved and specific interactions confirming RACK1 as an integral ribosomal protein. Furthermore, we have analyzed whether reported binding sites for RACK1 interacting partners with a proposed role in translational control are accessible on ribosomal RACK1. Our analysis shows that most of the interaction partners with putative regulatory functions have binding sites that are available on ribosomal RACK1, supporting the role of RACK1 as a ribosomal signaling hub. We also discuss the possible role for RACK1 in recruitment of ribosomes to focal adhesion sites and regulation of local translation during cell spreading and migration.
Collapse
Affiliation(s)
- Maja Holch Nielsen
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Aarhus University, Denmark
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Aarhus University, Denmark
| | - Lasse Bohl Jenner
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Aarhus University, Denmark
| |
Collapse
|
7
|
Yuan L, Su Y, Zhou S, Feng Y, Guo W, Wang X. A RACK1-like protein regulates hyphal morphogenesis, root entry and in vivo virulence in Verticillium dahliae. Fungal Genet Biol 2017; 99:52-61. [PMID: 28089629 DOI: 10.1016/j.fgb.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 11/28/2016] [Accepted: 01/08/2017] [Indexed: 02/07/2023]
Abstract
To identify key genes expressed in Verticillium dahliae in early stages of infection of cotton roots, spore suspensions of eight V. dahliae isolates with different virulence levels were induced by cotton roots and genes expressed in these isolates during the early stages of infection were profiled. A gene that was differentially expressed between highly and less virulent strains was identified. Cloning and bioinformatics analysis of the gene suggested that it belongs to the putative Gβ-like/RACK1 protein family, and has seven WD40 domains. Targeted deletion of the gene revealed that it controls a number of growth-related phenotypes, including conidia and microsclerotia production, normal spore germination and hyphal development. RACK1 is a component of eukaryotic ribosomes, and here we found by qRT-PCR that disruption of RACK1 in V. dahliae (designated VdRACK1) significantly altered the transcriptional levels of other ribosomal proteins, suggesting possible global effects of VdRACK1 deletion on the protein translation of other genes. VdRACK1-null mutants lost the ability to penetrate intact cotton roots. However, the mutant strain was able to infect root-wounded cotton plants and, intriguingly, resulted in a hypervirulent phenotype, implicating a role for VdRACK1 in the restriction of rampant growth within the plant.
Collapse
Affiliation(s)
- Lei Yuan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxin Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yigao Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment. Cell Signal 2017; 35:282-289. [PMID: 28069443 DOI: 10.1016/j.cellsig.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023]
Abstract
The cyclic AMP and protein kinase C (PKC) signalling pathways regulate a wide range of cellular processes that require tight control, including cell proliferation and differentiation, metabolism and inflammation. The identification of a protein complex formed by receptor for activated C kinase 1 (RACK1), a scaffold protein for protein kinase C (PKC), and the cyclic AMP-specific phosphodiesterase, PDE4D5, demonstrates a potential mechanism for crosstalk between these two signalling routes. Indeed, RACK1-bound PDE4D5 is activated by PKCα, providing a route through which the PKC pathway can control cellular cyclic AMP levels. Although RACK1 does not appear to affect the intracellular localisation of PDE4D5, it does afford structural stability, providing protection against denaturation, and increases the susceptibility of PDE4D5 to inhibition by cyclic AMP-elevating pharmaceuticals, such as rolipram. In addition, RACK1 can recruit PDE4D5 and PKC to intracellular protein complexes that control diverse cellular functions, including activated G protein-coupled receptors (GPCRs) and integrins clustered at focal adhesions. Through its ability to regulate local cyclic AMP levels in the vicinity of these multimeric receptor complexes, the RACK1/PDE4D5 signalling unit therefore has the potential to modify the quality of incoming signals from diverse extracellular cues, ranging from neurotransmitters and hormones to nanometric topology. Indeed, PDE4D5 and RACK1 have been found to form a tertiary complex with integrin-activated focal adhesion kinase (FAK), which localises to cellular focal adhesion sites. This supports PDE4D5 and RACK1 as potential regulators of cell adhesion, spreading and migration through the non-classical exchange protein activated by cyclic AMP (EPAC1)/Rap1 signalling route.
Collapse
|
9
|
Park F. Accessory proteins for heterotrimeric G-proteins in the kidney. Front Physiol 2015; 6:219. [PMID: 26300785 PMCID: PMC4528294 DOI: 10.3389/fphys.2015.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022] Open
Abstract
Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
10
|
González-Calixto C, Cázares-Raga FE, Cortés-Martínez L, Del Angel RM, Medina-Ramírez F, Mosso C, Ocádiz-Ruiz R, Valenzuela JG, Rodríguez MH, Hernández-Hernández FDLC. AealRACK1 expression and localization in response to stress in C6/36 HT mosquito cells. J Proteomics 2014; 119:45-60. [PMID: 25555378 DOI: 10.1016/j.jprot.2014.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 10/21/2014] [Accepted: 11/24/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED The Receptor for Activated C Kinase 1 (RACK1), a scaffold protein member of the tryptophan-aspartate (WD) repeat family, folds in a seven-bladed β-propeller structure that permits the association of proteins to form active complexes. Mosquitoes of the genus Aedes sp., are vectors of virus producing important diseases such as: dengue, chikungunya and yellow fever. Based on the highly conserved gene sequence of AeaeRACK1 of the mosquito Aedes aegypti we characterized the mRNA and protein of the homologous AealRACK1 from the Ae. albopictus-derived cell line C6/36 HT. Two protein species differing in MW/pI values were observed at 35kDa/8.0 and 36kDa/6.5. The behavior of AealRACK1 was studied inducing stress with serum deprivation and the glucocorticoid dexamethasone. Both stressors induced increase of the expression of AealRACK1 mRNA and proteins. In serum-deprived cells AealRACK1 protein was located cortically near the plasma membrane in contrast to dexamethasone-treated cells where the protein formed a dotted pattern in the cytoplasm. In addition, 33 protein partners were identified by immunoprecipitation and mass spectrometry. Most of the identified proteins were ribosomal, involved in signaling pathways and stress responses. Our results suggest that AealRACK1 in C6/36 HT cells respond to stress increasing its synthesis and producing phosphorylated activated form. BIOLOGICAL SIGNIFICANCE Insect cells adapt to numerous environmental stressors, including chemicals and invasion of pathogenic microorganisms among others, coordinating cellular and organismal responses. Individual cells sense the environment using receptors that trigger signaling pathways that regulate expression of specific effector proteins and/or cellular responses as movement or secretion. In the coordination of responses to stress, scaffold proteins are pivotal molecules that recruit other proteins forming active complexes. The Receptor for Activated C Kinase 1 (RACK1) is the best studied member of the conserved tryptophan-aspartate (WD) repeat family. RACK1 folds in a seven-bladed β-propeller structure and it could be activated during stress, participating in different signaling pathways. The presence and activities of RACK1 in mosquitoes had not been documented before, in this work the molecule is demonstrated in an Aedes albopictus-derived cell line and its reaction to stress is observed under the effect of serum deprivation and the presence of glucocorticoid analog dexamethasone, a chemical used to cause stress in vitro.
