1
|
Jarrar Y, Ghishan M, Khirfan F, Hakooz N. Genetic variants in NUDT15 gene their clinical implications in cancer therapy. Drug Metab Pers Ther 2025:dmdi-2025-0003. [PMID: 40219790 DOI: 10.1515/dmpt-2025-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Individual variations in the response to thiopurine-based anticancer drugs are influenced by genetic and environmental factors, making it challenging to optimize dosing and minimize toxicity. Among the key genes involved, genetic variations in the nudix hydrolase 15 (NUDT15) gene affect on thiopurine metabolism, thus influencing drug efficacy and the risk of severe adverse effects, such as myelosuppression, These variations also contribute to inter-individual differences in drug tolerance and clinical outcomes. Despite the recognized impact of NUDT15 variations, there has been limited comprehensive exploration of these variants and their clinical significance in thiopurine therapy. This review provides a thorough analysis of NUDT15 genetic variants by synthesizing findings from prior clinical studies and employing in silico analyses to predict the functional effects of variants with uncertain significance. Comprehensive analysis of NUDT15 variants and their interactions with other metabolic pathways could offer valuable insights for advancing personalized medicine in cancer treatment. This review aims to establish a foundation for integrating NUDT15 genetic information into the clinical practice, reducing toxicity, and improved therapeutic outcomes in patients undergoing thiopurine-based chemotherapy.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Maria Ghishan
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Fatima Khirfan
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Nancy Hakooz
- School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
McCombe CL, Catanzariti AM, Greenwood JR, Desai AM, Outram MA, Yu DS, Ericsson DJ, Brenner SE, Dodds PN, Kobe B, Jones DA, Williams SJ. A rust-fungus Nudix hydrolase effector decaps mRNA in vitro and interferes with plant immune pathways. THE NEW PHYTOLOGIST 2023; 239:222-239. [PMID: 36631975 DOI: 10.1111/nph.18727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2023] [Indexed: 06/02/2023]
Abstract
To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.
Collapse
Affiliation(s)
- Carl L McCombe
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ann-Maree Catanzariti
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Julian R Greenwood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Anna M Desai
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Megan A Outram
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel S Yu
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel J Ericsson
- Australian Synchrotron, Macromolecular Crystallography, Clayton, Vic., 3168, Australia
| | - Steven E Brenner
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | - David A Jones
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon J Williams
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
He H, Zhang Y, Wen B, Meng X, Wang N, Sun M, Zhang R, Zhao X, Tan Q, Xiao W, Li D, Fu X, Chen X, Li L. PpNUDX8, a Peach NUDIX Hydrolase, Plays a Negative Regulator in Response to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 12:831883. [PMID: 35251068 PMCID: PMC8888663 DOI: 10.3389/fpls.2021.831883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Drought stress is a serious abiotic stress source that affects the growth and fruit quality of peach trees. However, the molecular mechanism of the NUDIX hydrolase family in peaches in response to drought stress is still unclear. Here, we isolated and identified the PpNUDX8 (Prupe.5G062300.1) gene from the peach NUDIX hydrolase family, and found that PpNUDX8 has a typical NUDIX hydrolase domain. In this study, we performed 15% PEG6000 drought treatment on peach seedlings, and qRT-PCR analysis showed that 15% PEG6000 induced the transcription level of PpNUDX8. Overexpression of PpNUDX8 reduced the tolerance of calli to 4% PEG6000 treatment. Compared with wild-type apple calli, PpNUDX8 transgenic apple calli had a lower fresh weight and higher MDA content. After 15% PEG6000 drought treatment, PpNUDX8 transgenic tobacco had a greater degree of wilting and shorter primary roots than Under control conditions. The chlorophyll, soluble protein, and proline contents in the transgenic tobacco decreased, and the MDA content and relative conductivity increased. At the same time, PpNUDX8 negatively regulated ABA signal transduction and reduced the transcriptional expression of stress response genes. In addition, PpNUDX8 was not sensitive to ABA, overexpression of PpNUDX8 reduced the expression of the ABA synthesis-related gene NCED6 and increases the expression of the ABA decomposition-related gene CYP1 in tobacco, which in turn leads to a decrease in the ABA content in tobacco. In addition, Under control conditions, overexpression of PpNUDX8 destroyed the homeostasis of NAD and reduced nicotinamide adenine dinucleotide (NADH) in tobacco. After 15% PEG6000 drought treatment, the changes in NAD and NADH in PpNUDX8 transgenic tobacco were more severe than those in WT tobacco. In addition, PpNUDX8 also interacted with PpSnRk1γ (Prupe.6G323700.1).
Collapse
Affiliation(s)
- HuaJie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - YuZheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - BinBin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XiangGuang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - MingYun Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XueHui Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - QiuPing Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
- College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - DongMei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XiLing Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XiuDe Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| |
Collapse
|
4
|
Insight into the Binding and Hydrolytic Preferences of hNudt16 Based on Nucleotide Diphosphate Substrates. Int J Mol Sci 2021; 22:ijms222010929. [PMID: 34681586 PMCID: PMC8535469 DOI: 10.3390/ijms222010929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Nudt16 is a member of the NUDIX family of hydrolases that show specificity towards substrates consisting of a nucleoside diphosphate linked to another moiety X. Several substrates for hNudt16 and various possible biological functions have been reported. However, some of these reports contradict each other and studies comparing the substrate specificity of the hNudt16 protein are limited. Therefore, we quantitatively compared the affinity of hNudt16 towards a set of previously published substrates, as well as identified novel potential substrates. Here, we show that hNudt16 has the highest affinity towards IDP and GppG, with Kd below 100 nM. Other tested ligands exhibited a weaker affinity of several orders of magnitude. Among the investigated compounds, only IDP, GppG, m7GppG, AppA, dpCoA, and NADH were hydrolyzed by hNudt16 with a strong substrate preference for inosine or guanosine containing compounds. A new identified substrate for hNudt16, GppG, which binds the enzyme with an affinity comparable to that of IDP, suggests another potential regulatory role of this protein. Molecular docking of hNudt16-ligand binding inside the hNudt16 pocket revealed two binding modes for representative substrates. Nucleobase stabilization by Π stacking interactions with His24 has been associated with strong binding of hNudt16 substrates.
