1
|
Marar TT, Boffa MB. Identification of heparin interaction sites on thrombin-activatable fibrinolysis inhibitor that modulate plasmin-mediated activation, thermal stability, and antifibrinolytic potential. Res Pract Thromb Haemost 2024; 8:102459. [PMID: 38983903 PMCID: PMC11231710 DOI: 10.1016/j.rpth.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Background Thrombin-activatable fibrinolysis inhibitor (TAFI) is a plasma zymogen that provides a molecular link between coagulation and fibrinolysis. Studies have shown that the presence of glycosaminoglycans accelerates TAFI activation by plasmin and stabilizes activated TAFI (TAFIa). Objectives We aimed to define the elements of TAFI structure that allow these effects. Methods Based on crystallographic studies and homology to heparin-binding proteins, we performed mutagenesis of surface-exposed charged residues on TAFI that putatively constitute heparin-binding sites. We determined heparin binding, kinetics of activation by plasmin in the presence or absence of heparin, thermal stability, and antifibrinolytic potential of each variant. Results Mutagenesis of Lys211 and Lys212 did not impair heparin binding but affected the ability of TAFI to be activated by plasmin. Mutagenesis of Lys306 and His308 did not impair heparin binding, but mutation of His308 had a severe negative effect on TAFI/TAFIa function. Mutation of Arg320 and Lys324 in combination markedly decreased heparin binding but had no effect on heparin-mediated acceleration of TAFI activation by plasmin while somewhat decreasing TAFIa stabilization by heparin. Mutagenesis of Lys327 and Arg330 decreased (but did not eliminate) heparin binding while decreasing the ability of heparin to accelerate plasmin-mediated TAFI activation, stabilize TAFIa, and increase the antifibrinolytic ability of TAFIa. A quadruple mutant of Arg320, Lys324, Lys327, and Arg330 completely lost heparin-binding ability and stabilization of the enzyme by heparin. Conclusion Basic residues in the dynamic flap of TAFIa define a functionally relevant heparin-binding site, but additional heparin-binding sites may be present on TAFI.
Collapse
Affiliation(s)
- Tanya T Marar
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Michael B Boffa
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Mertens JC, Blanc-Guillemaud V, Claesen K, Cardona P, Hendriks D, Tyl B, Molina CA. Carboxypeptidase U (TAFIa) Is Rapidly Activated and Deactivated Following Thrombolysis and Thrombectomy in Stroke Patients. Transl Stroke Res 2022; 13:959-969. [PMID: 34796454 DOI: 10.1007/s12975-021-00962-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
The antifibrinolytic enzyme carboxypeptidase U (CPU, TAFIa, CPB2) is an appealing target for the treatment of acute ischemic stroke (AIS). Increased insights in CPU activation and inactivation during thrombolysis (rtPA) with or without endovascular thrombectomy (EVT) are required to develop CPU inhibitors as profibrinolytic agents with optimal benefits/risks. Therefore, CPU kinetics during ischemic stroke treatment were evaluated. AIS patients with documented cerebral artery occlusion receiving rtPA (N = 20) or rtPA + EVT (N = 16) were included. CPU activation during thrombolysis was measured by an ultrasensitive HPLC-based CPU activity method and by an ELISA measuring both CPU and inactivated CPU (CPU + CPUi). Intravenous blood samples were collected at admission and throughout the first 24 h. Additional in situ blood samples were collected in the rtPA + EVT cohort proximal from the thrombus. The NIHSS score was determined at baseline and 24 h. CPU activity and CPU + CPUi levels increased upon rtPA administration and reached peak values at the end of thrombolysis (1 h). High inter-individual variability was observed in both groups. CPU activity decreased rapidly within 3 h, while CPU + CPUi levels were still elevated at 7 h. CPU activity or CPU + CPUi levels were similar in in situ and peripheral samples. No correlation between CPU or CPU + CPUi and NIHSS or thrombus localization was found. The CPU system was rapidly activated and deactivated following thrombolysis and thrombectomy in stroke patients, suggesting that a CPU inhibitor would have to be administered during rtPA infusion and over the next few hours. The high CPU generation variability suggests that some patients may not respond to the treatment. EudraCT number 2017-002760-41.
Collapse
Affiliation(s)
- Joachim C Mertens
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Vanessa Blanc-Guillemaud
- Cardiovascular and Metabolic Diseases Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes Cedex, France.
| | - Karen Claesen
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Pere Cardona
- Department of Neurology, Hospital de Bellvitge, Hospitalet de Llobregat-Barcelona, Spain
| | - Dirk Hendriks
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Benoit Tyl
- Cardiovascular and Metabolic Diseases Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes Cedex, France
| | - Carlos A Molina
- Stroke Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Sillen M, Declerck PJ. Thrombin Activatable Fibrinolysis Inhibitor (TAFI): An Updated Narrative Review. Int J Mol Sci 2021; 22:ijms22073670. [PMID: 33916027 PMCID: PMC8036986 DOI: 10.3390/ijms22073670] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI), a proenzyme, is converted to a potent attenuator of the fibrinolytic system upon activation by thrombin, plasmin, or the thrombin/thrombomodulin complex. Since TAFI forms a molecular link between coagulation and fibrinolysis and plays a potential role in venous and arterial thrombotic diseases, much interest has been tied to the development of molecules that antagonize its function. This review aims at providing a general overview on the biochemical properties of TAFI, its (patho)physiologic function, and various strategies to stimulate the fibrinolytic system by interfering with (activated) TAFI functionality.
Collapse
|
4
|
Claesen K, Mertens JC, Leenaerts D, Hendriks D. Carboxypeptidase U (CPU, TAFIa, CPB2) in Thromboembolic Disease: What Do We Know Three Decades after Its Discovery? Int J Mol Sci 2021; 22:ijms22020883. [PMID: 33477318 PMCID: PMC7830380 DOI: 10.3390/ijms22020883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/01/2023] Open
Abstract
Procarboxypeptidase U (proCPU, TAFI, proCPB2) is a basic carboxypeptidase zymogen that is converted by thrombin(-thrombomodulin) or plasmin into the active carboxypeptidase U (CPU, TAFIa, CPB2), a potent attenuator of fibrinolysis. As CPU forms a molecular link between coagulation and fibrinolysis, the development of CPU inhibitors as profibrinolytic agents constitutes an attractive new concept to improve endogenous fibrinolysis or to increase the efficacy of thrombolytic therapy in thromboembolic diseases. Furthermore, extensive research has been conducted on the in vivo role of CPU in (the acute phase of) thromboembolic disease, as well as on the hypothesis that high proCPU levels and the Thr/Ile325 polymorphism may cause a thrombotic predisposition. In this paper, an overview is given of the methods available for measuring proCPU, CPU, and inactivated CPU (CPUi), together with a summary of the clinical data generated so far, ranging from the current knowledge on proCPU concentrations and polymorphisms as potential thromboembolic risk factors to the positioning of different CPU forms (proCPU, CPU, and CPUi) as diagnostic markers for thromboembolic disease, and the potential benefit of pharmacological inhibition of the CPU pathway.
Collapse
|
5
|
Ammollo CT, Semeraro F, Vitulli A, Dirienzo L, Mezzasoma AM, Semeraro N, Gresele P, Colucci M. FVIII/VWF complex displays a greater pro-haemostatic activity than FVIII preparations devoid of VWF: Study in plasma and cell-based models. Haemophilia 2020; 26:e151-e160. [PMID: 32325538 DOI: 10.1111/hae.14008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 04/01/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Plasma-derived FVIII/VWF complex was reported to be less sensitive to inhibitors than FVIII preparations devoid of VWF. AIM To compare the efficacy of FVIII/VWF complex (Fanhdi) and five different VWF-free FVIII preparations in restoring thrombin generation and activation of thrombin-activatable fibrinolysis inhibitor (TAFI) in haemophilic plasma, with and without inhibitor, and in cell-based models. METHODS Experiments were performed in haemophilic plasma supplemented with inhibitory IgG or in plasma samples obtained from haemophilia A patients without (n = 11) and with inhibitor (n = 12). Thrombin generation was evaluated by calibrated automated thrombography (CAT) under standard conditions, in the presence of activated protein C (APC) or thrombomodulin (TM), and in cell-based models including endothelial cells, either alone or in combination with platelets or tissue factor-expressing blood mononuclear cells. The kinetics of TAFI activation was determined by a two-stage functional assay in the absence and in the presence of APC. RESULTS In haemophilic plasma without inhibitor, Fanhdi enhanced thrombin generation and TAFI activation as well as recombinant (2nd-4th generation) and plasma-derived FVIII preparations devoid of VWF. On the contrary, in plasma with inhibitor, Fanhdi displayed a greater ability to restore thrombin generation and TAFI activation under all tested conditions. Notably, in cell-based models including endothelial cells, Fanhdi proved more efficient than all other preparations in improving thrombin generation even in the absence of inhibitor. CONCLUSION The greater pro-haemostatic activity of FVIII/VWF complex, either in haemophilic plasma with inhibitor or in the presence of endothelial cells, may offer therapeutic advantages.