Collapse
Affiliation(s)
- Cecilia González-Calixto
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Febe E Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Leticia Cortés-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Rosa María Del Angel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Fernando Medina-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Clemente Mosso
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Ramón Ocádiz-Ruiz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico
| | - Jesús G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca, Morelos, Mexico
| | - Fidel de la Cruz Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, 07360 México D.F., Mexico.
| |
Collapse
|
11
|
Omosigho NN, Swaminathan K, Plomann M, Müller-Taubenberger A, Noegel AA, Riyahi TY. The Dictyostelium discoideum RACK1 orthologue has roles in growth and development. Cell Commun Signal 2014; 12:37. [PMID: 24930026 PMCID: PMC4094278 DOI: 10.1186/1478-811x-12-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022] Open
Abstract
Background The receptor for activated C-kinase 1 (RACK1) is a conserved protein belonging to the WD40 repeat family of proteins. It folds into a beta propeller with seven blades which allow interactions with many proteins. Thus it can serve as a scaffolding protein and have roles in several cellular processes. Results We identified the product of the Dictyostelium discoideum gpbB gene as the Dictyostelium RACK1 homolog. The protein is mainly cytosolic but can also associate with cellular membranes. DdRACK1 binds to phosphoinositides (PIPs) in protein-lipid overlay and liposome-binding assays. The basis of this activity resides in a basic region located in the extended loop between blades 6 and 7 as revealed by mutational analysis. Similar to RACK1 proteins from other organisms DdRACK1 interacts with G protein subunits alpha, beta and gamma as shown by yeast two-hybrid, pulldown, and immunoprecipitation assays. Unlike the Saccharomyces cerevisiae and Cryptococcus neoformans RACK1 proteins it does not appear to take over Gβ function in D. discoideum as developmental and other defects were not rescued in Gβ null mutants overexpressing GFP-DdRACK1. Overexpression of GFP-tagged DdRACK1 and a mutant version (DdRACK1mut) which carried a charge-reversal mutation in the basic region in wild type cells led to changes during growth and development. Conclusion DdRACK1 interacts with heterotrimeric G proteins and can through these interactions impact on processes specifically regulated by these proteins.
Collapse
Affiliation(s)
| | | | | | | | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Köln, Germany.
| | | |
Collapse
|
12
|
OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, L.). PLoS One 2014; 9:e97120. [PMID: 24865690 PMCID: PMC4035261 DOI: 10.1371/journal.pone.0097120] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/07/2014] [Indexed: 12/23/2022] Open
Abstract
The receptor for activated C kinase 1 (RACK1) is one member of the most important WD repeat–containing family of proteins found in all eukaryotes and is involved in multiple signaling pathways. However, compared with the progress in the area of mammalian RACK1, our understanding of the functions and molecular mechanisms of RACK1 in the regulation of plant growth and development is still in its infancy. In the present study, we investigated the roles of rice RACK1A gene (OsRACK1A) in controlling seed germination and its molecular mechanisms by generating a series of transgenic rice lines, of which OsRACK1A was either over-expressed or under-expressed. Our results showed that OsRACK1A positively regulated seed germination and negatively regulated the responses of seed germination to both exogenous ABA and H2O2. Inhibition of ABA biosynthesis had no enhancing effect on germination, whereas inhibition of ABA catabolism significantly suppressed germination. ABA inhibition on seed germination was almost fully recovered by exogenous H2O2 treatment. Quantitative analyses showed that endogenous ABA levels were significantly higher and H2O2 levels significantly lower in OsRACK1A-down regulated transgenic lines as compared with those in wildtype or OsRACK1A-up regulated lines. Quantitative real-time PCR analyses showed that the transcript levels of OsRbohs and amylase genes, RAmy1A and RAmy3D, were significantly lower in OsRACK1A-down regulated transgenic lines. It is concluded that OsRACK1A positively regulates seed germination by controlling endogenous levels of ABA and H2O2 and their interaction.
Collapse
|
13
|
Ferreira T, Wilson SR, Choi YG, Risso D, Dudoit S, Speed TP, Ngai J. Silencing of odorant receptor genes by G protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron. Neuron 2014; 81:847-59. [PMID: 24559675 DOI: 10.1016/j.neuron.2014.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 02/06/2023]
Abstract
Olfactory sensory neurons express just one out of a possible ∼ 1,000 odorant receptor genes, reflecting an exquisite mode of gene regulation. In one model, once an odorant receptor is chosen for expression, other receptor genes are suppressed by a negative feedback mechanism, ensuring a stable functional identity of the sensory neuron for the lifetime of the cell. The signal transduction mechanism subserving odorant receptor gene silencing remains obscure, however. Here, we demonstrate in the zebrafish that odorant receptor gene silencing is dependent on receptor activity. Moreover, we show that signaling through G protein βγ subunits is both necessary and sufficient to suppress the expression of odorant receptor genes and likely acts through histone methylation to maintain the silenced odorant receptor genes in transcriptionally inactive heterochromatin. These results link receptor activity with the epigenetic mechanisms responsible for ensuring the expression of one odorant receptor per olfactory sensory neuron.
Collapse
Affiliation(s)
- Todd Ferreira
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah R Wilson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yoon Gi Choi
- Functional Genomics Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Davide Risso
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sandrine Dudoit
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Terence P Speed
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3050, Australia
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Functional Genomics Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Tarnowski K, Fituch K, Szczepanowski RH, Dadlez M, Kaus-Drobek M. Patterns of structural dynamics in RACK1 protein retained throughout evolution: a hydrogen-deuterium exchange study of three orthologs. Protein Sci 2014; 23:639-51. [PMID: 24591271 DOI: 10.1002/pro.2448] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/15/2022]
Abstract
RACK1 is a member of the WD repeat family of proteins and is involved in multiple fundamental cellular processes. An intriguing feature of RACK1 is its ability to interact with at least 80 different protein partners. Thus, the structural features enabling such interactomic flexibility are of great interest. Several previous studies of the crystal structures of RACK1 orthologs described its detailed architecture and confirmed predictions that RACK1 adopts a seven-bladed β-propeller fold. However, this did not explain its ability to bind to multiple partners. We performed hydrogen-deuterium (H-D) exchange mass spectrometry on three orthologs of RACK1 (human, yeast, and plant) to obtain insights into the dynamic properties of RACK1 in solution. All three variants retained similar patterns of deuterium uptake, with some pronounced differences that can be attributed to RACK1's divergent biological functions. In all cases, the most rigid structural elements were confined to B-C turns and, to some extent, strands B and C, while the remaining regions retained much flexibility. We also compared the average rate constants for H-D exchange in different regions of RACK1 and found that amide protons in some regions exchanged at least 1000-fold faster than in others. We conclude that its evolutionarily retained structural architecture might have allowed RACK1 to accommodate multiple molecular partners. This was exemplified by our additional analysis of yeast RACK1 dimer, which showed stabilization, as well as destabilization, of several interface regions upon dimer formation.
Collapse
Affiliation(s)
- Krzysztof Tarnowski
- Institute of Biochemistry and Biophysics Department, Polish Academy of Science, 02-106, Warsaw, Poland
| | | | | | | | | |
Collapse
|
15
|
Wang Y, Shen G, Gong J, Shen D, Whittington A, Qing J, Treloar J, Boisvert S, Zhang Z, Yang C, Wang P. Noncanonical Gβ Gib2 is a scaffolding protein promoting cAMP signaling through functions of Ras1 and Cac1 proteins in Cryptococcus neoformans. J Biol Chem 2014; 289:12202-16. [PMID: 24659785 DOI: 10.1074/jbc.m113.537183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gβ-like/RACK1 functions as a key mediator of various pathways and contributes to numerous cellular functions in eukaryotic organisms. In the pathogenic fungus Cryptococcus neoformans, noncanonical Gβ Gib2 promotes cAMP signaling in cells lacking normal Gpa1 function while displaying versatility in interactions with Gα Gpa1, protein kinase Pkc1, and endocytic intersectin Cin1. To elucidate the Gib2 functional mechanism(s), we demonstrate that Gib2 is required for normal growth and virulence. We show that Gib2 directly binds to Gpa1 and Gγ Gpg1/Gpg2 and that it interacts with phosphodiesterase Pde2 and monomeric GTPase Ras1. Pde2 remains functionally dispensable, but Ras1 is found to associate with adenylyl cyclase Cac1 through the conserved Ras association domain. In addition, the ras1 mutant exhibits normal capsule formation, whereas the ras1 gpa1 mutant displays enhanced capsule formation, and the ras1 gpa1 cac1 mutant is acapsular. Collectively, these findings suggest that Gib2 promotes cAMP levels by relieving an inhibitory function of Ras1 on Cac1 in the absence of Gpa1. In addition, using GST affinity purification combined with mass spectrometry, we identified 47 additional proteins that interact with Gib2. These proteins have putative functions ranging from signal transduction, energy generation, metabolism, and stress response to ribosomal function. After establishing and validating a protein-protein interactive network, we believe Gib2 to be a key adaptor/scaffolding protein that drives the formation of various protein complexes required for growth and virulence. Our study reveals Gib2 as an essential component in deciphering the complexity of regulatory networks that control growth and virulence in C. neoformans.
