1
|
Okochi Y, Jinno Y, Okamura Y. Dimerization is required for the glycosylation of S1-S2 linker of sea urchin voltage-gated proton channel Hv1. Biophys J 2024; 123:4221-4232. [PMID: 39086135 DOI: 10.1016/j.bpj.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Multimerization of ion channels is essential for establishing the ion-selective pathway and tuning the gating regulated by membrane potential, second messengers, and temperature. Voltage-gated proton channel, Hv1, consists of voltage-sensor domain and coiled-coil domain. Hv1 forms dimer, whereas voltage-dependent channel activity is self-contained in monomer unlike many ion channels, which assemble to form ion-conductive pathways among multiple subunits. Dimerization of Hv1 is necessary for cooperative gating, but other roles of dimerization in physiological aspects are still largely unclear. In this study, we show that dimerization of Hv1 takes place in ER. Sea urchin Hv1 (Strongylocentrotus purpuratus Hv1: SpHv1) was glycosylated in the consensus sequence for N-linked glycosylation within the S1-S2 extracellular loop. However, glycosylation was not observed in the monomeric SpHv1 that lacks the coiled-coil domain. A version of mHv1 in which the S1-S2 loop was replaced by that of SpHv1 showed glycosylation and its monomeric form was not glycosylated. Tandem dimer of monomeric SpHv1 underwent glycosylation, suggesting that dimerization of Hv1 is required for glycosylation. Moreover, when monomeric Hv1 has a dilysine motif in the C-terminal end, which is known to act as a retrieval signal from Golgi to ER, prolonging the time of residency in ER, it was glycosylated. Overall, our results suggest that monomeric SpHv1 does not stay long in ER, thereby escaping glycosylation, while the dimerization causes the proteins to stay longer in ER. Thus, the findings highlight the novel significance of dimerization of Hv1: regulation of biogenesis and maturation of the proteins in intracellular compartments.
Collapse
Affiliation(s)
- Yoshifumi Okochi
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Yuka Jinno
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
2
|
Fujii S, Ushioda R, Nagata K. Redox states in the endoplasmic reticulum directly regulate the activity of calcium channel, inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2023; 120:e2216857120. [PMID: 37216546 PMCID: PMC10235943 DOI: 10.1073/pnas.2216857120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/14/2023] [Indexed: 05/24/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are one of the two types of tetrameric ion channels that release calcium ion (Ca2+) from the endoplasmic reticulum (ER) into the cytosol. Ca2+ released via IP3Rs is a fundamental second messenger for numerous cell functions. Disturbances in the intracellular redox environment resulting from various diseases and aging interfere with proper calcium signaling, however, the details are unclear. Here, we elucidated the regulatory mechanisms of IP3Rs by protein disulfide isomerase family proteins localized in the ER by focusing on four cysteine residues residing in the ER lumen of IP3Rs. First, we revealed that two of the cysteine residues are essential for functional tetramer formation of IP3Rs. Two other cysteine residues, on the contrary, were revealed to be involved in the regulation of IP3Rs activity; its oxidation by ERp46 and the reduction by ERdj5 caused the activation and the inactivation of IP3Rs activity, respectively. We previously reported that ERdj5 can activate the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2b (SERCA2b) using its reducing activity [Ushioda et al., Proc. Natl. Acad. Sci. U.S.A. 113, E6055-E6063 (2016)]. Thus, we here established that ERdj5 exerts the reciprocal regulatory function for IP3Rs and SERCA2b by sensing the ER luminal Ca2+ concentration, which contributes to the calcium homeostasis in the ER.
Collapse
Affiliation(s)
- Shohei Fujii
- Laboratory of Molecular and Cellular Biology, Department of Frontier Life Sciences, Faculty of Life Science, Kyoto Sangyo University, Kyoto603-8555, Japan
| | - Ryo Ushioda
- Laboratory of Molecular and Cellular Biology, Department of Frontier Life Sciences, Faculty of Life Science, Kyoto Sangyo University, Kyoto603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto603-8555, Japan
| | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biology, Department of Frontier Life Sciences, Faculty of Life Science, Kyoto Sangyo University, Kyoto603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto603-8555, Japan
- JT Biohistory Research Hall, Takatsuki City, Osaka569-1125, Japan
| |
Collapse
|
3
|
Chandrasekhar R, Alzayady KJ, Wagner LE, Yule DI. Unique Regulatory Properties of Heterotetrameric Inositol 1,4,5-Trisphosphate Receptors Revealed by Studying Concatenated Receptor Constructs. J Biol Chem 2016; 291:4846-60. [PMID: 26755721 DOI: 10.1074/jbc.m115.705301] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 02/02/2023] Open
Abstract
The ability of inositol 1,4,5-trisphosphate receptors (IP3R) to precisely initiate and generate a diverse variety of intracellular Ca(2+) signals is in part mediated by the differential regulation of the three subtypes (R1, R2, and R3) by key functional modulators (IP3, Ca(2+), and ATP). However, the contribution of IP3R heterotetramerization to Ca(2+) signal diversity has largely been unexplored. In this report, we provide the first definitive biochemical evidence of endogenous heterotetramer formation. Additionally, we examine the contribution of individual subtypes within defined concatenated heterotetramers to the shaping of Ca(2+) signals. Under conditions where key regulators of IP3R function are optimal for Ca(2+) release, we demonstrate that individual monomers within heteromeric IP3Rs contributed equally toward generating a distinct 'blended' sensitivity to IP3 that is likely dictated by the unique IP3 binding affinity of the heteromers. However, under suboptimal conditions where [ATP] were varied, we found that one subtype dictated the ATP regulatory properties of heteromers. We show that R2 monomers within a heterotetramer were both necessary and sufficient to dictate the ATP regulatory properties. Finally, the ATP-binding site B in R2 critical for ATP regulation was mutated and rendered non-functional to address questions relating to the stoichiometry of IP3R regulation. Two intact R2 monomers were sufficient to maintain ATP regulation in R2 homotetramers. In summary, we demonstrate that heterotetrameric IP3R do not necessarily behave as the sum of the constituent subunits, and these properties likely extend the versatility of IP3-induced Ca(2+) signaling in cells expressing multiple IP3R isoforms.