Collapse
Affiliation(s)
- Concetta T Ammollo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Fabrizio Semeraro
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Antonia Vitulli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Lavinia Dirienzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Anna M Mezzasoma
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Nicola Semeraro
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Mario Colucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Semeraro F, Mancuso ME, Ammollo CT, Dirienzo L, Vitulli A, Santagostino E, Tripodi A, Colucci M. Thrombin activatable fibrinolysis inhibitor pathway alterations correlate with bleeding phenotype in patients with severe hemophilia A. J Thromb Haemost 2020; 18:381-389. [PMID: 31571361 DOI: 10.1111/jth.14656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/02/2019] [Accepted: 09/27/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Patients with severe hemophilia A display varied bleeding phenotypes despite similar factor VIII (FVIII) activity levels. OBJECTIVE We investigated different thrombin activatable fibrinolysis inhibitor (TAFI)-related variables in patients with severe hemophilia A and their possible correlation with bleeding tendency. PATIENTS/METHODS Sixty-one patients with severe hemophilia A (FVIII:C <1%], treated on demand, were included. Patients were categorized as mild, moderate, and severe bleeders according to number of bleeds per year (≤2, 3-24, ≥25, respectively). Thirty healthy males served as controls. Clot lysis time was assessed by turbidimetric assay, TAFI activation by two-stage functional assay, and response to TAFIa as the prolongation of fibrinolysis time upon addition of purified TAFIa. Circulating levels of activated TAFI (TAFIa/ai) were measured by specific enzyme-linked immunosorbent assay. RESULTS As compared to controls, hemophilic patients displayed shorter lysis time, less TAFIa generation, and reduced response to TAFIa, but similar TAFIa/ai levels. Clot lysis time was similar in mild, moderate, and severe bleeders, whereas TAFIa generation and response to TAFIa decreased with the increase in bleeding tendency; moreover, circulating TAFIa/ai levels were highest in severe bleeders. Patients with markedly impaired TAFIa generation or TAFIa response (below median) displayed 3-fold to 4-fold higher bleeding rate and factor consumption than patients whose TAFI-related values approached the control ones. CONCLUSION The TAFI pathway impairment correlates with bleeding phenotype in severe hemophilia and may represent a promising tool to stratify the bleeding risk.
Collapse
Affiliation(s)
- Fabrizio Semeraro
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Maria E Mancuso
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centro Emofilia e Trombosi Angelo Bianchi Bonomi, Milan, Italy
| | - Concetta T Ammollo
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Lavinia Dirienzo
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Antonia Vitulli
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Elena Santagostino
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centro Emofilia e Trombosi Angelo Bianchi Bonomi, Milan, Italy
| | - Armando Tripodi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centro Emofilia e Trombosi Angelo Bianchi Bonomi, Milan, Italy
- Fondazione Luigi Villa, Milan, Italy
| | - Mario Colucci
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Lanza GM, Cui G, Schmieder AH, Zhang H, Allen JS, Scott MJ, Williams T, Yang X. An unmet clinical need: The history of thrombus imaging. J Nucl Cardiol 2019; 26:986-997. [PMID: 28608182 PMCID: PMC5741521 DOI: 10.1007/s12350-017-0942-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/24/2017] [Indexed: 11/24/2022]
Abstract
Robust thrombus imaging is an unresolved clinical unmet need dating back to the mid 1970s. While early molecular imaging approaches began with nuclear SPECT imaging, contrast agents for virtually all biomedical imaging modalities have been demonstrated in vivo with unique strengths and common weaknesses. Two primary molecular imaging targets have been pursued for thrombus imaging: platelets and fibrin. Some common issues noted over 40 years ago persist today. Acute thrombus is readily imaged with all probes and modalities, but aged thrombus remains a challenge. Similarly, anti-coagulation continues to interfere with and often negate thrombus imaging efficacy, but heparin is clinically required in patients suspected of pulmonary embolism, deep venous thrombosis or coronary ruptured plaque prior to confirmatory diagnostic studies have been executed and interpreted. These fundamental issues can be overcome, but an innovative departure from the prior approaches will be needed.
Collapse
Affiliation(s)
- Gregory M Lanza
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA.
| | - Grace Cui
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Anne H Schmieder
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Huiying Zhang
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - John S Allen
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Michael J Scott
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Todd Williams
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| | - Xiaoxia Yang
- Department of Medicine, Division of Cardiology, Washington University Medical School, St. Louis, MO, 63108, USA
| |
Collapse
|
8
|
Fibrinolytic potential of DS-1040, a novel orally available inhibitor of activated thrombin-activatable fibrinolysis inhibitor (TAFIa). Thromb Res 2018; 168:96-101. [PMID: 29957475 DOI: 10.1016/j.thromres.2018.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/22/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022]
Abstract
An activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrinolysis by removing C-terminal lysine/arginine residues from partially degraded fibrin. We have identified a novel low-molecular-weight inhibitor of TAFIa, DS-1040, to be potentially useful for treating thrombotic diseases. In this study, we investigated its in vitro pharmacological profile and in vivo effects in animal models of microthrombosis and bleeding. DS-1040 inhibited human TAFIa and carboxypeptidase N (CPN) in vitro with IC50 values of 5.92 and 3.02 × 106 nmol/L, respectively, suggesting that DS-1040 is highly selective for TAFIa over CPN. DS-1040 did not affect platelet aggregation and coagulation time. In a tissue factor-induced rat microthrombosis model, intravenously administered DS-1040 reduced existing fibrin clots in the lung, whereas post-treatment with enoxaparin had limited effect. Both intravenously and orally administered DS-1040 elevated plasma D-dimer levels with similar plasma exposures of DS-1040. DS-1040 significantly augmented plasma D-dimer level on top of silent dose of recombinant tissue-plasminogen activator (t-PA), suggesting DS-1040 enhances fibrinolytic activity of t-PA. In addition, DS-1040 did not prolong the tail bleeding time beyond its efficacy dose. These results indicate that DS-1040 is a potent, selective, intravenously/orally available inhibitor of TAFIa with minimum risk of bleeding. DS-1040 is a potential novel fibrinolysis enhancer useful in treating thrombotic diseases.
Collapse
|
9
|
Leenaerts D, Aernouts J, Van Der Veken P, Sim Y, Lambeir AM, Hendriks D. Plasma carboxypeptidase U (CPU, CPB2, TAFIa) generation during in vitro clot lysis and its interplay between coagulation and fibrinolysis. Thromb Haemost 2017; 117:1498-1508. [PMID: 28692110 DOI: 10.1160/th17-02-0097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/02/2017] [Indexed: 11/05/2022]
Abstract
Carboxypeptidase U (CPU, CPB2, TAFIa) is a basic carboxypeptidase that is able to attenuate fibrinolysis. The inactive precursor procarboxypeptidase U is converted to its active form by thrombin, the thrombin-thrombomodulin complex or plasmin. The aim of this study was to investigate and characterise the time course of CPU generation in healthy individuals. In plasma of 29 healthy volunteers, CPU generation was monitored during in vitro clot lysis. CPU activity was measured by means of an enzymatic assay that uses the specific substrate Bz-o-cyano-Phe-Arg. An algorithm was written to plot the CPU generation curve and calculate the parameters that define it. In all individuals, CPU generation was biphasic. Marked inter-individual differences were present and a reference range was determined. The endogenous CPU generation potential is the composite effect of multiple factors. With respect to the first CPU activity peak characteristics, we found correlations with baseline proCPU concentration, proCPU Thr325Ile polymorphism, time to clot initiation and the clot lysis time. The second CPU peak related with baseline proCPU levels and with the maximum turbidity of the clot lysis profile. In conclusion, our method offers a technique to determine the endogenous CPU generation potential of an individual. The parameters obtained by the method quantitatively describe the different mechanisms that influence CPU generation during the complex interplay between coagulation and fibrinolysis, which are in line with the threshold hypothesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Dirk Hendriks
- Prof. D. Hendriks, Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium, Tel.: +32 3 265 27 27, E-mail:
| |
Collapse
|
10
|
Zwingerman N, Medina-Rivera A, Kassam I, Wilson MD, Morange PE, Trégouët DA, Gagnon F. Sex-specific effect of CPB2 Ala147Thr but not Thr325Ile variants on the risk of venous thrombosis: A comprehensive meta-analysis. PLoS One 2017; 12:e0177768. [PMID: 28552956 PMCID: PMC5446132 DOI: 10.1371/journal.pone.0177768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 05/03/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Thrombin activatable fibrinolysis inhibitor (TAFI), encoded by the Carboxypeptidase B2 gene (CPB2), is an inhibitor of fibrinolysis and plays a role in the pathogenesis of venous thrombosis. Experimental findings support a functional role of genetic variants in CPB2, while epidemiological studies have been unable to confirm associations with risk of venous thrombosis. Sex-specific effects could underlie the observed inconsistent associations between CPB2 genetic variants and venous thrombosis. METHODS A comprehensive literature search was conducted for associations between Ala147Thr and Thr325Ile variants with venous thrombosis. Authors were contacted to provide sex-specific genotype counts from their studies. Combined and sex-specific random effects meta-analyses were used to estimate a pooled effect estimate for primary and secondary genetic models. RESULTS A total of 17 studies met the inclusion criteria. A sex-specific meta-analysis applying a dominant model supported a protective effect of Ala147Thr on venous thrombosis in females (OR = 0.81, 95%CI: 0.68,0.97; p = 0.018), but not in males (OR = 1.06, 95%CI:0.96-1.16; p = 0.263). The Thr325Ile did not show a sex-specific effect but showed variation in allele frequencies by geographic region. A subgroup analysis of studies in European countries showed decreased risk, with a recessive model (OR = 0.83, 95%CI:0.71-0.97, p = 0.021) for venous thrombosis. CONCLUSIONS A comprehensive literature review, including unpublished data, provided greater statistical power for the analyses and decreased the likelihood of publication bias influencing the results. Sex-specific analyses explained apparent discrepancies across genetic studies of Ala147Thr and venous thrombosis. While, careful selection of genetic models based on population genetics, evolutionary and biological knowledge can increase power by decreasing the need to adjust for testing multiple models.
Collapse
Affiliation(s)
- Nora Zwingerman
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Alejandra Medina-Rivera
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, Canada
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, Querétaro, Mexico
| | - Irfahan Kassam
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Pierre-Emmanuel Morange
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) en Santé 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France
- Faculté de Médecine, Aix Marseille Université, Marseille, France
| | - David-Alexandre Trégouët
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Paris, France
- Institute for Cardiometabolism and Nutrition, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
| | - France Gagnon
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Timofeev АV. [Basic carboxypeptidases of blood: significance for coagulology]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:141-9. [PMID: 27143370 DOI: 10.18097/pbmc20166202141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review considers the basic metallocarboxypeptidases of human blood and their role in coagulologic disorders. In includes information on the history of the discovery and biological characteristics of potential enzymes-regulators of the fibrinolytic process: carboxypeptidase U and carboxypeptidase N. Certain attention is paid to the biochemical mechanisms and the main modern concepts of the antifibrinolytic effects of these enzymes.
