1
|
Abo-Elenin MHH, Kamel R, Nofal S, Ahmed AAE. The crucial role of beta-catenin in the osteoprotective effect of semaglutide in an ovariectomized rat model of osteoporosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2677-2693. [PMID: 39254876 PMCID: PMC11920005 DOI: 10.1007/s00210-024-03378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Postmenopausal osteoporosis is a common chronic medical illness resulting from an imbalance between bone resorption and bone formation along with microarchitecture degeneration attributed to estrogen deficiency and often accompanied by other medical conditions such as weight gain, depression, and insomnia. Semaglutide (SEM) is a recently introduced GLP-1 receptor agonist (GLP-1RA) for the treatment of obesity and type 2 diabetes mellitus by mitigating insulin resistance. It has been discovered that the beneficial effects of GLP-1 are associated with alterations in lipolysis, adipogenesis, and anti-inflammatory processes. GLP-1 analogs transmit signals directly to adipose tissue. Mesenchymal stem cells (MSCs) are multidisciplinary cells that originate from bone marrow, migrate to injury sites, and promote bone regeneration. MSCs can differentiate into osteoblasts, adipose cells, and cartilage cells. Our aim is to investigate the role of semaglutide on bone formation and the Wnt signaling pathway. Osteoporosis was induced in female rats by ovariectomy, and the ovariectomized rats were treated with alendronate as standard treatment with a dose of 3 mg/kg orally and semaglutide with two doses (150 mcg/kg and 300 mcg/kg) S.C. for 10 successive weeks. Semaglutide ameliorates bone detrimental changes induced by ovariectomy. It improves bone microarchitecture and preserves bone mineral content. Semaglutide ameliorates ovariectomy-induced osteoporosis and increases the expression of β-catenin, leading to increased bone formation and halted receptor activator of nuclear factor kappa-Β ligand (RANKL's) activation. Semaglutide can be used as a potential prophylactic and therapeutic drug against osteoporosis, possibly by activating Wnt signaling and decreasing bone resorption.
Collapse
Affiliation(s)
| | - Rehab Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo City, Egypt
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo City, Egypt
| | - Amany Ali Eissa Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo City, Egypt
| |
Collapse
|
2
|
Determe W, Hauge SC, Demeuse J, Massonnet P, Grifnée E, Huyghebaert L, Dubrowski T, Schoumacher M, Peeters S, Le Goff C, Evenepoel P, Hansen D, Cavalier E. Osteocalcin: A bone protein with multiple endocrine functions. Clin Chim Acta 2025; 567:120067. [PMID: 39631494 DOI: 10.1016/j.cca.2024.120067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Bones are now recognised as endocrine organs with diverse functions. Osteocalcin, a protein primarily produced by osteoblasts, has garnered significant attention. Research into osteocalcin has revealed its impact on glucose metabolism and its unexpected endocrine role, particularly in its undercarboxylated form (ucOC). This form influences organs, affecting insulin sensitivity and even showing correlations with conditions like type 2 diabetes and cardiovascular diseases. However, analytical challenges are impeding advances in clinical research. Various immunoassays like RIA, EIA, ECLIA, IRMA, and ELISA have been developed to analyse osteocalcin. Recent innovations include techniques like OS-ELISA and OS phage Immuno-PCR, enabling fragment analysis. Advancements also encompass porous silicon for detection and ECLIA for rapid measurements. The limitations of immunoassays lead to ucOC measurement discrepancies, prompting the development of mass spectrometry-based techniques. Mass spectrometry increasingly quantifies carboxylated, undercarboxylated, and fragmented forms of osteocalcin. Mass spectrometry improves routine and clinical analysis accuracy. With heightened specificity, it identifies carboxylation status and serum fragmentations, boosting measurement reliability as a reference method. This approach augments analytical precision, advancing disease understanding, enabling personalised medicine, and ultimately benefiting clinical outcomes. In this review, the different techniques for the analysis of osteocalcin will be explored and compared, and their clinical implications will be discussed.
Collapse
Affiliation(s)
- William Determe
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium.
| | - Sabina Chaudhary Hauge
- Department of Nephrology, Copenhagen University Hospital-Herlev, Copenhagen, Denmark; Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Justine Demeuse
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Philippe Massonnet
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Elodie Grifnée
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Loreen Huyghebaert
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Thomas Dubrowski
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Matthieu Schoumacher
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Stéphanie Peeters
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Pieter Evenepoel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Medicine, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ditte Hansen
- Department of Nephrology, Copenhagen University Hospital-Herlev, Copenhagen, Denmark; Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| |
Collapse
|
3
|
Shaban AM, Ali EA, Tayel SG, Rizk SK, El Agamy DF. The antiosteoporotic effect of oxymatrine compared to testosterone in orchiectomized rats. J Orthop Surg Res 2025; 20:25. [PMID: 39780225 PMCID: PMC11714950 DOI: 10.1186/s13018-024-05344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Castration of adult male rats led to the development of osteoporosis. Oxidative stress and inflammatory factors have been identified as potential causative factors. Notably, oxymatrine (OMT) possesses potent anti-inflammatory and antioxidant activities. This study aims to elucidate the antiosteoporotic effects of OMT compared to testosterone in an orchiectomized (ORX) rat model of osteoporosis. METHODS A total of 60 Wistar male rats were divided into the following groups: control (CTRL), surgery + no orchiectomy (SHAM), ORX, ORX + testosterone, and ORX + OMT. Urinary deoxypyridinoline (DPD), calcium (Ca), and phosphorus (P), as well as serum testosterone, parathormone (PTH), alkaline phosphatase (ALP), osteocalcin, N-telopeptide of type I collagen (NTX I), tartrate resistance acid phosphatase (TRAP), and total Ca and P levels were evaluated. Bone was assessed for malondialdehyde (MDA), reduced glutathione (GSH), interleukin 6 (IL-6), Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) expression, and receptor activator of nuclear factor κB ligand/ osteoprotegerin (RANKL/OPG) ratio. Bone dual-energy X-ray absorptiometry (DEXA) scan and histological and immunohistochemical studies were performed. RESULTS Testosterone or OMT treatment ameliorated the reduced bone mineral density (BMD) and bone mineral content (BMC) in the DEXA scan and the changes in PTH and Ca levels. Compared to the ORX group, bone formation, and turnover markers were also significantly reversed in the treatment groups. Treatment with testosterone or OMT significantly reduced bone MDA, IL-6, Keap1, RANKL, and RANKL/OPG ratio, and significantly elevated bone GSH, Nrf2, and HO-1. Moreover, testosterone or OMT treatment has restored cortical bone thickness and osteocyte number and reduced bone levels of TNF-α in ORX rats. Consequently, treatment with either testosterone or OMT exhibited nearly equal therapeutic efficacy; however, neither of them could normalize the measured parameters. CONCLUSION OMT treatment showed equal efficacy compared to testosterone in ameliorating osteoporosis in ORX rats, possibly by improving some inflammatory and oxidative stress parameters.
Collapse
Affiliation(s)
- Anwaar M Shaban
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt.
| | - Sara G Tayel
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt
| | - Sara Kamal Rizk
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Dalia F El Agamy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
- Medical Physiology Department, Faculty of Medicine, Menoufia National University, Menoufia, Egypt
| |
Collapse
|
4
|
Anwar A, Kaur T, Chaugule S, Yang YS, Mago A, Shim JH, John AA. Sensors in Bone: Technologies, Applications, and Future Directions. SENSORS (BASEL, SWITZERLAND) 2024; 24:6172. [PMID: 39409211 PMCID: PMC11478373 DOI: 10.3390/s24196172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Osteoporosis, a prevalent ailment worldwide, compromises bone strength and resilience, particularly afflicting the elderly population. This condition significantly heightens susceptibility to fractures even from trivial incidents, such as minor falls or impacts. A major challenge in diagnosing osteoporosis is the absence of discernible symptoms, allowing osteoporosis to remain undetected until the occurrence of a fracture event. Early symptom detection and swift diagnosis are critical for preventing severe issues related to bone diseases. Assessing bone turnover markers aids in identifying, diagnosing, and monitoring these conditions, guiding treatment decisions. However, conventional techniques for measuring bone mineral density are costly, time-consuming, and require specialized expertise. The integration of sensor technologies into medical practices has transformed how we monitor, diagnose, and treat various health conditions, including bone health and orthopedics. This review aims to provide a comprehensive overview of the current state of sensor technologies used in bone, covering their integration with bone tissue, various applications, recent advancements, challenges, and future directions.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Biotechnology and Zoology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Taruneet Kaur
- Faculty of Engineering and Design, Carleton University, 125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Sachin Chaugule
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yeon-Suk Yang
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Aryan Mago
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Jae-Hyuck Shim
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Aijaz Ahmad John
- Department of Medicine, Division of Rheumatology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
5
|
Qi X, He X, Peng Y, He X, Yang Q, Jiao K, Liu H. Roles of osteocalcin in the central nervous system. CNS Neurosci Ther 2024; 30:e70016. [PMID: 39252492 PMCID: PMC11386255 DOI: 10.1111/cns.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Bone-derived protein osteocalcin, which has beneficial effects on brain function, may be a future research direction for neurological disorders. A growing body of evidence suggests a link between osteocalcin and neurological disorders, but the exact relationship is contradictory and unclear. SCOPE OF REVIEW The aim of this review is to summarize the current research on the interaction between osteocalcin and the central nervous system and to propose some speculative future research directions. MAJOR CONCLUSIONS In the normal central nervous system, osteocalcin is involved in neuronal structure, neuroprotection, and the regulation of cognition and anxiety. Studies on osteocalcin-related abnormalities in the central nervous system are divided into animal model studies and human studies, depending on the subject. In humans, the link between osteocalcin and brain function is inconsistent. These conflicting data may be due to methodological inconsistencies. By reviewing the related literature on osteocalcin, some comorbidities of the bone and nervous system and future research directions related to osteocalcin are proposed.
Collapse
Affiliation(s)
- Xiao‐Shan Qi
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
- The First Clinical Medical CollegeZunyi Medical UniversityZunyiChina
| | - Xin He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Ying Peng
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Xing‐Hong He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Qian‐Yu Yang
- The First Clinical Medical CollegeZunyi Medical UniversityZunyiChina
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of StomatologyThe Fourth Military Medical UniversityXi‘anChina
| | - Heng Liu
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| |
Collapse
|
6
|
Hakobyan G, Khachatryan L, Khudaverdyan M, Gegham T, Burnazyan S. Diagnostic and Prognostic Value of Indicators of Bone Metabolism Markers in Patients Following Mandibulectomy and Free Fibula Flap Reconstruction with Endosteal Implants. J Maxillofac Oral Surg 2024; 23:719-726. [PMID: 38911414 PMCID: PMC11189845 DOI: 10.1007/s12663-023-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 06/19/2023] [Indexed: 06/25/2024] Open
Abstract
Purpose To evaluate and assess the indicators of bone metabolism markers osteocalcin and β-Cross-Laps in blood serum as a tool for monitoring bone regeneration and determining the time of implantation in patients after mandibulectomy and reconstruction of a free fibular flap with subsequent endosteal implants. Materials and Methods Forty-eight patients in a 6-year period participated in this study, due to resection for tumors. All patients underwent reconstruction with fibula free flap after tumor resection, 4-6 months after osteoectomy, dental implants were installed with further orthopedic rehabilitation. To assess the rate of bone remodeling after transplantation, the content biochemical markers of bone remodeling osteocalcin and β-Cross-Laps serum were determined by enzyme immunoassay. Results All 46 fibular free flaps were healed without complications and were survived. A total 326 implants installed, 8 implants failed to osseointegrate, and 6 implants failed after 5 years of loading (peri-implantitis). Success rate of implants after 5 years was 95,7%. In patients before surgery, the mean of osteocalcin levels was 8.5 ng/ml, two months later, there was a sharp increase in the content of osteocalcin by 15.4 ng/ml, after four months reached 24.7 ng/ml, after six months of 28.6 ng/ml, then the indicator began to decrease and after 12 months it was approaching the norm of 14.7 ng/ml. In patients before surgery, the mean level of β-Cross-Laps was 0.76 ng/ml, after two months bone transplantation the mean level of β-Cross-Laps decreased to - 0.65 ng/ml, after four months the indicator increased and reached of 0.98 ng/ml, after six months the indicator was - 1.56 ng/ml, then these indicators began to decrease and after 12 months, approaching normal values of - 0.87 ng/ml. There is a correlation between different concentrations of osteocalcin or β-Cross- Laps and the success rate of implants. Implants were shown to be unsuccessful low concentrations of osteocalcin and high concentrations of β-Cross-Laps in serum. Conclusion Studies have shown that the long-term survival and success rates of implants placed in the reconstructed areas may guarantee an excellent prognosis of implant-supported prostheses. Bone markers in blood serum osteocalcin and β-Cross-Laps can be used to evaluate the rate of bone remodeling, which allows you to determine the time of implantation.