Collapse
Affiliation(s)
- Rahul Chandrasekhar
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Kamil J Alzayady
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Larry E Wagner
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - David I Yule
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| |
Collapse
|
4
|
Carrara G, Saraiva N, Parsons M, Byrne B, Prole DL, Taylor CW, Smith GL. Golgi anti-apoptotic proteins are highly conserved ion channels that affect apoptosis and cell migration. J Biol Chem 2015; 290:11785-801. [PMID: 25713081 PMCID: PMC4416878 DOI: 10.1074/jbc.m115.637306] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 12/03/2022] Open
Abstract
Golgi anti-apoptotic proteins (GAAPs) are multitransmembrane proteins that are expressed in the Golgi apparatus and are able to homo-oligomerize. They are highly conserved throughout eukaryotes and are present in some prokaryotes and orthopoxviruses. Within eukaryotes, GAAPs regulate the Ca2+ content of intracellular stores, inhibit apoptosis, and promote cell adhesion and migration. Data presented here demonstrate that purified viral GAAPs (vGAAPs) and human Bax inhibitor 1 form ion channels and that vGAAP from camelpox virus is selective for cations. Mutagenesis of vGAAP, including some residues conserved in the recently solved structure of a related bacterial protein, BsYetJ, altered the conductance (E207Q and D219N) and ion selectivity (E207Q) of the channel. Mutation of residue Glu-207 or -178 reduced the effects of GAAP on cell migration and adhesion without affecting protection from apoptosis. In contrast, mutation of Asp-219 abrogated the anti-apoptotic activity of GAAP but not its effects on cell migration and adhesion. These results demonstrate that GAAPs are ion channels and define residues that contribute to the ion-conducting pore and affect apoptosis, cell adhesion, and migration independently.
Collapse
Affiliation(s)
- Guia Carrara
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Nuno Saraiva
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Maddy Parsons
- the Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Bernadette Byrne
- the Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - David L Prole
- the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom,
| | - Colin W Taylor
- the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom,
| | - Geoffrey L Smith
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom,
| |
Collapse
|
5
|
Antigny F, Konig S, Bernheim L, Frieden M. Inositol 1,4,5 trisphosphate receptor 1 is a key player of human myoblast differentiation. Cell Calcium 2014; 56:513-21. [PMID: 25468730 DOI: 10.1016/j.ceca.2014.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022]
Abstract
Cytosolic Ca(2+) signals are fundamental for the early and late steps of myoblast differentiation and are, as in many cells, generated by Ca(2+) release from internal stores as well as by plasma membrane Ca(2+) entry. Our recent studies identified the store-operated Ca(2+) channels, Orai1 and TRPC1&C4, as crucial for the early steps of human myogenesis and for the late fusion events. In the present work, we assessed the role of the inositol-1,4,5 tris-phosphate receptor (IP3R) type 1 during human myoblast differentiation. We demonstrated, using siRNA strategy that IP3R1 is required for the expression of muscle-specific transcription factors such as myogenin and MEF2 (myocyte enhancer factor 2), and for the formation of myotubes. The knockdown of IP3R1 strongly reduced endogenous spontaneous Ca(2+) transients, and attenuated store-operated Ca(2+) entry. As well, two Ca(2+)-dependent key enzymes of muscle differentiation, NFAT and CamKII are down-regulated upon siIP3R1 treatment. On the contrary, the overexpression of IP3R1 accelerated myoblasts differentiation. These findings identify Ca(2+) release mediated by IP3R1 as an essential mechanism during the early steps of myoblast differentiation.
Collapse
MESH Headings
- Calcium/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/drug effects
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- MEF2 Transcription Factors/physiology
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/physiology
- Myogenin/physiology
- NFATC Transcription Factors/physiology
- RNA, Small Interfering/pharmacology
Collapse
Affiliation(s)
- Fabrice Antigny
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Stéphane Konig
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Laurent Bernheim
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Maud Frieden
- Department of Basic Neurosciences, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland; Department of Cell Physiology and Metabolism, Geneva Medical Center, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
6
|
Alzayady KJ, Wagner LE, Chandrasekhar R, Monteagudo A, Godiska R, Tall GG, Joseph SK, Yule DI. Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits. J Biol Chem 2013; 288:29772-84. [PMID: 23955339 DOI: 10.1074/jbc.m113.502203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vertebrate genomes code for three subtypes of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R1, -2, and -3). Individual IP3R monomers are assembled to form homo- and heterotetrameric channels that mediate Ca(2+) release from intracellular stores. IP3R subtypes are regulated differentially by IP3, Ca(2+), ATP, and various other cellular factors and events. IP3R subtypes are seldom expressed in isolation in individual cell types, and cells often express different complements of IP3R subtypes. When multiple subtypes of IP3R are co-expressed, the subunit composition of channels cannot be specifically defined. Thus, how the subunit composition of heterotetrameric IP3R channels contributes to shaping the spatio-temporal properties of IP3-mediated Ca(2+) signals has been difficult to evaluate. To address this question, we created concatenated IP3R linked by short flexible linkers. Dimeric constructs were expressed in DT40-3KO cells, an IP3R null cell line. The dimeric proteins were localized to membranes, ran as intact dimeric proteins on SDS-PAGE, and migrated as an ∼1100-kDa band on blue native gels exactly as wild type IP3R. Importantly, IP3R channels formed from concatenated dimers were fully functional as indicated by agonist-induced Ca(2+) release. Using single channel "on-nucleus" patch clamp, the channels assembled from homodimers were essentially indistinguishable from those formed by the wild type receptor. However, the activity of channels formed from concatenated IP3R1 and IP3R2 heterodimers was dominated by IP3R2 in terms of the characteristics of regulation by ATP. These studies provide the first insight into the regulation of heterotetrameric IP3R of defined composition. Importantly, the results indicate that the properties of these channels are not simply a blend of those of the constituent IP3R monomers.
Collapse
Affiliation(s)
- Kamil J Alzayady
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tang YQ, Liang P, Zhou J, Lu Y, Lei L, Bian X, Wang K. Auxiliary KChIP4a suppresses A-type K+ current through endoplasmic reticulum (ER) retention and promoting closed-state inactivation of Kv4 channels. J Biol Chem 2013; 288:14727-41. [PMID: 23576435 DOI: 10.1074/jbc.m113.466052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K(+) channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1-4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12-17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19-21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.