Collapse
|
5
|
Lan C, Wang Y, Su X, Lu J, Ma S. LncRNA LINC00958 Activates mTORC1/P70S6K Signalling Pathway to Promote Epithelial-Mesenchymal Transition Process in the Hepatocellular Carcinoma. Cancer Invest 2021; 39:539-549. [PMID: 33979257 DOI: 10.1080/07357907.2021.1929282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The study aimed to investigate the influence of LINC00958 on the EMT process of hepatocellular carcinoma (HCC). In our study, The LINC00958 was up-regulated in HCC tissues and cell lines. LINC00958 silencing inhibited cell proliferation, migration, and EMT process of HCC. The analysis of TCGA and StarBase showed that NUDT19 was a direct target of LINC00958 and was positively regulated by LINC00958. Besides, NUDT19 activated mTORC1/P70S6K signalling pathway. Both NUDT19 overexpression and mTORC1 activator MYH1485 reversed the inhibitory effect of LINC00958 silencing on proliferation, migration, and EMT process of HCC. In conclusion, LINC00958 silencing inhibited the proliferation, migration, and EMT process of HCC via inhibiting NUDT19 mediated mTORC1/P70S6K signalling pathway.
Collapse
Affiliation(s)
- Chuangxia Lan
- Department of Liver Disease Second District, QingDao No. 6 People's Hospital, Qingdao, Shandong, P.R. China
| | - Yanming Wang
- Liver Disease Seven Districts of Traditional Chinese Medicine, QingDao No. 6 People's Hospital, Qingdao, Shandong, P.R. China
| | - Xiaofei Su
- Department of Infectious Diseases, QingDao No. 6 People's Hospital, Qingdao, Shandong, P.R. China
| | - Jing Lu
- Department of Infectious Diseases, QingDao No. 6 People's Hospital, Qingdao, Shandong, P.R. China
| | - Saisai Ma
- Department of Infectious Diseases, QingDao No. 6 People's Hospital, Qingdao, Shandong, P.R. China
| |
Collapse
|
6
|
Sheng L, Zang S, Wang J, Wei T, Xu Y, Feng L. Overexpression of a Rosa rugosa Thunb. NUDX gene enhances biosynthesis of scent volatiles in petunia. PeerJ 2021; 9:e11098. [PMID: 33859875 PMCID: PMC8020868 DOI: 10.7717/peerj.11098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Rosa rugosa is an important natural perfume plant in China. Rose essential oil is known as ‘liquid gold’ and has high economic and health values. Monoterpenes are the main fragrant components of R. rugosa flower and essential oil. In this study, a member of the hydrolase gene family RrNUDX1 was cloned from Chinese traditional R. rugosa ‘Tang Hong’. Combined analysis of RrNUDX1 gene expression and the aroma components in different development stages and different parts of flower organ, we found that the main aroma component content was consistent with the gene expression pattern. The RrNUDX1 overexpressed Petunia hybrida was acquired via Agrobacterium-mediated genetic transformation systems. The blades of the transgenic petunias became wider and its growth vigor became strong with stronger fragrance. Gas chromatography with mass spectrometry analysis showed that the contents of the main aroma components of the transgenic petunias including methyl benzoate significantly increased. These findings indicate that the RrNUDX1 gene plays a role in enhancing the fragrance of petunia flowers, and they could lay an important foundation for the homeotic transformation of RrNUDX1 in R. rugosa for cultivating new R. rugosa varieties of high-yield and -quality essential oil.
Collapse
Affiliation(s)
- Lixia Sheng
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Shu Zang
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Jianwen Wang
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Tiantian Wei
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Yong Xu
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| | - Liguo Feng
- College of Horticulture and Plant Protection, Yanghzou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Parker MJ, Maggiolo AO, Thomas WC, Kim A, Meisburger SP, Ando N, Boal AK, Stubbe J. An endogenous dAMP ligand in Bacillus subtilis class Ib RNR promotes assembly of a noncanonical dimer for regulation by dATP. Proc Natl Acad Sci U S A 2018; 115:E4594-E4603. [PMID: 29712847 PMCID: PMC5960316 DOI: 10.1073/pnas.1800356115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high fidelity of DNA replication and repair is attributable, in part, to the allosteric regulation of ribonucleotide reductases (RNRs) that maintains proper deoxynucleotide pool sizes and ratios in vivo. In class Ia RNRs, ATP (stimulatory) and dATP (inhibitory) regulate activity by binding to the ATP-cone domain at the N terminus of the large α subunit and altering the enzyme's quaternary structure. Class Ib RNRs, in contrast, have a partial cone domain and have generally been found to be insensitive to dATP inhibition. An exception is the Bacillus subtilis Ib RNR, which we recently reported to be inhibited by physiological concentrations of dATP. Here, we demonstrate that the α subunit of this RNR contains tightly bound deoxyadenosine 5'-monophosphate (dAMP) in its N-terminal domain and that dATP inhibition of CDP reduction is enhanced by its presence. X-ray crystallography reveals a previously unobserved (noncanonical) α2 dimer with its entire interface composed of the partial N-terminal cone domains, each binding a dAMP molecule. Using small-angle X-ray scattering (SAXS), we show that this noncanonical α2 dimer is the predominant form of the dAMP-bound α in solution and further show that addition of dATP leads to the formation of larger oligomers. Based on this information, we propose a model to describe the mechanism by which the noncanonical α2 inhibits the activity of the B. subtilis Ib RNR in a dATP- and dAMP-dependent manner.
Collapse
Affiliation(s)
- Mackenzie J Parker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ailiena O Maggiolo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - William C Thomas
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Albert Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, NJ 08544;
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802;
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
8
|
Maruta T, Ogawa T, Tsujimura M, Ikemoto K, Yoshida T, Takahashi H, Yoshimura K, Shigeoka S. Loss-of-function of an Arabidopsis NADPH pyrophosphohydrolase, AtNUDX19, impacts on the pyridine nucleotides status and confers photooxidative stress tolerance. Sci Rep 2016; 6:37432. [PMID: 27874073 PMCID: PMC5118724 DOI: 10.1038/srep37432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 11/30/2022] Open
Abstract
The levels and redox states of pyridine nucleotides, such as NADP(H), regulate the cellular redox homeostasis, which is crucial for photooxidative stress response in plants. However, how they are controlled is poorly understood. An Arabidopsis Nudix hydrolase, AtNUDX19, was previously identified to have NADPH hydrolytic activity in vitro, suggesting this enzyme to be a regulator of the NADPH status. We herein examined the physiological role of AtNUDX19 using its loss-of-function mutants. NADPH levels were increased in nudx19 mutants under both normal and high light conditions, while NADP+ and NAD+ levels were decreased. Despite the high redox states of NADP(H), nudx19 mutants exhibited high tolerance to moderate light- or methylviologen-induced photooxidative stresses. This tolerance might be partially attributed to the activation of either or both photosynthesis and the antioxidant system. Furthermore, a microarray analysis suggested the role of ANUDX19 in regulation of the salicylic acid (SA) response in a negative manner. Indeed, nudx19 mutants accumulated SA and showed high sensitivity to the hormone. Our findings demonstrate that ANUDX19 acts as an NADPH pyrophosphohydrolase to modulate cellular levels and redox states of pyridine nucleotides and fine-tunes photooxidative stress response through the regulation of photosynthesis, antioxidant system, and possibly hormonal signaling.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Masaki Tsujimura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Keisuke Ikemoto
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Tomofumi Yoshida
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan (K.Y.)