Collapse
Affiliation(s)
- Gagik Hakobyan
- Department of Oral and Maxillofacial Surgery, Yerevan State Medical University After M. Heratsi, Yerevan, Armenia
| | - Levon Khachatryan
- Department of Maxillofacial and Plastic Surgery, Modern Implant Medicine, Armenia Yerevan State Medical University After M. Heratsi, Yerevan, Armenia
| | - Margarita Khudaverdyan
- Department of Therapeutic Dentistry, Yerevan State Medical University After M. Heratsi, Yerevan, Armenia
| | - Tunyan Gegham
- Department of Dental Professional and Continuing Education of Oral and Maxillofacial Surgery, Yerevan State Medical University After M. Heratsi, Yerevan, Armenia
| | - Seda Burnazyan
- Department of Oral and Maxillofacial Surgery, Yerevan State Medical University After M. Heratsi, Yerevan, Armenia
| |
Collapse
|
7
|
Bose S, Sharan K. Effect of probiotics on postmenopausal bone health: a preclinical meta-analysis. Br J Nutr 2024; 131:567-580. [PMID: 37869975 DOI: 10.1017/s0007114523002362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Postmenopausal osteoporosis is a major concern for women worldwide due to increased risk of fractures and diminished bone quality. Recent research on gut microbiota has suggested that probiotics can combat various diseases, including postmenopausal bone loss. Although several preclinical studies have explored the potential of probiotics in improving postmenopausal bone loss, the results have been inconsistent and the mechanism of action remains unclear. To address this, a meta-analysis was conducted to determine the effect of probiotics on animal models of postmenopausal osteoporosis. The bone parameters studied were bone mineral density (BMD), bone volume fractions (BV/TV), and hallmarks of bone formation and resorption. Pooled analysis showed that probiotic treatment significantly improves BMD and BV/TV of the ovariectomised animals. Probiotics, while not statistically significant, exhibited a tendency towards enhancing bone formation and reducing bone resorption. Next, we compared the effects of Lactobacillus sp. and Bifidobacterium sp. on osteoporotic bone. Both probiotics improved BMD and BV/TV compared with control, but Lactobacillus sp. had a larger effect size. In conclusion, our findings suggest that probiotics have the potential to improve bone health and prevent postmenopausal osteoporosis. However, further studies are required to investigate the effect of probiotics on postmenopausal bone health in humans.
Collapse
Affiliation(s)
- Shibani Bose
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru570020, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
8
|
Tavakol M, Liu J, Hoff SE, Zhu C, Heinz H. Osteocalcin: Promoter or Inhibitor of Hydroxyapatite Growth? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1747-1760. [PMID: 38181199 DOI: 10.1021/acs.langmuir.3c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Osteocalcin is the most abundant noncollagenous bone protein and the functions in bone remineralization as well as in inhibition of bone growth have remained unclear. In this contribution, we explain the dual role of osteocalcin in the nucleation of new calcium phosphate during bone remodeling and in the inhibition of hydroxyapatite crystal growth at the molecular scale. The mechanism was derived using pH-resolved all-atom models for the protein, phosphate species, and hydroxyapatite, along with molecular dynamics simulations and experimental and clinical observations. Osteocalcin binds to (hkl) hydroxyapatite surfaces through multiple residues, identified in this work, and the fingerprint of binding residues varies as a function of the (hkl) crystal facet and pH value. On balance, the affinity of osteocalcin to hydroxyapatite slows down crystal growth. The unique tricalcium γ-carboxylglutamic acid (Gla) domain hereby rarely adsorbs to hydroxyapatite surfaces and faces instead toward the solution. The Gla domain enables prenucleation of calcium phosphate for new bone formation at a slightly acidic pH of 5. The growth of prenucleation clusters of calcium phosphate continues upon increase in pH value from 5 to 7 and is much less favorable, or not observed, on the native osteocalcin structure at and above neutral pH values of 7. The results provide mechanistic insight into the early stages of bone remodeling from the molecular scale, help inform mutations of osteocalcin to modify binding to apatites, support drug design, and guide toward potential cures for osteoporosis and hyperosteogeny.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
- Department of Mechanical Engineering, Sharif University of Technology, PO Box 11365-11155, Tehran, Iran
| | - Juan Liu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
| | - Samuel E Hoff
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
| | - Cheng Zhu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
- Materials Science and Engineering Program, University of Colorado Boulder, 3415 Colorado Ave, Boulder, Colorado 80301, United States
| |
Collapse
|
9
|
Blair HC, Larrouture QC, Tourkova IL, Nelson DJ, Dobrowolski SF, Schlesinger PH. Epithelial-like transport of mineral distinguishes bone formation from other connective tissues. J Cell Biochem 2023; 124:1889-1899. [PMID: 37991446 PMCID: PMC10880123 DOI: 10.1002/jcb.30494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and γ-carboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs.
Collapse
Affiliation(s)
- Harry C Blair
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Irina L. Tourkova
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago IL
| | | | | |
Collapse
|
10
|
Chakraborty A, Das A, Datta P, Majumder S, Barui A, Roychowdhury A. 3D Printing of Ti-6Al-4V-Based Porous-Channel Dental Implants: Computational, Biomechanical, and Cytocompatibility Analyses. ACS APPLIED BIO MATERIALS 2023; 6:4178-4189. [PMID: 37713537 DOI: 10.1021/acsabm.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Objective: Loosening of dental implants due to resorption of the surrounding bone is one of the challenging clinical complications in prosthetic dentistry. Generally, stiffness mismatch between an implant and its surrounding bone is one of the major factors. In order to prevent such clinical consequences, it is essential to develop implants with customized stiffness. The present study investigates the computational and experimental biomechanical responses together with cytocompatibility studies of three-dimensional (3D)-printed Ti-6Al-4V-based porous dental implants with varied stiffness properties. Methods: Additive manufacturing (direct metal laser sintering, DMLS) was utilized to create Ti-6Al-4V implants having distinct porosities and pore sizes (650 and 1000 μm), along with a nonporous (solid) implant. To validate the compression testing of the constructed implants and to probe their biomechanical response, finite element models were employed. The cytocompatibility of the implants was assessed using MG-63 cells, in vitro. Results: Both X-ray microcomputed tomography (μ-CT) and scanning electron microscopy (SEM) studies illustrated the ability of DMLS to produce implants with the designed porosities. Biomechanical analysis results revealed that the porous implants had less stiffness and were suitable for providing the appropriate peri-implant bone strain. Although all of the manufactured implants demonstrated cell adhesion and proliferation, the porous implants in particular supported better bone cell growth and extracellular matrix deposition. Conclusions: 3D-printed porous implants showed tunable stiffness properties with clinical translational potential.
Collapse
Affiliation(s)
- Arindam Chakraborty
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal 711103, India
| | - Ankita Das
- Center of Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal 711103, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Santanu Majumder
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal 711103, India
| | - Ananya Barui
- Center of Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal 711103, India
| | - Amit Roychowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal 711103, India
| |
Collapse
|
11
|
Yang Y, Tseng WJ, Wang B. Abaloparatide Maintains Normal Rat Blood Calcium Level in Part Via 1,25-Dihydroxyvitamin D/osteocalcin Signaling Pathway. Endocrinology 2023; 164:bqad117. [PMID: 37493045 PMCID: PMC10424883 DOI: 10.1210/endocr/bqad117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
The PTH-related peptide(1-34) analog, abaloparatide (ABL), is the second anabolic drug available for the treatment of osteoporosis. Previous research demonstrated that ABL had a potent anabolic effect but caused hypercalcemia at a significantly lower rate. However, the mechanism by which ABL maintains the stability of blood calcium levels remains poorly understood. Our in vivo data showed that ABL treatment (40 µg/kg/day for 7 days) significantly increased rat blood level of 1,25-dihydroxyvitamin D [1,25-(OH)2D] without raising the blood calcium value. ABL also significantly augmented the carboxylated osteocalcin (Gla-Ocn) in the blood and bone that is synthesized by osteoblasts, and increased noncarboxylated Ocn, which is released from the bone matrix to the circulation because of osteoclast activation. The in vitro data showed that ABL (10 nM for 24 hours) had little direct effects on 1,25-(OH)2D synthesis and Gla-Ocn formation in nonrenal cells (rat osteoblast-like cells). However, ABL significantly promoted both 1,25-(OH)2D and Gla-Ocn formation when 25-hydroxyvitamin D, the substrate of 1α-hydroxylase, was added to the cells. Thus, the increased 1,25-(OH)2D levels in rats treated by ABL result in high levels of Gla-Ocn and transient calcium increase in the circulation. Gla-Ocn then mediates calcium ions in the extracellular fluid at bone sites to bind to hydroxyapatite at bone surfaces. This regulation by Gla-Ocn at least, in part, maintains the stability of blood calcium levels during ABL treatment. We conclude that the signaling pathway of ABL/1,25-(OH)2D/Gla-Ocn contributes to calcium homeostasis and may help understand the mechanism of ABL for osteoporosis therapy.
Collapse
Affiliation(s)
- Yanmei Yang
- The Center for Translational Medicine, Departments of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wei-Ju Tseng
- The Center for Translational Medicine, Departments of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bin Wang
- The Center for Translational Medicine, Departments of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Jin ES, Kim JY, Min J, Jeon SR, Choi KH, Khan SA, Moon GS, Jeong JH. Preliminary Study on Effect of Lactiplantibacillus plantarum on Osteoporosis in the Ovariectomized Rat. Food Sci Anim Resour 2023; 43:712-720. [PMID: 37483997 PMCID: PMC10359845 DOI: 10.5851/kosfa.2023.e29] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Osteoporosis is a growing global health concern primarily associated with decreased estrogen in postmenopausal women. Recently, some strains of probiotics were examined for potential anti-osteoporotic effects. This study intended to evaluate the impacts of Lactiplantibacillus plantarum MGE 3038 strain (MGE 3038) in ovariectomized rats. For this purpose, twelve weeks old female Wistar rats (n=21; 250-300 g) were divided into 3 groups; ovariectomy (OVX) group, OVX/MGE 3038 group and Sham group (control). In these groups; two went through respective OVX and one had daily MGE 3038 administration through oral gavage. Prior to 16 weeks after OVX, we collected blood samples and extracted the tibiae. We scanned the extracted tibiae by in-vivo micro-computed tomography (micro-CT) and evaluated pathology by hematoxylin and eosin (H&E) and Masson's trichrome staining. The serum levels of C-telopeptide of type I collagen (CTX), osteocalcin (OC), and the receptor activator of nuclear factor-ĸB ligand (RANKL) were examined. The OVX/MGE 3038 group showed increases in bone mineral density, trabecular bone volume, trabecular number, and trabecular thickness (Tb.Th), and a decrease in trabecular spacing than the OVX group. However, OVX/MGE 3038 group and control group were measurably comparable in Tb.Th. Micro-CT, H&E, and Masson's trichrome findings exhibited increased preservation and maintenance of trabecular bone structure in the OVX/MGE 3038 group in comparison to the OVX group. In serum, the levels of CTX, OC and RANKL were significantly different between the OVX and OVX/MGE 3038 groups. Taken together, L. plantarum MGE 3038 could be helpful for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Eun-Sun Jin
- Department of Internal Medicine, College
of Medicine, Kyung Hee University, Seoul 02447, Korea
- Laboratory of Stem Cell Therapy, Asan
Medical Center, College of Medicine, University of Ulsan,
Seoul 05505, Korea
| | - Ji Yeon Kim
- Laboratory of Stem Cell Therapy, Asan
Medical Center, College of Medicine, University of Ulsan,
Seoul 05505, Korea
| | - JoongKee Min
- Laboratory of Stem Cell Therapy, Asan
Medical Center, College of Medicine, University of Ulsan,
Seoul 05505, Korea
| | - Sang Ryong Jeon
- Laboratory of Stem Cell Therapy, Asan
Medical Center, College of Medicine, University of Ulsan,
Seoul 05505, Korea
- Department of Neurological Surgery, Asan
Medical Center, College of Medicine, University of Ulsan,
Seoul 05505, Korea
| | - Kyoung Hyo Choi
- Laboratory of Stem Cell Therapy, Asan
Medical Center, College of Medicine, University of Ulsan,
Seoul 05505, Korea
- Department of Rehabilitation Medicine,
Asan Medical Center, College of Medicine, University of Ulsan,
Seoul 05505, Korea
| | - Shehzad Abid Khan
- 4D Convergence Technology Institute, Korea
National University of Transportation, Jeungpyeong 27909,
Korea
| | - Gi-Seong Moon
- 4D Convergence Technology Institute, Korea
National University of Transportation, Jeungpyeong 27909,
Korea
- Department of Biotechnology, Korea
National University of Transportation, Jeungpyeong 27909,
Korea
| | - Je Hoon Jeong
- Laboratory of Stem Cell Therapy, Asan
Medical Center, College of Medicine, University of Ulsan,
Seoul 05505, Korea
- Department of Neurosurgery, Soonchunhyang
University Bucheon Hospital, Bucheon 14584, Korea
| |
Collapse
|
13
|
Qi H, Shen E, Shu X, Liu D, Wu C. ERK-estrogen receptor α signaling plays a role in the process of bone marrow mesenchymal stem cell-derived exosomes protecting against ovariectomy-induced bone loss. J Orthop Surg Res 2023; 18:250. [PMID: 36973789 PMCID: PMC10045825 DOI: 10.1186/s13018-023-03660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) are considered as candidates for osteoporosis (OP) therapy. Estrogen is critical in the maintenance of bone homeostasis. However, the role of estrogen and/or its receptor in BMSC-Exos treatment of OP, as well as its methods of regulation during this process remain unclear. METHODS BMSCs were cultured and characterized. Ultracentrifugation was performed to collect BMSC-Exos. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify BMSC-Exos. We examined the effects of BMSC-Exos on the proliferation, osteogenic differentiation, mineralization, and cell cycle distribution of MG-63 cells. The protein expression of estrogen receptor α (ERα) and the phosphorylation of ERK were investigated through western blotting. We determined the effects of BMSC-Exos on the prevention of bone loss in female rats. The female Sprague-Dawley rats were divided into three groups: the sham group, ovariectomized (OVX) group, and the OVX + BMSC-Exos group. Bilateral ovariectomy was performed in the OVX and OVX + BMSC-Exos groups, while a similar volume of adipose tissue around the ovary was removed in the sham group. The rats in OVX group and OVX + BMSC-Exos group were given PBS or BMSC-Exos after 2 weeks of surgery. Micro-CT scanning and histological staining were used to evaluate the in vivo effects of BMSC-Exos. RESULTS BMSC-Exos significantly enhanced the proliferation, alkaline phosphatase activity, and the Alizarin red S staining in MG-63 cells. The results of cell cycle distribution demonstrated that BMSC-Exos increased the proportion of cells in the G2 + S phase and decreased the proportion of cells in the G1 phase. Moreover, PD98059, an inhibitor of ERK, inhibited both the activation of ERK and the expression of ERα, which were promoted by administration of BMSC-Exos. Micro-CT scan showed that in the OVX + BMSC-Exos group, bone mineral density, bone volume/tissue volume fraction, trabecular number were significantly upregulated. Additionally, the microstructure of the trabecular bone was preserved in the OVX + BMSC-Exos group compared to that in the OVX group. CONCLUSION BMSC-Exos showed an osteogenic-promoting effect both in vitro and in vivo, in which ERK-ERα signaling might play an important role.