Collapse
Affiliation(s)
- А V Timofeev
- Russian Research Institute of Haematology and Transfusiology, Saint Petersburg, Russia
| |
Collapse
|
12
|
Leenaerts D, Bosmans JM, van der Veken P, Sim Y, Lambeir AM, Hendriks D. Plasma levels of carboxypeptidase U (CPU, CPB2 or TAFIa) are elevated in patients with acute myocardial infarction. J Thromb Haemost 2015; 13:2227-32. [PMID: 26340515 DOI: 10.1111/jth.13135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Two decades after its discovery, carboxypeptidase U (CPU, CPB2 or TAFIa) has become a compelling drug target in thrombosis research. However, given the difficulty of measuring CPU in the blood circulation and the demanding sample collecton requirements, previous clinical studies focused mainly on measuring its inactive precursor, proCPU (proCPB2 or TAFI). OBJECTIVES Using a sensitive and specific enzymatic assay, we investigated plasma CPU levels in patients presenting with acute myocardial infarction (AMI) and in controls. METHODS In this case-control study, peripheral arterial blood samples were collected from 45 patients with AMI (25 with ST segment elevation myocardial infarction [STEMI], 20 with non-ST segment elevation myocardial infarction [NSTEMI]) and 42 controls. Additionally, intracoronary blood samples were collected from 11 STEMI patients during thrombus aspiration. Subsequently, proCPU and CPU plasma concentrations in all samples were measured by means of an activity-based assay, using Bz-o-cyano-Phe-Arg as a selective substrate. RESULTS CPU activity levels were higher in patients with AMI (median LOD-LOQ, range 0-1277 mU L(-1) ) than in controls (median < LOD, range 0-128 mU L(-1) ). No correlation was found between CPU levels and AMI type (NSTEMI [median between LOD-LOQ, range 0-465 mU L(-1) ] vs. STEMI [median between LOD-LOQ, range 0-1277 mU L(-1) ]). Intracoronary samples (median 109 mU L(-1) , range 0-759 mU L(-1) ) contained higher CPU levels than did peripheral samples (median between LOD-LOQ, range 0-107 mU L(-1) ), indicating increased local CPU generation. With regard to proCPU, we found lower levels in AMI patients (median 910 U L(-1) , range 706-1224 U L(-1) ) than in controls (median 1010 U L(-1) , range 753-1396 U L(-1) ). CONCLUSIONS AMI patients have higher plasma CPU levels and lower proCPU levels than controls. This finding indicates in vivo generation of functional active CPU in patients with AMI.
Collapse
Affiliation(s)
- D Leenaerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - J M Bosmans
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - P van der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Y Sim
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - A M Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - D Hendriks
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Orbe J, Alexandru N, Roncal C, Belzunce M, Bibiot P, Rodriguez JA, Meijers JCM, Georgescu A, Paramo JA. Lack of TAFI increases brain damage and microparticle generation after thrombolytic therapy in ischemic stroke. Thromb Res 2015; 136:445-50. [PMID: 26118976 DOI: 10.1016/j.thromres.2015.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/29/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Thrombin-activatable fibrinolysis inhibitor (TAFI) plays an important role in coagulation and fibrinolysis. Whereas TAFI deficiency may lead to a haemorrhagic tendency, data from TAFI knockout mice (TAFI-/-) are controversial and no differences have been reported in these animals after ischemic stroke. There are also no data regarding the role of circulating microparticles (MPs) in TAFI-/-. OBJECTIVES to examine the effect of tPA on the rate of intracranial haemorrhage (ICH) and on MPs generated in a model of ischemic stroke in TAFI-/- mice. METHODS Thrombin was injected into the middle cerebral artery (MCA) to analyse the effect of tPA (10mg/Kg) on the infarct size and haemorrhage in the absence of TAFI. Immunofluorescence for Fluoro-Jade C was performed on frozen brain slides to analyse neuronal degeneration after ischemia. MPs were isolated from mouse blood and their concentrations calculated by flow cytometry. RESULTS Compared with saline, tPA significantly increased the infarct size in TAFI-/- mice (p<0.05). Although plasma fibrinolytic activity (fibrin plate assay) was higher in these animals, no macroscopic or microscopic ICH was detected. A positive signal for apoptosis and degenerating neurons was observed in the infarct area, being significantly higher in tPA treated TAFI-/- mice (p<0.05). Interestingly, higher numbers of MPs were found in TAFI-/- plasma as compared to wild type, after stroke (p<0.05). CONCLUSIONS TAFI deficiency results in increased brain damage in a model of thrombolysis after ischemic stroke, which was not associated with bleeding but with neuronal degeneration and MP production.
Collapse
Affiliation(s)
- J Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| | - N Alexandru
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - C Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - M Belzunce
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - P Bibiot
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J A Rodriguez
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J C M Meijers
- Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, the Netherlands; Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| | - A Georgescu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - J A Paramo
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
14
|
Plug T, Meijers JCM. New clues regarding the mysterious mechanism of activated thrombin-activatable fibrinolysis inhibitor self-destruction. J Thromb Haemost 2015; 13:1081-3. [PMID: 25777152 DOI: 10.1111/jth.12900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/01/2022]
Affiliation(s)
- T Plug
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - J C M Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Mitrophanov AY, Wolberg AS, Reifman J. Kinetic model facilitates analysis of fibrin generation and its modulation by clotting factors: implications for hemostasis-enhancing therapies. MOLECULAR BIOSYSTEMS 2014; 10:2347-57. [PMID: 24958246 PMCID: PMC4128477 DOI: 10.1039/c4mb00263f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current mechanistic knowledge of protein interactions driving blood coagulation has come largely from experiments with simple synthetic systems, which only partially represent the molecular composition of human blood plasma. Here, we investigate the ability of the suggested molecular mechanisms to account for fibrin generation and degradation kinetics in diverse, physiologically relevant in vitro systems. We represented the protein interaction network responsible for thrombin generation, fibrin formation, and fibrinolysis as a computational kinetic model and benchmarked it against published and newly generated data reflecting diverse experimental conditions. We then applied the model to investigate the ability of fibrinogen and a recently proposed prothrombin complex concentrate composition, PCC-AT (a combination of the clotting factors II, IX, X, and antithrombin), to restore normal thrombin and fibrin generation in diluted plasma. The kinetic model captured essential features of empirically detected effects of prothrombin, fibrinogen, and thrombin-activatable fibrinolysis inhibitor titrations on fibrin formation and degradation kinetics. Moreover, the model qualitatively predicted the impact of tissue factor and tPA/tenecteplase level variations on the fibrin output. In the majority of considered cases, PCC-AT combined with fibrinogen accurately approximated both normal thrombin and fibrin generation in diluted plasma, which could not be accomplished by fibrinogen or PCC-AT acting alone. We conclude that a common network of protein interactions can account for key kinetic features characterizing fibrin accumulation and degradation in human blood plasma under diverse experimental conditions. Combined PCC-AT/fibrinogen supplementation is a promising strategy to reverse the deleterious effects of dilution-induced coagulopathy associated with traumatic bleeding.
Collapse
Affiliation(s)
- Alexander Y. Mitrophanov
- DoD Biotechnology High-Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD 21702
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Jaques Reifman
- DoD Biotechnology High-Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD 21702
| |
Collapse
|
16
|
Wyseure T, Gils A, Declerck PJ. Evaluation of the profibrinolytic properties of a bispecific antibody-based inhibitor against human and mouse thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1. J Thromb Haemost 2013; 11:2069-71. [PMID: 24034450 DOI: 10.1111/jth.12399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/22/2013] [Indexed: 11/30/2022]
Affiliation(s)
- T Wyseure
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
17
|
Kovács A, Szabó L, Longstaff C, Tenekedjiev K, Machovich R, Kolev K. Ambivalent roles of carboxypeptidase B in the lytic susceptibility of fibrin. Thromb Res 2013; 133:80-7. [PMID: 24094605 PMCID: PMC3891004 DOI: 10.1016/j.thromres.2013.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Removal of C-terminal lysine residues that are continuously exposed in lysing fibrin is an established anti-fibrinolytic mechanism dependent on the plasma carboxypeptidase TAFIa, which also removes arginines that are exposed at the time of fibrinogen clotting by thrombin. OBJECTIVE To evaluate the impact of alterations in fibrin structure mediated by constitutive carboxypeptidase activity on the function of fibrin as a template for tissue plasminogen activator-(tPA) induced plasminogen activation and its susceptibility to digestion by plasmin. METHODS AND RESULTS We used the stable carboxypeptidase B (CPB), which shows the same substrate specificity as TAFIa. If 1.5 - 6μM fibrinogen was clotted in the presence of 8U/mL CPB, a denser fibrin network was formed with thinner fibers (the median fiber diameter decreased from 138 - 144nm to 89 - 109nm as established with scanning electron microscopy). If clotting was initiated in the presence of 5 - 10μM arginine, a similar decrease in fiber diameter (82 -95nm) was measured. The fine structure of arginine-treated fibrin enhanced plasminogen activation by tPA, but slowed down lysis monitored using fluorescent tPA and confocal laser microscopy. However, if lysis was initiated with plasmin in CPB-treated fibrin, the rate of dissolution increased to a degree corresponding to doubling of the plasmin concentration. CONCLUSION The present data evidence that CPB activity generates fine-mesh fibrin which is more difficult to lyse by tPA, but conversely, CPB and plasmin together can stimulate fibrinolysis, possibly by enhancing plasmin diffusion.