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
9
|
de la Peña AH, Suarez A, Duong-ly KC, Schoeffield AJ, Pizarro-Dupuy MA, Zarr M, Pineiro SA, Amzel LM, Gabelli SB. Structural and Enzymatic Characterization of a Nucleoside Diphosphate Sugar Hydrolase from Bdellovibrio bacteriovorus. PLoS One 2015; 10:e0141716. [PMID: 26524597 PMCID: PMC4629899 DOI: 10.1371/journal.pone.0141716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Given the broad range of substrates hydrolyzed by Nudix (nucleoside diphosphate linked to X) enzymes, identification of sequence and structural elements that correctly predict a Nudix substrate or characterize a family is key to correctly annotate the myriad of Nudix enzymes. Here, we present the structure determination and characterization of Bd3179 -- a Nudix hydrolase from Bdellovibrio bacteriovorus-that we show localized in the periplasmic space of this obligate Gram-negative predator. We demonstrate that the enzyme is a nucleoside diphosphate sugar hydrolase (NDPSase) and has a high degree of sequence and structural similarity to a canonical ADP-ribose hydrolase and to a nucleoside diphosphate sugar hydrolase (1.4 and 1.3 Å Cα RMSD respectively). Examination of the structural elements conserved in both types of enzymes confirms that an aspartate-X-lysine motif on the C-terminal helix of the α-β-α NDPSase fold differentiates NDPSases from ADPRases.
Collapse
Affiliation(s)
- Andres H. de la Peña
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Structural Enzymology and Thermodynamics Group, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Allison Suarez
- Structural Enzymology and Thermodynamics Group, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Krisna C. Duong-ly
- Structural Enzymology and Thermodynamics Group, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew J. Schoeffield
- Biology Department, Loyola University Maryland, Baltimore, Maryland, United States of America
| | - Mario A. Pizarro-Dupuy
- Structural Enzymology and Thermodynamics Group, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Melissa Zarr
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Silvia A. Pineiro
- Department of Medical and Research Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - L. Mario Amzel
- Structural Enzymology and Thermodynamics Group, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sandra B. Gabelli
- Structural Enzymology and Thermodynamics Group, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
Trésaugues L, Lundbäck T, Welin M, Flodin S, Nyman T, Silvander C, Gräslund S, Nordlund P. Structural Basis for the Specificity of Human NUDT16 and Its Regulation by Inosine Monophosphate. PLoS One 2015; 10:e0131507. [PMID: 26121039 PMCID: PMC4485890 DOI: 10.1371/journal.pone.0131507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022] Open
Abstract
Human NUDT16 is a member of the NUDIX hydrolase superfamily. After having been initially described as an mRNA decapping enzyme, recent studies conferred it a role as an “housecleaning” enzyme specialized in the removal of hazardous (deoxy)inosine diphosphate from the nucleotide pool. Here we present the crystal structure of human NUDT16 both in its apo-form and in complex with its product inosine monophosphate (IMP). NUDT16 appears as a dimer whose formation generates a positively charged trench to accommodate substrate-binding. Complementation of the structural data with detailed enzymatic and biophysical studies revealed the determinants of substrate recognition and particularly the importance of the substituents in position 2 and 6 on the purine ring. The affinity for the IMP product, harboring a carbonyl in position 6 on the base, compared to purine monophosphates lacking a H-bond acceptor in this position, implies a catalytic cycle whose rate is primarily regulated by the product-release step. Finally, we have also characterized a phenomenon of inhibition by the product of the reaction, IMP, which might exclude non-deleterious nucleotides from NUDT16-mediated hydrolysis regardless of their cellular concentration. Taken together, this study details structural and regulatory mechanisms explaining how substrates are selected for hydrolysis by human NUDT16.