Collapse
Affiliation(s)
- Yanli Wang
- From the Research Institute for Children, Children's Hospital, New Orleans, Louisiana 70118
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ahmed SM, Angers S. Emerging non-canonical functions for heterotrimeric G proteins in cellular signaling. J Recept Signal Transduct Res 2013; 33:177-83. [PMID: 23721574 DOI: 10.3109/10799893.2013.795972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Classically heterotrimeric G proteins have been described as the principal signal transducing machinery for G-protein-coupled receptors. Receptor activation catalyzes nucleotide exchange on the Gα protein, enabling Gα-GTP and Gβγ-subunits to engage intracellular effectors to generate various cellular effects such as second messenger production or regulation of ion channel conductivity. Recent genetic and proteomic screens have identified novel heterotrimeric G-protein-interacting proteins and expanded their functional roles. This review highlights some examples of recently identified interacting proteins and summarizes how they functionally connect heterotrimeric G proteins to previously underappreciated cellular roles.
Collapse
Affiliation(s)
- Syed M Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
17
|
Sun Z, Smrcka AV, Chen S. WDR26 functions as a scaffolding protein to promote Gβγ-mediated phospholipase C β2 (PLCβ2) activation in leukocytes. J Biol Chem 2013; 288:16715-16725. [PMID: 23625927 DOI: 10.1074/jbc.m113.462564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently identified WDR26 as a novel WD40 repeat protein that binds Gβγ and promotes Gβγ signaling during leukocyte migration. Here, we have determined the mechanism by which WDR26 enhances Gβγ-mediated phospholipase C β2 (PLCβ2) activation in leukocytes. We show that WDR26 not only directly bound Gβγ but also PLCβ2. The binding sites of WDR26 and PLCβ2 on Gβ1γ2 were overlapping but not identical. WDR26 used the same domains for binding Gβγ and PLCβ but still formed a signaling complex with Gβγ and PLCβ2 probably due to the fact that WDR26 formed a higher order oligomer through its Lis homology and C-terminal to LisH (LisH-CTLH) and WD40 domains. Additional studies indicated that the formation of higher order oligomers was required for WDR26 to promote PLCβ2 interaction with and activation by Gβγ. Moreover, WDR26 was required for PLCβ2 translocation from the cytosol to the membrane in polarized leukocytes, and the translocation of PLCβ2 was sufficient to cause partial activation of PLCβ2. Collectively, our data indicate that WDR26 functions as a scaffolding protein to promote PLCβ2 membrane translocation and interaction with Gβγ, thereby enhancing PLCβ2 activation in leukocytes. These findings have identified a novel mechanism of regulating Gβγ signaling through a scaffolding protein.
Collapse
Affiliation(s)
- Zhizeng Sun
- Departments of Pharmacology, Iowa City, Iowa 52242
| | - Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Songhai Chen
- Departments of Pharmacology, Iowa City, Iowa 52242; Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
18
|
Runne C, Chen S. WD40-repeat proteins control the flow of Gβγ signaling for directional cell migration. Cell Adh Migr 2013; 7:214-8. [PMID: 23302952 DOI: 10.4161/cam.22940] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of cells to generate a highly polarized intracellular signal through G protein-coupled receptors (GPCRs) is essential for their migration toward chemoattractants. The Gβγ subunits of heterotrimeric G proteins play a critical role in transmitting chemotactic signals from GPCRs via the activation of diverse effectors, including PLCβ and PI3K, primarily at the leading edge of cells. Although Gβγ can directly activate many of these effectors through protein-protein interactions in vitro, it remains unclear how Gβγ spatially and temporally orchestrates the activation of these effectors in vivo. A yeast two-hybrid screen for Gβ interacting proteins identified two WD40-repeat domain containing proteins, RACK1 and WDR26, which are predicted to serve as scaffolding/adaptor proteins. Previous data indicates that RACK1 negatively regulates Gβγ-mediated leukocyte migration by inhibiting Gβγ-stimulated PLCβ and PI3K activities. In contrast, recently published work by Sun et al. indicates that WDR26 promotes leukocyte migration by enhancing Gβγ-mediated signal transduction. These findings reveal a novel mechanism regulating Gβγ signaling during chemotaxis, namely through the positive and negative regulation of WDR26 and RACK1 on Gβγ to promote and fine tune Gβγ-mediated effector activation, ultimately governing the ability of cells to polarize and migrate toward a chemoattractant gradient.
Collapse
Affiliation(s)
- Caitlin Runne
- Department of Pharmacology; Roy J. and Lucille A. Carver College of Medicine; University of Iowa; Iowa City, IA USA
| | | |
Collapse
|
19
|
Wamaitha MJ, Yamamoto R, Wong HL, Kawasaki T, Kawano Y, Shimamoto K. OsRap2.6 transcription factor contributes to rice innate immunity through its interaction with Receptor for Activated Kinase-C 1 (RACK1). RICE (NEW YORK, N.Y.) 2012; 5:35. [PMID: 24280008 PMCID: PMC4883712 DOI: 10.1186/1939-8433-5-35] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/06/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND The rice small GTPase OsRac1 is a molecular switch in rice innate immunity. The Receptor for Activated Kinase C-1 (RACK1) interacts with OsRac1 to suppress the growth of the rice blast fungus, Magnaporthe oryzae. RACK1 has two homologs in rice, RACK1A and RACK1B. Overexpressing RACK1A enhances resistance to the rice blast fungus. However, RACK1A downstream signals are largely unknown. RESULTS Here, we report the identification of OsRap2.6, a transcription factor that interacts with RACK1A. We found a 94% similarity between the OsRap2.6 AP2 domain and Arabidopsis Rap2.6 (AtRap2.6). Bimolecular fluorescence complementation (BiFC) assays in rice protoplasts using tagged OsRap2.6 and RACK1A with the C-terminal and N-terminal fragments of Venus (Vc/Vn) indicated that OsRap2.6 and RACK1A interacted and localized in the nucleus and the cytoplasm. Moreover, OsRap2.6 and OsMAPK3/6 interacted in the nucleus and the cytoplasm. Expression of defense genes PAL1 and PBZ1 as well as OsRap2.6 was induced after chitin treatment. Disease resistance analysis using OsRap2.6 RNAi and overexpressing (Ox) plants infected with the rice blast fungus indicated that OsRap2.6 RNAi plants were highly susceptible, whereas OsRap2.6 Ox plants had an increased resistance to the compatible blast fungus. CONCLUSIONS OsRap2.6 contributes to rice innate immunity through its interaction with RACK1A in compatible interactions.
Collapse
Affiliation(s)
- Mwathi Jane Wamaitha
- />Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | - Risa Yamamoto
- />Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | - Hann Ling Wong
- />Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
- />Universiti Tunku Abdul Rahman Jalan Universiti, Bandar Barat, Kampar 31900 Malaysia
| | - Tsutomu Kawasaki
- />Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
- />Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
| | - Yoji Kawano
- />Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | - Ko Shimamoto
- />Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
20
|
Sun Z, Runne C, Tang X, Lin F, Chen S. The Gβ3 splice variant associated with the C825T gene polymorphism is an unstable and functionally inactive protein. Cell Signal 2012; 24:2349-59. [PMID: 22940628 DOI: 10.1016/j.cellsig.2012.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022]
Abstract
A splice variant of Gβ3, termed Gβ3s, has been associated with the C825T polymorphism in the Gβ3 gene and linked with many human disorders. However, the biochemical properties and functionality of Gβ3s remain controversial. Here, using multidisciplinary approaches including co-immunoprecipitation analysis and bioluminescence resonance energy transfer (BRET) measurements, we showed that unlike Gβ3, Gβ3s failed to form complexes with either Gγ or Gα subunits. Moreover, using a mutant Gγ2 deficient in lipid modification to purify Gβ3s from Sf9 cells without the use of detergents, we further showed that the failure of Gβ3s to form dimers with Gγ was not due to the instability of the dimers in detergents, but rather, reflected the intrinsic properties of Gβ3s. Additional studies indicated that Gβ3s is unstable, and unable to localize properly to the plasma membrane and to activate diverse Gβγ effectors including PLCβ2/3, PI3Kγ, ERKs and the Rho guanine exchange factor (RhoGEF) PLEKHG2. Thus, these data suggest that the pathological effects of Gβ3 C825T polymorphism may result from the downregulation of Gβ3 function. However, we found that the chemokine SDF1α transmits signals primarily through Gβ1 and Gβ2, but not Gβ3, to regulate chemotaxis of several human lymphocytic cell lines, indicating the effects of Gβ3 C825T polymorphism are likely to be tissue and/or stimuli specific and its association with various disorders in different tissues should be interpreted with great caution.