Collapse
Affiliation(s)
- András Kovács
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - László Szabó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Colin Longstaff
- Biotherapeutics, Haemostasis Section, National Institute for Biological Standards and Control, South Mimms, Potters Bar, UK
| | | | - Raymund Machovich
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Krasimir Kolev
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
18
|
Hu X, Wetsel RA, Ramos TN, Mueller-Ortiz SL, Schoeb TR, Barnum SR. Carboxypeptidase N-deficient mice present with polymorphic disease phenotypes on induction of experimental autoimmune encephalomyelitis. Immunobiology 2013; 219:104-8. [PMID: 24028840 DOI: 10.1016/j.imbio.2013.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/08/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Carboxypeptidase N (CPN) is a member of the carboxypeptidase family of enzymes that cleave carboxy-terminal lysine and arginine residues from a large number of biologically active peptides and proteins. These enzymes are best known for their roles in modulating the activity of kinins, complement anaphylatoxins and coagulation proteins. Although CPN makes important contributions to acute inflammatory events, little is known about its role in autoimmune disease. In this study we used CPN(-/-) mice in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Unexpectedly, we observed several EAE disease phenotypes in CPN(-/-) mice compared to wild type mice. The majority of CPN(-/-) mice died within five to seven days after disease induction, before displaying clinical signs of disease. The remaining mice presented with either mild EAE or did not develop EAE. In addition, CPN(-/-) mice injected with complete or incomplete Freund's adjuvant died within the same time frame and in similar numbers as those induced for EAE. Overall, the course of EAE in CPN(-/-) mice was significantly delayed and attenuated compared to wild type mice. Spinal cord histopathology in CPN(-/-) mice revealed meningeal, but not parenchymal leukocyte infiltration, and minimal demyelination. Our results indicate that CPN plays an important role in EAE development and progression and suggests that multiple CPN ligands contribute to the disease phenotypes we observed.
Collapse
Affiliation(s)
- Xianzhen Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rick A Wetsel
- Brown Foundation Institute of Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Theresa N Ramos
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stacey L Mueller-Ortiz
- Brown Foundation Institute of Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott R Barnum
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Bakhtiari K, Kamphuisen PW, Mancuso ME, Hamulyak K, Schutgens REG, Santagostino E, Meijers JCM. Clot lysis phenotype and response to recombinant factor VIIa in plasma of haemophilia A inhibitor patients. Br J Haematol 2013; 162:827-35. [DOI: 10.1111/bjh.12470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Kamran Bakhtiari
- Department of Experimental Vascular Medicine; Academic Medical Centre; Amsterdam; The Netherlands
| | - Pieter W. Kamphuisen
- Department of Vascular Medicine; Academic Medical Centre; Amsterdam; The Netherlands
| | - Maria E. Mancuso
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre; Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico; Milan; Italy
| | - Karly Hamulyak
- Department of Haematology; University Hospital; Maastricht; The Netherlands
| | - Roger E. G. Schutgens
- Department of Haematology/van Creveldkliniek; University Medical Centre; Utrecht; The Netherlands
| | - Elena Santagostino
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre; Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico; Milan; Italy
| | | |
Collapse
|
20
|
Foley JH, Kim PY, Mutch NJ, Gils A. Insights into thrombin activatable fibrinolysis inhibitor function and regulation. J Thromb Haemost 2013; 11 Suppl 1:306-15. [PMID: 23809134 DOI: 10.1111/jth.12216] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fibrinolysis is initiated when the zymogen plasminogen is converted to plasmin via the action of plasminogen activators. Proteolytic cleavage of fibrin by plasmin generates C-terminal lysine residues capable of binding both plasminogen and the plasminogen activator, thereby stimulating plasminogen activator-mediated plasminogen activation and propagating fibrinolysis. This positive feedback mechanism is regulated by activated thrombin activatable fibrinolysis inhibitor (TAFIa), which cleaves C-terminal lysine residues from the fibrin surface, thereby decreasing its cofactor activity. TAFI can be activated by thrombin alone, but the rate of activation is accelerated when in complex with thrombomodulin. Plasmin is also known to activate TAFI. TAFIa has no known physiologic inhibitors and consequently, its primary regulatory mechanism involves its intrinsic thermal instability. The rate of TAFI activation and stability of the active form, TAFIa, function in maintaining its concentration above the threshold value required to down-regulate fibrinolysis. Although all methods to quantify TAFI or TAFIa have their limitations, epidemiologic studies have indicated that elevated TAFI levels are correlated with an increased risk of venous thrombosis. Major efforts have been made to develop TAFI inhibitors that can either directly interfere with TAFIa activity or impair its activation. However, the anti-inflammatory properties of TAFIa might complicate the development and application of a TAFIa inhibitor that aims to increase the efficiency of thrombolytic therapy.
Collapse
Affiliation(s)
- J H Foley
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
21
|
Binding of carboxypeptidase N to fibrinogen and fibrin. Biochem Biophys Res Commun 2012; 427:421-5. [DOI: 10.1016/j.bbrc.2012.09.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022]
|
22
|
Mishra N, Buelens K, Theyskens S, Compernolle G, Gils A, Declerck PJ. Increased zymogen activity of thrombin-activatable fibrinolysis inhibitor prolongs clot lysis. J Thromb Haemost 2012; 10:1091-9. [PMID: 22498006 DOI: 10.1111/j.1538-7836.2012.04738.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Thrombin-activatable fibrinolysis inhibitor (TAFI) is a zymogen that can be activated by proteolytic cleavage into the active enzyme TAFIa. Hydrolysis of the C-terminal lysines on fibrin by TAFIa results in a down-regulation of fibrinolysis. Recent studies demonstrated that the zymogen also exerts an intrinsic enzymatic activity. Our objective was to identify and characterize zymogen-stimulatory nanobodies. METHODS AND RESULTS The screening of 24 nanobodies against TAFI revealed that two nanobodies (i.e. Vhh-TAFI-a51 and Vhh-TAFI-i103) were able to stimulate the zymogen activity 10- to 21-fold compared with the baseline zymogen activity of TAFI. The increase in catalytic efficiency can be attributed mainly to an increased catalytic rate, as no change in the K(M) -value was observed. The stability, the susceptibility towards PTCI and GEMSA and the kinetics of the stimulated zymogen activity differ significantly from those of TAFIa activity. Epitope mapping revealed that both Asp(75) and Thr(301) are major determinants in the binding of these nanobodies to TAFI. Localization of the epitope strongly suggests that this instability is as a result of a disruption of the stabilizing interactions between the activation peptide and the dynamic flap region (residues 296-350). In TAFI-depleted plasma reconstituted with a non-activatable variant of TAFI (TAFI-R92A), clot lysis could be prolonged by nanobody-induced stimulation of its zymogen activity as well as by increasing its concentration. CONCLUSIONS Increasing the zymogen activity of TAFI results in an antifibrinolytic effect.
Collapse
Affiliation(s)
- N Mishra
- Laboratory for Pharmaceutical Biology, Katholieke Universiteit, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
van Geffen M, Loof A, Lap P, Boezeman J, Laros-van Gorkom BAP, Brons P, Verbruggen B, van Kraaij M, van Heerde WL. A novel hemostasis assay for the simultaneous measurement of coagulation and fibrinolysis. ACTA ACUST UNITED AC 2012; 16:327-36. [PMID: 22183066 DOI: 10.1179/102453311x13085644680348] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Thrombin and plasmin are the key enzymes involved in coagulation and fibrinolysis. A novel hemostasis assay (NHA) was developed to measure thrombin and plasmin generation in a single well by a fluorimeter. The NHA uses two fluorescent substrates with non-interfering fluorescent excitation and emission spectra. The assay was tested in vitro using modulators like heparin, hirudin, epsilon-aminocaproic acid, gly-pro-arg-pro peptide and reptilase and validated by measurement of prothrombin fragment 1+2 and plasmin-alpha2-antiplasmin levels. Intra- and inter-assay coefficients of variation were < 9% and 6-25%, respectively. Interplay between coagulation and fibrinolysis was demonstrated by the effect of tissue-type plasminogen activator on thrombin generation and by the different responses of activated protein C and thrombomodulin on fibrinolysis. The last responses showed the linkage between coagulation and fibrinolysis by thrombin activatable fibrinolysis inhibitor. In conclusion, this strategy allows detection of coagulation, fibrinolysis and their interplay in a single assay.
Collapse
Affiliation(s)
- Mark van Geffen
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
van Geffen M, van Heerde WL. Global haemostasis assays, from bench to bedside. Thromb Res 2012; 129:681-7. [PMID: 22221936 DOI: 10.1016/j.thromres.2011.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
Abstract
Bleeding and thrombosis are the ultimate clinical outcomes of aberrations in the haemostatic process. Haemostasis prevents excessive blood loss due to the effort of various compartments like the vasculature, blood cells, coagulation and fibrinolysis. The complexity of all processes involved makes the diagnosis of aberrations difficult, cumbersome and expensive. A single assay to detect any factor disturbing this haemostatic balance with high sensitivity and specificity would be of great value, especially if the outcome of this assay correlates well with clinical outcome. Despite years of research, such an assay is not yet available; however, some interesting candidates are under development and combine the effects of various compartments. This review describes the development of global haemostasis assays and summarizes the current state of the art of these haemostasis assays covering thrombin and plasmin generation, turbidity and thromboelastography/thromboelastometry. Finally, we discuss the applicability of global assays in clinical practice and we provide a future perspective on the ongoing development of automation and miniaturisation as it is our belief that these developments will benefit the standardization of global haemostasis assays.