Collapse
Affiliation(s)
- Lionel Trésaugues
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (PN); (LT)
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratories, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Martin Welin
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Flodin
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Nyman
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Silvander
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pär Nordlund
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (PN); (LT)
| |
Collapse
|
11
|
Yoshimura K, Shigeoka S. Versatile physiological functions of the Nudix hydrolase family in Arabidopsis. Biosci Biotechnol Biochem 2014; 79:354-66. [PMID: 25483172 DOI: 10.1080/09168451.2014.987207] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nudix hydrolases are widely distributed in all kingdoms of life and have the potential to hydrolyze a wide range of organic pyrophosphates, including nucleoside di- and triphosphates, nucleotide coenzymes, nucleotide sugars, and RNA caps. However, except for E. coli MutT and its orthologs in other organisms that sanitize oxidized nucleotides to prevent DNA and RNA mutations, the functions of Nudix hydrolases had largely remained unclear until recently, because many members of this enzyme family exhibited broad substrate specificities. There is now increasing evidence to show that their functions extend into many aspects of the regulation of cellular responses. This review summarizes current knowledge on the molecular and enzymatic properties as well as physiological functions of Arabidopsis Nudix hydrolases. The information presented here may provide novel insights into the physiological roles of these enzymes in not only plant species, but also other organisms.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- a Department of Food and Nutritional Science , College of Bioscience and Biotechnology, Chubu University , Kasugai , Japan
| | | |
Collapse
|
12
|
Fonseca JP, Dong X. Functional characterization of a Nudix hydrolase AtNUDX8 upon pathogen attack indicates a positive role in plant immune responses. PLoS One 2014; 9:e114119. [PMID: 25436909 PMCID: PMC4250199 DOI: 10.1371/journal.pone.0114119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/04/2014] [Indexed: 01/04/2023] Open
Abstract
Nudix hydrolases comprise a large gene family of twenty nine members in Arabidopsis, each containing a conserved motif capable of hydrolyzing specific substrates like ADP-glucose and NADH. Until now only two members of this family, AtNUDX6 and AtNUDX7, have been shown to be involved in plant immunity. RPP4 is a resistance gene from a multigene family that confers resistance to downy mildew. A time course expression profiling after Hyaloperonospora arabidopsidis inoculation in both wild-type (WT) and the rpp4 mutant was carried out to identify differentially expressed genes in RPP4-mediated resistance. AtNUDX8 was one of several differentially expressed, downregulated genes identified. A T-DNA knockout mutant (KO-nudx8) was obtained from a Salk T-DNA insertion collection, which exhibited abolished AtNUDX8 expression. The KO-nudx8 mutant was infected separately from the oomycete pathogen Hpa and the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. The mutant displayed a significantly enhanced disease susceptibility to both pathogens when compared with the WT control. We observed a small, stunted phenotype for KO-nudx8 mutant plants when grown over a 12/12 hour photoperiod but not over a 16/8 hour photoperiod. AtNUDX8 expression peaked at 8 hours after the lights were turned on and this expression was significantly repressed four-fold by salicylic acid (SA). The expression of three pathogen-responsive thioredoxins (TRX-h2, TRX-h3 and TRX-h5) were downregulated at specific time points in the KO-nudx8 mutant when compared with the WT. Furthermore, KO-nudx8 plants like the npr1 mutant, displayed SA hypersensitivity. Expression of a key SA biosynthetic gene ICS1 was repressed at specific time points in the KO-nudx8 mutant suggesting that AtNUDX8 is involved in SA signaling in plants. Similarly, NPR1 and PR1 transcript levels were also downregulated at specific time points in the KO-nudx8 mutant. This study shows that AtNUDX8 is involved in plant immunity as a positive regulator of defense in Arabidopsis.
Collapse
Affiliation(s)
- Jose Pedro Fonseca
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Xinnian Dong
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Howard Hughes Medical Institute–Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
13
|
Ge H, Chen X, Yang W, Niu L, Teng M. Crystal structure of wild-type and mutant human Ap4A hydrolase. Biochem Biophys Res Commun 2013; 432:16-21. [PMID: 23384440 PMCID: PMC7092880 DOI: 10.1016/j.bbrc.2013.01.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 01/27/2013] [Indexed: 11/04/2022]
Abstract
Ap4A hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17), an enzyme involved in a number of biological processes, is characterized as cleaving the polyphosphate chain at the fourth phosphate from the bound adenosine moiety. This paper presents the crystal structure of wild-type and E58A mutant human Ap4A hydrolase. Similar to the canonical Nudix fold, human Ap4A hydrolase shows the common αβα-sandwich architecture. Interestingly, two sulfate ions and one diphosphate coordinated with some conserved residues were observed in the active cleft, which affords a better understanding of a possible mode of substrate binding.
Collapse
Affiliation(s)
- Honghua Ge
- Institute of Health Sciences and Modern Experiment Technology Center, Anhui University, Hefei 230601, People's Republic of China.
| | | | | | | | | |
Collapse
|
14
|
Enzymatic and molecular characterization of Arabidopsis ppGpp pyrophosphohydrolase, AtNUDX26. Biosci Biotechnol Biochem 2012; 76:2236-41. [PMID: 23221701 DOI: 10.1271/bbb.120523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Not only in bacteria but also in plant cells, guanosine-3',5'-tetraphosphate (ppGpp) is an important signaling molecule, that affects various cellular processes. In this study, we identified nucleoside diphosphates linked to some moiety X (Nudix) hydrolases, AtNUDX11, 15, 25, and 26, having ppGpp pyrophosphohydrolase activity from Arabidopsis plants. Among these, AtNUDX26 localized in chloroplasts had the highest Vmax and kcat values, leading to high catalytic efficiency, kcat/Km. The activity of AtNUDX26 required Mg2+ or Mn2+ ions as cofactor and was optimal at pH 9.0 and 50 °C. The expression of AtNUDX26 and of ppGpp metabolism-associated genes was regulated by various types of stress, suggesting that AtNUDX26 regulates cellular ppGpp levels in response to stress and impacts gene expression in chloroplasts. This is the first report on the molecular properties of ppGpp pyrophosphohydrolases in plants.
Collapse
|
15
|
Maruta T, Yoshimoto T, Ito D, Ogawa T, Tamoi M, Yoshimura K, Shigeoka S. An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. PLANT & CELL PHYSIOLOGY 2012; 53:1106-16. [PMID: 22505691 DOI: 10.1093/pcp/pcs054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although flavins, riboflavin (RF), FMN and FAD, are essential for primary and secondary metabolism in plants, the metabolic regulation of flavins is still largely unknown. Recently, we found that an Arabidopsis Nudix hydrolase, AtNUDX23, has FAD pyrophosphohydrolase activity and is distributed in plastids. Levels of RF and FAD but not FMN in Arabidopsis leaves significantly increased under continuous light and decreased in the dark. The transcript levels of AtNUDX23 as well as genes involved in flavin metabolism (AtFADS, AtRibF1, AtRibF2, AtFMN/FHy, LS and AtRibA) significantly increased under continuous light. The pyrophosphohydrolase activity toward FAD was enhanced in AtNUDX23-overexpressing (OX-NUDX23) plants and reduced in AtNUDX23-suppressed (KD-nudx23) plants, compared with the control plants. Interestingly intracellular levels of RF, FMN and FAD significantly decreased in not only OX-NUDX23 but also KD-nudx23 plants. The transcript levels of the flavin metabolic genes also decreased in both plants. Similarly, the increase in intracellular levels on treatment with flavins caused a reduction in the transcript levels of genes involved in flavin metabolism. These results suggest that negative feedback regulation of the metabolism of flavins through the hydrolysis of FAD by AtNUDX23 in plastids is involved in flavin homeostasis in plant cells.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Duong-Ly KC, Gabelli SB, Xu W, Dunn CA, Schoeffield AJ, Bessman MJ, Amzel LM. The Nudix hydrolase CDP-chase, a CDP-choline pyrophosphatase, is an asymmetric dimer with two distinct enzymatic activities. J Bacteriol 2011; 193:3175-85. [PMID: 21531795 PMCID: PMC3133267 DOI: 10.1128/jb.00089-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/22/2011] [Indexed: 11/20/2022] Open
Abstract
A Nudix enzyme from Bacillus cereus (NCBI RefSeq accession no. NP_831800) catalyzes the hydrolysis of CDP-choline to produce CMP and phosphocholine. Here, we show that in addition, the enzyme has a 3'→5' RNA exonuclease activity. The structure of the free enzyme, determined to a 1.8-Å resolution, shows that the enzyme is an asymmetric dimer. Each monomer consists of two domains, an N-terminal helical domain and a C-terminal Nudix domain. The N-terminal domain is placed relative to the C-terminal domain such as to result in an overall asymmetric arrangement with two distinct catalytic sites: one with an "enclosed" Nudix pyrophosphatase site and the other with a more open, less-defined cavity. Residues that may be important for determining the asymmetry are conserved among a group of uncharacterized Nudix enzymes from Gram-positive bacteria. Our data support a model where CDP-choline hydrolysis is catalyzed by the enclosed Nudix site and RNA exonuclease activity is catalyzed by the open site. CDP-Chase is the first identified member of a novel Nudix family in which structural asymmetry has a profound effect on the recognition of substrates.