Collapse
Affiliation(s)
- Zhizeng Sun
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
21
|
Cruz LN, Wu Y, Craig AG, Garcia CRS. Signal transduction in Plasmodium-Red Blood Cells interactions and in cytoadherence. AN ACAD BRAS CIENC 2012; 84:555-72. [PMID: 22634746 DOI: 10.1590/s0001-37652012005000036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/09/2012] [Indexed: 12/19/2022] Open
Abstract
Malaria is responsible for more than 1.5 million deaths each year, especially among children (Snow et al. 2005). Despite of the severity of malaria situation and great effort to the development of new drug targets (Yuan et al. 2011) there is still a relative low investment toward antimalarial drugs. Briefly there are targets classes of antimalarial drugs currently being tested including: kinases, proteases, ion channel of GPCR, nuclear receptor, among others (Gamo et al. 2010). Here we review malaria signal transduction pathways in Red Blood Cells (RBC) as well as infected RBCs and endothelial cells interactions, namely cytoadherence. The last process is thought to play an important role in the pathogenesis of severe malaria. The molecules displayed on the surface of both infected erythrocytes (IE) and vascular endothelial cells (EC) exert themselves as important mediators in cytoadherence, in that they not only induce structural and metabolic changes on both sides, but also trigger multiple signal transduction processes, leading to alteration of gene expression, with the balance between positive and negative regulation determining endothelial pathology during a malaria infection.
Collapse
Affiliation(s)
- Laura N Cruz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Brasil
| | | | | | | |
Collapse
|
22
|
Thennes T, Mehta D. Heterotrimeric G proteins, focal adhesion kinase, and endothelial barrier function. Microvasc Res 2012; 83:31-44. [PMID: 21640127 PMCID: PMC3214251 DOI: 10.1016/j.mvr.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/04/2011] [Accepted: 05/12/2011] [Indexed: 12/18/2022]
Abstract
Ligands by binding to G protein coupled receptors (GPCRs) stimulate dissociation of heterotrimeric G proteins into Gα and Gβγ subunits. Released Gα and Gβγ subunits induce discrete signaling cues that differentially regulate focal adhesion kinase (FAK) activity and endothelial barrier function. Activation of G proteins downstream of receptors such as protease activated receptor 1 (PAR1) and histamine receptors rapidly increases endothelial permeability which reverses naturally within the following 1-2 h. However, activation of G proteins coupled to the sphingosine-1-phosphate receptor 1 (S1P1) signal cues that enhance basal barrier endothelial function and restore endothelial barrier function following the increase in endothelial permeability by edemagenic agents. Intriguingly, both PAR1 and S1P1 activation stimulates FAK activity, which associates with alteration in endothelial barrier function by these agonists. In this review, we focus on the role of the G protein subunits downstream of PAR1 and S1P1 in regulating FAK activity and endothelial barrier function.
Collapse
Affiliation(s)
- Tracy Thennes
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
23
|
Sun Z, Tang X, Lin F, Chen S. The WD40 repeat protein WDR26 binds Gβγ and promotes Gβγ-dependent signal transduction and leukocyte migration. J Biol Chem 2011; 286:43902-43912. [PMID: 22065575 DOI: 10.1074/jbc.m111.301382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gβγ subunits of heterotrimeric G proteins transmit signals to control many cellular processes, including leukocyte migration. Gβγ signaling may regulate and be regulated by numerous signaling partners. Here, we reveal that WDR26, a member of the WD40 repeat protein family, directly bound free Gβγ in vitro, and formed a complex with endogenous Gβγ in Jurkat T cells stimulated by the chemokine SDF1α. Suppression of WDR26 by siRNAs selectively inhibited Gβγ-dependent phospholipase Cβ and PI3K activation, and attenuated chemotaxis in Jurkat T cells and differentiated HL60 cells in vitro and Jurkat T cell homing to lymphoid tissues in scid mice. Similarly, disruption of the WDR26/Gβγ interaction via expression of a WDR26 deletion mutant impaired Gβγ signaling and Jurkat T cell migration, indicating that the function of WDR26 depends on its binding to Gβγ. Additional data show that WDR26 also controlled RACK1, a negative regulator, in binding Gβγ and inhibiting leukocyte migration. Collectively, these experiments identify WDR26 as a novel Gβγ-binding protein that is required for the efficacy of Gβγ signaling and leukocyte migration.
Collapse
Affiliation(s)
- Zhizeng Sun
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Xiaoyun Tang
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Fang Lin
- Departments of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242
| | - Songhai Chen
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
24
|
Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal 2011; 9:22. [PMID: 21978545 PMCID: PMC3195729 DOI: 10.1186/1478-811x-9-22] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022] Open
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.
Collapse
Affiliation(s)
- David R Adams
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
25
|
Guo J, Wang S, Valerius O, Hall H, Zeng Q, Li JF, Weston DJ, Ellis BE, Chen JG. Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. PLANT PHYSIOLOGY 2011; 155:370-83. [PMID: 21098678 PMCID: PMC3075769 DOI: 10.1104/pp.110.160663] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/18/2010] [Indexed: 05/20/2023]
Abstract
Earlier studies have shown that RACK1 functions as a negative regulator of abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana), but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, coexpression analysis revealed that more than 80% of the genes coexpressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1's function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and Saccharomyces cerevisiae RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B, and RACK1C, complemented the growth defects of the S. cerevisiae cross pathway control2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor6 (eIF6), whose mammalian homolog is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.
Collapse
|
26
|
Sato M, Ishikawa Y. Accessory proteins for heterotrimeric G-protein: Implication in the cardiovascular system. PATHOPHYSIOLOGY 2010; 17:89-99. [DOI: 10.1016/j.pathophys.2009.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 01/19/2023] Open
|
27
|
Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus. Mol Cell Biol 2010; 30:78-90. [PMID: 19884349 DOI: 10.1128/mcb.01038-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Upon ligand binding, G-protein-coupled receptors (GPCRs) impart the signal to heterotrimeric G proteins composed of alpha, beta, and gamma subunits, leading to dissociation of the G alpha subunit from the G betagamma subunit. While the G alpha subunit is imperative for downstream signaling, the G betagamma subunit, in its own right, mediates a variety of cellular responses such as GPCR desensitization via recruiting GRK to the plasma membrane and AKT stimulation. Here we report a mode of spatial regulation of the G betagamma subunit through alteration in subcellular compartmentation. RKTG (Raf kinase trapping to Golgi apparatus) is a newly characterized membrane protein specifically localized at the Golgi apparatus. The N terminus of RKTG interacts with G beta and tethers G betagamma to the Golgi apparatus. Overexpression of RKTG impedes the interaction of G betagamma with GRK2, abrogates the ligand-induced change of subcellular distribution of GRK2, reduces isoproterenol-stimulated phosphorylation of the beta2-adrenergic receptor (beta 2AR), and alters beta 2AR desensitization. In addition, RKTG inhibits G betagamma- and ligand-mediated AKT phosphorylation that is enhanced in cells with downregulation of RKTG. Silencing of RKTG also alters GRK2 internalization and compromises ligand-induced G beta translocation to the Golgi apparatus. Taken together, our results reveal that RKTG can modulate GPCR signaling through sequestering G betagamma to the Golgi apparatus and thereby attenuating the functions of G betagamma.