Collapse
Affiliation(s)
- Mark van Geffen
- Laboratory of Haematology, department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | |
Collapse
|
25
|
Hendrickx MLV, DE Winter A, Buelens K, Compernolle G, Hassanzadeh-Ghassabeh G, Muyldermans S, Gils A, Declerck PJ. TAFIa inhibiting nanobodies as profibrinolytic tools and discovery of a new TAFIa conformation. J Thromb Haemost 2011; 9:2268-77. [PMID: 21883886 DOI: 10.1111/j.1538-7836.2011.04495.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Because activated thrombin activatable fibrinolysis inhibitor (TAFIa) has very powerful antifibrinolytic properties, co-administration of t-PA and a TAFIa inhibitor enhances t-PA treatment. OBJECTIVE We aimed to generate nanobodies specifically inhibiting the TAFIa activity and to test their effect on t-PA induced clot lysis. RESULTS Five nanobodies, raised towards an activated more stable TAFIa mutant (TAFIa A(147) -C(305) -I(325) -I(329) -Y(333) -Q(335) ), are described. These nanobodies inhibit specifically TAFIa activity, resulting in an inhibition of up to 99% at a 16-fold molar excess of nanobody over TAFIa, IC(50) 's range between 0.38- and > 16-fold molar excess. In vitro clot lysis experiments in the absence of thrombomodulin (TM) demonstrate that the nanobodies exhibit profibrinolytic effects. However, in the presence of TM, one nanobody exhibits an antifibrinolytic effect whereas the other nanobodies show a slight antifibrinolytic effect at low concentrations and a pronounced profibrinolytic effect at higher concentrations. This biphasic pattern was highly dependent on TM and t-PA concentration. The nanobodies were found to bind in the active-site region of TAFIa and their time-dependent differential binding behavior during TAFIa inactivation revealed the occurrence of a yet unknown intermediate conformational transition. CONCLUSION These nanobodies are very potent TAFIa inhibitors and constitute useful tools to accelerate fibrinolysis. Our data also demonstrate that the profibrinolytic effect of TAFIa inhibition may be reversed by the presence of TM. The identification of a new conformational transition provides new insights into the conformational inactivation of the unstable TAFIa.
Collapse
Affiliation(s)
- M L V Hendrickx
- Laboratory for Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Declerck PJ. Thrombin activatable fibrinolysis inhibitor. Hamostaseologie 2011; 31:165-6, 168-73. [PMID: 21629966 DOI: 10.5482/ha-1155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/26/2011] [Indexed: 12/14/2022] Open
Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI) was discovered two decades ago as a consequence of the identification of an unstable carboxypeptidase (CPU), which was formed upon thrombin activation of the respective pro-enzyme (proCPU). The antifibrinolytic function of the activated form (TAFIa, CPU) is directly linked to its capacity to remove C-terminal lysines from the surface of the fibrin clot. No endogenous inhibitors have been identified, but TAFIa activity is regulated by its intrinsic temperature-dependent instability with a half-life of 8 to 15 min at 37 °C. A variety of studies have demonstrated a role for TAFI/TAFIa in venous and arterial diseases. In addition, a role in inflammation and cell migration has been shown. Since an elevated level of TAFIa it is a potential risk factor for thrombotic disorders, many inhibitors, both at the level of activation or at the level of activity, have been developed and were proven to exhibit a profibrinolytic effect in animal models. Pharmacologically active inhibitors of the TAFI/TAFIa system may open new ways for the prevention of thrombotic diseases or for the establishment of adjunctive treatments during thrombolytic therapy.
Collapse
Affiliation(s)
- P J Declerck
- Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
27
|
Foley JH, Cook PF, Nesheim ME. Kinetics of activated thrombin-activatable fibrinolysis inhibitor (TAFIa)-catalyzed cleavage of C-terminal lysine residues of fibrin degradation products and removal of plasminogen-binding sites. J Biol Chem 2011; 286:19280-6. [PMID: 21467042 DOI: 10.1074/jbc.m110.215061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Partial digestion of fibrin by plasmin exposes C-terminal lysine residues, which comprise new binding sites for both plasminogen and tissue-type plasminogen activator (tPA). This binding increases the catalytic efficiency of plasminogen activation by 3000-fold compared with tPA alone. The activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrinolysis by removing these residues, which causes a 97% reduction in tPA catalytic efficiency. The aim of this study was to determine the kinetics of TAFIa-catalyzed lysine cleavage from fibrin degradation products and the kinetics of loss of plasminogen-binding sites. We show that the k(cat) and K(m) of Glu(1)-plasminogen (Glu-Pg)-binding site removal are 2.34 s(-1) and 142.6 nm, respectively, implying a catalytic efficiency of 16.21 μm(-1) s(-1). The corresponding values of Lys(77)/Lys(78)-plasminogen (Lys-Pg)-binding site removal are 0.89 s(-1) and 96 nm implying a catalytic efficiency of 9.23 μm(-1) s(-1). These catalytic efficiencies of plasminogen-binding site removal by TAFIa are the highest of any TAFIa-catalyzed reaction with a biological substrate reported to date and suggest that plasmin-modified fibrin is a primary physiological substrate for TAFIa. We also show that the catalytic efficiency of cleavage of all C-terminal lysine residues, whether they are involved in plasminogen binding or not, is 1.10 μm(-1) s(-1). Interestingly, this value increases to 3.85 μm(-1) s(-1) in the presence of Glu-Pg. These changes are due to a decrease in K(m). This suggests that an interaction between TAFIa and plasminogen comprises a component of the reaction mechanism, the plausibility of which was established by showing that TAFIa binds both Glu-Pg and Lys-Pg.
Collapse
Affiliation(s)
- Jonathan H Foley
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
28
|
Mosnier LO. Platelet factor 4 inhibits thrombomodulin-dependent activation of thrombin-activatable fibrinolysis inhibitor (TAFI) by thrombin. J Biol Chem 2010; 286:502-10. [PMID: 21041299 DOI: 10.1074/jbc.m110.147959] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Thrombomodulin (TM) is a cofactor for thrombin-mediated activation of protein C and thrombin-activatable fibrinolysis inhibitor (TAFI) and thereby helps coordinate coagulation, anticoagulation, fibrinolysis, and inflammation. Platelet factor 4 (PF4), a platelet α-granule protein and a soluble cofactor for TM-dependent protein C activation, stimulates protein C activation in vitro and in vivo. In contrast to stimulation of protein C activation, PF4 is shown here to inhibit activation of TAFI by thrombin-TM. Consequences of inhibition of TAFI activation by PF4 included loss of TM-dependent prolongation of clot lysis times in hemophilia A plasma and loss of TM-stimulated conversion of bradykinin (BK) to des-Arg(9)-BK by TAFIa in normal plasma. Thus, PF4 modulates the substrate specificity of the thrombin-TM complex by selectively enhancing protein C activation while inhibiting TAFI activation, thereby preventing the generation of the antifibrinolytic and anti-inflammatory activities of TAFIa. To block the inhibitory effects of PF4 on TAFI activation, heparin derivatives were tested for their ability to retain high affinity binding to PF4 despite having greatly diminished anticoagulant activity. N-acetylated heparin (NAc-Hep) lacked detectable anticoagulant activity in activated partial thromboplastin time clotting assays but retained high affinity binding to PF4 and effectively reversed PF4 binding to immobilized TM. NAc-Hep permitted BK conversion to des-Arg(9)-BK by TAFIa in the presence of PF4. In a clot lysis assay on TM-expressing cells using hemophilia A plasma, NAc-Hep prevented PF4-mediated inhibition of TAFI activation and the antifibrinolytic functions of TAFIa. Accordingly, NAc-Hep or similar heparin derivatives might provide therapeutic benefits by diminishing bleeding complications in hemophilia A via restoration of TAFIa-mediated protection of clots against premature lysis.
Collapse
Affiliation(s)
- Laurent O Mosnier
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
29
|
Increase in plasma thrombin-activatable fibrinolysis inhibitor may not contribute to thrombotic tendency in antiphospholipid syndrome because of inhibitory potential of antiphospholipid antibodies toward TAFI activation. Int J Hematol 2010; 91:776-83. [DOI: 10.1007/s12185-010-0590-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/09/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
|
30
|
Brouns R, Heylen E, Willemse JL, Sheorajpanday R, De Surgeloose D, Verkerk R, De Deyn PP, Hendriks DF. The decrease in procarboxypeptidase U (TAFI) concentration in acute ischemic stroke correlates with stroke severity, evolution and outcome. J Thromb Haemost 2010; 8:75-80. [PMID: 19874466 DOI: 10.1111/j.1538-7836.2009.03663.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Procarboxypeptidase U (proCPU, TAFI) concentration in plasma is potentially related to thrombotic tendency, and elevated proCPU levels have been reported in ischemic stroke patients. Improved insight into the role of proCPU in acute ischemic stroke is essential for the development of more adequate therapeutics that may include carboxypeptidase inhibitors. In this study we investigated whether the plasma concentration of proCPU and the proCPU kinetic profile in acute ischemic stroke are related to initial stroke severity, stroke evolution in the subacute phase and long-term stroke outcome. METHODS Plasma concentration of proCPU was assessed in 136 stroke patients at admission (7.5 h after stroke onset), at 24 h, at 72 h and at day 7 after stroke onset. We evaluated the relation between change in proCPU concentrations and (a) stroke severity (patients with TIA vs. stroke patients, NIHSS score at admission), (b) stroke evolution (stroke progression, infarct volume at 72 h), and (c) stroke outcome (mRS score at month 3). RESULTS ProCPU concentration decreased significantly in the first 72 h after stroke onset and thereafter returned to baseline. This biphasic time course, with its nadir at 72 h, was more pronounced in patients with severe stroke, unfavourable stroke evolution in the first 72 h and poor long-term outcome. CONCLUSIONS The decrease in proCPU concentration in the first 72 h after stroke onset correlates with more severe stroke, unfavourable stroke evolution, and poor long-term stroke outcome.