Collapse
Affiliation(s)
- Yi-Quan Tang
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H. Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences. Biol Cell 2012; 98:1-14. [PMID: 16354157 DOI: 10.1042/bc20050031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca(2+) release via intracellular release channels, IP(3)Rs (inositol 1,4,5-trisphosphate receptors) and RyRs (ryanodine receptors), is perhaps the most ubiquitous and versatile cellular signalling mechanism, and is involved in a vast number of cellular processes. In addition to this classical release pathway there is limited, but yet persistent, information about less well-defined Ca(2+)-leak pathways that may play an important role in the control of the Ca(2+) load of the endo(sarco)plasmic reticulum. The mechanisms responsible for this 'basal' leak are not known, but recent data suggest that both IP(3)Rs and RyRs may also operate as Ca(2+)-leak channels, particularly in pathological conditions. Proteolytic cleavage or biochemical modification (such as hyperphosphorylation or nitrosylation), for example, occurring during conditions of cell stress or apoptosis, can functionally uncouple the cytoplasmic control domains from the channel domain of the receptor. Highly significant information has been obtained from studies of malfunctioning channels in various disorders; for example, RyRs in cardiac malfunction or genetic muscle diseases and IP(3)Rs in neurodegenerative diseases. In this review we aim to summarize the existing information about functionally uncoupled IP(3)R and RyR channels, and to discuss the concept that those channels can participate in Ca(2+)-leak pathways.
Collapse
|
9
|
Abstract
The Ca(2) (+) signals evoked by inositol 1,4,5-trisphosphate (IP(3)) are built from elementary Ca(2) (+) release events involving progressive recruitment of IP(3) receptors (IP(3)R), intracellular Ca(2) (+) channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP(3)R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP(3)R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca(2) (+) waves that propagate across the cell. This hierarchical recruitment of IP(3)R is important in allowing Ca(2) (+) signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP(3)R by Ca(2) (+) and IP(3), the ability of a single IP(3)R rapidly to mediate a large efflux of Ca(2) (+) from the endoplasmic reticulum, and the assembly of IP(3)R into clusters are key features that allow IP(3)R to propagate Ca(2) (+) signals regeneratively. We review these properties of IP(3)R and the structural basis of IP(3)R behavior.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK,
| | | |
Collapse
|
10
|
Rossi AM, Tovey SC, Rahman T, Prole DL, Taylor CW. Analysis of IP3 receptors in and out of cells. Biochim Biophys Acta Gen Subj 2011; 1820:1214-27. [PMID: 22033379 DOI: 10.1016/j.bbagen.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/07/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Inositol 1,4,5-trisphosphate receptors (IP3R) are expressed in almost all animal cells. Three mammalian genes encode closely related IP3R subunits, which assemble into homo- or hetero-tetramers to form intracellular Ca2+ channels. SCOPE OF THE REVIEW In this brief review, we first consider a variety of complementary methods that allow the links between IP3 binding and channel gating to be defined. How does IP3 binding to the IP3-binding core in each IP3R subunit cause opening of a cation-selective pore formed by residues towards the C-terminal? We then describe methods that allow IP3, Ca2+ signals and IP3R mobility to be examined in intact cells. A final section briefly considers genetic analyses of IP3R signalling. MAJOR CONCLUSIONS All IP3R are regulated by both IP3 and Ca2+. This allows them to initiate and regeneratively propagate intracellular Ca2+ signals. The elementary Ca2+ release events evoked by IP3 in intact cells are mediated by very small numbers of active IP3R and the Ca2+-mediated interactions between them. The spatial organization of these Ca2+ signals and their stochastic dependence on so few IP3Rs highlight the need for methods that allow the spatial organization of IP3R signalling to be addressed with single-molecule resolution. GENERAL SIGNIFICANCE A variety of complementary methods provide insight into the structural basis of IP3R activation and the contributions of IP3-evoked Ca2+ signals to cellular physiology. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
11
|
Pantazaka E, Taylor CW. Differential distribution, clustering, and lateral diffusion of subtypes of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 2011; 286:23378-87. [PMID: 21550988 PMCID: PMC3123102 DOI: 10.1074/jbc.m111.236372] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/27/2011] [Indexed: 01/19/2023] Open
Abstract
Regulation of inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)R) by IP(3) and Ca(2+) allows them to initiate and regeneratively propagate intracellular Ca(2+) signals. The distribution and mobility of IP(3)R determines the spatial organization of these Ca(2+) signals. Until now, there has been no systematic comparison of the distribution and mobility of the three mammalian IP(3)R subtypes in a uniform background. We used confocal microscopy and fluorescence recovery after photobleaching to define these properties for each IP(3)R subtype expressed heterologously in COS-7 cells. IP(3)R1 and IP(3)R3 were uniformly distributed within the membranes of the endoplasmic reticulum (ER), but the distribution of IP(3)R2 was punctate. The mobile fractions (M(f) = 84 ± 2 and 80 ± 2%) and diffusion coefficients (D = 0.018 ± 0.001 and 0.016 ± 0.002 μm(2)/s) of IP(3)R1 and IP(3)R3 were similar. Other ER membrane proteins (ryanodine receptor type 1 and sarco/endoplasmic reticulum Ca(2+)-ATPase type 1) and a luminal protein (enhanced GFP with a KDEL retrieval sequence) had similar mobile fractions, suggesting that IP(3)R1 and IP(3)R3 move freely within an ER that is largely, although not entirely, continuous. IP(3)R2 was less mobile, but IP(3)R2 mobility differed between perinuclear (M(f) = 47 ± 4% and D = 0.004 ± 0.001 μm(2)/s) and near-plasma membrane (M(f) = 64 ± 6% and D = 0.013 ± 0.004 μm(2)/s) regions, whereas IP(3)R3 behaved similarly in both regions. We conclude that IP(3)R1 and IP(3)R3 diffuse freely within a largely continuous ER, but IP(3)R2 is more heterogeneously distributed and less mobile, and its mobility differs between regions of the cell.
Collapse
Affiliation(s)
- Evangelia Pantazaka
- From the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Colin W. Taylor
- From the Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
12
|
Higo T, Hamada K, Hisatsune C, Nukina N, Hashikawa T, Hattori M, Nakamura T, Mikoshiba K. Mechanism of ER Stress-Induced Brain Damage by IP3 Receptor. Neuron 2010; 68:865-78. [DOI: 10.1016/j.neuron.2010.11.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2010] [Indexed: 11/25/2022]
|
13
|
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.
| | | |
Collapse
|
14
|
Atrial local Ca2+ signaling and inositol 1,4,5-trisphosphate receptors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:59-70. [DOI: 10.1016/j.pbiomolbio.2010.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 01/18/2010] [Accepted: 02/18/2010] [Indexed: 11/24/2022]
|
15
|
Yule DI, Betzenhauser MJ, Joseph SK. Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium 2010; 47:469-79. [PMID: 20510450 PMCID: PMC3086728 DOI: 10.1016/j.ceca.2010.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 12/12/2022]
Abstract
Great insight has been gained into the structure and function of the inositol 1,4,5 trisphosphate receptor (InsP(3)R) by studies employing mutagenesis of the cDNA encoding the receptor. Notably, early studies using this approach defined the key constituents required for InsP(3) binding in the N-terminus and the membrane spanning regions in the C-terminal domain responsible for channel formation, targeting and function. In this article we evaluate recent studies which have used a similar approach to investigate key residues underlying the in vivo modulation by select regulatory factors. In addition, we review studies defining the structural requirements in the channel domain which comprise the conduction pathway and are suggested to be involved in the gating of the channel.