Collapse
|
28
|
Knezevic N, Tauseef M, Thennes T, Mehta D. The G protein betagamma subunit mediates reannealing of adherens junctions to reverse endothelial permeability increase by thrombin. ACTA ACUST UNITED AC 2009; 206:2761-77. [PMID: 19917775 PMCID: PMC2806626 DOI: 10.1084/jem.20090652] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The inflammatory mediator thrombin proteolytically activates protease-activated receptor (PAR1) eliciting a transient, but reversible increase in vascular permeability. PAR1-induced dissociation of Gα subunit from heterotrimeric Gq and G12/G13 proteins is known to signal the increase in endothelial permeability. However, the role of released Gβγ is unknown. We now show that impairment of Gβγ function does not affect the permeability increase induced by PAR1, but prevents reannealing of adherens junctions (AJ), thereby persistently elevating endothelial permeability. We observed that in the naive endothelium Gβ1, the predominant Gβ isoform is sequestered by receptor for activated C kinase 1 (RACK1). Thrombin induced dissociation of Gβ1 from RACK1, resulting in Gβ1 interaction with Fyn and focal adhesion kinase (FAK) required for FAK activation. RACK1 depletion triggered Gβ1 activation of FAK and endothelial barrier recovery, whereas Fyn knockdown interrupted with Gβ1-induced barrier recovery indicating RACK1 negatively regulates Gβ1-Fyn signaling. Activated FAK associated with AJ and stimulated AJ reassembly in a Fyn-dependent manner. Fyn deletion prevented FAK activation and augmented lung vascular permeability increase induced by PAR1 agonist. Rescuing FAK activation in fyn−/− mice attenuated the rise in lung vascular permeability. Our results demonstrate that Gβ1-mediated Fyn activation integrates FAK with AJ, preventing persistent endothelial barrier leakiness.
Collapse
Affiliation(s)
- Nebojsa Knezevic
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
29
|
Guo J, Wang S, Wang J, Huang WD, Liang J, Chen JG. Dissection of the Relationship Between RACK1 and Heterotrimeric G-Proteins in Arabidopsis. ACTA ACUST UNITED AC 2009; 50:1681-94. [DOI: 10.1093/pcp/pcp113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Guzmán-Hernández ML, Vázquez-Macías A, Carretero-Ortega J, Hernández-García R, García-Regalado A, Hernández-Negrete I, Reyes-Cruz G, Gutkind JS, Vázquez-Prado J. Differential inhibitor of Gbetagamma signaling to AKT and ERK derived from phosducin-like protein: effect on sphingosine 1-phosphate-induced endothelial cell migration and in vitro angiogenesis. J Biol Chem 2009; 284:18334-46. [PMID: 19403526 DOI: 10.1074/jbc.m109.008839] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Differential inhibitors of Gbetagamma-effector regions are required to dissect the biological contribution of specific Gbetagamma-initiated signaling pathways. Here, we characterize PhLP-M1-G149, a Gbetagamma-interacting construct derived from phosducin-like protein 1 (PhLP) as a differential inhibitor of Gbetagamma, which, in endothelial cells, prevented sphingosine 1-phosphate-induced phosphorylation of AKT, glycogen synthase kinase 3beta, cell migration, and tubulogenesis, while having no effect on ERK phosphorylation or hepatocyte growth factor-dependent responses. This construct attenuated the recruitment of phosphoinositide 3-kinase gamma (PI3Kgamma) to the plasma membrane and the signaling to AKT in response to Gbetagamma overexpression. In coimmunoprecipitation experiments, PhLP-M1-G149 interfered with the interaction between PI3Kgamma and Gbetagamma. Other PhLP-derived constructs interacted with Gbetagamma but were not effective inhibitors of Gbetagamma signaling to AKT or ERK. Our results indicate that PhLP-M1-G149 is a suitable tool to differentially modulate the Gbetagamma-initiated pathway linking this heterodimer to AKT, endothelial cell migration, and in vitro angiogenesis. It can be also useful to further characterize the molecular determinants of the Gbetagamma-PI3Kgamma interaction.
Collapse
Affiliation(s)
- María Luisa Guzmán-Hernández
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Apartado Postal 14-740, DF 07000 Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lin F, Chen S, Sepich DS, Panizzi JR, Clendenon SG, Marrs JA, Hamm HE, Solnica-Krezel L. Galpha12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. ACTA ACUST UNITED AC 2009; 184:909-21. [PMID: 19307601 PMCID: PMC2664974 DOI: 10.1083/jcb.200805148] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation, and involves coordinated movements of several cell layers. Although recent studies have begun to elucidate the processes that underlie these epibolic movements, the cellular and molecular mechanisms involved remain to be fully defined. Here, we show that gastrulae with altered Galpha(12/13) signaling display delayed epibolic movement of the deep cells, abnormal movement of dorsal forerunner cells, and dissociation of cells from the blastoderm, phenocopying e-cadherin mutants. Biochemical and genetic studies indicate that Galpha(12/13) regulate epiboly, in part by associating with the cytoplasmic terminus of E-cadherin, and thereby inhibiting E-cadherin activity and cell adhesion. Furthermore, we demonstrate that Galpha(12/13) modulate epibolic movements of the enveloping layer by regulating actin cytoskeleton organization through a RhoGEF/Rho-dependent pathway. These results provide the first in vivo evidence that Galpha(12/13) regulate epiboly through two distinct mechanisms: limiting E-cadherin activity and modulating the organization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Fang Lin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Functional mapping of the promoter region of the GNB2L1 human gene coding for RACK1 scaffold protein. Gene 2008; 430:17-29. [PMID: 19000751 DOI: 10.1016/j.gene.2008.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 10/02/2008] [Accepted: 10/04/2008] [Indexed: 11/22/2022]
Abstract
RACK1 (Receptor for Activated C Kinase 1) is a scaffold protein for different kinases and membrane receptors. Previously, we characterized an age-dependent decline of RACK1 protein expression which could be counteracted with DHEA (dehydroepiandrosterone) [Corsini, E., et al. 2002. In vivo dehydroepiandrosterone restores age-associated defects in the protein kinase C signal transduction pathway and related functional responses. J. Immunol. 168, 1753-1758. and Corsini, E., et al. 2005. Age-related decline in RACK-1 expression in human leukocytes is correlated to plasma levels of dehydroepiandrosterone. J. Leukoc. Biol. 77, 247-256.]. Hypothesizing a direct control of RACK1 expression by DHEA we studied the not yet characterized human promoter region of its coding gene GNB2L1. The FLOE (Fluorescently Labeled Oligonucleotide Extension) was used to map the transcription start site and a novel Gateway luciferase vector (GW luc basic; Del Vecchio, I., Zuccotti, A., Canneva, F., Lenzken, S.C., Racchi, M., 2007. Development of the first Gateway firefly luciferase vector and use of reverse transcriptase in FLOE (Fluorescently Labeled Oligonucleotide Extension) reactions. Plasmid 58, 269-274.) to obtain promoter region mutants. Human SH-SY5Y, THP1 and lymphoblastoid cells were used for transient transfections and treatments with lipopolysaccharide (LPS), phorbol myristate acetate (PMA), DHEA and cortisol (the first two molecules to differently activate NF-kB, a transcription complex able to regulate the murine Gnb2l1 gene expression, whereas DHEA and cortisol since they are known to be imbalanced during the aging and possess counteracting actions on the immune function). The primer extension demonstrated the existence of two alternative start sites of transcription respectively located at about 230 and 300 nt 5' of the Genbank mRNA entry for GNB2L1. Moreover, as a result of the luciferase study we were able to demonstrate that a little region of approximately 300 nt conserved sufficient elements for reporter expression. We also reported that the DHEA modulation of GNB2L1 endogenous expression could not be recapitulated with the luciferase assays. Indeed, the promoter was significantly modulated by means of LPS and PMA treatments but not using DHEA. Differently the use of cortisol led us to demonstrate a biologically significant decrease of luciferase activity only in the presence of a binding site for nuclear receptors of glucocorticoids. Interestingly, other binding sites for transcriptional factors were identified in silico: different c-Rel (NF-kB) and some cardiomyocitic specific cis-acting elements. All this data suggest that the DHEA mediated GNB2L1 regulation is modulated by distant elements (enhancers/silencers), whereas LPS, PMA and cortisol effect can act directly on the mapped GNB2L1 promoter. In conclusion we hypothesize that the imbalance between DHEA and cortisol during aging could be important in the previously demonstrated recovery of the RACK1 expression.