Collapse
Affiliation(s)
- Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China
- Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Enpu Shen
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiong Shu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China
- Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Danping Liu
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cheng'ai Wu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China.
- Beijing Jishuitan Hospital, Beijing, 100035, China.
| |
Collapse
|
14
|
Du J, Ding H, Fu S, Li D, Yu B. Bismuth-coated 80S15C bioactive glass scaffolds for photothermal antitumor therapy and bone regeneration. Front Bioeng Biotechnol 2023; 10:1098923. [PMID: 36760751 PMCID: PMC9907359 DOI: 10.3389/fbioe.2022.1098923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Malignant bone tumors usually occur in young people and have a high mortality and disability rate. Surgical excision commonly results in residual bone tumor cells and large bone defects, and conventional radiotherapy and chemotherapy may cause significant side effects. In this study, a bifunctional Bi-BG scaffold for near-infrared (NIR)-activated photothermal ablation of bone tumors and enhanced bone defect regeneration is fabricated. Methods: In this study, we prepared the Bi-BG scaffold by in-situ generation of NIR-absorbing Bi coating on the surface of a 3D-printing bioactive glass (BG) scaffold. SEM was used to analyze the morphological changes of the scaffolds. In addition, the temperature variation was imaged and recorded under 808 nm NIR laser irradiation in real time by an infrared thermal imaging system. Then, the proliferation of rat bone mesenchymal stem cells (rBMSCs) and Saos-2 on the scaffolds was examined by CCK-8 assay. ALP activity assay and RT-PCR were performed to test the osteogenic capacity. For in vivo experiments, the nude rat tumor-forming and rat calvarial defect models were established. At 8 weeks after surgery, micro-CT, and histological staining were performed on harvested calvarial samples. Results: The Bi-BG scaffolds have outstanding photothermal performance under the irradiation of 808 nm NIR at different power densities, while no photothermal effects are observed for pure BG scaffolds. The photothermal temperature of the Bi-BG scaffold can be effectively regulated in the range 26-100°C by controlling the NIR power density and irradiation duration. Bi-BG scaffolds not only significantly induces more than 95% of osteosarcoma cell death (Saos-2) in vitro, but also effectively inhibit the growth of bone tumors in vivo. Furthermore, they exhibit excellent capability in promoting osteogenic differentiation of rBMSCs and finally enhance new bone formation in the calvarial defects of rats. Conclusion: The Bi-BG scaffolds have bifunctional properties of photothermal antitumor therapy and bone regeneration, which offers an effective method to ablate malignant bone tumors based on photothermal effect.
Collapse
Affiliation(s)
- Jianhang Du
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Huifeng Ding
- Department of Orthopedics, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shengyang Fu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China,*Correspondence: Dejian Li, ; Bin Yu,
| | - Bin Yu
- Department of Orthopedics, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Dejian Li, ; Bin Yu,
| |
Collapse
|
15
|
LUNDY BRONWEN, MCKAY ALANNAHKA, FENSHAM NIKITAC, TEE NICOLIN, ANDERSON BRYCE, MORABITO AIMEE, ROSS MEGANLR, SIM MARC, ACKERMAN KATHRYNE, BURKE LOUISEM. The Impact of Acute Calcium Intake on Bone Turnover Markers during a Training Day in Elite Male Rowers. Med Sci Sports Exerc 2023; 55:55-65. [PMID: 35977107 PMCID: PMC9770130 DOI: 10.1249/mss.0000000000003022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Although an acute exercise session typically increases bone turnover markers (BTM), the impact of subsequent sessions and the interaction with preexercise calcium intake remain unclear despite the application to the "real-life" training of many competitive athletes. METHODS Using a randomized crossover design, elite male rowers ( n = 16) completed two trials, a week apart, consisting of two 90-min rowing ergometer sessions (EX1, EX2) separated by 150 min. Before each trial, participants consumed a high (CAL; ~1000 mg) or isocaloric low (CON; <10 mg) calcium meal. Biochemical markers including parathyroid hormone (PTH), serum ionized calcium (iCa) and BTMs (C-terminal telopeptide of type I collagen, osteocalcin) were monitored from baseline to 3 h after EX2. RESULTS Although each session caused perturbances of serum iCa, CAL maintained calcium concentrations above those of CON for most time points, 4.5% and 2.4% higher after EX1 and EX2, respectively. The decrease in iCa in CON was associated with an elevation of blood PTH ( P < 0.05) and C-terminal telopeptide of type I collagen ( P < 0.0001) over this period of repeated training sessions and their recovery, particularly during and after EX2. Preexercise intake of calcium-rich foods lowered BTM over the course of a day with several training sessions. CONCLUSIONS Preexercise intake of a calcium-rich meal before training sessions undertaken within the same day had a cumulative and prolonged effect on the stabilization of blood iCa during exercise. In turn, this reduced the postexercise PTH response, potentially attenuating the increase in markers of bone resorption. Such practical strategies may be integrated into the athlete's overall sports nutrition plan, with the potential to safeguard long-term bone health and reduce the risk of bone stress injuries.
Collapse
Affiliation(s)
- BRONWEN LUNDY
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
- Rowing Australia, Yarralumla, Australian Capital Territory, AUSTRALIA
| | - ALANNAH K. A. MCKAY
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - NIKITA C. FENSHAM
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - NICOLIN TEE
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - BRYCE ANDERSON
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - AIMEE MORABITO
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - MEGAN L. R. ROSS
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - MARC SIM
- Institute for Nutrition Research, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, AUSTRALIA
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, AUSTRALIA
| | - KATHRYN E. ACKERMAN
- Female Athlete Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - LOUISE M. BURKE
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| |
Collapse
|
16
|
Mahmoud MA, Safar MM, Agha AM, Khattab MM, Saleh DO. Telmisartan: An angiotensin receptor blocker regulates osteoclastogenesis via inhibition of the ERK triggering in osteoporotic male rats. Fundam Clin Pharmacol 2022; 36:869-878. [DOI: 10.1111/fcp.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Mohamed Aziz Mahmoud
- Department of Pharmacology, Medical Division National Research Centre Giza Egypt
| | - Marwa M. Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Cairo University Cairo Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy The British University in Egypt Cairo Egypt
| | - Azza M. Agha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Cairo University Cairo Egypt
| | - Mahmoud M. Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Cairo University Cairo Egypt
| | - Dalia O. Saleh
- Department of Pharmacology, Medical Division National Research Centre Giza Egypt
| |
Collapse
|
17
|
Fernandes-Breitenbach F, Peres-Ueno MJ, Santos LFG, Brito VGB, Castoldi RC, Louzada MJQ, Chaves-Neto AH, Oliveira SHP, Dornelles RCM. Analysis of the femoral neck from rats in the periestropause treated with oxytocin and submitted to strength training. Bone 2022; 162:116452. [PMID: 35654351 DOI: 10.1016/j.bone.2022.116452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Among the interventions used to prevent osteoporosis in female organisms, strength training (ST) and oxytocin (OT) stand out, as a promising hormone with anabolic action on bone. This study aimed to verify whether the combined action of OT and ST, compared to isolated interventions, potentiates the bone remodeling process of the femoral neck of Wistar rats during periestropause. Forty Wistar rats (18 months) with irregular estrous cycle were randomly distributed into groups: 1-Vehicle (Veh; NaCl 0.15 mol/L ip); 2-Oxytocin (Ot; 134 μg/kg/ip); 3-Strength training (St); 4-Ot + St. The animals of the 1, 2 and 4 groups received two intraperitoneal injections with an interval of 12 h every 30 days, totaling 8 injections at the end of the experimental period (18 to 21 months). The animals in the St and Ot + St groups performed ST on a ladder 3 times a week, maximal voluntary carrying capacity (MVCC) test monthly. After 120 days, the animals were euthanized; the femur was collected for analysis of biomechanical testing, densitometry, bone microtomography, Raman spectroscopy, tissue PCR, and blood for analysis of bone biomarkers, liver damage, and oxidative stress. The main effects in the Ot group were observed in the maximum load and energy in the compression testing (femoral head), and stiffness and energy in the three-points bending testing (femur diaphysis). In addition, the main effects occurred on the bone mineral density (BMD), cortical thickness (Ct.Th), number of pores (Po.N), polar moment of inertia (J), trabecular thickness (Tb.Th), and connectivity density (Conn.Dn), Bone alkaline phosphatase (Alp), Tumor necrosis factor receptor superfamily member 11b (Opg), Tumor necrosis factor ligand superfamily member 11 (Rankl) and Cathepsin K (Ctsk) expression. There was an effect in the tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP). In the St group, the main effect was observed on the energy (compression and the three-points bending), stiffness, aBMD, BMD, cortical bone area (Ct.Ar), Po.N, trabecular bone volume (BV/TV), Tb.Th and in the mineralization ratio (ѵ1PO4/proline), Runt-related transcription factor 2 (Runx2), Bone morphogenetic protein 2 (Bmp2), Alp, Osteopontin/secreted phosphoprotein 1 (Opn/Spp1), Opg, Tumor necrosis factor receptor superfamily member 11ª (Rank), Rankl, Ctsk expression. There was an effect in the TRAP and ALP. The interaction in the combination of therapies in the Ot + St group was verified in energy to maximum load (compression and three-points bending testing), stiffness, BMD, Ct.Th, J, Tb.Th and ѵ1PO4/proline. In the gene analysis there was interaction in the Runx2, Osterix/Sp7 transcription factor (Osx/Sp7), Bmp2, Alp, Osteocalcin/Bone gamma-carboxyglutamate protein (Ocn/Bglap), Opg, Rankl and Acid phosphatase 5, tartrate resistant (Trap/Acp5) expression. In addition, the combination of OT and ST resulted in a higher maximum load compared to the Veh group, with higher BV/TV than the Ot group, higher Rankl and Ctsk expression than Veh and Ot groups, and lower Po.N and lower activity of TRAP than the other groups. In oxidative stress, total antioxidant capacity (TAC) was lower. These results showed that the combination of interventions is a promising anabolic strategy for the prevention of osteoporosis in the period of periestropause, standing out from the effects of isolated interventions.
Collapse
Affiliation(s)
- Fernanda Fernandes-Breitenbach
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Melise Jacon Peres-Ueno
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Luís Fernando Gadioli Santos
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Victor Gustavo Balera Brito
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Robson Chacon Castoldi
- Postgraduate Program in Movement Sciences, Federal University of Mato Grosso do Sul - UFMS
| | - Mário Jeferson Quirino Louzada
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
18
|
The Bone Biomarker Response to an Acute Bout of Exercise: A Systematic Review with Meta-Analysis. Sports Med 2022; 52:2889-2908. [DOI: 10.1007/s40279-022-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/16/2022]
|
19
|
Therapeutic Potential of Naringenin Nanosuspension: In Vitro and In Vivo Anti-Osteoporotic Studies. Pharmaceutics 2022; 14:pharmaceutics14071449. [PMID: 35890343 PMCID: PMC9323949 DOI: 10.3390/pharmaceutics14071449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/11/2022] Open
Abstract
Naringenin (NRG) is a flavonoid and has been reported as an anti-osteoporotic agent. However, poor bioavailability may limit the anti-osteoporotic potential of the drug. The purpose of the study was to compare the anti-osteoporotic activity of naringenin nanosuspension (NRG-NS) with the NRG and standard therapeutic drug, raloxifene hydrochloride (RLX). Here, NRG-NS showed anti-osteoporotic activity in MG-63 cells by upregulating the osteocalcin levels. The in vivo anti-osteoporotic activity of NRG-NS was further investigated in an osteoporotic rat model to mimic the post-menopausal condition. The animals were randomized and separated into six groups. The animals were treated with RLX (p.o., 5.4 mg/kg), NRG (p.o., 20 mg/kg), NRG-NS (p.o., 20 mg/kg), and blank-NS for 60 days after completion of a 30-day post-surgery period and compared with control and ovariectomized (OVX) groups. After the treatment, body and uterine weights, biochemical estimation in serum (calcium, phosphorus, acid phosphatase, alkaline phosphatase, osteocalcin), bone parameters (length, diameter, dry weight, density, ash weight, bone mineral content) and bone microarchitecture by histopathology were determined. The results showed the protective effects of NRG-NS on osteoblast-like MG-63 cells. The biochemical estimations confirmed the normalization of parameters viz., alkaline phosphatase, calcium concentrations, and bone density with a decrease in levels of acid phosphatase and inorganic phosphorus with NRG-NS as compared to plain NRG. The results indicated that the oral administration of NRG-NS could be a potential therapeutic formulation for the treatment of osteoporosis.