Collapse
Affiliation(s)
- David I Yule
- Department of Pharmacology and Physiology, University of Rochester, NY, United States.
| | | | | |
Collapse
|
16
|
Boleti H, Smirlis D, Dalagiorgou G, Meurs EF, Christoforidis S, Mavromara P. ER targeting and retention of the HCV NS4B protein relies on the concerted action of multiple structural features including its transmembrane domains. Mol Membr Biol 2010; 27:45-62. [PMID: 20001747 DOI: 10.3109/09687680903426208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Hepatitis C virus (HCV) NS4B protein, a multispanning endoplasmic reticulum (ER) membrane protein, generates intracellular rearrangements of ER-derived membranes, essential for HCV replication. In this study, we characterized NS4B elements involved in the process of targeting, association and retention in the ER membrane. We investigated the localization and membrane association of a number of C- or N-terminal NS4B deletions expressed as GFP chimeras by biochemical and fluorescence microscopy techniques. A second set of GFP-NS4B chimeras containing the plasma membrane ecto-ATPase CD39 at the C-terminus of each NS4B deletion mutant was used to further examine the role of N-terminal NS4B sequences in ER retention. Several structural elements, besides the first two transmembrane domains (TMs), within the NS4B N-terminal half (residues 1-130) were found to mediate association of the NS4B-GFP chimeras with ER membranes. Both TM1 and TM2 are required for ER anchoring and retention but are not sufficient for ER retention. Sequences upstream of TM1 are also required. These include two putative amphipathic alpha-helices and a Leucine Rich Repeat-like motif, a sequence highly conserved in all HCV genotypes. The N-terminal 55peptidic sequence, containing the 1st amphipathic helix, mediates association of the 55N-GFP chimera with cellular membranes including the ER, but is dispensable for ER targeting of the entire NS4B molecule. Importantly, the C-terminal 70peptidic sequence can associate with membranes positive for ER markers in the absence of any predicted TMs. In conclusion, HCV NS4B targeting and retention in the ER results from the concerted action of several NS4B structural elements.
Collapse
Affiliation(s)
- Haralabia Boleti
- Molecular Virology Laboratory, Department of Microbiology, Institut Pasteur Hellenique, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The versatility of Ca(2+) as an intracellular messenger derives largely from the spatial organization of cytosolic Ca(2+) signals, most of which are generated by regulated openings of Ca(2+)-permeable channels. Most Ca(2+) channels are expressed in the plasma membrane (PM). Others, including the almost ubiquitous inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, the ryanodine receptors (RyR), are predominantly expressed in membranes of the sarcoplasmic or endoplasmic reticulum (ER). Targeting of these channels to appropriate destinations underpins their ability to generate spatially organized Ca(2+) signals. All Ca(2+) channels begin life in the cytosol, and the vast majority are then functionally assembled in the ER, where they may either remain or be dispatched to other membranes. Here, by means of selective examples, we review two issues related to this trafficking of Ca(2+) channels via the ER. How do cells avoid wayward activity of Ca(2+) channels in transit as they pass from the ER via other membranes to their final destination? How and why do some cells express small numbers of the archetypal intracellular Ca(2+) channels, IP(3)R and RyR, in the PM?
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | | | | |
Collapse
|
18
|
Targeting of inositol 1,4,5-trisphosphate receptor to the endoplasmic reticulum by its first transmembrane domain. Biochem J 2009; 425:61-9. [PMID: 19845505 PMCID: PMC2805921 DOI: 10.1042/bj20091051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Targeting of IP3R (inositol 1,4,5-trisphosphate receptors) to membranes of the ER (endoplasmic reticulum) and their retention within ER or trafficking to other membranes underlies their ability to generate spatially organized Ca2+ signals. N-terminal fragments of IP3R1 (type 1 IP3R) were tagged with enhanced green fluorescent protein, expressed in COS-7 cells and their distribution was determined by confocal microscopy and subcellular fractionation. Localization of IP3R1 in the ER requires translation of between 26 and 34 residues beyond the end of the first transmembrane domain (TMD1), a region that includes TMD2 (second transmembrane domain). Replacement of these post-TMD1 residues with unrelated sequences of similar length (24–36 residues) partially mimicked the native residues. We conclude that for IP3R approx. 30 residues after TMD1 must be translated to allow a signal sequence within TMD1 to be extruded from the ribosome and mediate co-translational targeting to the ER. Hydrophobic residues within TMD1 and TMD2 then ensure stable association with the ER membrane.
Collapse
|
19
|
Taylor CW, Pantazaka E. Targeting and clustering of IP3 receptors: key determinants of spatially organized Ca2+ signals. CHAOS (WOODBURY, N.Y.) 2009; 19:037102. [PMID: 19798811 DOI: 10.1063/1.3127593] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca2+ channels that are almost ubiquitously expressed in animal cells. The spatiotemporal complexity of the Ca2+ signals evoked by IP3R underlies their versatility in cellular signaling. Here we review the mechanisms that contribute to the subcellular targeting of IP3R and the dynamic interplay between IP3R that underpin their ability to generate complex intracellular Ca2+ signals.