Collapse
|
34
|
Chen S, Lin F, Shin ME, Wang F, Shen L, Hamm HE. RACK1 regulates directional cell migration by acting on G betagamma at the interface with its effectors PLC beta and PI3K gamma. Mol Biol Cell 2008; 19:3909-22. [PMID: 18596232 DOI: 10.1091/mbc.e08-04-0433] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Migration of cells up the chemoattractant gradients is mediated by the binding of chemoattractants to G protein-coupled receptors and activation of a network of coordinated excitatory and inhibitory signals. Although the excitatory process has been well studied, the molecular nature of the inhibitory signals remains largely elusive. Here we report that the receptor for activated C kinase 1 (RACK1), a novel binding protein of heterotrimeric G protein betagamma (G betagamma) subunits, acts as a negative regulator of directed cell migration. After chemoattractant-induced polarization of Jurkat and neutrophil-like differentiated HL60 (dHL60) cells, RACK1 interacts with G betagamma and is recruited to the leading edge. Down-regulation of RACK1 dramatically enhances chemotaxis of cells, whereas overexpression of RACK1 or a fragment of RACK1 that retains G betagamma-binding capacity inhibits cell migration. Further studies reveal that RACK1 does not modulate cell migration through binding to other known interacting proteins such as PKC beta and Src. Rather, RACK1 selectively inhibits G betagamma-stimulated phosphatidylinositol 3-kinase gamma (PI3K gamma) and phospholipase C (PLC) beta activity, due to the competitive binding of RACK1, PI3K gamma, and PLC beta to G betagamma. Taken together, these findings provide a novel mechanism of regulating cell migration, i.e., RACK1-mediated interference with G betagamma-dependent activation of key effectors critical for chemotaxis.
Collapse
Affiliation(s)
- Songhai Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Parent A, Laroche G, Hamelin É, Parent JL. RACK1 Regulates the Cell Surface Expression of the G Protein-Coupled Receptor for Thromboxane A2. Traffic 2008; 9:394-407. [DOI: 10.1111/j.1600-0854.2007.00692.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. Scaffolding proteins in G-protein signaling. J Mol Signal 2007; 2:13. [PMID: 17971232 PMCID: PMC2211295 DOI: 10.1186/1750-2187-2-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/30/2007] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins are ubiquitous signaling partners of seven transmembrane-domain G-protein-coupled receptors (GPCRs), the largest (and most important pharmacologically) receptor family in mammals. A number of scaffolding proteins have been identified that regulate various facets of GPCR signaling. In this review, we summarize current knowledge concerning those scaffolding proteins that are known to directly bind heterotrimeric G proteins, and discuss the composition of the protein complexes they assemble and their effects on signal transduction. Emerging evidence about possible ways of regulation of activity of these scaffolding proteins is also discussed.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S, Wolcott Ave, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
37
|
Auerbach M, Liedtke CM. Role of the scaffold protein RACK1 in apical expression of CFTR. Am J Physiol Cell Physiol 2007; 293:C294-304. [PMID: 17409124 DOI: 10.1152/ajpcell.00413.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies from this laboratory demonstrated a role for protein kinase C (PKC)ε in the regulation of cAMP-dependent cystic fibrosis transmembrane regulator (CFTR) Cl channel function via binding of PKCε to RACK1, a receptor for activated C kinase, and of RACK1 to human Na+/H+ exchanger regulatory factor (NHERF1). In the present study, we investigated the role of RACK1 in regulating CFTR function in a Calu-3 airway epithelial cell line. Confocal microscopy and biotinylation of apical surface proteins demonstrate apical localization of RACK1 independent of actin. Mass spectrometric analysis of NHERF1 revealed copurification of tubulin, which, in in vitro binding assays, selectively binds to NHERF1, but not RACK1, via a PDZ1 domain. In binding and pulldown assays, we show direct binding of a PDZ2 domain to NHERF1, pulldown of endogenous NHERF1 by a PDZ2 domain, and inhibition of NHERF1-tubulin binding by a PDZ1 domain. Downregulation of RACK1 using double-stranded silencing RNA reduced the amount of RACK1 by 77.5% and apical expression of biotinylated CFTR by 87.4%. Expression of CFTR, NHERF1, and actin were not altered by treatment with siRACK1 or by nontargeting control silencing RNA, which, in addition, did not affect RACK1 expression. On the basis of these results, we model a RACK1 proteome consisting of PKCε-RACK1-NHERF1-NHERF1-tubulin with a role in stable expression of CFTR in the apical plasma membrane of epithelial cells.
Collapse
Affiliation(s)
- Michael Auerbach
- Department of Pediatrics, Rainbow Babies & children Hospital, Case Western Reserve University, BRB, Rm. 824, 2109 Adelbert Rd., Cleveland, OH 44106-4948, USA
| | | |
Collapse
|
38
|
Zeller CE, Parnell SC, Dohlman HG. The RACK1 ortholog Asc1 functions as a G-protein beta subunit coupled to glucose responsiveness in yeast. J Biol Chem 2007; 282:25168-76. [PMID: 17591772 DOI: 10.1074/jbc.m702569200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to the prevailing paradigm, G-proteins are composed of three subunits, an alpha subunit with GTPase activity and a tightly associated betagamma subunit complex. In the yeast Saccharomyces cerevisiae there are two known Galpha proteins (Gpa1 and Gpa2) but only one Gbetagamma, which binds only to Gpa1. Here we show that the yeast ortholog of RACK1 (receptor for activated protein kinase C1) Asc1 functions as the Gbeta for Gpa2. As with other known Gbeta proteins, Asc1 has a 7-WD domain structure, interacts directly with the Galpha in a guanine nucleotide-dependent manner, and inhibits Galpha guanine nucleotide exchange activity. In addition, Asc1 binds to the effector enzyme adenylyl cyclase (Cyr1), and diminishes the production of cAMP in response to glucose stimulation. Thus, whereas Gpa2 promotes glucose signaling through elevated production of cAMP, Asc1 has opposing effects on these same processes. Our findings reveal the existence of an unusual Gbeta subunit, one having multiple functions within the cell in addition to serving as a signal transducer for cell surface receptors and intracellular effectors.
Collapse
Affiliation(s)
- Corinne E Zeller
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
39
|
Huang X, Zhang W, Li X, Zhang X, Li B, Mao B, Zhang H. Developmental expression of amphioxus RACK1. ACTA ACUST UNITED AC 2007; 50:329-34. [PMID: 17609889 DOI: 10.1007/s11427-007-0025-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 01/16/2007] [Indexed: 12/30/2022]
Abstract
Vertebrate RACK1 plays a key role in embryonic development. This paper described the cloning, phylogenetic analysis and developmental expression of AmphiRACK1, the RACK1 homologous gene in amphioxus. Phylogenetic analysis indicated that amphioxus RACK1 was located at the base of vertebrate clade. AmphiRACK1 expression in lithium-treated embryos was also examined. During embryonic development, AmphiRACK1 was expressed strongly in cerebral vesicles, neural tubes and somites. In lithium-treated embryos, the segmental expression of AmphiRACK1 in somites became blurry and decreased. Its expression in cerebral vesicles and neural tubes was also weaker or disappeared. In the adult animal, AmphiRACK1 transcripts were detected in the epithelium of midgut diverticulus and gut, wheel organ, gill blood vessels and testis.