Collapse
Affiliation(s)
- Krisna C. Duong-Ly
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - WenLian Xu
- Department of Biology and McCollum-Pratt Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Christopher A. Dunn
- Department of Biology and McCollum-Pratt Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | | | - Maurice J. Bessman
- Department of Biology and McCollum-Pratt Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
17
|
Sharma A, Tendulkar AV, Wangikar PP. Structure based prediction of functional sites with potential inhibitors to Nudix enzymes from disease causing microbes. Bioinformation 2011; 5:341-9. [PMID: 21383922 PMCID: PMC3046039 DOI: 10.6026/97320630005341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/30/2010] [Indexed: 11/23/2022] Open
Abstract
The functional sites were predicted for Nudix enzymes from pathogenic microorganisms such as Streprococcus pneumonia (2B06) and Enterococcus
faecalis (2AZW). Their structures are already determined, however, no data is reported about their functional sites, substrates and inhibitors. Therefore,
we report prediction of functional sites in these Nudix enzymes via Geometric Invariant (GI) technique (Construct different geometries of peptides which
remain unchanged). The GI method enumerated 2B06: RA57, EA58, EA61, EA62 and 2AZW: RA62, EA63, EA66, EA67 as putative functional sites in
these Nudix enzymes. In addition, the substrate was predicted via Molecular docking (Docking of substrates against whole structure of Nudix enzymes).
The substrate ADP-Ribose was docked with the Nudix enzymes, 2B06 (Docking energy -15.68 Kcal/mol) and 2AZW (Docking energy -10.86 Kcal/mol)
with the higher affinity and the lower docking energy as compared to other substrates. The residues EA62 in 2B06 and RA62 in 2AZW make hydrogen
bonds with the ADP-ribose. Furthermore, we screened 51 inhibitor compounds against structures of 2B06 and 2AZW. The inhibitor compounds AMPCPR
and CID14258187 were docked well as compared to other compounds. The compound CID14258187 was also in agreement with Lipinski rule of 5 for
drug likeness properties. Therefore, our findings of functional sites, substrates and inhibitors for these Nudix enzymes may help in structure based drug
designing against Streprococcus pneumonia and Enterococcus faecalis
Collapse
Affiliation(s)
- Ashwani Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai- 400 076, Maharashtra, India
| | - Ashish Vijay Tendulkar
- Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai- 600036, Indi
| | - Pramod Prabhakar Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai- 400076, Maharashtra, Indi
- Pramod P. Wangikar:
| |
Collapse
|
18
|
Costas MJ, Pinto RM, Cordero PM, Cabezas A, Alves-Pereira I, Cameselle JC, Ribeiro JM. CGDEase, a Pseudomonas fluorescens protein of the PLC/APase superfamily with CDP-ethanolamine and (dihexanoyl)glycerophosphoethanolamine hydrolase activity induced by osmoprotectants under phosphate-deficient conditions. Mol Microbiol 2010; 78:1556-76. [PMID: 21143324 DOI: 10.1111/j.1365-2958.2010.07425.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel enzyme, induced by choline, ethanolamine, glycine betaine or dimethylglycine, was released at low temperature and phosphate from Pseudomonas fluorescens (CECT 7229) suspensions at low cell densities. It is a CDP-ethanolamine pyrophosphatase/(dihexanoyl)glycerophosphoethanolamine phosphodiesterase (CGDEase) less active on choline derivatives, and inactive on long-chain phospholipids, CDP-glycerol and other NDP-X compounds. The reaction pattern was typical of phospholipase C (PLC), as either phosphoethanolamine or phosphocholine was produced. Peptide-mass analyses, gene cloning and expression provided a molecular identity for CGDEase. Bioinformatic studies assigned it to the PLC branch of the phospholipase C/acid phosphatase (PLC/APase) superfamily, revealed an irregular phylogenetic distribution of close CGDEase relatives, and suggested their genes are not in operons or conserved contexts. A theoretical CGDEase structure was supported by mutagenesis of two predicted active-site residues, which yielded essentially inactive mutants. Biological relevance is supported by comparisons with CGDEase relatives, induction by osmoprotectants (not by osmotic stress itself) and repression by micromolar phosphate. The low bacterial density requirement was related to phosphate liberation from lysed bacteria in denser populations, rather than to a classical quorum-sensing effect. The results fit better a CGDEase role in phosphate scavenging than in osmoprotection.