Collapse
|
20
|
70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins. Exp Cell Res 2009; 315:190-205. [DOI: 10.1016/j.yexcr.2008.10.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/01/2008] [Accepted: 10/23/2008] [Indexed: 11/22/2022]
|
21
|
Wagner LE, Joseph SK, Yule DI. Regulation of single inositol 1,4,5-trisphosphate receptor channel activity by protein kinase A phosphorylation. J Physiol 2008; 586:3577-96. [PMID: 18535093 DOI: 10.1113/jphysiol.2008.152314] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP(3)R) by PKA represents an important, common route for regulation of Ca(2+) release. Following phosphorylation of the S2 splice variant of InsP(3)R-1 (S2-InsP-1), Ca(2+) release is markedly potentiated. In this study we utilize the plasma membrane (PM) expression of InsP(3)R-1 and phosphorylation state mutant InsP(3)R-1 to study how this regulation occurs at the single InsP(3)R-1 channel level. DT40-3KO cells stably expressing rat S2- InsP(3)R-1 were generated and studied in the whole-cell mode of the patch clamp technique. At hyperpolarized holding potentials, small numbers of unitary currents (average approximately 1.7 per cell) were observed which were dependent on InsP(3) and the presence of functional InsP(3)R-1, and regulated by both cytoplasmic Ca(2+) and ATP. Raising cAMP markedly enhanced the open probability (P(o)) of the InsP(3)R-1 and induced bursting activity, characterized by extended periods of rapid channel openings and subsequent prolonged refractory periods. The activity, as measured by the P(o) of the channel, of a non-phosphorylatable InsP(3)R-1 construct (Ser1589Ala/Ser1755Ala InsP(3)R-1) was markedly less than wild-type (WT) InsP(3)R-1 and right shifted some approximately 15-fold when the concentration dependency was compared to a phosphomimetic construct (Ser1589Glu/Ser1755Glu InsP(3)R-1). No change in conductance of the channel was observed. This shift in apparent InsP(3) sensitivity occurred without a change in InsP(3) binding or Ca(2+) dependency of activation or inactivation. Biophysical analysis indicated that channel activity can be described by three states: an open state, a long lived closed state which manifests itself as long interburst intervals, and a short-lived closed state. Bursting activity occurs as the channel shuttles rapidly between the open and short-lived closed state. The predominant effect of InsP(3)R-1 phosphorylation is to increase the likelihood of extended bursting activity and thus markedly augment Ca(2+) release. These analyses provide insight into the mechanism responsible for augmenting InsP(3)R-1 channel activity following phosphorylation and moreover should be generally useful for further detailed investigation of the biophysical properties of InsP(3)R.
Collapse
Affiliation(s)
- Larry E Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | |
Collapse
|
22
|
Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Söderberg O, Bootman MD, Roderick HL. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci U S A 2008; 105:2427-32. [PMID: 18250332 PMCID: PMC2268153 DOI: 10.1073/pnas.0711324105] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Indexed: 12/16/2022] Open
Abstract
Imbalance of signals that control cell survival and death results in pathologies, including cancer and neurodegeneration. Two pathways that are integral to setting the balance between cell survival and cell death are controlled by lipid-activated protein kinase B (PKB)/Akt and Ca(2+). PKB elicits its effects through the phosphorylation and inactivation of proapoptotic factors. Ca(2+) stimulates many prodeath pathways, among which is mitochondrial permeability transition. We identified Ca(2+) release through inositol 1,4,5-trisphosphate receptor (InsP(3)R) intracellular channels as a prosurvival target of PKB. We demonstrated that in response to survival signals, PKB interacts with and phosphorylates InsP(3)Rs, significantly reducing their Ca(2+) release activity. Moreover, phosphorylation of InsP(3)Rs by PKB reduced cellular sensitivity to apoptotic stimuli through a mechanism that involved diminished Ca(2+) flux from the endoplasmic reticulum to the mitochondria. In glioblastoma cells that exhibit hyperactive PKB, the same prosurvival effect of PKB on InsP(3)R was found to be responsible for the insensitivity of these cells to apoptotic stimuli. We propose that PKB-mediated abolition of InsP(3)-induced Ca(2+) release may afford tumor cells a survival advantage.
Collapse
Affiliation(s)
| | - Veerle Vanderheyden
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, B-3000 Leuven, Belgium
| | - Jan B. Parys
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, B-3000 Leuven, Belgium
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, B-3000 Leuven, Belgium
| | | | - Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, Unite 773, Centre de Recherche Bichat Beaujon, Faculté de Médecine X. Bichat, Université Paris 7 Denis Diderot, 75018 Paris, France; and
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, Unite 773, Centre de Recherche Bichat Beaujon, Faculté de Médecine X. Bichat, Université Paris 7 Denis Diderot, 75018 Paris, France; and
| | - Farid Khan
- Protein Technologies, The Babraham Institute, Cambridge CB2 3AT, United Kingdom
| | - Ulf Landegren
- Department of Genetics and Pathology/Molecular Medicine, The Rudbeck Laboratory, University of Uppsala, Se-75185 Uppsala, Sweden
| | - Ola Söderberg
- Department of Genetics and Pathology/Molecular Medicine, The Rudbeck Laboratory, University of Uppsala, Se-75185 Uppsala, Sweden
| | | | - H. Llewelyn Roderick
- Laboratories of *Molecular Signaling and
- **Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
23
|
Meur G, Parker AKT, Gergely FV, Taylor CW. Targeting and retention of type 1 ryanodine receptors to the endoplasmic reticulum. J Biol Chem 2007; 282:23096-103. [PMID: 17526491 DOI: 10.1074/jbc.m702457200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most ryanodine receptors and their relatives, inositol 1,4,5-trisphosphate receptors, are expressed in the sarcoplasmic or endoplasmic reticulum (ER), where they mediate Ca(2+) release. We expressed fragments of ryanodine receptor type 1 (RyR1) in COS cells alone or fused to intercellular adhesion molecule-1 (ICAM-1), each tagged with yellow fluorescent protein, and used confocal imaging and glycoprotein analysis to identify the determinants of ER targeting and retention. Single transmembrane domains (TMD) of RyR1 taken from the first (TMD1-TMD2) or last (TMD5-TMD6) pair were expressed in the ER membrane. TMD3-TMD4 was expressed in the outer mitochondrial membrane. The TMD outer pairs (TMD1-TMD2 and TMD5-TMD6) retained ICAM-1, a plasma membrane-targeted protein, within the ER membrane. TMD1 alone provided a strong ER retention signal and TMD6 a weaker signal, but the other single TMD were unable to retain ICAM-1 in the ER. We conclude that TMD1 provides the first and sufficient signal for ER targeting of RyR1. The TMD outer pairs include redundant ER retention signals, with TMD1 providing the strongest signal.