Collapse
Affiliation(s)
- R Brouns
- Department of Neurology and Memory Clinic, ZNA Middelheim Hospital, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Willemse JL, Heylen E, Nesheim ME, Hendriks DF. Carboxypeptidase U (TAFIa): a new drug target for fibrinolytic therapy? J Thromb Haemost 2009; 7:1962-71. [PMID: 19719827 PMCID: PMC3170991 DOI: 10.1111/j.1538-7836.2009.03596.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Procarboxypeptidase U (TAFI) is a recently discovered plasma procarboxypeptidase that upon activation by thrombin or thrombin-thrombomodulin turns into a potent antifibrinolytic enzyme. Its prominent bridging function between coagulation and fibrinolysis raised the interest of many research groups and of the pharmaceutical industry. The development of carboxypeptidase U (CPU) inhibitors as profibrinolytic agents is an attractive concept and possibilities for rational drug design will become more readily available in the near future as a result of the recently published crystal structure. Numerous studies have been performed and many of them show beneficial effects of CPU inhibitors for the improvement of endogenous fibrinolysis in different animal sepsis and thrombosis models. CPU inhibitors combined with tissue-type plasminogen activator (t-PA) seem to increase the efficiency of pharmacological thrombolysis allowing lower dosing of t-PA and subsequently fewer bleeding complications. This review will focus on recently obtained in vivo data and the benefits/risks of targeting CPU for the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Johan L. Willemse
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Evelien Heylen
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Michael. E. Nesheim
- Departments of Biochemistry and Medicine, Queen’s University, Ontario, Canada
| | - Dirk F. Hendriks
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Development of a sensitive and selective assay for the determination of procarboxypeptidase U (thrombin-activatable fibrinolysis inhibitor) in plasma. Anal Biochem 2009; 396:152-4. [PMID: 19732738 DOI: 10.1016/j.ab.2009.08.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/24/2009] [Accepted: 08/26/2009] [Indexed: 11/21/2022]
Abstract
To date, several assays for procarboxypeptidase U (proCPU) determination exist, all having their own inherent disadvantages and advantages. A drawback of activity-based assays is the interference of the constitutively active carboxypeptidase N (CPN) in plasma. Recent screening of Bz-Xaa-Arg peptides with modified aromatic amino acids at the P1 position revealed a selective CPU substrate, N-benzoyl-ortho-cyano-phenylalanyl-arginine (Bz-o-cyano-Phe-Arg), which will allow straightforward determination of proCPU in plasma. Our assay shows an excellent linearity in the concentration range of 20-2600 U/L, with within- and between-run precision values of 2.7% and 4.6%, respectively. A good correlation with our high-performance liquid chromatography (HPLC)-assisted proCPU activity assay using hippuryl-l-arginine (HipArg) as substrate was found. Besides the major improvement regarding the selectivity, the assay is much easier to perform and far less time-consuming compared with the proCPU activity assay using HipArg as substrate.
Collapse
|
33
|
Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 2009; 111:483-95. [PMID: 19446389 DOI: 10.1016/j.clineuro.2009.04.001] [Citation(s) in RCA: 377] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 01/24/2023]
Abstract
There is an urgent need for improved diagnostics and therapeutics for acute ischemic stroke. This is the focus of numerous research projects involving in vitro studies, animal models and clinical trials, all of which are based on current knowledge of disease mechanisms underlying acute focal cerebral ischemia. Insight in the chain of events occurring during acute ischemic injury is essential for understanding current and future diagnostic and therapeutic approaches. In this review, we summarize the actual knowledge on the pathophysiology of acute ischemic stroke. We focus on the ischemic cascade, which is a complex series of neurochemical processes that are unleashed by transient or permanent focal cerebral ischemia and involves cellular bioenergetic failure, excitotoxicity, oxidative stress, blood-brain barrier dysfunction, microvascular injury, hemostatic activation, post-ischemic inflammation and finally cell death of neurons, glial and endothelial cells.
Collapse
Affiliation(s)
- R Brouns
- Department of Neurology and Memory Clinic, Middelheim General Hospital, Antwerp, Belgium
| | | |
Collapse
|
34
|
Marx PF, Plug T, Havik SR, Mörgelin M, Meijers JCM. The activation peptide of thrombin-activatable fibrinolysis inhibitor: a role in activity and stability of the enzyme? J Thromb Haemost 2009; 7:445-52. [PMID: 19054324 DOI: 10.1111/j.1538-7836.2008.03249.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thrombin-activatable fibrinolysis inhibitor (TAFI) is a 56-kDa procarboxypeptidase. Proteolytic enzymes activate TAFI into TAFIa, an inhibitor of fibrinolysis, by cleaving off the N-terminal activation peptide (amino acids 1-92), from the enzyme moiety. Activated TAFI is unstable, with a half-life of approximately 10 min at 37 degrees C. So far, it is unknown whether the activation peptide is released or remains attached to the catalytic domain, and whether it influences TAFIa's properties. The current study was performed to clarify these issues. METHODS TAFI was activated, and the activity and half-life of the enzyme were determined in the presence and absence of the activation peptide. RESULTS TAFIa was active both before and after removal of the activation peptide, and the half-life of TAFIa was identical in the two preparations. Furthermore, we observed that intrinsically inactivated TAFIa (TAFIai) aggregated into large, insoluble complexes that could be removed by centrifugation. CONCLUSIONS The data presented in this article show that the activation peptide of TAFI is not required for TAFIa activity and that the activation peptide has no effect on the stability of the enzyme. These results are in favour of a model in which the activation peptide solely stabilizes the structure of the proenzyme. After activation of TAFI and subsequent breakage of interactions between the activation peptide and the catalytic domain, the activation peptide is no longer capable of performing this stabilizing task, and the integrity of the catalytic domain is lost rapidly. The resulting TAFIai is more prone to proteolysis and aggregation.
Collapse
Affiliation(s)
- P F Marx
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
35
|
Tregouet DA, Schnabel R, Alessi MC, Godefroy T, Declerck PJ, Nicaud V, Munzel T, Bickel C, Rupprecht HJ, Lubos E, Zeller T, Juhan-Vague I, Blankenberg S, Tiret L, Morange PE. Activated thrombin activatable fibrinolysis inhibitor levels are associated with the risk of cardiovascular death in patients with coronary artery disease: the AtheroGene study. J Thromb Haemost 2009; 7:49-57. [PMID: 19017260 DOI: 10.1111/j.1538-7836.2008.03221.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Thrombin activatable fibrinolysis inhibitor (TAFI) attenuates fibrinolysis. Results on the association between TAFI levels and the risk of coronary artery disease (CAD) are inconsistent. OBJECTIVES We investigated the association between TAFI levels and the risk of cardiovascular events in CAD. PATIENTS/METHODS 1668 individuals with angiographically proven CAD at baseline were followed for a median of 2.3 years, as part of the prospective AtheroGene cohort. Fifty-six deaths from cardiovascular (CV) causes and 35 non-fatal CV events were observed. RESULTS At baseline, three TAFI measurements were available: one evaluating the total amount of TAFI (t-TAFI), one measuring the TAFIa/TAFIai amount, and the last the released activated peptide (TAFI-AP). TAFIa/TAFIai levels were associated with increased risk of CV death [hazard ratio (HR) for one tertile increase, 2.38 (1.56-3.63); P < 10(-4)]. This association remained significant after adjustment for conventional risk factors, CRP levels, white blood count and markers of thrombin generation and fibrinolysis [HR = 1.69 (1.07-2.67); P = 0.01]. In addition, CPB2 gene polymorphisms explained 12%, 6%, and 3% of t-TAFI, TAFIa/TAFIai and TAFI-AP levels, respectively, but none was associated with CV events. CONCLUSIONS The amount of activated TAFI, measured by TAFIa/TAFIai ELISA, but not of the t-TAFI is independently associated with the risk of CV death.
Collapse
|
36
|
Hillmayer K, Ceresa E, Vancraenenbroeck R, Declerck PJ, Gils A. Conformational (in)stability of rat vs. human activated thrombin activatable fibrinolysis inhibitor. J Thromb Haemost 2008; 6:1426-8. [PMID: 18513211 DOI: 10.1111/j.1538-7836.2008.03038.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Crystal structures of TAFI elucidate the inactivation mechanism of activated TAFI: a novel mechanism for enzyme autoregulation. Blood 2008; 112:2803-9. [PMID: 18559974 DOI: 10.1182/blood-2008-03-146001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a pro-metallocarboxypeptidase that can be proteolytically activated (TAFIa). TAFIa is unique among carboxypeptidases in that it spontaneously inactivates with a short half-life, a property that is crucial for its role in controlling blood clot lysis. We studied the intrinsic instability of TAFIa by solving crystal structures of TAFI, a TAFI inhibitor (GEMSA) complex and a quadruple TAFI mutant (70-fold more stable active enzyme). The crystal structures show that TAFIa stability is directly related to the dynamics of a 55-residue segment (residues 296-350) that includes residues of the active site wall. Dynamics of this flap are markedly reduced by the inhibitor GEMSA, a known stabilizer of TAFIa, and stabilizing mutations. Our data provide the structural basis for a model of TAFI auto-regulation: in zymogen TAFI the dynamic flap is stabilized by interactions with the activation peptide. Release of the activation peptide increases dynamic flap mobility and in time this leads to conformational changes that disrupt the catalytic site and expose a cryptic thrombin-cleavage site present at Arg302. This represents a novel mechanism of enzyme control that enables TAFI to regulate its activity in plasma in the absence of specific inhibitors.