Collapse
Affiliation(s)
- María Jesús Costas
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz E-06006, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Jeyakanthan J, Kanaujia SP, Nishida Y, Nakagawa N, Praveen S, Shinkai A, Kuramitsu S, Yokoyama S, Sekar K. Free and ATP-bound structures of Ap4A hydrolase from Aquifex aeolicus V5. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:116-24. [PMID: 20124691 DOI: 10.1107/s0907444909047064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/07/2009] [Indexed: 11/10/2022]
Abstract
Asymmetric diadenosine tetraphosphate (Ap(4)A) hydrolases degrade the metabolite Ap(4)A back into ATP and AMP. The three-dimensional crystal structure of Ap(4)A hydrolase (16 kDa) from Aquifex aeolicus has been determined in free and ATP-bound forms at 1.8 and 1.95 A resolution, respectively. The overall three-dimensional crystal structure of the enzyme shows an alphabetaalpha-sandwich architecture with a characteristic loop adjacent to the catalytic site of the protein molecule. The ATP molecule is bound in the primary active site and the adenine moiety of the nucleotide binds in a ring-stacking arrangement equivalent to that observed in the X-ray structure of Ap(4)A hydrolase from Caenorhabditis elegans. Binding of ATP in the active site induces local conformational changes which may have important implications in the mechanism of substrate recognition in this class of enzymes. Furthermore, two invariant water molecules have been identified and their possible structural and/or functional roles are discussed. In addition, modelling of the substrate molecule at the primary active site of the enzyme suggests a possible path for entry and/or exit of the substrate and/or product molecule.
Collapse
Affiliation(s)
- Jeyaraman Jeyakanthan
- Life Science Group, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Garza JA, Ilangovan U, Hinck AP, Barnes LD. Kinetic, dynamic, ligand binding properties, and structural models of a dual-substrate specific nudix hydrolase from Schizosaccharomyces pombe. Biochemistry 2009; 48:6224-39. [PMID: 19462967 DOI: 10.1021/bi802266g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Schizosaccharomyces pombe Aps1 is a nudix hydrolase that catalyzes the hydrolysis of both diadenosine 5',5'''-P(1),P(n)-oligophosphates and diphosphoinositol polyphosphates in vitro. Nudix hydrolases act upon a wide variety of substrates, despite having a common 23 amino acid catalytic motif; hence, the residues responsible for substrate specificity are considered to reside outside the common catalytic nudix motif. The specific residues involved in binding each substrate of S. pombe Aps1 are unknown. In this study, we have conducted mutational and kinetic studies in combination with structural homology modeling and NMR spectroscopic analyses to identify potential residues involved in binding each class of substrates. This study demonstrates several major findings with regard to Aps1. First, the determination of the kinetic parameters of K(m) and k(cat) indicated that the initial 31 residues of Aps1 are not involved in substrate binding or catalysis with respect to Ap(6)A. Second, NMR spectroscopic analyses revealed the secondary structure and three dynamic backbone regions, one of which corresponds to a large insert in Aps1 as compared to other putative fungal orthologues. Third, two structural models of Aps1Delta2-19, based on the crystal structures of human DIPP1 and T. thermophilus Ndx1, were generated using homology modeling. The structural models were in excellent agreement with the NMR-derived secondary structure of Aps1Delta2-19. Fourth, NMR chemical shift mapping in conjunction with structural homology models indicated several residues outside the catalytic nudix motif that are involved in specific binding of diphosphoinositol polyphosphate or diadenosine oligophosphate ligands.
Collapse
Affiliation(s)
- John A Garza
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
21
|
Gunawardana D, Likic VA, Gayler KR. A comprehensive bioinformatics analysis of the Nudix superfamily in Arabidopsis thaliana. Comp Funct Genomics 2009; 2009:820381. [PMID: 19590748 PMCID: PMC2707057 DOI: 10.1155/2009/820381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 04/16/2009] [Indexed: 11/17/2022] Open
Abstract
Nudix enzymes are a superfamily with a conserved common reaction mechanism that provides the capacity for the hydrolysis of a broad spectrum of metabolites. We used hidden Markov models based on Nudix sequences from the PFAM and PROSITE databases to identify Nudix hydrolases encoded by the Arabidopsis genome. 25 Nudix hydrolases were identified and classified into 11 individual families by pairwise sequence alignments. Intron phases were strikingly conserved in each family. Phylogenetic analysis showed that all multimember families formed monophyletic clusters. Conserved familial sequence motifs were identified with the MEME motif analysis algorithm. One motif (motif 4) was found in three diverse families. All proteins containing motif 4 demonstrated a degree of preference for substrates containing an ADP moiety. We conclude that HMM model-based genome scanning and MEME motif analysis, respectively, can significantly improve the identification and assignment of function of new members of this mechanistically-diverse protein superfamily.
Collapse
Affiliation(s)
- D. Gunawardana
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | - V. A. Likic
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - K. R. Gayler
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
22
|
CDP-alcohol hydrolase, a very efficient activity of the 5'-nucleotidase/UDP-sugar hydrolase encoded by the ushA gene of Yersinia intermedia and Escherichia coli. J Bacteriol 2008; 190:6153-61. [PMID: 18641143 DOI: 10.1128/jb.00658-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleoside 5'-diphosphate-X hydrolases are interesting enzymes to study due to their varied activities and structure-function relationships and the roles they play in the disposal, assimilation, and modulation of the effects of their substrates. Few of these enzymes with a preference for CDP-alcohols are known. In Yersinia intermedia suspensions prepared from cultures on Columbia agar with 5% sheep blood, we found a CDP-alcohol hydrolase liberated to Triton X-100-containing medium. Growth at 25 degrees C was deemed optimum in terms of the enzyme-activity yield. The purified enzyme also displayed 5'-nucleotidase, UDP-sugar hydrolase, and dinucleoside-polyphosphate hydrolase activities. It was identified as the protein product (UshA(Yi)) of the Y. intermedia ushA gene (ushA(Yi)) by its peptide mass fingerprint and by PCR cloning and expression to yield active enzyme. All those activities, except CDP-alcohol hydrolase, have been shown to be the properties of UshA of Escherichia coli (UshA(Ec)). Therefore, UshA(Ec) was expressed from an appropriate plasmid and tested for CDP-alcohol hydrolase activity. UshA(Ec) and UshA(Yi) behaved similarly. Besides being the first study of a UshA enzyme in the genus Yersinia, this work adds CDP-alcohol hydrolase to the spectrum of UshA activities and offers a novel perspective on these proteins, which are viewed here for the first time as highly efficient enzymes with k(cat)/K(m) ratios near the theoretical maximum level of catalytic activities. The results are discussed in the light of the known structures of UshA(Ec) conformers and the respective homology models constructed for UshA(Yi), and also in relation to possible biological functions. Interestingly, every Yersinia species with a sequenced genome contains an intact ushA gene, except Y. pestis, which in all its sequenced biovars contains a ushA gene inactivated by frameshift mutations.