Collapse
Affiliation(s)
- XiangWei Huang
- Institute of Developmental Biology, College of Life Science, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Palmer DA, Thompson JK, Li L, Prat A, Wang P. Gib2, a novel Gbeta-like/RACK1 homolog, functions as a Gbeta subunit in cAMP signaling and is essential in Cryptococcus neoformans. J Biol Chem 2006; 281:32596-605. [PMID: 16950773 DOI: 10.1074/jbc.m602768200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Canonical G proteins are heterotrimeric, consisting of alpha, beta, and gamma subunits. Despite multiple Galpha subunits functioning in fungi, only a single Gbeta subunit per species has been identified, suggesting that non-conventional G protein signaling exists in this diverse group of eukaryotic organisms. Using the Galpha subunit Gpa1 that functions in cAMP signaling as bait in a two-hybrid screen, we have identified a novel Gbeta-like/RACK1 protein homolog, Gib2, from the human pathogenic fungus Cryptococcus neoformans. Gib2 contains a seven WD-40 repeat motif and is predicted to form a seven-bladed beta propeller structure characteristic of beta transducins. Gib2 is also shown to interact, respectively, with two Ggamma subunit homologs, Gpg1 and Gpg2, similar to the conventional Gbeta subunit Gpb1. In contrast to Gpb1 whose overexpression promotes mating response, overproduction of Gib2 suppresses defects of gpa1 mutation in both melanization and capsule formation, the phenotypes regulated by cAMP signaling and associated with virulence. Furthermore, depletion of Gib2 by antisense suppression results in a severe growth defect, suggesting that Gib2 is essential. Finally, Gib2 is shown to also physically interact with a downstream target of Gpa1-cAMP signaling, Smg1, and the protein kinase C homolog Pkc1, indicating that Gib2 is also a multifunctional RACK1-like protein.
Collapse
Affiliation(s)
- Daniel A Palmer
- Research Institute for Children, Department of Pediatrics, Louisiana State University Health Sciences Center, 200 Henry Clay Avenue, New Orleans, LA 70118, USA
| | | | | | | | | |
Collapse
|
41
|
Preininger AM, Henage LG, Oldham WM, Yoon EJ, Hamm HE, Brown HA. Direct modulation of phospholipase D activity by Gbetagamma. Mol Pharmacol 2006; 70:311-8. [PMID: 16638972 DOI: 10.1124/mol.105.021451] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phospholipase D-mediated hydrolysis of phosphatidylcholine is stimulated by protein kinase C and the monomeric G proteins Arf, RhoA, Cdc42, and Rac1, resulting in complex regulation of this enzyme. Using purified proteins, we have identified a novel inhibitor of phospholipase D activity, Gbetagamma subunits of heterotrimeric G proteins. G protein-coupled receptor activation alters affinity between Galpha and Gbetagamma subunits, allowing subsequent interaction with distinct effectors. Gbeta1gamma1 inhibited phospholipase D1 and phospholipase D2 activity, and both Gbeta1gamma1 and Gbeta1gamma2 inhibited stimulated phospholipase D1 activity in a dosedependent manner in reconstitution assays. Reconstitution assays suggest this interaction occurs through the amino terminus of phospholipase D, because Gbeta1gamma1 is unable to inhibit an amino-terminally truncated phospholipase D construct, PLD1.d311, which like full-length phospholipase D isoforms, requires phosphatidylinositol-4,5-bisphosphate for activity. Furthermore, a truncated protein consisting of the amino-terminal region of phospholipase D containing the phox/pleckstrin homology domains was found to interact with Gbeta1gamma1, unlike the PLD1.d311 recombinant protein, which lacks this domain. In vivo, expressed recombinant Gbeta1gamma2 was also found to inhibit phospholipase D activity under basal and stimulated conditions in MDA-MB-231 cells, which natively express both phospholipase D1 and phospholipase D2. These data demonstrate that Gbetagamma directly regulates phospholipase D activity in vitro and suggest a novel mechanism to negatively regulate phospholipase D signaling in vivo.
Collapse
Affiliation(s)
- A M Preininger
- Department of Pharmacology: 442 RRB, Vanderbilt University School of Medicine, 23rd Ave. South and Pierce, Nashville, TN 37232-6600, USA
| | | | | | | | | | | |
Collapse
|
42
|
Chasse SA, Flanary P, Parnell SC, Hao N, Cha JY, Siderovski DP, Dohlman HG. Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:330-46. [PMID: 16467474 PMCID: PMC1405904 DOI: 10.1128/ec.5.2.330-346.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein alpha subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Galpha proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.
Collapse
Affiliation(s)
- Scott A Chasse
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Accessory proteins involved in signal processing through heterotrimeric G proteins are generally defined as proteins distinct from G protein-coupled receptor (GPCR), G protein, or classical effectors that regulate the strength/efficiency/specificity of signal transfer upon receptor activation or position these entities in the right microenvironment, contributing to the formation of a functional signal transduction complex. A flurry of recent studies have implicated an additional class of accessory proteins for this system that provide signal input to heterotrimeric G proteins in the absence of a cell surface receptor, serve as alternative binding partners for G protein subunits, provide unexpected modes of G protein regulation, and have introduced additional functional roles for G proteins. This group of accessory proteins includes the recently discovered Activators of G protein Signaling (AGS) proteins identified in a functional screen for receptor-independent activators of G protein signaling as well as several proteins identified in protein interaction screens and genetic screens in model organisms. These accessory proteins may influence GDP dissociation and nucleotide exchange at the G(alpha) subunit, alter subunit interactions within heterotrimeric G(alphabetagamma) independent of nucleotide exchange, or form complexes with G(alpha) or G(betagamma) independent of the typical G(alphabetagamma) heterotrimer. AGS and related accessory proteins reveal unexpected diversity in G protein subunits as signal transducers within the cell.
Collapse
Affiliation(s)
- Motohiko Sato
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
44
|
Lynch MJ, Hill EV, Houslay MD. Intracellular targeting of phosphodiesterase-4 underpins compartmentalized cAMP signaling. Curr Top Dev Biol 2006; 75:225-59. [PMID: 16984814 DOI: 10.1016/s0070-2153(06)75007-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phosphodiesterase-4 (PDE4) enzyme belongs to a family of cAMP-dependent phosphodiesterases that provide the major means of hydrolyzing and, thereby, inactivating the key intracellular second messenger, cAMP. As such, PDE4s are central to the regulation of many diverse signaling processes that allow cells to respond to external stimuli. Four genes (4A, 4B, 4C, and 4D) encode around 20 distinct isoform members of the PDE4 family. Each isoform is characterized by a unique N-terminal region. PDE4s are multidomain metallohydrolases with each domain serving particular roles allowing them to be targeted to varying regions and organelles of intracellular space and regulated in distinct fashions by phosphorylation and protein-protein interaction. Although identical in catalytic function, each isoform locates to distinct regions within the cell so as to create and manage spatially distinct pools of cAMP. The multiplicity of partners associating with members of the four gene PDE4 family places these enzymes in key regulatory positions, permitting them to channel complex biological signals via fundamental signaling cohorts such as G-protein-coupled receptors (GPCRs), arrestins, A-kinase-anchoring proteins (AKAPs), and tyrosyl family kinases. The cAMP cascade has long been linked to cellular growth and embryogenesis and with this comes the implication that PDE4 may play considerable roles in the regulation of progeny development in maturing cells and tissues.
Collapse
Affiliation(s)
- Martin J Lynch
- Division of Biochemistry and Molecular Biology, IBLS, Wolfson Building University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | |
Collapse
|
45
|
Spiegelberg BD, Hamm HE. Gβγ Binds Histone Deacetylase 5 (HDAC5) and Inhibits Its Transcriptional Co-repression Activity. J Biol Chem 2005; 280:41769-76. [PMID: 16221676 DOI: 10.1074/jbc.m504066200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a yeast two-hybrid screen designed to identify novel effectors of the G betagamma subunit of heterotrimeric G proteins, we found that G betagamma binds to histone deacetylase 5 (HDAC5), an enzyme involved in a pathway not previously recognized to be directly impacted by G proteins. Formation of the G beta1gamma2-HDAC5 complex in mammalian cells can be blocked by overexpression of G alpha(o), and this inhibition is relieved by activation of alpha2A-adrenergic receptor, suggesting that the interaction occurs in a signal-dependent manner. The C-terminal domain of HDAC5 binds directly to G betagamma through multiple motifs, and overexpression of this domain mimics the C terminus of G protein-coupled receptor kinase 2, a known G betagamma scavenger, in its ability to inhibit the G betagamma/HDAC5 interaction. The C terminus of HDAC4 shares significant similarity with that of HDAC5, and accordingly, HDAC4 is also able to form complexes with G beta1gamma2 in cultured cells, suggesting that the C-terminal domain of class II HDACs is a general G betagamma binding motif. Activation of a G(i/o)-coupled receptor results in a time-dependent activation of MEF2C, an HDAC5-regulated transcription factor, whereas inhibition of the interaction with a G betagamma scavenger inhibits MEF2C activity, suggesting a reduced potency of HDAC5-mediated inhibition. Taken together, these data imply that HDAC5 and possibly other class II HDACs can be added to the growing list of G betagamma effectors.