Collapse
|
20
|
Cámara-Torres M, Sinha R, Sanchez A, Habibovic P, Patelli A, Mota C, Moroni L. Effect of high content nanohydroxyapatite composite scaffolds prepared via melt extrusion additive manufacturing on the osteogenic differentiation of human mesenchymal stromal cells. BIOMATERIALS ADVANCES 2022; 137:212833. [PMID: 35929265 DOI: 10.1016/j.bioadv.2022.212833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The field of bone tissue engineering seeks to mimic the bone extracellular matrix composition, balancing the organic and inorganic components. In this regard, additive manufacturing (AM) of high content calcium phosphate (CaP)-polymer composites holds great promise towards the design of bioactive scaffolds. Yet, the biological performance of such scaffolds is still poorly characterized. In this study, melt extrusion AM (ME-AM) was used to fabricate poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT)-nanohydroxyapatite (nHA) scaffolds with up to 45 wt% nHA, which presented significantly enhanced compressive mechanical properties, to evaluate their in vitro osteogenic potential as a function of nHA content. While osteogenic gene upregulation and matrix mineralization were observed on all scaffold types when cultured in osteogenic media, human mesenchymal stromal cells did not present an explicitly clear osteogenic phenotype, within the evaluated timeframe, in basic media cultures (i.e. without osteogenic factors). Yet, due to the adsorption of calcium and inorganic phosphate ions from cell culture media and simulated body fluid, the formation of a CaP layer was observed on PEOT/PBT-nHA 45 wt% scaffolds, which is hypothesized to account for their bone forming ability in the long term in vitro, and osteoconductivity in vivo.
Collapse
Affiliation(s)
- Maria Cámara-Torres
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Ravi Sinha
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Alberto Sanchez
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain
| | - Pamela Habibovic
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Instructive Biomaterial Engineering Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Alessandro Patelli
- Department of Physics and Astronomy, Padova University, Via Marzolo, 8, 35131 Padova, Italy
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
21
|
Shahrour HE, Al Fahom S, Al-Massarani G, AlSaadi AR, Magni P. Osteocalcin-expressing endothelial progenitor cells and serum osteocalcin forms are independent biomarkers of coronary atherosclerotic disease severity in male and female patients. J Endocrinol Invest 2022; 45:1173-1180. [PMID: 35089541 PMCID: PMC9098612 DOI: 10.1007/s40618-022-01744-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Osteocalcin (OC), an osteoblast-derived regulator of metabolic processes, and circulating early endothelial progenitor cells (EPC, CD34 - /CD133 + /KDR +) expressing OC (OC +) are potential candidates linking bone metabolism and the vasculature and might be involved in vascular atherosclerotic calcification. This study aimed at assessing the association of circulating levels of different OC forms and of EPCs count with disease severity in patients with documented coronary atherosclerosis (CAD). METHODS Patients (n = 59) undergoing coronary angiography were divided, according to stenosis severity, into (1) early coronary atherosclerosis (ECA) (n = 22), and (2) late coronary atherosclerosis (LCA) (n = 37). Total OC (TOC), carboxylated OC (cOC), undercarboxylated OC (unOC) were quantified by ELISA. EPC OC + count was assessed by flow cytometry. RESULTS EPC OC + counts showed significant differences between ECA and LCA groups. unOC and unOC/TOC ratio were inversely correlated with EPC OC + count. A significant decrease in TOC and unOC plasma levels was associated with higher cardiovascular risk factors (CVRFs) number. EPC OC + count was correlated with LDL-C, total cholesterol, and triglycerides, with a greater significance in the LCA group. No association between the different forms of circulating OC (TOC, ucOC, cOC) and severity of CAD was found. CONCLUSION This study showed a significant association between EPCs (CD34 - /CD133 + /KDR + /OC +), CAD severity and CVRFs, suggesting an active role for EPC OC + in the development of CAD. An inverse correlation between TOC, ucOC, and number of CVRFs was observed, suggesting that OC, regardless of its carboxylation status, may be developed as a further cardiovascular risk biomarker.
Collapse
Affiliation(s)
- H E Shahrour
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - S Al Fahom
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - G Al-Massarani
- Department Radiation Medicine, Pharmacological Studies Division, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - A R AlSaadi
- Department of Internal Medicine, Cardiovascular Disease Section, Faculty of Medicine, Damascus University, Damascus, Syria
| | - P Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milan, Italy.
- IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy.
- DISFeB-UNIMI, via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
22
|
Nomura S, Kono R, Imaoka M, Tazaki F, Okuno Y, Utsunomiya H, Takeda M, Nakamura M. Traditional Japanese apricot (Prunus mume) induces osteocalcin in osteoblasts. Biosci Biotechnol Biochem 2022; 86:528-534. [PMID: 35150233 DOI: 10.1093/bbb/zbac013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 01/20/2023]
Abstract
The fruit of Prunus mume (ume, also known as Japanese apricot) has been used as a functional food in Japan since ancient times. We previously reported that ume stimulates the differentiation of preosteoblastic cells. Osteocalcin (OCN) is secreted by osteoblasts, and there is known association with glucolipid metabolism and cognitive function. This study sought to clarify the relationship between ume extracts and OCN production both in vitro and in vivo. Alkaline phosphatase activity and OCN level in the ethyl acetate extracts of ume-treated extracts were significantly increased in preosteoblast MC3T3-E1 cells compared with the control group. In human study, serum OCN level was significantly higher in the high ume intake group than in the low intake group in community-dwelling participants over 60 years old. These results suggest that ume has the potential to upregulated OCN production both in vitro and in vivo.
Collapse
Affiliation(s)
- Sachiko Nomura
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, Wakayama, Japan
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Ryohei Kono
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masakazu Imaoka
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Fumie Tazaki
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Yoshiharu Okuno
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Wakayama, Japan
| | - Hirotoshi Utsunomiya
- Department of Strategic Surveillance for Functional Food and Comprehensive Traditional Medicine, Wakayama Medical University, Wakayama, Japan
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Masatoshi Takeda
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Misa Nakamura
- Cognitive Reserve Research Center, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| |
Collapse
|
23
|
The Influence of Nesfatin-1 on Bone Metabolism Markers Concentration, Densitometric, Tomographic and Mechanical Parameters of Skeletal System of Rats in the Conditions of Established Osteopenia. Animals (Basel) 2022; 12:ani12050654. [PMID: 35268222 PMCID: PMC8909152 DOI: 10.3390/ani12050654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Nesfatin-1 is an adipokine with little known effect on the skeletal system. In this study, we examined the effect of 8-wk administration of nesfatin-1 on densitometric, tomographic, and mechanical parameters of bones, as well as the concentration of bone metabolism markers in rats with experimentally induced established osteopenia. Abstract Our study aimed to evaluate the impact of nesfatin-1 administration on bone metabolism and properties in established osteopenia in ovariectomized female rats. In total, 21 female Wistar rats were assigned to two groups: sham-operated (SHAM, n = 7) and ovariectomized (OVA, n = 14). After 12 weeks of osteopenia induction in the OVA females, the animals were given i.p. physiological saline (OVA, n = 7) or 2 µg/kg body weight of nesfatin-1(NES, n = 7) for the next 8 weeks. The SHAM animals received physiological saline at the same time. Final body weight, total bone mineral density and content of the skeleton were estimated. Then, isolated femora and tibias were subjected to densitometric, tomographic, and mechanical tests. Bone metabolism markers, i.e., osteocalcin, bone specific alkaline phosphatase (bALP), and crosslinked N-terminal telopeptide of type I collagen (NTx) were determined in serum using an ELISA kit. Ovariectomy led to negative changes in bone metabolism associated with increased resorption, thus diminishing the densitometric, tomographic, and mechanical parameters. In turn, the administration of nesfatin-1 led to an increase in the value of the majority of the tested parameters of bones. The lowest bALP concentration and the highest NTx concentration were found in the OVA females. The bALP concentration was significantly higher after nesfatin-1 administration in comparison to the OVA rats. In conclusion, the results indicate that nesfatin-1 treatment limits bone loss, preserves bone architecture, and increases bone strength in condition of established osteopenia.
Collapse
|
24
|
Matheus HR, Ervolino E, Gusman DJR, Forin LG, Piovezan BR, de Almeida JM. The influence of antineoplastic agents on the peri-implant bone around osseointegrated titanium implants: an in vivo histomorphometric and immunohistochemical study. Clin Oral Investig 2022; 26:2681-2692. [PMID: 34686918 DOI: 10.1007/s00784-021-04239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND OBJECTIVE The interaction between antineoplastic drugs used for treating cancer and non-affected tissues remains poorly assessed and may be critical for maintaining the quality of life for patients during and after treatment. This pre-clinical study evaluated the effects of cisplatin (CIS) and 5-fluorouracil (5-FU) on the peri-implant repair process around osseointegrated titanium implants installed in the tibiae of rats. MATERIAL AND METHODS Were used 90 male rats, randomly divided into three groups (n = 30): physiological saline solution (PSS), CIS, and 5-FU. Titanium implants (4.0 × 2.2 mm) were inserted in both tibiae of all animals at day 0. The animals received either PSS, CIS, or 5-FU at 35 and 37 days. Euthanasia was performed at 50, 65, and 95 days after surgery. Histometric (bone/implant contact [BIC]) and bone area fraction occupancy (% BAFO), histological, and immunohistochemical (for bone morphogenetic protein 2/4 [BMP2/4], Runt-related transcription factor 2 [RUNX2], osteocalcin [OCN], and tartrate-resistant acid phosphatase [TRAP]) analyses were performed. Data were statistically analyzed. RESULTS Groups CIS and 5-FU presented lower BIC and lower BAFO as compared with PSS in all time points. The imbalance in bone turnover was observed by the lower number of BMP2/4-, RUNX2-, and OCN-positive cells/mm2 and the higher number of TRAP-positive cells/mm in groups CIS and 5-FU as compared with PSS in all time points. Persistent and exacerbated inflammation was observed in groups CIS and 5-FU. CONCLUSIONS Both antineoplastic agents interfered negatively in the bone turnover around osseointegrated titanium implants. CLINICAL RELEVANCE Closer and more careful follow-up of patients with osseointegrated implants that will undergo chemotherapy with either CIS or 5-FU shall be performed.
Collapse
Affiliation(s)
- Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery-Periodontics Division, São Paulo State University (Unesp), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Edilson Ervolino
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - David Jonathan Rodrigues Gusman
- Department of Diagnosis and Surgery-Periodontics Division, São Paulo State University (Unesp), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Luiz Guilherme Forin
- Department of Diagnosis and Surgery-Periodontics Division, São Paulo State University (Unesp), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Bianca Rafaeli Piovezan
- Department of Diagnosis and Surgery-Periodontics Division, São Paulo State University (Unesp), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery-Periodontics Division, São Paulo State University (Unesp), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil.
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil.
| |
Collapse
|
25
|
Salehiamin M, Toolee H, Azami M, Tafti SHA, Mojaverrostami S, Halimi S, Barakzai S, Sobhani A, Abbasi Y. Chitosan Scaffold Containing Periostin Enhances Sternum Bone Healing and Decreases Serum Level of TNF-α and IL-6 after Sternotomy in Rat. Tissue Eng Regen Med 2022; 19:839-852. [PMID: 35199306 PMCID: PMC9294132 DOI: 10.1007/s13770-022-00434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In the aftermath of bone injuries, such as cranium and sternum, bone wax (BW) is used to control bleeding from the bone surfaces during surgery. Made up of artificial substances, however, it is associated with many complications such as inflammation, increased risk for infection, and bone repair delay. We, therefore, in this study set out to design and evaluate a novel BW without the above-mentioned side-effects reported for other therapies. METHODS The pastes (new BW(s)) were prepared in the laboratory and examined by MTT, MIC, MBC, and degradability tests. Then, 60 adult male Wistar rats, divided into six equal groups including chitosan (CT), CT-octacalcium phosphate (OCP), CT-periostin (Post), CT-OCP-Post, Control (Ctrl), and BW, underwent sternotomy surgery. Once the surgeries were completed, the bone repair was assessed radiologically and thereafter clinically in vivo and in vitro using CT-scan, H&E, ELISA, and qRT-PCR. RESULTS All pastes displayed antibacterial properties and the CT-Post group had the highest cell viability compared to the control group. In contrast to the BW, CT-Post group demonstrated weight changes in the degradability test. In the CT-Post group, more number of osteocyte cells, high trabeculae percentage, and the least fibrous connective tissue were observed compared to other groups. Additionally, in comparison to the CT and Ctrl groups, higher alkaline phosphatase activity, as well as decreased level of serum tumor necrosis factor-α, interleukin-6, and OCN in the CT-Post group was evident. Finally, Runx2, OPG, and RANKL genes' expression was significantly higher in the CT-Post group than in other groups. CONCLUSION Our results provide insights into the desirability of pastes in terms of cellular viability, degradability, antibacterial properties, and surgical site restoration compared to the BW group. Besides, Periostin could enhance the osteogenic properties of bone tissue defect site.