Collapse
|
38
|
Walker JB, Binette TM, Mackova M, Lambkin GR, Mitchell L, Bajzar L. Proteolytic cleavage of carboxypeptidase N markedly increases its antifibrinolytic activity. J Thromb Haemost 2008; 6:848-55. [PMID: 18221361 DOI: 10.1111/j.1538-7836.2008.02912.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Carboxypeptidase N (CPN) is a constitutively active basic carboxypeptidase sharing specificity with activated thrombin-activable fibrinolysis inhibitor (TAFIa). Generally, CPN is regarded as being non-antifibrinolytic. However, this assumption has not been thoroughly investigated, particularly with respect to long-term antifibrinolysis. In addition, a recent report has shown that plasmin cleavage increases the catalytic activity of CPN. Therefore, we investigated the antifibrinolytic properties of CPN and plasmin-cleaved CPN (CPNc). METHODS CPN was incubated with plasmin for various periods of time and the prolongation of clot lysis at various concentrations of CPN/CPNc mixture was investigated in TAFI-depleted plasma. CPN cleavage was analyzed by electrophoresis and catalytic activity was determined by monitoring cleavage of the small substrate, FA-Ala-Lys. RESULTS CPN exhibited antifibrinolytic properties in plasma clot lysis assays when present at supraphysiological concentrations. Depletion of CPN from plasma decreased the lysis time of clots formed from minimally diluted plasma at low tissue-type plasminogen activator (t-PA) concentrations. Plasmin cleavage of CPN markedly increased the antifibrinolytic properties. CPN and CPNc prolonged lysis in a non-saturable, dose-dependent, and t-PA-dependent manner. At sufficient concentration, CPN and CPNc prolonged lysis at least forty-fivefold. CPNc was 700% more antifibrinolytic than CPN but only 7% more active toward FA-Ala-Lys. The active site inhibitor GEMSA eliminated the antifibrinolytic effects of CPN and CPNc. Antifibrinolytic activity correlated with cleavage of active and/or regulatory subunits, presumably generating heterodimeric CPNc. CONCLUSIONS Limited proteolysis of CPN by plasmin generates an enzyme with greatly increased antifibrinolytic properties. We speculate that (patho)physiological proteolysis of CPN may generate a long-term antifibrinolytic enzyme.
Collapse
Affiliation(s)
- J B Walker
- Pediatric Thrombosis Program, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- A Gils
- Laboratory for Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Foley JH, Kim P, Nesheim ME. Thrombin-activable fibrinolysis inhibitor zymogen does not play a significant role in the attenuation of fibrinolysis. J Biol Chem 2008; 283:8863-7. [PMID: 18252711 DOI: 10.1074/jbc.m800127200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated thrombin-activable fibrinolysis inhibitor (TAFIa) plays a significant role in the prolongation of fibrinolysis. During fibrinolysis, plasminogen is activated to plasmin, which lyses a clot by cleaving fibrin after selected arginine and lysine residues. TAFIa attenuates fibrinolysis by removing the exposed C-terminal lysine residues. It was recently reported that TAFI zymogen possesses sufficient carboxypeptidase activity to attenuate fibrinolysis through a mechanism similar to TAFIa. Here, we show with a recently developed TAFIa assay that when thrombin is used to clot TAFI-deficient plasma supplemented with TAFI, there is some TAFI activation. The extent of activation was dependent upon the concentration of zymogen present in the plasma, and lysis times were prolonged by TAFIa in a concentration-dependent manner. Potato tuber carboxypeptidase inhibitor, an inhibitor of TAFIa but not TAFI, abolished the prolongation of lysis in TAFI-deficient plasma supplemented with TAFI zymogen. In addition, TAFIa but not TAFI catalyzed release of plasminogen bound to soluble fibrin degradation products. The data presented confirm that TAFI zymogen is effective in cleaving a small substrate but does not play a role in the attenuation of fibrinolysis because of its inability to cleave plasmin-modified fibrin degradation products.
Collapse
Affiliation(s)
- Jonathan H Foley
- Departments of Biochemistry and Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
41
|
Ceresa E, De Maeyer M, Jonckheer A, Peeters M, Engelborghs Y, Declerck PJ, Gils A. Comparative evaluation of stable TAFIa variants: importance of alpha-helix 9 and beta-sheet 11 for TAFIa (in)stability. J Thromb Haemost 2007; 5:2105-12. [PMID: 17666015 DOI: 10.1111/j.1538-7836.2007.02720.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Activated thrombin activatable fibrinolysis inhibitor (TAFIa) plays a pivotal role in fibrinolysis. TAFIa activity is regulated by a temperature-dependent instability. This instability has not only complicated the study of structure-function relationships of TAFIa but has also prevented the crystallization of TAFIa. Furthermore, the TAFIa instability has severely compromised the development of activity inhibiting monoclonal antibodies. Recently, we combined all known stabilizing mutations (i.e. S305C, T325I, T329I, H333Y and H335Q) resulting in a synergistic (one hundred and eightyfold) stabilization of TAFIa at 37 degrees C. All these residues are located in an amino acid region (AA297-335) consisting of alpha-helix 9 and beta-sheet 11. OBJECTIVES To provide a comparative evaluation of the characteristics of a panel of stable TAFIa mutants and an energy-minimized model of the most stable TAFI variant. RESULTS The catalytic efficiency for activation of TAFI by thrombin/thrombomodulin was higher for all TAFI mutants compared with TAFI-wild type (wt). Except for TAFI variants carrying T325I-T329I, S305C-T325I or S305C-T325I-T329I mutations, the catalytic efficiency for Hip-Arg hydrolysis by TAFIa was similar for the TAFI mutants compared with the wild type. All TAFIa variants were equally well inhibited by potato tuber carboxypeptidase inhibitor (PTCI) and showed a significantly increased antifibrinolytic potential in accordance with their increased stability. Based on the intrinsic fluorescence decay of TAFIa, two independent structural transitions were found to be associated with the loss of functional activity. CONCLUSIONS Using molecular dynamic calculations on both TAFI-wt and TAFI-S305C-T325I-T329I-H333Y-H335Q models, we were able to identify the molecular interactions that contribute to the increased stability of the mutants.
Collapse
Affiliation(s)
- E Ceresa
- Laboratory for Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Binette TM, Taylor FB, Peer G, Bajzar L. Thrombin-thrombomodulin connects coagulation and fibrinolysis: more than an in vitro phenomenon. Blood 2007; 110:3168-75. [PMID: 17644733 PMCID: PMC2200911 DOI: 10.1182/blood-2007-03-078824] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI), when activated, forms a basic carboxypeptidase that can inhibit fibrinolysis. Potential physiologic activators include both thrombin and plasmin. In vitro, thrombomodulin and glycosaminoglycans increase the catalytic efficiency of TAFI activation by thrombin and plasmin, respectively. The most relevant (patho-) physiologic activator of TAFI has not been disclosed. Our purpose was to identify the physiologic activator of TAFI in vivo. Activation of protein C (a thrombin-thrombomodulin-dependent reaction), prothrombin, and plasminogen occurs during sepsis. Thus, a baboon model of Escherichia coli-induced sepsis, where multiple potential activators of TAFI are elaborated, was used to study TAFI activation. A monoclonal antibody (mAbTAFI/TM#16) specifically inhibiting thrombin-thrombomodulin-dependent activation of TAFI was used to assess the contribution of thrombin-thrombomodulin in TAFI activation in vivo. Coinfusion of mAbTAFI/TM#16 with a lethal dose of E coli prevented the complete consumption of TAFI observed without mAbTAFI/TM#16. The rate of fibrin degradation products formation is enhanced in septic baboons treated with the mAbTAFI/TM#16; therefore, TAFI activation appears to play a key role in the extent of fibrin(ogen) consumption during E coli challenge, and thrombin-thrombomodulin, in a baboon model of E coli-induced sepsis, appears to be the predominant activator of TAFI.
Collapse
Affiliation(s)
- Tanya M Binette
- Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
43
|
Walker JB, Bajzar L. Complete inhibition of fibrinolysis by sustained carboxypeptidase B activity: the role and requirement of plasmin inhibitors. J Thromb Haemost 2007; 5:1257-64. [PMID: 17389009 DOI: 10.1111/j.1538-7836.2007.02541.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The antifibrinolytic effect of activated thrombin-activatable fibrinolysis inhibitor (TAFIa) and carboxypeptidase B (CPB) displays threshold behavior. When CPB was used to simulate conditions mimicking continuous TAFIa activity, it affected the lysis of plasma clots differently to clots formed from a minimal fibrinolytic system comprising fibrinogen, plasminogen and alpha(2)-antiplasmin. Whereas CPB saturably prolonged clot lysis in the purified system, the effect of CPB did not appear saturable in plasma clots. METHODS To rationalize this difference, we investigated the effects of alpha(2)-antiplasmin, alpha(2)-macroglobulin, antithrombin and aprotinin on CPB-mediated antifibrinolysis. RESULTS CPB alone prolonged fibrinolysis in a saturable manner and the efficacy of CPB increased with decreasing tissue-type plasminogen activator (t-PA) concentration. The inhibitors by themselves did not halt fibrinolysis and the potency of each inhibitor in the absence of CPB mirrored their solution-phase plasmin inhibitory potentials: alpha(2)-antiplasmin approximately equal to aprotinin >> alpha(2)-macroglobulin >> antithrombin. With both CPB and inhibitor present, a synergistic effect was observed. The antifibrinolytic sensitivity to CPB was related to the plasmin inhibitory potential of the inhibitor. CONCLUSIONS Fibrinolysis could be completely inhibited by alpha(2)-antiplasmin, alpha(2)-macroglobulin and antithrombin, but not aprotinin, in the presence of CPB, and occurred only when the irreversible inhibitor or pool of inhibitors were in excess of plasminogen. Western blot analysis indicated that the CPB-mediated shutdown of fibrinolysis was a result of plasminogen consumption prior to clot lysis. The CPB concentration required for fibrinolytic shutdown was dependent on t-PA concentration and the inhibitory potential of the irreversible inhibitor pool.