Collapse
|
23
|
Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase: a novel metallophosphoesterase family preferentially expressed in rodent immune cells. Biochem J 2008; 413:103-13. [PMID: 18352857 DOI: 10.1042/bj20071471] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ADPRibase-Mn (Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase) was earlier isolated from rat liver supernatants after separation from ADPRibase-I and ADPRibase-II (Mg2+-activated ADP-ribose pyrophosphatases devoid of CDP-alcohol pyrophosphatase activity). The last mentioned are putative Nudix hydrolases, whereas the molecular identity of ADPRibase-Mn is unknown. MALDI (matrix-assisted laser-desorption ionization) MS data from rat ADPRibase-Mn pointed to a hypothetical protein that was cloned and expressed and showed the expected specificity. It is encoded by the RGD1309906 rat gene, which so far has been annotated simply as 'hydrolase'. ADPRibase-Mn is not a Nudix hydrolase, but it shows the sequence and structural features typical of the metallophosphoesterase superfamily. It may constitute a protein family of its own, the members of which appear to be specific to vertebrates, plants and algae. ADP-ribose was successfully docked to a model of rat ADPRibase-Mn, revealing its putative active centre. Microarray data from the GEO (Gene Expression Omnibus) database indicated that the mouse gene 2310004I24Rik, an orthologue of RGD1309906, is preferentially expressed in immune cells. This was confirmed by Northern-blot and activity assay of ADPRibase-Mn in rat tissues. A possible role of ADPRibase-Mn in immune cell signalling is suggested by the second-messenger role of ADP-ribose, which activates TRPM2 (transient receptor potential melastatin channel-2) ion channels as a mediator of oxidative/nitrosative stress, and by the signalling function assigned to many of the microarray profile neighbours of 2310004I24Rik. Furthermore, the influence of ADPRibase-Mn on the CDP-choline or CDP-ethanolamine pathways of phospholipid biosynthesis cannot be discounted.
Collapse
|
24
|
Zha M, Guo Q, Zhang Y, Yu B, Ou Y, Zhong C, Ding J. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. J Mol Biol 2008; 379:568-78. [PMID: 18462755 DOI: 10.1016/j.jmb.2008.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/31/2008] [Accepted: 04/02/2008] [Indexed: 10/22/2022]
Abstract
Human NUDT5 (hNUDT5) is an ADP-ribose (ADPR) pyrophosphatase (ADPRase) that plays important roles in controlling the intracellular levels of ADPR and preventing non-enzymatic ADP-ribosylation of proteins by hydrolyzing ADPR to AMP and ribose 5'-phosphate. We report the crystal structure of hNUDT5 in complex with a non-hydrolyzable ADPR analogue, alpha,beta-methyleneadenosine diphosphoribose, and three Mg(2+) ions representing the transition state of the enzyme during catalysis. Analysis of this structure and comparison with previously reported hNUDT5 structures identify key residues involved in substrate binding and catalysis. In the transition-state structure, three metal ions are bound at the active site and are coordinated by surrounding residues and water molecules. A conserved water molecule is at an ideal position for nucleophilic attack on the alpha-phosphate of ADPR. The side chain of Glu166 on loop L9 changes its conformation to interact with the conserved water molecule compared with that in the substrate-bound structure and appears to function as a catalytic base. Mutagenesis and kinetic studies show that Trp28 and Trp46 are important for the substrate binding; Arg51 is involved in both the substrate binding and the catalysis; and Glu112 and Glu116 of the Nudix motif, Glu166 on loop L9, and Arg111 are critical for the catalysis. The structural and biochemical data together reveal the molecular basis of the catalytic mechanism of ADPR hydrolysis by hNUDT5. Specifically, Glu166 functions as a catalytic base to deprotonate a conserved water molecule that acts as a nucleophile to attack the alpha-phosphate of ADPR, and three Mg(2+) ions are involved in the activation of the nucleophile and the binding of the substrate. Structural comparison of different ADPRases also suggests that most dimeric ADPRases may share a similar catalytic mechanism of ADPR hydrolysis.
Collapse
Affiliation(s)
- Manwu Zha
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Ge X, Xia Y. The role of AtNUDT7, a Nudix hydrolase, in the plant defense response. PLANT SIGNALING & BEHAVIOR 2008; 3:119-20. [PMID: 19704728 PMCID: PMC2633998 DOI: 10.4161/psb.3.2.5019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/11/2007] [Indexed: 05/23/2023]
Abstract
Nudix hydrolases constitute a large family of proteins that hydrolyze nucleoside diphosphate derivatives. Some Nudix hydrolases act as 'housecleaning' enzymes whereas others may function to sense and modulate the levels of their substrates to maintain physiological homeostasis. The Arabidopsis genome encodes 32 Nudix proteins (AtNUDTs). However, their physiological substrates and biological functions are little known. AtNUDT7 has been identified as a negative regulator of the defense response and its loss-of-function mutation leads to enhanced disease resistance and makes the plants hyper-responsive to inciting agents including pathogenic as well as nonpathogenic micro-organisms. Based on in vitro enzymatic characterization, it was speculated that ADP-ribose (ADPR) and/or NADH may be biologically significant substrates of AtNUDT7. However, our result from determination of the levels of ADPR and NAD(H) in the mutant and wild-type plants indicates neither of these nucleotide analogs likely is its physiological substrates. The Atnudt7 mutant does have a higher ratio of GSSG/GSH than wild-type plants. This alteration in redox homeostasis may prime the mutant plants for excessive cellular stimulation when being provoked by biotic stresses.
Collapse
Affiliation(s)
- Xiaochun Ge
- Donald Danforth Plant Science Center; St. Louis, Missouri USA
| | | |
Collapse
|
26
|
Gunawardana D, Cheng HC, Gayler KR. Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2). Nucleic Acids Res 2007; 36:203-16. [PMID: 18025047 PMCID: PMC2248764 DOI: 10.1093/nar/gkm1002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a preceding loop region. Mutation of the putative PDZ domain-binding motif improved the stability of recombinant AtDcp2 and secondary mutants expressed in Escherichia coli. Such recombinant AtDcp2 specifically hydrolysed capped mRNA to produce 7-methyl GDP and decapped RNA. AtDcp2 activity was Mn(2+)- or Mg(2+)-dependent and was inhibited by the product 7-methyl GDP. Mutation of the conserved glutamate-154 and glutamate-158 in the Nudix box reduced AtDcp2 activity up to 400-fold and showed that AtDcp2 employs the catalytic mechanism conserved amongst Nudix hydrolases. Unlike many Nudix hydrolases, AtDcp2 is refractory to inhibition by fluoride ions. Decapping was dependent on binding to the mRNA moiety rather than to the 7-methyl diguanosine triphosphate cap of the substrate. Mutational analysis of the putative RNA-binding domain confirmed the functional significance of an 11-residue loop region and the conserved Box B.