Collapse
Affiliation(s)
- Bryan D Spiegelberg
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
46
|
Chen S, Lin F, Hamm HE. RACK1 binds to a signal transfer region of G betagamma and inhibits phospholipase C beta2 activation. J Biol Chem 2005; 280:33445-52. [PMID: 16051595 DOI: 10.1074/jbc.m505422200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor for Activated C Kinase 1 (RACK1), a novel G betagamma-interacting protein, selectively inhibits the activation of a subclass of G betagamma effectors such as phospholipase C beta2 (PLCbeta2) and adenylyl cyclase II by direct binding to G betagamma (Chen, S., Dell, E. J., Lin, F., Sai, J., and Hamm, H. E. (2004) J. Biol. Chem. 279, 17861-17868). Here we have mapped the RACK1 binding sites on G betagamma. We found that RACK1 interacts with several different G betagamma isoforms, including G beta1gamma1, Gbeta1gamma2, and Gbeta5gamma2, with similar affinities, suggesting that the conserved residues between G beta1 and G beta5 may be involved in their binding to RACK1. We have confirmed this hypothesis and shown that several synthetic peptides corresponding to the conserved residues can inhibit the RACK1/G betagamma interaction as monitored by fluorescence spectroscopy. Interestingly, these peptides are located at one side of G beta1 and have little overlap with the G alpha subunit binding interface. Additional experiments indicate that the G betagamma contact residues for RACK1, in particular the positively charged amino acids within residues 44-54 of G beta1, are also involved in the interaction with PLCbeta2 and play a critical role in G betagamma-mediated PLCbeta2 activation. These data thus demonstrate that RACK1 can regulate the activity of a G betagamma effector by competing for its binding to the signal transfer region of G betagamma.
Collapse
Affiliation(s)
- Songhai Chen
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA.
| | | | | |
Collapse
|
47
|
Kino T, Tiulpakov A, Ichijo T, Chheng L, Kozasa T, Chrousos GP. G protein beta interacts with the glucocorticoid receptor and suppresses its transcriptional activity in the nucleus. J Cell Biol 2005; 169:885-96. [PMID: 15955845 PMCID: PMC2171637 DOI: 10.1083/jcb.200409150] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 04/27/2005] [Indexed: 11/22/2022] Open
Abstract
Extracellular stimuli that activate cell surface receptors modulate glucocorticoid actions via as yet unclear mechanisms. Here, we report that the guanine nucleotide-binding protein (G protein)-coupled receptor-activated WD-repeat Gbeta interacts with the glucocorticoid receptor (GR), comigrates with it into the nucleus and suppresses GR-induced transactivation of the glucocorticoid-responsive genes. Association of Ggamma with Gbeta is necessary for this action of Gbeta. Both endogenous and enhanced green fluorescent protein (EGFP)-fused Gbeta2 and Ggamma2 proteins were detected in the nucleus at baseline, whereas a fraction of EGFP-Gbeta2 and DsRed2-GR comigrated to the nucleus or the plasma membrane, depending on the exposure of cells to dexamethasone or somatostatin, respectively. Gbeta2 was associated with GR/glucocorticoid response elements (GREs) in vivo and suppressed activation function-2-directed transcriptional activity of the GR. We conclude that the Gbetagamma complex interacts with the GR and suppresses its transcriptional activity by associating with the transcriptional complex formed on GR-responsive promoters.
Collapse
Affiliation(s)
- Tomoshige Kino
- Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
PKCdelta (protein kinase Cdelta) is a serine/threonine kinase that plays a key role in growth regulation and tissue remodelling. Traditional models of PKC activation have focused on lipid cofactors and anchoring proteins that localize the active conformation of PKCdelta to membranes, in close proximity with its target substrates. However, recent studies identify a distinct mode for PKCdelta activation involving tyrosine phosphorylation by Src family kinases. The tyrosine-phosphorylated form of PKCdelta (which accumulates in the soluble fraction of cells exposed to oxidant stress) displays lipid-independent kinase activity and is uniquely positioned to phosphorylate target substrates throughout the cell (not just on lipid membranes). This review summarizes (1) recent progress towards understanding structure-activity relationships for PKCdelta, with a particular focus on the stimuli that induce (and the distinct functional consequences that result from) tyrosine phosphorylation events in PKCdelta's regulatory, hinge and catalytic domains; (2) current concepts regarding the role of tyrosine phosphorylation as a mechanism to regulate PKCdelta localization and actions in mitochondrial and nuclear compartments; and (3) recent literature delineating distinct roles for PKCdelta (relative to other PKC isoforms) in transcriptional regulation, cell cycle progression and programmed cell death (including studies in PKCdelta-/- mice that implicate PKCdelta in immune function and cardiovascular remodelling). Collectively, these studies argue that the conventional model for PKCdelta activation must be broadened to allow for stimulus-specific differences in PKCdelta signalling during growth factor stimulation and oxidant stress.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA.
| |
Collapse
|
49
|
Thornton C, Tang KC, Phamluong K, Luong K, Vagts A, Nikanjam D, Yaka R, Ron D. Spatial and temporal regulation of RACK1 function and N-methyl-D-aspartate receptor activity through WD40 motif-mediated dimerization. J Biol Chem 2004; 279:31357-64. [PMID: 15140893 DOI: 10.1074/jbc.m402316200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient signaling requires accurate spatial and temporal compartmentalization of proteins. RACK1 is a scaffolding protein that fulfils this role through interaction of binding partners with one of its seven WD40 domains. We recently identified the kinase Fyn and the NR2B subunit of the N-methyl-D-Aspartate receptor (NMDAR) as binding partners of RACK1. Scaffolding of Fyn near its substrate NR2B by RACK1 inhibits Fyn phosphorylation of NR2B and thereby negatively regulates channel function. We found that Fyn and NR2B share the same binding site on RACK1; however, their binding to RACK1 is not mutually exclusive (Yaka, R., Thornton, C., Vagts, A. J., Phamluong, K., Bonci, A., and Ron, D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5710-5715). We therefore tested the hypothesis that RACK1 forms a homodimer that allows the simultaneous binding of Fyn and NR2B. We found that RACK1 binds to itself both in vitro and in the brain. Deletion analyses identified a RACK1-RACK1 dimer-binding site within the 4th WD40 repeat, and application of the 4th WD40 repeat or a peptide derivative to hippocampal slices inhibited NMDAR activity. We further found that in hippocampal slices, both RACK1 and NR2B associated with another WD40 protein, the beta-subunit of G protein (Gbeta), previously shown to heterodimerize with RACK1 in vitro (Dell, E. J., Connor, J., Chen, S., Stebbins, E. G., Skiba, N. P., Mochly-Rosen, D., and Hamm, H. E. (2002) J. Biol. Chem. 277, 49888-49895). However, activation of the pituitary adenylate cyclase polypeptide (1-38) G protein-coupled receptor, previously found to induce the dissociation of RACK1 from the NMDAR complex (Yaka, R., He, D. Y., Phamluong, K., and Ron, D. (2003) J. Biol. Chem. 278, 9630-9638), attenuated the association of Gbeta with RACK1 and NR2B. Based on these results, we propose that WD40-mediated homo- and heterodimerization of RACK1 mediate the formation of a transient signaling complex that includes the NMDAR, a G protein and Fyn.
Collapse
Affiliation(s)
- Claire Thornton
- Ernest Gallo Research Center, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | |
Collapse
|