Collapse
Affiliation(s)
- Mehdi Salehiamin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Toolee
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shogoofa Barakzai
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yasaman Abbasi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Mukherjee S, Sharma S, Soni V, Joshi A, Gaikwad A, Bellare J, Kode J. Improved osteoblast function on titanium implant surfaces coated with nanocomposite Apatite-Wollastonite-Chitosan- an experimental in-vitro study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:25. [PMID: 35190908 PMCID: PMC8860945 DOI: 10.1007/s10856-022-06651-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is a continuous research in the area of biomimetic coatings on the titanium (Ti) implant surfaces for improved survival and long-term successful outcomes in the field of dentistry and orthopedics. In-vitro approaches are ideal systems for studying cell-material interactions without complexity and interference observed in in-vivo models. PURPOSE The present study was undertaken to evaluate the osteoblast characteristics and function on Ti substrates coated with the novel composite coating of ceramic apatite-wollastonite (AW) and polymer chitosan. MATERIALS AND METHODS Ti substrate coated with composite AW-Chitosan was synthesized, using electrophoretic deposition. MG-63 cells were seeded onto the coated substrates and cellular morphology and growth was assessed using Scanning Electron Microscopy (SEM) and Laser Scanning Microscopy (LSM). Osteocalcin expression of the seeded cells was assessed by FITC tagging and LSM analysis. Alizarin Red S staining and Confocal LSM (CSLM) analysis was used to study the in-vitro mineralization on the titanium samples. RESULTS The AW-Chitosan coating on Ti samples by electrophoretic deposition exerted significant positive influence on cell proliferation, growth and mineralization as compared to uncoated titanium samples. Scanning electron microscopy and laser confocal microscopy experiments revealed that the coating was non-toxic to cells, enhanced adhesion and proliferation of MG-63 cells. Increased functional activity was observed by increased production of bone-specific protein osteocalcin and mineralized calcium through day 7 and 14. CONCLUSIONS The present study underscores that optimal inorganic-organic phase nanocomposite crack-free coating created on Ti by simple, cost-effective electrophoretic deposition technique may have osteoconductive potential and may have wide application in the field of implantology. Graphical abstract.
Collapse
Affiliation(s)
- Shayanti Mukherjee
- Kode Lab, Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Smriti Sharma
- Department of Chemical Engineering, School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Principal Scientist I at Roche Sequencing Unit, Pleasanton, CA, 94588, USA
| | - Vivek Soni
- Department of Chemical Engineering and Wadhwani Research Center for Bioengineering, IIT-Bombay, Mumbai, 400076, India
- Deptartment of Orthodontics, D.Y. Patil University, School of Dentistry, Navi Mumbai, India
| | - Amruta Joshi
- Department of Periodontics, MGM Dental College and Hospital, Navi Mumbai, 410209, India
| | - Amit Gaikwad
- Department of Prosthodontics, MGM Dental College and Hospital, Navi Mumbai, 410209, India
| | - Jayesh Bellare
- Department of Chemical Engineering and Wadhwani Research Center for Bioengineering, IIT-Bombay, Powai, Mumbai, 400076, India.
| | - Jyoti Kode
- Kode Lab, Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
27
|
Choi SY, Rhim J, Han WJ, Park H, Noh JW, Han J, Ha CW. Associations between biomarkers and histological assessment in individual animals in a destabilization of the medial meniscus (DMM) model of osteoarthritis (OA). Acta Orthop Belg 2022; 87:713-721. [PMID: 35172438 DOI: 10.52628/87.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, the use of biomarkers for assessing individual severity of osteoarthritis (OA) is limited, and the correlation of histological scores with biomarkers for individual animals in the destabilization of the medial meniscus (DMM) model of OA has not been well investigated. Accordingly, this study investigated how well representative biomarkers in the DMM model reflected specific changes in individual animals. Rats were randomly divided into the OA group and the sham group. OA model was established by destabilization of the medial meniscus (DMM). After 2,4,6,8,10 and 12 weeks (n=14, each week), the concentrations of CTXII, COMP, C2C, and OC in serum were measured, and cartilage degeneration, osteophytes, and synovial membrane inflammation, typical of OA, were scored using Osteoarthritis Research Society International (OARSI) scoring system. Additionally, the correlation between each biomarker and the specific changes in osteoarthritis was analyzed for individual animals using the Generalized Estimating Equation (GEE). Statistical analysis showed a low correlation between CTXII and osteophyte score of the medial femur (coefficient = -0.0088, p= 0.0103), COMP and osteophyte score of the medial tibia (coefficient = -0.0911, p= 0.0003), and C2C and synovial membrane inflammation scores of the medial femoral (coefficient = 0.054, p= 0.0131). These results suggest that representative OA bio- markers in individual animals in the DMM model did not reflect histological scores well.
Collapse
|
28
|
de Almeida JM, Matheus HR, Sendão Alves BE, Rodrigues Gusman DJ, Nagata MJH, de Abreu Furquim EM, Ervolino E. Evaluation of antimicrobial photodynamic therapy with acidic methylene blue for the treatment of experimental periodontitis. PLoS One 2022; 17:e0263103. [PMID: 35143492 PMCID: PMC8830666 DOI: 10.1371/journal.pone.0263103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the security and effectiveness of antimicrobial photodynamic therapy (aPDT) with a citric acid-based methylene blue (MB) on the periodontal repair following the treatment of ligature-induced experimental periodontitis (EP) in rats. MATERIAL AND METHODS Were used 120 male rats, randomly divided into 4 experimental groups (n = 30): no treatment (NT), SRP alone (SRP), SRP plus aPDT using conventional MB pH 7.0 (aPDT-pH7), SRP plus aPDT using acidic MB pH 1.0 (aPDT-pH1). EP was induced at day 0 by the placement of a ligature around the mandibular left first molars. Ten animals per group/period were euthanized at 14, 22 and 37 days. Histopathological, histometric (percentage of bone in the furcation [PBF]) and immunohistochemical (for tartrate-resistant acid phosphatase [TRAP] and osteocalcin [OCN]) analyses were performed. Data were statistically analyzed. RESULTS aPDT-pH1 showed the highest PBF as compared with the other treatments. Collectively, tissues' reaction to both dyes were controlled and healthy for the periodontium. Both aPDT protocols reduced the extent and intensity of the local inflammatory response, reduced the alveolar bone resorption, and promoted a better structural arrangement of the connective tissue as compared with SRP. TRAP expression was downregulated while OCN expression was upregulated by aPDT as compared with SRP alone. CONCLUSION Our data implicate that the novel MB pH 1.0 is as safe as the conventional MB for use in aPDT and raises its additional benefit of increasing the amount of alveolar bone in the furcation.
Collapse
Affiliation(s)
- Juliano Milanezi de Almeida
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Henrique Rinaldi Matheus
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Breno Edson Sendão Alves
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - David Jonathan Rodrigues Gusman
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Maria José Hitomi Nagata
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Elisa Mara de Abreu Furquim
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Edilson Ervolino
- School of Dentistry, Nucleus of Study and Research in Periodontics and Implantology (NEPPI), São Paulo State University (Unesp), Araçatuba, SP, Brazil
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| |
Collapse
|
29
|
Jin ES, Kim JY, Yang JM, Kim JS, Min J, Jeon SR, Choi KH, Moon GS, Jeong JH. The Effect of Genetically Modified Lactobacillus plantarum Carrying Bone Morphogenetic Protein 2 Gene on an Ovariectomized Rat. J Korean Neurosurg Soc 2021; 65:204-214. [PMID: 34727681 PMCID: PMC8918239 DOI: 10.3340/jkns.2021.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Osteoporosis result from age-related decline in the number of osteoblast progenitors in the bone marrow. Probiotics have beneficial effects on the host, when administered in appropriate amounts. This study investigated the effects of probiotics expressing specific genes, especially the effects of genetically modified bone morphogenetic protein (BMP)-2-expressing Lactobacillus plantarum CJNU 3003 (LP) on ovariectomized rats. Methods Twenty-eight female Wistar rats (250-300 g, 12 weeks old) were divided into four groups : the sham (control), the ovariectomy (OVX)-induced osteoporosis group (OVX), the OVX and LP (OVX/LP), OVX and genetically modified BMP-2-expressing LP (OVX/LP with BMP) groups. The three groups underwent bilateral OVX and two of these groups were administered two different types of LP via oral gavage daily. At 16 weeks post-OVX, blood was collected from the heart and the bilateral tibiae were extracted and were scanned by ex-vivo micro-computed tomography and stained with hematoxylin-and-eosin (H&E) and Masson's trichrome stain for pathological assessment. The serum levels of osteocalcin (OC), rat C-telopeptide of type I collagen (CTX-I), BMP-2, and receptor activator of nuclear factor-ĸB ligand (RANKL) were measured. Results The 3D-micro-computed tomography images showed that the trabecular structure in the OVX/LP with BMP group was maintained compared with OVX and OVX/LP groups. No significant differences were detected in trabecular thickness (Tb.Th) between control and OVX/LP with BMP groups (p>0.05). Furthermore, a tendency toward increased BMD, trabecular bone volume, Tb.Th, and trabecular number and decreased trabecular separation was found in rats in the OVX/LP with BMP groups when compared with the OVX and OVX/LP groups (p>0.05). The H&E and Masson's trichrome stained sections showed a thicker trabecular bone in the OVX/LP with BMP group compared with the OVX and OVX/LP groups. There was no difference in serum levels of OC, CTX and RANKL control and OVX/LP with BMP groups (p>0.05). In contrast, significant differences were found in OC and CTX-1 levels between the OVX and OVX/LP with BMP groups (p<0.05). Conclusion Our results showed that the expression of genetically modified BMP-2 showed inhibition effect for bone loss in a rat model of osteoporosis.
Collapse
Affiliation(s)
- Eun-Sun Jin
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Korea.,Laboratory of Stem Cell Therapy, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Ji Yeon Kim
- Laboratory of Stem Cell Therapy, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Jung-Mo Yang
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong, Korea
| | - Jun-Sub Kim
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong, Korea
| | - JoongKee Min
- Laboratory of Stem Cell Therapy, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Sang Ryong Jeon
- Laboratory of Stem Cell Therapy, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Neurological Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Kyoung Hyo Choi
- Laboratory of Stem Cell Therapy, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Rehabilitation Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Gi-Seong Moon
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong, Korea
| | - Je Hoon Jeong
- Laboratory of Stem Cell Therapy, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
30
|
Matheus HR, Ervolino E, Gusman DJR, Alves BES, Fiorin LG, Pereira PA, de Almeida JM. Association of hyaluronic acid with a deproteinized bovine graft improves bone repair and increases bone formation in critical-size bone defects. J Periodontol 2021; 92:1646-1658. [PMID: 33258112 DOI: 10.1002/jper.20-0613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND This study is designed to evaluate the potential of different formulations of hyaluronic acid (HA) to improve new bone formation in critical-size calvaria defect (CSD) when combined with a deproteinized bovine graft (DBG) material. METHODS Thirty male rats were used. A 5-mm-diameter CSD was created and three experimental groups (n = 10) were randomly assigned based on the treatments performed. Group DBG: CSD filled with a DBG; group DBG/LV: CSD filled by the combination of DBG and HA in a low-viscosity crosslinking agent; group DBG/HV: CSD filled by the combination of DBG and HA in a high-viscosity crosslinking agent. Animals were euthanized 30 days postoperatively. Histological, histometric (percentage of newly formed bone [PNFB], percentage of remaining graft particles, histochemical, and immunohistochemical (bone morphogenetic protein 2/4 [BMP2/4], osteocalcin [OCN], and tartrate-resistant acid phosphatase [TRAP]) analyses were performed. RESULTS The highest PNFB was observed in DBG/HV when compared with the other groups (P ≤0.05). DBG/LV and DBG/HV presented almost no inflammatory cells. In contrast, inflammation was observed in group DBG. Extensive resorption of graft particles was observed in group DBG, which was not present in DBG/LV and DBG/HV as confirmed by the larger size of the particles (P ≤0.05). BMP2/4 and OCN immunolabeling were higher in DBG/HV when compared with group DBG (P ≤0.05). Increased number of TRAP-positive cells was observed in DBG/LV and DBG/HV (P ≤0.05). Lower percentage of mature collagen fibers was observed in DBG/HV (P ≤0.05). CONCLUSION The combination of HA in a high-viscosity crosslinking agent with DBG improves the bone repair process and increases the amount of newly formed bone towards CSDs in rat calvaria.
Collapse
Affiliation(s)
- Henrique R Matheus
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - David Jonathan Rodrigues Gusman
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Breno Edson Sendão Alves
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Luiz Guilherme Fiorin
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Priscilla Aparecida Pereira
- Private practice. Director of the Pro-clinic Nucleus of Orofacial Harmonization, São Paulo, São Paulo, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
31
|
Liu X, Yeap BB, Brock KE, Levinger I, Golledge J, Flicker L, Brennan-Speranza TC. Associations of Osteocalcin Forms With Metabolic Syndrome and Its Individual Components in Older Men: The Health In Men Study. J Clin Endocrinol Metab 2021; 106:e3506-e3518. [PMID: 34003927 DOI: 10.1210/clinem/dgab358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The osteoblast-derived polypeptide, osteocalcin (OC), has been associated with lower risk of type 2 diabetes and metabolic syndrome (MetS) in several epidemiological studies. Animal studies have indicated the undercarboxylated form of OC (ucOC) drives its association with metabolic outcomes. OBJECTIVE We compared associations of ucOC and carboxylated OC (cOC) with MetS and its components in older men. METHODS A cross-sectional analysis of 2575 men aged ≥70 years and older resident in Perth, Western Australia. ucOC was assayed using a hydroxyapatite-binding method, and cOC calculated by subtracting ucOC from total OC. Main outcome measures were MetS and its components. RESULTS Both lower serum ucOC and cOC levels, and the proportion of cOC (%cOC) were associated with less favorable metabolic parameters (higher waist circumference, triglyceride, glucose, blood pressure, and lower high-density lipoprotein cholesterol), whereas inverse associations were found with %ucOC. Men in the lowest quintile of ucOC had higher risk of MetS compared to men in the highest quintile (Q1 ≤ 7.7 vs Q5 > 13.8 ng/mL; OR = 2.4; 95% CI, 1.8-3.2). Men in the lowest quintile of cOC had higher risk of MetS compared to those in the highest quintile (≤ 5.8 vs > 13.0 ng/mL; OR = 2.4; 95% CI, 1.8-3.2). CONCLUSION Lower concentrations of serum ucOC or cOC were associated with less favorable metabolic parameters and a higher risk of MetS. In contrast, a lower proportion of ucOC was associated with better metabolic parameters and lower MetS risk. Further research is warranted to determine whether ucOC and cOC are suitable biomarkers for cardiometabolic risk in men.