Collapse
Affiliation(s)
- J B Walker
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
44
|
Willemse JL, Heylen E, Hendriks DF. The intrinsic enzymatic activity of procarboxypeptidase U (TAFI) does not significantly influence the fibrinolysis rate: a rebuttal. J Thromb Haemost 2007; 5:1334-6. [PMID: 17403110 DOI: 10.1111/j.1538-7836.2007.02539.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Mutch NJ, Thomas L, Moore NR, Lisiak KM, Booth NA. TAFIa, PAI-1 and alpha-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots. J Thromb Haemost 2007; 5:812-7. [PMID: 17388801 DOI: 10.1111/j.1538-7836.2007.02430.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PAI-1 and alpha(2)-antiplasmin (alpha(2)AP) are the principal direct inhibitors of fibrinolytic proteases. Thrombin activatable fibrinolysis inhibitor (TAFI), a plasma procarboxypeptidase activated by thrombin-thrombomodulin to form TAFIa, also regulates fibrinolysis by modulating fibrin. In this study, the relative contributions of PAI-1, alpha(2)AP and TAFIa to inhibition of lysis were assessed. In platelet-poor plasma clots, alpha(2)AP, TAFIa and PAI-1 all inhibited lysis, as shown by the addition of neutralizing antibodies to alpha(2)AP and PAI-1 +/- CPI, a potato carboxypeptidase inhibitor. alpha(2)AP played the largest role in regulating plasma clot lysis, but neutralization of inhibitors in combinations was more effective in shortening lysis times, with a maximal effect when all three inhibitors were neutralized. In platelet-rich clots, a larger contribution of PAI-1 was evident. Tissue plasminogen activator induced lysis of model thrombi, made from whole blood, was approximately doubled on incorporation of CPI, illustrating a substantial contribution of TAFIa to inhibition of thrombus lysis. Similar increases in thrombus lysis were observed on inclusion of neutralizing antibodies to PAI-1 and alpha(2)AP, with alpha(2)AP playing the dominant role. Maximal thrombus lysis occurred upon neutralization of all three inhibitors. These observations suggest that, despite the differences in concentrations and activities of inhibitors, and the different modes of action, the roles of the three are complementary in both plasma clot lysis and thrombus lysis.
Collapse
Affiliation(s)
- N J Mutch
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | |
Collapse
|
46
|
Ladenvall C, Gils A, Jood K, Blomstrand C, Declerck PJ, Jern C. Thrombin activatable fibrinolysis inhibitor activation peptide shows association with all major subtypes of ischemic stroke and with TAFI gene variation. Arterioscler Thromb Vasc Biol 2007; 27:955-62. [PMID: 17272741 DOI: 10.1161/01.atv.0000259354.93789.a6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Thrombin activatable fibrinolysis inhibitor (TAFI) attenuates fibrinolysis. The aim of the present study was to investigate the possible association between TAFI and overall ischemic stroke and ischemic stroke subtypes. METHODS AND RESULTS The Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS) comprises 600 cases (18 to 69 years) and 600 matched population controls. Stroke subtype was defined by the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification. TAFI was investigated at the protein level, by analyzing plasma levels of intact TAFI and released activation peptide [AP], and at the genetic level, by genotyping a selection of eleven single nucleotide polymorphisms. After adjustment for traditional risk factors, both TAFI measurements showed association with overall ischemic stroke (AP: odds ratio, 2.22; 95% confidence interval, 1.89 to 2.61; intact TAFI: odds ratio, 1.21; 95% confidence interval, 1.06 to 1.38; for 1-SD increase in AP and intact TAFI, respectively). AP showed associations with all 4 major subtypes of ischemic stroke and intact TAFI to large vessel disease and cryptogenic stroke. TAFI genotypes and haplotypes showed significant associations with both TAFI measurements. In contrast, no association was observed between genetic variants and overall ischemic stroke. CONCLUSION TAFI levels show independent association with overall ischemic stroke. This association is stronger for released AP than for intact TAFI, and for released AP, it is present in all ischemic stroke subtypes.
Collapse
Affiliation(s)
- Claes Ladenvall
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at Göteborg University, Guldhedsgatan 19, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
47
|
Hillmayer K, Macovei A, Pauwels D, Compernolle G, Declerck PJ, Gils A. Characterization of rat thrombin-activatable fibrinolysis inhibitor (TAFI)--a comparative study assessing the biological equivalence of rat, murine and human TAFI. J Thromb Haemost 2006; 4:2470-7. [PMID: 17002650 DOI: 10.1111/j.1538-7836.2006.02224.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrinolysis. Although rat models to study the role of TAFI are available, the biochemical properties of rat TAFI are not well investigated and immunologic tools are lacking. Therefore, we have characterized recombinant rat TAFI-6His and compared its properties with those of human TAFI as well as of murine TAFI-V5-6His. METHODS AND RESULTS TAFI from all three species is activatable by the thrombin-thrombomodulin complex, generating a highly unstable protein (TAFIa). Half-lives at 37 degrees C are 8.5+/-0.6 min, 3.4+/-0.4 min and 2.2+/-0.2 min for human, rat and murine TAFIa, respectively. The 50% clot lysis times are 6+/-1 min for TAFI-depleted rat plasma and 137+/-34 min, 62+/-9 min and 50+/-8 min when TAFI-depleted rat plasma is supplemented with 0.02 U of human, rat or murine TAFIa, respectively, which correlates with their half-lives. Upon incubation with the thrombin-thrombomodulin complex, the 36-kDa fragment of rat and murine TAFI is not cleaved into 25-kDa and 11-kDa fragments. Upon incubation of rat TAFI and murine TAFI with plasmin, a 32-kDa fragment is formed due to cleavage at Arg147, in contrast to the formation of a 36-kDa fragment for human TAFI. Concomitantly, activity levels upon plasmin incubation are drastically reduced for rat and murine TAFI. CONCLUSIONS Recombinant human, rat and murine TAFI have similar but not identical biochemical characteristics, suggesting a similar role during fibrinolysis in vivo.
Collapse
Affiliation(s)
- K Hillmayer
- Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Mosnier LO, Bouma BN. Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis. Arterioscler Thromb Vasc Biol 2006; 26:2445-53. [PMID: 16960106 DOI: 10.1161/01.atv.0000244680.14653.9a] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coagulation and fibrinolytic systems safeguard the patency of the vasculature and surrounding tissue. Cross regulation of coagulation and fibrinolysis plays an important role in preserving a balanced hemostatic process. Identification of Thrombin Activatable Fibrinolysis Inhibitor (TAFI) as an inhibitor of fibrinolysis and one of the main intermediates between coagulation and fibrinolysis, greatly improved our understanding of cross regulation of coagulation and fibrinolysis. As TAFI is an enzyme that is activated by thrombin generated by the coagulation system, its activation is sensitive to the dynamics of the coagulation system. Defects in coagulation, such as in thrombosis or hemophilia, resonate in TAFI-mediated regulation of fibrinolysis and imply that clinical symptoms of coagulation defects are amplified by unbalanced fibrinolysis. Thrombomodulin promotes the generation of both antithrombotic activated protein C (APC) and prothrombotic (antifibrinolytic) activated TAFI, illustrating the paradoxical effects of thrombomodulin on the regulation of coagulation and fibrinolysis. This review will discuss the role of TAFI in the regulation of fibrinolysis and detail its regulation of activation and its potential therapeutic applications in thrombotic disease and bleeding disorders.
Collapse
Affiliation(s)
- Laurent O Mosnier
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
49
|
Knecht W, Willemse J, Stenhamre H, Andersson M, Berntsson P, Furebring C, Harrysson A, Hager ACM, Wissing BM, Hendriks D, Cronet P. Limited mutagenesis increases the stability of human carboxypeptidase U (TAFIa) and demonstrates the importance of CPU stability over proCPU concentration in down-regulating fibrinolysis. FEBS J 2006; 273:778-92. [PMID: 16441664 DOI: 10.1111/j.1742-4658.2006.05110.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Procarboxypeptidase U [proCPU, thrombin-activatable fibrinolysis inhibitor (TAFI), EC 3.4.17.20] belongs to the metallocarboxypeptidase family and is a zymogen found in human plasma. ProCPU has been proposed to be a molecular link between coagulation and fibrinolysis. Upon activation of proCPU, the active enzyme (CPU) rapidly becomes inactive due to its intrinsic instability. The inherent instability of CPU is likely to be of major importance for the in vivo down-regulation of its activity, but the underlying structural mechanisms of this fast and spontaneous loss of activity of CPU have not yet been explained, and they severely inhibit the structural characterization of CPU. In this study, we screened for more thermostable versions of CPU to increase our understanding of the mechanism underlying the instability of CPU's activity. We have shown that single as well as a few 2-4 mutations in human CPU can prolong the half-life of CPU's activity at 37 degrees C from 0.2 h of wild-type CPU to 0.5-5.5 h for the mutants. We provide evidence that the gain in stable activity is accompanied by a gain in thermostability of the enzyme and increased resistance to proteolytic digest by trypsin. Using one of the stable mutants, we demonstrate the importance of CPU stability over proCPU concentration in down-regulating fibrinolysis.
Collapse
|
50
|
Ceresa E, Van de Borne K, Peeters M, Lijnen HR, Declerck PJ, Gils A. Generation of a stable activated thrombin activable fibrinolysis inhibitor variant. J Biol Chem 2006; 281:15878-83. [PMID: 16595693 DOI: 10.1074/jbc.m509839200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated thrombin activable fibrinolysis inhibitor (TAFIa), generated upon activation of TAFI, exerts an antifibrinolytic effect. TAFIa is a thermolabile enzyme, inactivated through a conformational change. The objective of the current study was to generate a stable variant of human TAFIa. Using a site-directed as well as a random mutagenesis approach to generate a library of TAFI mutants, we identified two mutations that increase TAFIa stability, i.e. a Ser305 to Cys and a Thr329 to Ile mutation, respectively. Combining these mutations in TAFI-Ala147-Ile325, the most stable isoform of TAFIa (half-life of 9.4 +/- 0.4 min), revealed a TAFIa half-life of 70 +/- 3.1 min (i.e. an 11-fold increase versus 6.3 +/- 0.3 min for TAFIa-Ala147-Thr325, the most frequently occurring isoform of TAFI in humans) at 37 degrees C. Moreover, clot lysis (induced by tissue plasminogen activator) experiments in which TAFI-Ala147-Cys305-Ile325-Ile329 was added to TAFI-depleted plasma revealed a 50% clot lysis time of 313 +/- 77 min (i.e. a 3.0-fold increase versus 117 +/- 10 min for TAFI-Ala147-Thr325). The availability of a more stable TAFIa variant will facilitate the search for inhibitors and allow further structural analysis to elucidate the mechanisms of the instability of TAFIa.
Collapse
Affiliation(s)
- Erik Ceresa
- Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|