Collapse
Affiliation(s)
- Gargi Meur
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | |
Collapse
|
24
|
Heine C, Quitsch A, Storch S, Martin Y, Lonka L, Lehesjoki AE, Mole SE, Braulke T. Topology and endoplasmic reticulum retention signals of the lysosomal storage disease-related membrane protein CLN6. Mol Membr Biol 2007; 24:74-87. [PMID: 17453415 DOI: 10.1080/09687860600967317] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CLN6 is a polytopic membrane protein of unknown function resident in the endoplasmic reticulum (ER). Mutant CLN6 causes the lysosomal storage disorder neuronal ceroid lipofuscinosis. Defining the topology of CLN6, and the structural domains and motifs required for interaction with cytosolic and luminal proteins may allow insights into its function. In this study we analysed the topology, ER retention and oligomerization of CLN6. We demonstrated, by differential membrane permeabilization of transfected BHK cells using specific detergents and two distinct antibodies, that CLN6 contains an N-terminal cytoplasmic domain, seven transmembrane domains, and a luminal C terminus. Mutational analyses and confocal immunofluorescence microscopy showed that changes of potential ER localization signals in the N- or C-terminal domain (a triple arginine cluster, and a dileucine motif) did not alter the subcellular localization of CLN6. The deletion of a dilysine motif impaired partially the ER localization of CLN6. Furthermore, expression analyses of fusion and deletion constructs in non-neuronal and neuronal cells suggested that two portions of CLN6 contributed to its retention within the ER. We showed that the N-terminal domain was necessary but not sufficient for ER retention of CLN6 and that deletion of transmembrane domains 6 and 7 was accompanied with the loss of ER localization and, in some instances, trafficking to the cisGolgi. From these data we concluded that CLN6 maintains its ER localization by expressing retention signals present in both the N-terminal cytosolic domain and in the carboxy-proximal transmembrane domains 6 and 7. Additionally, the ability of CLN6 to homodimerize may also prevent exit from the ER via an interaction with membrane-associated factors.
Collapse
Affiliation(s)
- Claudia Heine
- Department of Biochemistry, University Hospital Hamburg Eppendorf, Children's Hospital, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Várnai P, Balla T. Visualization and manipulation of phosphoinositide dynamics in live cells using engineered protein domains. Pflugers Arch 2007; 455:69-82. [PMID: 17473931 DOI: 10.1007/s00424-007-0270-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
There is hardly a membrane-associated molecular event that is not regulated by phosphoinositides, a minor but critically important class of phospholipids of cellular membranes. The rapid formation, elimination, and conversion of these lipids in specific membrane compartments are ensured by a wealthy number of inositol lipid kinases and phosphatases with unique localization and regulatory properties. The existence of multiple inositol lipid pools have been indicated by metabolic labeling studies, but the level of functional compartmentalization revealed by the identification of numerous protein effectors acted upon by phosphoinositides could not have been foreseen. The changing perception of inositides from just serving as lipid precursors of second messengers to becoming highly dynamic local membrane-bound regulators poses new challenges concerning the detection of their rapid localized changes. Moreover, it is increasingly evident that manipulation of lipids in highly defined compartments would be a highly superior approach to soaking the cells with a particular phosphoinositide when studying the local regulation of the lipid on any effectors. In this review, we will summarize our efforts to improve our tools in studying phosphoinositide dynamics and discuss our views on the values of these methods compared to other options currently used or being explored.
Collapse
Affiliation(s)
- Péter Várnai
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bldg 49, Rm 6A35, 49 Convent Drive, Bethesda, MD, USA.
| | | |
Collapse
|
26
|
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085, USA.
| | | | | | | |
Collapse
|
27
|
Callan A, Bunning S, Jones O, High S, Swanton E. Biosynthesis of the dystonia-associated AAA+ ATPase torsinA at the endoplasmic reticulum. Biochem J 2007; 401:607-12. [PMID: 17037984 PMCID: PMC1820811 DOI: 10.1042/bj20061313] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/12/2006] [Accepted: 10/12/2006] [Indexed: 11/17/2022]
Abstract
TorsinA is a widely expressed AAA(+) (ATPases associated with various cellular activities) ATPase of unknown function. Previous studies have described torsinA as a type II protein with a cleavable signal sequence, a single membrane spanning domain, and its C-terminus located in the ER (endoplasmic reticulum) lumen. However, in the present study we show that torsinA is not in fact an integral membrane protein. Instead we find that the mature protein associates peripherally with the ER membrane, most likely through an interaction with an integral membrane protein. Consistent with this model, we provide evidence that the signal peptidase complex cleaves the signal sequence of torsinA, and we show that the region previously suggested to form a transmembrane domain is translocated into the lumen of the ER. The finding that torsinA is a peripheral, and not an integral membrane protein as previously thought, has important implications for understanding the function of this novel ATPase.
Collapse
Affiliation(s)
- Anna C. Callan
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K
| | - Sandra Bunning
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K
| | - Owen T. Jones
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K
| | - Eileithyia Swanton
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K
| |
Collapse
|
28
|
Chalmers M, Schell M, Thorn P. Agonist-evoked inositol trisphosphate receptor (IP3R) clustering is not dependent on changes in the structure of the endoplasmic reticulum. Biochem J 2006; 394:57-66. [PMID: 16274363 PMCID: PMC1386003 DOI: 10.1042/bj20051130] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/11/2005] [Accepted: 11/08/2005] [Indexed: 11/17/2022]
Abstract
The size and number of IP3R (inositol 1,4,5-trisphosphate receptor) clusters located on the surface of the ER (endoplasmic reticulum) is hypothesized to regulate the propagation of Ca2+ waves in cells, but the mechanisms by which the receptors cluster are not understood. Using immunocytochemistry, live-cell imaging and heterologous expression of ER membrane proteins we have investigated IP3R clustering in the basophilic cell line RBL-2H3 following the activation of native cell-surface antigen receptors. IP3R clusters are present in resting cells, and upon receptor stimulation, form larger aggregates. Cluster formation and maintenance required the presence of extracellular Ca2+ in both resting and stimulated cells. Using transfection with a marker of the ER, we found that the ER itself also showed structural changes, leading to an increased number of 'hotspots', following antigen stimulation. Surprisingly, however, when we compared the ER hotspots and IP3R clusters, we found them to be distinct. Imaging of YFP (yellow fluorescent protein)-IP3R transfected in to living cells confirmed that IP3R clustering increased upon stimulation. Photobleaching experiments showed that the IP3R occupied a single contiguous ER compartment both before and after stimulation, suggesting a dynamic exchange of IP3R molecules between the clusters and the surrounding ER membrane. It also showed a decrease in the mobile fraction after cell activation, consistent with receptor anchoring within clusters. We conclude that IP3R clustering in RBL-2H3 cells is not simply a reflection of bulk-changes in ER structure, but rather is due to the receptor undergoing homotypic or heterotypic protein-protein interactions in response to agonist stimulation.