Collapse
Affiliation(s)
- Xiaoying Liu
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bu B Yeap
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Kaye E Brock
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Queensland, Australia
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Western Australian Centre for Health and Ageing, University of Western Australia, Perth, Western Australia, Australia
| | - Tara C Brennan-Speranza
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Antineoplastic agents aggravate the damages caused by nicotine on the peri-implant bone: an in vivo histomorphometric and immunohistochemical study in rats. Clin Oral Investig 2021; 26:1477-1489. [PMID: 34386857 DOI: 10.1007/s00784-021-04121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To assess the interaction between chemotherapy and normal tissues is critical to assure quality of life during and after the treatment of cancer. This study evaluated the influence of cisplatin (CIS) and 5-fluorouracil (5-FU) over the peri-implant tissues around osseointegrated titanium implants in animals previously exposed to nicotine. Materials and methods One hundred twenty male rats were divided into two groups, receiving via subcutaneous injection, either physiological saline solution (PSS) (n = 30) or nicotine hemissulfate (NIC) (n = 90) for 30 days prior to implants' placement. One titanium implant (4.0 × 2.2 mm) was installed in each tibia of all animals. PSS and NIC were continued for 30 days after surgery. Five days after cessation, rats were subdivided into three subgroups in accordance with systemic treatments with either PSS, CIS, or 5-FU. Euthanasia was performed at 50, 65, and 95 days post-surgery. Histometric, histopathological, and immunohistochemical analyses were performed. RESULTS NIC-CIS and NIC-5FU presented lower BIC (50, 65, and 95 days) and bone area fraction occupancy (BAFO) (65 and 95 days) than group NIC. Intense inflammatory infiltration, severe tissue breakdown, reduced expression of bone formation biomarkers, and upregulation of TRAP were observed in NIC-CIS and NIC-5FU when compared with group NIC. TRAP expression was significantly higher in NIC-5FU as compared with NIC-CIS at 50 and 95 days. Groups NIC, NIC-CIS, and NIC-5FU presented statistically significant negative impact in all outcome parameters than group PSS. CONCLUSION CIS and 5-FU severely disrupted the peri-implant tissues around osseointegrated implants in animals previously exposed to nicotine. CLINICAL RELEVANCE Assessing the interaction between chemotherapy and normal tissues is critical to assure quality of life during and after the cancer treatment.
Collapse
|
33
|
Mahmoud MAA, Saleh DO, Safar MM, Agha AM, Khattab MM. Chloroquine ameliorates bone loss induced by d-galactose in male rats via inhibition of ERK associated osteoclastogenesis and antioxidant effect. Toxicol Rep 2021; 8:366-375. [PMID: 33665135 PMCID: PMC7905189 DOI: 10.1016/j.toxrep.2021.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Cloroquine (CQ) has reduced the adverse bone changes caused by d-galactose. It improved bone health, switched off nuclear factor kappa-B ligand (RANKL) receptor activator activation and decreased ERK bone expression. CQ treatment inhibited osteoclastogenesis and consequently restored the RANKL/OPG ratio. CQ demonstrated an antioxidant effect in bone where it increased both catalase (CAT) and superoxide dismutase (SOD). CQ is a possible anti-osteoporotic agent through the suppression of osteoclastogenesis associated with ERK.
Chloroquine (CQ); a lysosomotropic agent used for decade ago as anti-malarial, was tested against aging induced osteoporosis. Osteoporosis in male rats was induced using d-galactose (D-gal) as a reducing sugar at a dose of 200 mg/kg/day; i.p. Osteoporotic rats were orally treated with CQ (10 mg/kg/day) for four successive weeks. Bone densitometry of tibia and femur were evaluated. Bone formation biomarkers; osteoprotegrin (OPG), bone specific alkaline phosphatse (BALP), and osteocalcin (OCN), and bone resorption biomarker; receptor activator of nuclear factor kappa-B ligand (RANKL), cathepsin-k (CTSK), tartrate-resistant acid phosphatase (TRAP) were estimated. Moreover, the expression of extracellular regulated kinase (ERK) in bone was determined. CQ ameliorated the bone detrimental changes induced by d-galactose. It enhanced bone health as revealed by measurement of bone densitometry, halted the activation of receptor activator of nuclear factor kappa-B ligand (RANKL) and reduced bone manifestation of ERK. Furthermore, CQ treatment abated serum cathepsin-k (CTSK) and serum tartrate-resistant acid phosphatase (TRAP) thus inhibited osteoclastogenesis and consequently restored the RANKL/OPG ratio. CQ demonstrated an antioxidant effect in bone where it increased both Catalase (CAT) and Superoxide dismutase (SOD). These CQ preserving effect in rats treated with d-galactose were confirmed by the histopathological examination. The present study points to the potential therapeutic effect of CQ as anti-osteoporotic agent possibly through its antioxidant effects and suppression of ERK associated osteoclastogenesis.
Collapse
Affiliation(s)
| | - Dalia O Saleh
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Azza M Agha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
34
|
Hiam D, Landen S, Jacques M, Voisin S, Alvarez-Romero J, Byrnes E, Chubb P, Levinger I, Eynon N. Osteocalcin and its forms respond similarly to exercise in males and females. Bone 2021; 144:115818. [PMID: 33338665 DOI: 10.1016/j.bone.2020.115818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute exercise increases osteocalcin (OC), a marker of bone turnover, and in particular the undercarboxylated form (ucOC). Males and females differ in baseline levels of total OC and it is thought the hormonal milieu may be driving these differences. Males and females adapt differently to the same exercise intervention, however it is unclear whether the exercise effects on OC are also sex-specific. We tested whether the responses of OC and its forms to acute High Intensity Interval Exercise (HIIE) and High Intensity Interval Training (HIIT) differed between males and females. Secondly, we examined whether sex hormones vary with OC forms within sexes to understand if these are driving factor in any potential sex differences. METHODS Total OC (tOC), undercarboxylated OC (ucOC), and carboxylated OC (cOC) were measured in serum of 96 healthy participants from the Gene SMART cohort (74 males and 22 females) at rest, immediately after, and 3 h after a single bout of HIIE, and at rest, 48 h after completing a four week HIIT intervention. Baseline testosterone and estradiol were also measured for a subset of the cohort (Males = 38, Females = 20). Linear mixed models were used to a) uncover the sex-specific effects of acute exercise and short-term training on OC forms and b) to examine whether the sex hormones were associated with OC levels. RESULTS At baseline, males had higher levels of tOC, cOC, and ucOC than females (q < 0.01). In both sexes tOC, and ucOC increased to the same extent after acute HIIE. At baseline, in males only, higher testosterone was associated with higher ucOC (β = 3.37; q < 0.046). Finally, tOC and ucOC did not change following 4 weeks of HIIT. CONCLUSION/DISCUSSION While there were no long-term changes in OC and its forms. tOC and ucOC were transiently enhanced after a bout of HIIE similarly in both sexes. This may be important in metabolic signalling in skeletal muscle and bone suggesting that regular exercise is needed to maintain these benefits. Overall, these data suggest that the sex differences in exercise adaptations do not extend to the bone turnover marker, OC.
Collapse
Affiliation(s)
- D Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - S Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - M Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - S Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - J Alvarez-Romero
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - E Byrnes
- PathWest Laboratory Medicine, QEII Medical Centre, Perth, Australia
| | - P Chubb
- PathWest Laboratory Medicine, Fiona Stanley Hospital, Perth, Australia
| | - I Levinger
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - N Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
35
|
Effects of Premating Calcium and Phosphorus Supplementation on Reproduction Efficiency of Grazing Yak Heifers. Animals (Basel) 2021; 11:ani11020554. [PMID: 33672512 PMCID: PMC7923756 DOI: 10.3390/ani11020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This study was realized to explore the effects of calcium chloride (CaCl) and monocalcium phosphate (MCP) supplementation on the reproductive efficiency of grazing yak heifers. The body weight, serum markers of bone metabolism, and conception and calving rate of grazing yaks in control group and supplementary feeding groups were compared. The results revealed that supplementation with MCP but not CaCl could significantly improve the reproductive performance, possibly due to the improvement in body weight and bone phosphorus storage providing better estrous physiological conditions for grazing yak heifers. The findings of this study may be helpful and instructional to improve the reproductive efficiency of yaks on the Qinghai Tibet Plateau. Abstract Reproductive efficiency is the main factor limiting yak production on the Tibet Plateau. The purpose of this study was to investigate the effect of supplementation with calcium chloride (CaCl) and monocalcium phosphate (MCP) for 30 days before breeding on body weight (BW) change, serum bone metabolism biomarkers, conception rate, and calving rate of grazing yaks. Ninety 3 year old yak heifers (153.05 ± 6.56 kg BW) were assigned to three treatments (n = 30 per treatment): grazing without supplementation (CONT), grazing plus calcium chloride supplementation (CaCl), and grazing plus monocalcium phosphate supplementation (MCP). Compared with the CONT group, supplementation with CaCl increased the serum concentrations of osteocalcin and decreased the alkaline phosphatase (ALP) levels (p < 0.05); supplementation with MCP increased the average daily gain (ADG), serum concentrations of phosphorus (P) and osteocalcin, conception rate, and calving rate (p < 0.05), whereas it decreased the serum concentrations of hydroxyproline, ALP, and calcitonin (p < 0.05). Both CaCl and MCP supplementation had no effect on serum calcium (Ca) concentration. The ADG, conception rate, and calving rate were higher in the MCP group than in the CaCl group (p < 0.05), while the serum concentrations of hydroxyproline and calcitonin were lower (p < 0.05). It could be concluded that premating supplementation with MCP increased the body weight gain and subsequent conception and calving rate of grazing yaks. Supplementation with MCP had a positive effect on body condition and bone metabolism, thus providing a better estrous condition for grazing yak heifers, which could contribute to enhancing reproduction efficiency.
Collapse
|
36
|
Blair HC, Schlesinger PH. Survival of the glycosylated. eLife 2021; 10:65719. [PMID: 33480844 PMCID: PMC7822590 DOI: 10.7554/elife.65719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Osteocalcin is a bone matrix protein that acts like a hormone when it reaches the blood, and has different effects in mice and humans.
Collapse
Affiliation(s)
- Harry C Blair
- Veterans Affairs Medical Center and the Department of Pathology, University of Pittsburgh, Pittsburgh, United States
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, United States
| |
Collapse
|
37
|
Paldánius PM, Ivaska KK, Mäkitie O, Viljakainen H. Serum and Urinary Osteocalcin in Healthy 7- to 19-Year-Old Finnish Children and Adolescents. Front Pediatr 2021; 9:610227. [PMID: 34504811 PMCID: PMC8421857 DOI: 10.3389/fped.2021.610227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Children and adolescents have high bone turnover marker (BTM) levels due to high growth velocity and rapid bone turnover. Pediatric normative values for BTMs reflecting bone formation and resorption are vital for timely assessment of healthy bone turnover, investigating skeletal diseases, or monitoring treatment outcomes. Optimally, clinically feasible measurement protocols for BTMs would be validated and measurable in both urine and serum. We aimed to (a) establish sex- and age-specific reference intervals for urinary and serum total and carboxylated osteocalcin (OC) in 7- to 19-year-old healthy Finnish children and adolescents (n = 172), (b) validate these against standardized serum and urinary BTMs, and (c) assess the impact of anthropometry, pubertal status, and body composition on the OC values. All OC values in addition to other BTMs increased with puberty and correlated with pubertal growth, which occurred and declined earlier in girls than in boys. The mean serum total and carboxylated OC and urinary OC values and percentiles for sex-specific age categories and pubertal stages were established. Correlation between serum and urinary OC was weak, especially in younger boys, but improved with increasing age. The independent determinants for OC varied, the urinary OC being the most robust while age, height, weight, and plasma parathyroid hormone (PTH) influenced serum total and carboxylated OC values. Body composition parameters had no influence on any of the OC values. In children and adolescents, circulating and urinary OC reflect more accurately growth status than bone mineral density (BMD) or body composition. Thus, validity of OC, similar to other BTMs, as a single marker of bone turnover, remains limited. Yet, serum and urinary OC similarly to other BTMs provide a valuable supplementary tool when assessing longitudinal changes in bone health with repeat measurements, in combination with other clinically relevant parameters.
Collapse
Affiliation(s)
- Päivi M Paldánius
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Kaisa K Ivaska
- University of Turku, Institute of Biomedicine, Turku, Finland
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Folkhälsan Research Center, Helsinki, Finland
| | - Heli Viljakainen
- Folkhälsan Research Center, Helsinki, Finland.,Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Fernández-Murga ML, Olivares M, Sanz Y. Bifidobacterium pseudocatenulatum CECT 7765 reverses the adverse effects of diet-induced obesity through the gut-bone axis. Bone 2020; 141:115580. [PMID: 32795675 DOI: 10.1016/j.bone.2020.115580] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Obesity and the associated chronic metabolic diseases (e.g., type-2 diabetes) adversely affect bone metabolism and health. Gut microbiota is considered to be involved in the pathophysiology of obesity and also represents a therapeutic target. This study has investigated the contribution of diet-induced obesity to alterations in bone health and metabolism and whether these could be restored by oral administration of Bifidobacterium pseudocatenulatum CECT 7765. To do so, adult male wild-type C57BL-6 mice were fed either a standard or high-fat diet (HFD), supplemented or not with B. pseudocatenulatum CECT 7765 (109 CFU/day) for 14 weeks. Effects on bone mass density (BMD), bone mineral content, bone remodeling, bone structure and gene expression were assessed. In HFD-fed mice, bone microstructural properties at the distal femur showed deteriorated trabecular architecture in bone volumetric fraction, trabecular number and trabecular pattern factor. Besides, the HFD reduced the volumetric bone mineral density in the trabecular bone, but not in the cortical bone. All these bone microstructural alterations found in obese mice were reversed by B. pseudocatenulatum CECT 7765. Administration of the bacterium increased (p < .05) the Wnt/β-catenin pathway gene expression, which could mediate effects on BMD. Bifidobacterium pseudocatenulatum CECT 7765 supplementation increased (p < .05) serum osteocalcin (OC, bone formation parameter), and decreased serum C-terminal telopeptide (CTX) (p < .01) and parathormone (PTH) (p < .05) (both bone resorption parameters). It also altered the microstructure of the femur. In summary, HFD interfered with the normal bone homeostasis leading to increased bone loss. In obese mice, B. pseudocatenulatum CECT 7765 lowered bone mass loss and enhanced BMD by decreasing bone resorption and increasing bone formation.