Collapse
Key Words
- calcium
- endoplasmic reticulum (er)
- inositol trisphosphate receptor (ip3r)
- rbl-2h3 cell line
- yellow fluorescent protein (yfp)
- agonist
- bapta/am, [bis-(o-aminophenoxy)ethane-n,n,n′,n′-tetra-acetic acid tetrakis(acetoxymethyl ester)]
- dmem, dulbecco's modified eagle's medium
- dnp, 2,4-dinitrophenyl
- er, endoplasmic reticulum
- egfp, enhanced green fluorescent protein
- eyfp, enhanced yellow fluorescent protein
- fcs, foetal calf serum
- frap, fluorescence recovery after photobleaching
- ip3, inositol 1,4,5-trisphosphate
- ip3r, ip3 receptor
- mem, minimum essential medium
- mf, mobile fraction
- pfa, paraformaldehyde
- roi, region of interest
- yfp, yellow fluorescent protein
Collapse
Affiliation(s)
- Mark Chalmers
- *Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, U.K
| | - Michael J. Schell
- †Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814-4799, U.S.A
| | - Peter Thorn
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Endo Y, Harada K, Fujishiro N, Funahashi H, Shioda S, Prestwich GD, Mikoshiba K, Inoue M. Organelles Containing Inositol Trisphosphate Receptor Type 2 in Adrenal Medullary Cells. J Physiol Sci 2006; 56:415-23. [PMID: 17081354 DOI: 10.2170/physiolsci.rp006406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 11/01/2006] [Indexed: 11/05/2022]
Abstract
To identify which organelles contained inositol trisphosphate (InsP(3)) receptor type 2 (InsP(3)R2) in adrenal medullary (AM) cells, immunocytochemical and biochemical studies were performed on AM cells of several species. InsP(3)R2-like immunoreactive materials produced by two different anti-InsP(3)R2 antibodies (Abs) (Chemicon and Sigma) were distributed in rat AM cells in agreement with BODIPY-FL-InsP(3) binding sites. For two other Abs (KM1083 and Santa Cruz), some of the anti-InsP(3)R2 immunoreactive materials were stained with an anti-dopamine-beta-hydroxylase Ab, but not by BODIPY-FL-InsP(3). BODIPY-FL-thapsigargin binding sites were consistent with a distribution of the endoplasmic reticulum (ER) identified by an anti-calnexin Ab, and a prior application of thapsigargin significantly eliminated BODIPY-FL-thapsigargin bindings, suggesting that BODIPY-FL-thapsigargin bindings were mediated by thapsigargin, but not the fluorescence molecule. The anti-InsP(3)R2 Ab that produced stainings consistent with BODIPY-FL-InsP(3) bindings recognized a protein with about 250 kDa. A fractional analysis of bovine adrenal medullae revealed that the 250 kDa InsP(3)R2 was detected in a crude membrane fraction, but not in a secretory granule fraction. The results suggest that the InsP(3)R2 was present in the ER, but not in secretory granules in AM cells.
Collapse
Affiliation(s)
- Yutaka Endo
- Department of Cell and System Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, 807-8555 Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86:369-408. [PMID: 16371601 DOI: 10.1152/physrev.00004.2005] [Citation(s) in RCA: 896] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calcium ions are ubiquitous and versatile signaling molecules, capable of decoding a variety of extracellular stimuli (hormones, neurotransmitters, growth factors, etc.) into markedly different intracellular actions, ranging from contraction to secretion, from proliferation to cell death. The key to this pleiotropic role is the complex spatiotemporal organization of the [Ca(2+)] rise evoked by extracellular agonists, which allows selected effectors to be recruited and specific actions to be initiated. In this review, we discuss the structural and functional bases that generate the subcellular heterogeneity in cellular Ca(2+) levels at rest and under stimulation. This complex choreography requires the concerted action of many different players; the central role is, of course, that of the calcium ion, with the main supporting characters being all the entities responsible for moving Ca(2+) between different compartments, while the cellular architecture provides a determining framework within which all the players have their exits and their entrances. In particular, we concentrate on the molecular mechanisms that lead to the generation of cytoplasmic Ca(2+) microdomains, focusing on their different subcellular location, mechanism of generation, and functional role.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
31
|
Vainauskas S, Menon AK. Endoplasmic Reticulum Localization of Gaa1 and PIG-T, Subunits of the Glycosylphosphatidylinositol Transamidase Complex. J Biol Chem 2005; 280:16402-9. [PMID: 15713669 DOI: 10.1074/jbc.m414253200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After integration into the endoplasmic reticulum (ER) membrane, ER-resident membrane proteins must be segregated from proteins that are exported to post-ER compartments. Here we analyze how human Gaa1 and PIG-T, two of the five subunits of the ER-localized glycosylphosphatidylinositol transamidase complex, are retained in the ER. Neither protein contains a known ER localization signal. Gaa1 is a polytopic membrane glycoprotein with a cytoplasmic N terminus and a large luminal loop between its first two transmembrane spans; PIG-T is a type I membrane glycoprotein. To simplify our analyses, we studied Gaa1 and PIG-T constructs that could not interact with other subunits of the transamidase. We now show that Gaa1(282), a truncated protein consisting of the first TM domain and luminal loop of Gaa1, is correctly oriented, N-glycosylated, and ER-localized. Removal of a potential ER localization signal in the form of a triple arginine cluster near the N terminus of Gaa1 or Gaa1(282) had no effect on ER localization. Fusion proteins consisting of different elements of Gaa1(282) appended to alpha2,6-sialyltransferase or transferrin receptor could exit the ER, indicating that Gaa1(282), and by implication Gaa1, does not contain any dominant ER-sorting determinants. The data suggest that Gaa1 is passively retained in the ER by a signalless mechanism. In contrast, similar analyses of PIG-T revealed that it is ER-localized because of information in its transmembrane span; fusion of the PIG-T transmembrane span to Tac antigen, a plasma membrane-localized protein, caused the fusion protein to remain in the ER. These data are discussed in the context of models that have been proposed to account for retention of ER membrane proteins.