Collapse
Affiliation(s)
- M Leonor Fernández-Murga
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Marta Olivares
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
39
|
Arponen M, Brockmann EC, Kiviranta R, Lamminmäki U, Ivaska KK. Recombinant Antibodies with Unique Specificities Allow for Sensitive and Specific Detection of Uncarboxylated Osteocalcin in Human Circulation. Calcif Tissue Int 2020; 107:529-542. [PMID: 32839842 PMCID: PMC7593320 DOI: 10.1007/s00223-020-00746-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/05/2020] [Indexed: 10/30/2022]
Abstract
Osteocalcin is a bone-specific protein which contains three glutamic acid residues (Glu) that undergo post-translational gamma-carboxylation. Uncarboxylated osteocalcin (ucOC) may participate in the regulation of glucose metabolism, thus measurement of ucOC could be useful in evaluating interactions between bone and glucose metabolism. We developed recombinant antibodies and immunoassay to specifically detect ucOC in human blood samples. ucOC-specific recombinant antibodies were selected from an antibody library by phage display. Four candidates were characterized, and one (Fab-AP13) was used to set up an immunoassay with a pre-existing MAb. Plasma ucOC levels were measured in subjects with normal fasting blood glucose (≤ 6 mmol/l, N = 46) or with hyperglycemia (≥ 7 mmol/l, N = 29). Further, we analyzed ucOC in age- and gender-matched patients with diagnosed type 2 diabetes (T2D, N = 49). Antibodies recognized ucOC without cross-reaction to carboxylated osteocalcin. Antibodies had unique binding sites at the carboxylation region, with Glu17 included in all epitopes. Immunoassay was set up and characterized. Immunoassay detected ucOC in serum and plasma, with on average 1.6-fold higher levels in plasma. ucOC concentrations were significantly lower in subjects with hyperglycemia (median 0.58 ng/ml, p = 0.008) or with T2D diagnosis (0.68 ng/ml, p = 0.015) than in subjects with normal blood glucose (1.01 ng/ml). ucOC negatively correlated with fasting plasma glucose in subjects without T2D (r = - 0.24, p = 0.035) but not in T2D patients (p = 0.41). Our immunoassay, based on the novel recombinant antibody, allows for specific and sensitive detection of ucOC in human circulation. Correlation between ucOC and plasma glucose suggests interactions between osteocalcin and glucose metabolism in humans.
Collapse
Affiliation(s)
- Milja Arponen
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland
| | | | - Riku Kiviranta
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland
| | - Urpo Lamminmäki
- Department of Biotechnology, University of Turku, Turku, Finland
| | - Kaisa K Ivaska
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland.
| |
Collapse
|
40
|
Dolan E, Varley I, Ackerman KE, Pereira RMR, Elliott-Sale KJ, Sale C. The Bone Metabolic Response to Exercise and Nutrition. Exerc Sport Sci Rev 2020; 48:49-58. [PMID: 31913188 DOI: 10.1249/jes.0000000000000215] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone (re)modeling markers can help determine how the bone responds to different types, intensities, and durations of exercise. They also might help predict those at risk of bone injury. We synthesized evidence on the acute and chronic bone metabolic responses to exercise, along with how nutritional factors can moderate this response. Recommendations to optimize future research efforts are made.
Collapse
Affiliation(s)
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Kathryn E Ackerman
- Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rosa Maria R Pereira
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kirsty Jayne Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
41
|
Liu X, Liu Y, Mathers J, Cameron M, Levinger I, Yeap BB, Lewis JR, Brock KE, Brennan-Speranza TC. Osteocalcin and measures of adiposity: a systematic review and meta-analysis of observational studies. Arch Osteoporos 2020; 15:145. [PMID: 32945990 DOI: 10.1007/s11657-020-00812-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/25/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED Osteocalcin, the osteoblast-derived protein, has been shown to be modulated in patients with problematic glucose metabolism. Our systematic review and meta-analysis found that in humans, higher blood osteocalcin level is associated with lower body indices of fat. PURPOSE/INTRODUCTION Osteocalcin (OC) was found to be inversely correlated with measures of glucose and energy metabolism, with some groups suggesting the undercarboxylated form (ucOC) to be metabolically active, although the link is not clear, especially in humans. Given obesity is a major risk factor for metabolic disorders, we aimed to assess the correlation between OC and two measures of body weight: body mass index (BMI) and percentage body fat (%BF). METHODS MEDLINE and EMBASE were searched to identify observational studies in adult populations that reported the crude correlation coefficients (r) between OC and BMI and %BF. Pool r were obtained using random-effects models. RESULTS Fifty-one publications were included in this analysis. Both total OC (TOC) (pooled r = - 0.151, 95% CI - 0.17, - 0.130; I2 = 52%) and ucOC (pooled r = - 0.060, 95% CI - 0.103, - 0.016; I2 = 54%) were inversely correlated with BMI. The pooled r between TOC and BMI in Caucasian-and-other-regions (r = - 0.187) were stronger than those in Asian populations (r = - 0.126; intra-group p = 0.002; R2 = 0.21). The mean/median BMI of the reported cohort was the major contributor to between-study heterogeneity in correlation between TOC/ucOC and BMI (R2 = 0.28 and 0.77, respectively). Both TOC and ucOC were also inversely correlated with %BF (TOC: pooled r = - 0.185, 95% CI - 0.257 to - 0.112; ucOC: pooled r = - 0.181, 95% CI - 0.258 to - 0.101). CONCLUSION Higher OC and ucOC were correlated with lower BMI and %BF. The inverse correlations between TOC/ucOC and BMI appear to be affected by ethnicity and obesity status.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Yihui Liu
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Julia Mathers
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Melissa Cameron
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Bu B Yeap
- Medical School, University of Western Australia, Perth, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Joshua R Lewis
- Medical School, University of Western Australia, Perth, Australia
- Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kaye E Brock
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tara C Brennan-Speranza
- Department of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
42
|
Cavalier E, Lukas P, Bottani M, Aarsand AK, Ceriotti F, Coşkun A, Díaz-Garzón J, Fernàndez-Calle P, Guerra E, Locatelli M, Sandberg S, Carobene A. European Biological Variation Study (EuBIVAS): within- and between-subject biological variation estimates of β-isomerized C-terminal telopeptide of type I collagen (β-CTX), N-terminal propeptide of type I collagen (PINP), osteocalcin, intact fibroblast growth factor 23 and uncarboxylated-unphosphorylated matrix-Gla protein-a cooperation between the EFLM Working Group on Biological Variation and the International Osteoporosis Foundation-International Federation of Clinical Chemistry Committee on Bone Metabolism. Osteoporos Int 2020; 31:1461-1470. [PMID: 32270253 DOI: 10.1007/s00198-020-05362-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED We have calculated the biological variation (BV) of different bone metabolism biomarkers on a large, well-described cohort of subjects. BV is important to calculate reference change value (or least significant change) which allows evaluating if the difference observed between two consecutive measurements in a patient is biologically significant or not. INTRODUCTION Within-subject (CVI) and between-subject (CVG) biological variation (BV) estimates are essential in determining both analytical performance specifications (APS) and reference change values (RCV). Previously published estimates of BV for bone metabolism biomarkers are generally not compliant with the most up-to-date quality criteria for BV studies. We calculated the BV and RCV for different bone metabolism markers, namely β-isomerized C-terminal telopeptide of type I collagen (β-CTX), N-terminal propeptide of type I collagen (PINP), osteocalcin (OC), intact fibroblast growth factor 23 (iFGF-23), and uncarboxylated-unphosphorylated Matrix-Gla Protein (uCuP-MGP) using samples from the European Biological Variation Study (EuBIVAS). METHODS In the EuBIVAS, 91 subjects were recruited from six European laboratories. Fasting blood samples were obtained weekly for ten consecutive weeks. The samples were run in duplicate on IDS iSYS or DiaSorin Liaison instruments. The results were subjected to outlier and variance homogeneity analysis before CV-ANOVA was used to obtain the BV estimates. RESULTS We found no effect of gender upon the CVI estimates. The following CVI estimates with 95% confidence intervals (95% CI) were obtained: β-CTX 15.1% (14.4-16.0%), PINP 8.8% (8.4-9.3%), OC 8.9% (8.5-9.4%), iFGF23 13.9% (13.2-14.7%), and uCuP-MGP 6.9% (6.1-7.3%). CONCLUSIONS The EuBIVAS has provided updated BV estimates for bone markers, including iFGF23, which have not been previously published, facilitating the improved follow-up of patients being treated for metabolic bone disease.
Collapse
Affiliation(s)
- E Cavalier
- Department of Clinical Chemistry, University of Liège, CHU de Liège, 4000, Liège, Belgium.
- International Federation of Clinical Chemistry-International Osteoporosis Foundation Committee for Bone Markers, Milan, Italy.
| | - P Lukas
- Department of Clinical Chemistry, University of Liège, CHU de Liège, 4000, Liège, Belgium
| | - M Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy
| | - A K Aarsand
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway
- Biological Variation Working Group, European Federation of Clinical Chemistry and Laboratory Medicine, Milan, Italy
| | - F Ceriotti
- Clinical Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - A Coşkun
- Biological Variation Working Group, European Federation of Clinical Chemistry and Laboratory Medicine, Milan, Italy
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Turkey
| | - J Díaz-Garzón
- Biological Variation Working Group, European Federation of Clinical Chemistry and Laboratory Medicine, Milan, Italy
- Quality Analytical Commission of Spanish Society of Laboratory Medicine (SEQC-ML), Hospital Universitario La Paz, Madrid, Spain
| | - P Fernàndez-Calle
- Biological Variation Working Group, European Federation of Clinical Chemistry and Laboratory Medicine, Milan, Italy
- Quality Analytical Commission of Spanish Society of Laboratory Medicine (SEQC-ML), Hospital Universitario La Paz, Madrid, Spain
| | - E Guerra
- Laboratory Medicine, Ospedale San Raffaele, Milan, Italy
| | - M Locatelli
- Laboratory Medicine, Ospedale San Raffaele, Milan, Italy
| | - S Sandberg
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway
- Biological Variation Working Group, European Federation of Clinical Chemistry and Laboratory Medicine, Milan, Italy
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - A Carobene
- Biological Variation Working Group, European Federation of Clinical Chemistry and Laboratory Medicine, Milan, Italy
- Laboratory Medicine, Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
43
|
Gera S, Pooladanda V, Godugu C, Swamy Challa V, Wankar J, Dodoala S, Sampathi S. Rutin nanosuspension for potential management of osteoporosis: effect of particle size reduction on oral bioavailability, in vitro and in vivo activity. Pharm Dev Technol 2020; 25:971-988. [PMID: 32403972 DOI: 10.1080/10837450.2020.1765378] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clinical significance of Rutin (RUT) is limited by poor dissolution rate and low oral bioavailability. The study was designed to improve the physicochemical and therapeutic potential of the drug by formulating nanosuspension (NS) for osteoporosis. Rutin nanosuspension (RUT-NS) was prepared after screening a range of stabilizers and their combinations at a different concentration by antisolvent precipitation technique. Effect of precipitation on crystallinity (differential scanning calorimetry DSC, X-ray diffraction studies XRD), morphology (scanning electron microscopy, SEM) and chemical interaction (attenuated total reflectance fourier-transform infrared spectroscopy ATR-FTIR) were studied through biophysical techniques. An optimized nanosuspension exhibited a minimum particle size of 122.85 ± 5.02 nm with higher dissolution of RUT-NS (87. 63 ± 2.29%) as compared to pure drug (39.77 ± 2.8 6%). The enhanced intestine absorption and apparent permeability were achieved due to the improved particle size, surface area and dissolution. RUT-NS displayed greater (3 folds) AUC0-24 h than pure drug. In vitro assays with RUT-NS depicted an increased cell proliferation, antioxidant (ROS) activity and osteocalcin production in MG-63 osteoblast cells. The augmented biochemical in vivo biomarkers and bone quality proved the protective effect of RUT-NS. The results supported RUT-NS as a potential therapy for maintaining bone health.