Collapse
Affiliation(s)
- Saulius Vainauskas
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.
| | | |
Collapse
|
32
|
Barré L, Magdalou J, Netter P, Fournel-Gigleux S, Ouzzine M. The stop transfer sequence of the human UDP-glucuronosyltransferase 1A determines localization to the endoplasmic reticulum by both static retention and retrieval mechanisms. FEBS J 2005; 272:1063-71. [PMID: 15691338 DOI: 10.1111/j.1742-4658.2005.04548.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human UDP-glucuronosyltransferase 1A (UGT1A) isoforms are endoplasmic reticulum (ER)-resident type I membrane proteins responsible for the detoxification of a broad range of toxic phenolic compounds. These proteins contain a C-terminal stop transfer sequence with a transmembrane domain (TMD), which anchors the protein into the membrane, followed by a short cytosolic tail (CT). Here, we investigated the mechanism of ER residency of UGT1A mediated by the stop transfer sequence by analysing the subcellular localization and sensitivity to endoglycosidases of chimeric proteins formed by fusion of UGT1A stop transfer sequence (TMD/CT) with the ectodomain of the plasma membrane CD4 reporter protein. We showed that the stop transfer sequence, when attached to C-terminus of the CD4 ectodomain was able to prevent it from being transported to the cell surface. The protein was retained in the ER indicating that this sequence functions as an ER localization signal. Furthermore, we demonstrated that ER localization conferred by the stop transfer sequence was mediated in part by the KSKTH retrieval signal located on the CT. Interestingly, our data indicated that UGT1A TMD alone was sufficient to retain the protein in ER without recycling from Golgi compartment, and brought evidence that organelle localization conferred by UGT1A TMD was determined by the length of its hydrophobic core. We conclude that both retrieval mechanism and static retention mediated by the stop transfer sequence contribute to ER residency of UGT1A proteins.
Collapse
Affiliation(s)
- Lydia Barré
- UMR 7561 CNRS-Université Henri Poincaré Nancy I, France
| | | | | | | | | |
Collapse
|
33
|
Ferreri-Jacobia M, Mak DOD, Foskett JK. Translational mobility of the type 3 inositol 1,4,5-trisphosphate receptor Ca2+ release channel in endoplasmic reticulum membrane. J Biol Chem 2004; 280:3824-31. [PMID: 15537642 DOI: 10.1074/jbc.m409462200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an integral membrane protein in the endoplasmic reticulum (ER) which functions as a ligand-gated Ca2+ release channel. InsP3-mediated Ca2+ release modulates the cytoplasmic free Ca2+ concentration ([Ca2+]i), providing a ubiquitous intracellular signal with high temporal and spatial specificity. Precise localization of the InsP3R is believed to be important for providing local [Ca2+] regulation and for ensuring efficient functional coupling between Ca2+ release sites by enabling graded recruitment of channels with increasing stimulus strength in the face of the intrinsically unstable regenerative process of Ca2+-induced Ca2+ release. Highly localized Ca2+ release has been attributed to the ability of the InsP3R channels to cluster and to be localized to discrete areas, suggesting that mechanisms may exist to restrict their movement. Here, we examined the lateral mobility of the type 3 isoform of the InsP3R (InsP3R3) in the ER membrane by performing confocal fluorescence recovery after photobleaching of an InsP3R3 with green fluorescent protein fused to its N terminus. In Chinese hamster ovary and COS-7 cells, the diffusion coefficient D was approximately 4 x 10(-10) cm2/s at room temperature, a value similar to that determined for other ER-localized integral membrane proteins, with a high fraction (approximately 75%) of channels mobile. D was modestly increased at 37 degrees C, and it as well as the mobile fraction were reversibly reduced by ATP depletion. Although disruption of the actin cytoskeleton (latrunculin) was without effect, disruption of microtubules (nocodazole) reduced D by half without affecting the mobile fraction. We conclude that the entire ER is continuous in these cells, with the large majority of InsP3R3 channels free to diffuse throughout it, at rates that are comparable with those measured for other polytopic ER integral membrane proteins. The observed InsP3R3 mobility may be higher than its intrinsic diffusional mobility because of additional ATP- and microtubule-facilitated motility of the channel.
Collapse
Affiliation(s)
- Michelle Ferreri-Jacobia
- Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
34
|
Wagner LE, Li WH, Joseph SK, Yule DI. Functional Consequences of Phosphomimetic Mutations at Key cAMP-dependent Protein Kinase Phosphorylation Sites in the Type 1 Inositol 1,4,5-Trisphosphate Receptor. J Biol Chem 2004; 279:46242-52. [PMID: 15308649 DOI: 10.1074/jbc.m405849200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of Ca(2+) release through inositol 1,4,5-trisphosphate receptors (InsP(3)R) has important consequences for defining the particular spatio-temporal properties of intracellular Ca(2+) signals. In this study, regulation of Ca(2+) release by phosphorylation of type 1 InsP(3)R (InsP(3)R-1) was investigated by constructing "phosphomimetic" charge mutations in the functionally important phosphorylation sites of both the S2+ and S2- InsP(3)R-1 splice variants. Ca(2+) release was investigated following expression in Dt-40 3ko cells devoid of endogenous InsP(3)R. In cells expressing either the S1755E S2+ or S1589E/S1755E S2- InsP(3)R-1, InsP(3)-induced Ca(2+) release was markedly enhanced compared with nonphosphorylatable S2+ S1755A and S2- S1589A/S1755A mutants. Ca(2+) release through the S2- S1589E/S1755E InsP(3)R-1 was enhanced approximately 8-fold over wild type and approximately 50-fold when compared with the nonphosphorylatable S2- S1589A/S1755A mutant. In cells expressing S2- InsP(3)R-1 with single mutations in either S1589E or S1755E, the sensitivity of Ca(2+) release was enhanced approximately 3-fold; sensitivity was midway between the wild type and the double glutamate mutation. Paradoxically, forskolin treatment of cells expressing either single Ser/Glu mutation failed to further enhance Ca(2+) release. The sensitivity of Ca(2+) release in cells expressing S2+ S1755E InsP(3)R-1 was comparable with the sensitivity of S2- S1589E/S1755E InsP(3)R-1. In contrast, mutation of S2+ S1589E InsP(3)R-1 resulted in a receptor with comparable sensitivity to wild type cells. Expression of S2- S1589E/S1755E InsP(3)R-1 resulted in robust Ca(2+) oscillations when cells were stimulated with concentrations of alpha-IgM antibody that were threshold for stimulation in S2- wild type InsP(3)R-1-expressing cells. However, at higher concentrations of alpha-IgM antibody, Ca(2+) oscillations of a similar period and magnitude were initiated in cells expressing either wild type or S2- phosphomimetic mutations. Thus, regulation by phosphorylation of the functional sensitivity of InsP(3)R-1 appears to define the threshold at which oscillations are initiated but not the frequency or amplitude of the signal when established.
Collapse
Affiliation(s)
- Larry E Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|