Collapse
Affiliation(s)
- Sonia Gera
- Department of Pharmaceutics, NIPER, Hyderabad, India
| | | | | | | | - Jitendra Wankar
- CÚRAM
- SFI Research Centres for Medical Devices, Department of Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Sujatha Dodoala
- Institute of Pharmaceutical technology, Sri Padmavathi Mahila Visvavidyalayam, Tirupati, India
| | | |
Collapse
|
44
|
Cámara-Torres M, Sinha R, Mota C, Moroni L. Improving cell distribution on 3D additive manufactured scaffolds through engineered seeding media density and viscosity. Acta Biomater 2020; 101:183-195. [PMID: 31731025 DOI: 10.1016/j.actbio.2019.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022]
Abstract
In order to ensure the long-term in vitro and in vivo functionality of cell-seeded 3D scaffolds, an effective and reliable method to control cell seeding efficiency and distribution is crucial. Static seeding on 3D additive manufactured scaffolds made of synthetic polymers still remains challenging, as it often results in poor cell attachment, high cell sedimentation and non-uniform cell distribution, due to gravity and to the intrinsic macroporosity and surface chemical properties of the scaffolds. In this study, the biocompatible macromolecules dextran and Ficoll (Ficoll-Paque) were used for the first time as temporary supplements to alter the viscosity and density of the seeding media, respectively, and improve the static seeding output. The addition of these macromolecules drastically reduced the cell sedimentation velocities, allowing for homogeneous cell attachment to the scaffold filaments. Both dextran and Ficoll-Paque -based seeding methods supported human mesenchymal stromal cells viability and osteogenic differentiation post-seeding. Interestingly, the improved cell distribution led to increased matrix production and mineralization compared to scaffolds seeded by conventional static method. These results suggest a simple and universal method for an efficient seeding of 3D additive manufactured scaffolds, independent of their material and geometrical properties, and applicable for bone and various other tissue regeneration. STATEMENT OF SIGNIFICANCE: Additive manufacturing has emerged as one of the desired technologies to fabricate complex and patient-specific 3D scaffolds for bone regeneration. Along with the technology, new synthetic polymeric materials have been developed to meet processability requirements, as well as the mechanical properties and biocompatibility necessary for the application. Yet, there is still lack of methodology for a universal cell seeding method applicable to all additive manufactured 3D scaffolds regardless of their characteristics. We believe that our simple and reliable method, which is based on adjusting the cell settling velocity to aid cell attachment, could potentially help to maximize the efficiency, and therefore, functionality of cell-seeded constructs. This is of great importance when aiming for both in vitro and future clinical applications.
Collapse
|
45
|
Liu Z, Chen R, Jiang Y, Yang Y, He L, Luo C, Dong J, Rong L. A meta-analysis of serum osteocalcin level in postmenopausal osteoporotic women compared to controls. BMC Musculoskelet Disord 2019; 20:532. [PMID: 31722698 PMCID: PMC6854738 DOI: 10.1186/s12891-019-2863-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 10/09/2019] [Indexed: 01/04/2023] Open
Abstract
Background Circulatory osteocalcin (OC) has been widely used as a biomarker to indicate bone turnover status in postmenopausal osteoporosis (PMO). However, the change of serum OC (sOC) level in PMO cases compared to postmenopausal controls remains controversial. Methods We searched the online database of PubMed and Cochrane Library. A meta-analysis of case-control studies was performed to compare the pooled sOC level between PMO patients and postmenopausal controls. Subgroup analysis according to potential confounding factors (different OC molecules and regions of the study population) was also performed. Results Ten case-control studies with 1577 postmenopausal women were included in this meta analysis. We found no significant difference in the pooled sOC level [mean difference (MD) = 1.84, 95% confidence interval (CI): (− 1.49, 5.16), p = 0.28] between PMO patients and controls. Subgroup analysis also revealed no significant difference in intact OC [MD = 1.76, 95%CI: (− 1.71, 5.23), p = 0.32] or N-terminal mid-fragment of the OC molecule [MD = 0.67, 95%(− 5.83, 7.18), p = 0.84] between groups. For different regions, no significant difference in sOC was found in Asian population between cases and controls [MD = -0.06, 95%(− 6.02, 5.89), p = 0.98], while the pooled sOC level was significantly higher in European PMO cases than controls [MD = 3.15, 95%(0.90, 5.39), p = 0.006]. Conclusions Our analysis revealed no significant difference in sOC level between PMO cases and controls according to all the current eligible studies. OC molecules are quite heterogeneous in the circulation and can be influenced by glucose metabolism. Therefore, sOC is currently not a good indicator for the high bone turnover status in PMO. More trials with standardized methodologies for the evaluation of circulatory OC are awaited to update our current findings.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ruiqiang Chen
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yutong Jiang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yang Yang
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Lei He
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Chunxiao Luo
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianwen Dong
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Limin Rong
- Department of Spine Surgery, Institute of Drug Clinical Trial for Orthopedic Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
46
|
Increased Plasma Osteocalcin, Oral Disease, and Altered Mandibular Bone Density in Postmenopausal Women. Int J Dent 2019; 2019:3715127. [PMID: 31781221 PMCID: PMC6855022 DOI: 10.1155/2019/3715127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023] Open
Abstract
An association between oral diseases and postmenopausal status has been recognized. However, the relationship between all oral disease, mandibular bone density, health status, and osteocalcin (OCN) bone markers in postmenopausal dental patients has not been reported. This study was therefore to verify the differences in plasma OCN levels, dental, periodontal, and oral mucosal disease, and mandibular bone density alterations from panoramic radiograph and systemic parameters in postmenopausal women, compared to premenopausal women. Oral, radiographic, and blood examination were performed in 92 females. Dental, periodontal, and oral mucosal statuses were recorded. Health profile parameters were collected from medical charts. Plasma OCN was evaluated by enzyme-linked immunosorbent assay. Forty-two (45.7%) participants were postmenopausal with a higher median age (55 (51, 62) years) than the premenopausal group (43 (38, 45) years). Overweight or obesity, hypercholesterolemia, and impaired fasting blood sugar were more prevalent in postmenopause. The average postmenopausal OCN level (425.62 ng/mL) was significantly higher than the premenopausal group (234.77 ng/mL, p < 0.001). The average number of missing teeth, mean attachment loss, alveolar bone loss, periapical lesion count, and clinical oral dryness score were also significantly higher in postmenopause (p=0.008, < 0.001, 0.031, 0.006, and 0.005, respectively). However, mandibular bone density determined by mandibular cortical index was lower in postmenopause (p < 0.001). The panoramic mandibular index, mandibular cortical width, fractal dimension, and other oral mucosal disease did not differ between the groups. Postmenopause was associated with elevated plasma OCN (β = 0.504, p < 0.001) when related covariates were adjusted. Elevated plasma OCN, oral mucosal dryness, high number of periapical radiolucencies and missing teeth, and lower mandibular bone density from panoramic radiograph were prevalent in postmenopausal women. Dentists should suspect an increased risk of low bone mineral density in postmenopausal patients who display these clinical and radiographic findings, and they should be referred for further examination. Plasma OCN may interconnect a relationship between postmenopausal status and the low mandibular bone density.
Collapse
|
47
|
Licini C, Vitale-Brovarone C, Mattioli-Belmonte M. Collagen and non-collagenous proteins molecular crosstalk in the pathophysiology of osteoporosis. Cytokine Growth Factor Rev 2019; 49:59-69. [PMID: 31543432 DOI: 10.1016/j.cytogfr.2019.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
Abstract
Collagenous and non-collagenous proteins (NCPs) in the extracellular matrix, as well as the coupling mechanisms between osteoclasts and osteoblasts, work together to ensure normal bone metabolism. Each protein plays one or more critical roles in bone metabolism, sometimes even contradictory, thus affecting the final mechanical, physical and chemical properties of bone tissue. Anomalies in the amount and structure of one or more of these proteins can cause abnormalities in bone formation and resorption, which consequently leads to malformations and defects, such as osteoporosis (OP). The connections between key proteins involved in matrix formation and resorption are far from being elucidated. In this review, we resume knowledge on the crosstalk between collagen type I and selected NCPs (Transforming Growth Factor-β, Insulin-like Growth Factor-1, Decorin, Osteonectin, Osteopontin, Bone Sialoprotein and Osteocalcin) of bone matrix, focusing on their possible involvement and role in OP. The different elements of this network can be pharmacologically targeted or used for the design/development of innovative regenerative strategies to modulate a feedback loop in bone remodelling.
Collapse
Affiliation(s)
- Caterina Licini
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy; Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, 60126, Ancona, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, 60126, Ancona, Italy
| |
Collapse
|
48
|
Rossi M, Battafarano G, Pepe J, Minisola S, Del Fattore A. The Endocrine Function of Osteocalcin Regulated by Bone Resorption: A Lesson from Reduced and Increased Bone Mass Diseases. Int J Mol Sci 2019; 20:ijms20184502. [PMID: 31514440 PMCID: PMC6769834 DOI: 10.3390/ijms20184502] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is a peculiar tissue subjected to a continuous process of self-renewal essential to assure the integrity of the skeleton and to explicate the endocrine functions. The study of bone diseases characterized by increased or reduced bone mass due to osteoclast alterations has been essential to understand the great role played by osteocalcin in the endocrine functions of the skeleton. The ability of osteoclasts to regulate the decarboxylation of osteocalcin and to control glucose metabolism, male fertility, and cognitive functions was demonstrated by the use of animal models. In this review we described how diseases characterized by defective and increased bone resorption activity, as osteopetrosis and osteoporosis, were essential to understand the involvement of bone tissue in whole body physiology. To translate this knowledge into humans, recently published reports on patients were described, but further studies should be performed to confirm this complex hormonal regulation in humans.
Collapse
Affiliation(s)
- Michela Rossi
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| | - Giulia Battafarano
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| | - Jessica Pepe
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, 00186 Rome, Italy.
| | - Salvatore Minisola
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, 00186 Rome, Italy.
| | - Andrea Del Fattore
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
49
|
Hiam D, Voisin S, Yan X, Landen S, Jacques M, Papadimitriou ID, Munson F, Byrnes E, Brennan-Speranza TC, Levinger I, Eynon N. The association between bone mineral density gene variants and osteocalcin at baseline, and in response to exercise: The Gene SMART study. Bone 2019; 123:23-27. [PMID: 30878522 DOI: 10.1016/j.bone.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Osteocalcin (OC) is used as a surrogate marker for bone turnover in clinical settings. As bone mineral density (BMD) is largely heritable, we tested the hypothesis that a) bone-associated genetic variants previously identified in Genome-Wide Association Studies (GWAS) and combined into a genetic risk score (GRS) are associated with a) circulating levels of OC and b) the changes in OC following acute exercise. METHODS Total OC (tOC), undercarboxylated OC (ucOC), and carboxylated OC (cOC) were measured in serum of 73 healthy Caucasian males at baseline and after a single bout of high-intensity interval exercise. In addition, genotyping was conducted targeting GWAS variants previously reported to be associated with BMD and then combined into a GRS. Potential associations between the GRS and tOC, ucOC and cOC were tested with linear regressions adjusted for age. RESULTS At baseline none of the individual SNPs associated with tOC, ucOC and cOC. However, when combined, a higher GRS was associated with higher tOC (β = 0.193 ng/mL; p = 0.037; 95% CI = 0.012, 0.361) and cOC (β = 0.188 ng/mL; p = 0.04; 95% CI = 0.004, 0.433). Following exercise, GRS was associated with ucOC levels, (β = 3.864 ng/mL; p-value = 0.008; 95% CI = 1.063, 6.664) but not with tOC or cOC. CONCLUSION Screening for genetic variations may assist in identifying people at risk for abnormal circulating levels of OC at baseline/rest. Genetic variations in BMD predicted the ucOC response to acute exercise indicating that physiological functional response to exercise may be influenced by bone-related gene variants.
Collapse
Affiliation(s)
- Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | | | - Fiona Munson
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | | | | | - Itamar Levinger
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.; Science (AIMSS), Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.; Murdoch Childrens Research Institute, Melbourne, Australia.
| |
Collapse
|
50
|
Heamatococcus pluvialis ameliorates bone loss in experimentally-induced osteoporosis in rats via the regulation of OPG/RANKL pathway. Biomed Pharmacother 2019; 116:109017. [PMID: 31158803 DOI: 10.1016/j.biopha.2019.109017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUNDS Osteoporosis prevailing in elderly involves a marked increase in bone resorption showing an initial fall in bone mineral density leading to a significant reduction in bone formation. AIM The present study aimed to investigate the effect of Heamatococcus pluvialis microalgae on osteoporosis in D-galactose-treated rats. The underlying mechanism was tracked targeting the osteoprotegerin (OPG)/ nuclear factor-κβ ligand (RANKL) pathway using micro-computed tomography scanning. METHODS Osteoporosis was induced in rats by intraperitoneal injection of D-galactose (200 mg/kg/day) for eight consecutive weeks. Osteoporotic rats were orally treated with H. pluvialis biomass (BHP; 450 mg/kg), its polar (PHP; 30 mg/kg) and carotenoid (CHP; 30 mg/kg) fractions for the last 2 weeks of D-Gal injection. Twenty four hours after the last dose of the treatments, tibia bones of the rats were scanned using micro-computed tomography scanning for bone mineral density (BMD), bone volume fraction (BV/TV), trabecular thickness/separation/number (Tb.Th, Tb.Sp, Tb.N) evaluation, blood samples were withdrawn and sera were used for biochemical assessment. Moreover, femur bones were examined histopathologically using several stains. RESULTS Induction of osteoporosis was associated with a marked reduction in BMD, BV/TV, Tb.Th, Tb.Sp, Tb.N and in serum levels of phosphorus and catalase. On the other hand, a significant elevation in serum levels of calcium, bone alkaline phosphatase (BALP) and interleukin-6 was observed. Moreover, up-regulation of OPG was detected in osteoporotic rats. Oral treatment with BHP, and PHP incremented tibia BMD and serum phosphorus level along with the decrease in serum levels of calcium, BALP, interleukin-6, OPG and RANKL. However, treatment with CHP almost restored all the fore mentioned parameters to normal values. Furthermore, the histopathological evaluation emphasized the biochemical outcomes. CONCLUSION H. pluvialis fractions rich in astaxanthin ameliorated bone loss in experimentally-induced osteoporosis in rats probably through the down-regulation of serum OPG in concurrence with up-regulation of serum RANKL.
Collapse
|