Collapse
Affiliation(s)
- Dilantha Gunawardana
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
27
|
Ge X, Li GJ, Wang SB, Zhu H, Zhu T, Wang X, Xia Y. AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis. PLANT PHYSIOLOGY 2007; 145:204-15. [PMID: 17660350 PMCID: PMC1976571 DOI: 10.1104/pp.107.103374] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 07/19/2007] [Indexed: 05/16/2023]
Abstract
Plants have evolved complicated regulatory systems to control immune responses. Both positive and negative signaling pathways interplay to coordinate development of a resistance response with the appropriate amplitude and duration. AtNUDT7, a Nudix domain-containing protein in Arabidopsis (Arabidopsis thaliana) that hydrolyzes nucleotide derivatives, was found to be a negative regulator of the basal defense response, and its loss-of-function mutation results in enhanced resistance to infection by Pseudomonas syringae. The nudt7 mutation does not cause a strong constitutive disease resistance phenotype, but it leads to a heightened defense response, including accelerated activation of defense-related genes that can be triggered by pathogenic and nonpathogenic microorganisms. The nudt7 mutation enhances two distinct defense response pathways: one independent of and the other dependent on NPR1 and salicylic acid accumulation. In vitro enzymatic assays revealed that ADP-ribose and NADH are preferred substrates of NUDT7, and the hydrolysis activity of NUDT7 is essential for its biological function and is sensitive to inhibition by Ca(2+). Further analyses indicate that ADP-ribose is not likely the physiological substrate of NUDT7. However, the nudt7 mutation leads to perturbation of cellular redox homeostasis and a higher level of NADH in pathogen-challenged leaves. The study suggests that the alteration in cellular antioxidant status caused by the nudt7 mutation primes the cells for the amplified defense response and NUDT7 functions to modulate the defense response to prevent excessive stimulation.
Collapse
Affiliation(s)
- Xiaochun Ge
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Gabelli SB, Bianchet MA, Xu W, Dunn CA, Niu ZD, Amzel LM, Bessman MJ. Structure and function of the E. coli dihydroneopterin triphosphate pyrophosphatase: a Nudix enzyme involved in folate biosynthesis. Structure 2007; 15:1014-22. [PMID: 17698004 DOI: 10.1016/j.str.2007.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 06/19/2007] [Accepted: 06/22/2007] [Indexed: 11/29/2022]
Abstract
Nudix hydrolases are a superfamily of pyrophosphatases, most of which are involved in clearing the cell of potentially deleterious metabolites and in preventing the accumulation of metabolic intermediates. We determined that the product of the orf17 gene of Escherichia coli, a Nudix NTP hydrolase, catalyzes the hydrolytic release of pyrophosphate from dihydroneopterin triphosphate, the committed step of folate synthesis in bacteria. That this dihydroneopterin hydrolase (DHNTPase) is indeed a key enzyme in the folate pathway was confirmed in vivo: knockout of this gene in E. coli leads to a marked reduction in folate synthesis that is completely restored by a plasmid carrying the gene. We also determined the crystal structure of this enzyme using data to 1.8 A resolution and studied the kinetics of the reaction. These results provide insight into the structural bases for catalysis and substrate specificity in this enzyme and allow the definition of the dihydroneopterin triphosphate pyrophosphatase family of Nudix enzymes.
Collapse
Affiliation(s)
- Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Fisher DI, Cartwright JL, McLennan AG. Characterization of the Mn2+-stimulated (di)adenosine polyphosphate hydrolase encoded by the Deinococcus radiodurans DR2356 nudix gene. Arch Microbiol 2006; 186:415-24. [PMID: 16900379 DOI: 10.1007/s00203-006-0155-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 06/26/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
The DR2356 nudix hydrolase gene from Deinococcus radiodurans has been cloned and the product expressed as an 18 kDa histidine-tagged protein. The enzyme hydrolysed adenosine and diadenosine polyphosphates, always generating ATP as one of the initial products. ATP and other (deoxy)nucleoside triphosphates were also substrates, yielding (d)NDP and Pi as products. The DR2356 protein was most active at pH 8.6-9.0 and showed a strong preference for Mn(2+) as activating cation. Mg(2+) ions at 15 mM supported only 5% of the activity achieved with 2 mM Mn(2+). K (m) and k (cat) values for diadenosine tetra-, penta- and hexaphosphates were 2.0, 2.4 and 1.1 microM and 11.4, 28.6 and 12.0 s(-1), respectively, while for GTP they were 20.3 microM and 1.8 s(-1), respectively. The K (m )for adenosine 5'-pentaphosphate was <1 microM. Expression analysis showed the DR2356 gene to be induced eight- to ninefold in stationary phase and in cells subjected to slow dehydration plus rehydration. Superoxide (but not peroxide) treatment and rapid dehydration caused a two-to threefold induction. The Mn-requirement and induction in stationary phase suggest that DR2356 may have a specific role in maintenance mode metabolism in stationary phase as Mn(2+) accumulates.
Collapse
Affiliation(s)
- David I Fisher
- School of Biological Sciences, Biosciences Building, University of Liverpool, P.O. Box 147, Liverpool, UK
| | | | | |
Collapse
|
30
|
Xu W, Dunn CA, O'handley SF, Smith DL, Bessman MJ. Three new Nudix hydrolases from Escherichia coli. J Biol Chem 2006; 281:22794-8. [PMID: 16766526 DOI: 10.1074/jbc.m603407200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three members of the Nudix (nucleoside diphosphate X) hydrolase superfamily have been cloned from Escherichia coli MG1655 and expressed. The proteins have been purified and identified as enzymes active on nucleoside diphosphate derivatives with the following specificities. Orf141 (yfaO) is a nucleoside triphosphatase preferring pyrimidine deoxynucleoside triphosphates. Orf153 (ymfB) is a nonspecific nucleoside tri- and diphosphatase and atypically releases inorganic orthophosphate from triphosphates instead of pyrophosphate. Orf191 (yffH) is a highly active GDP-mannose pyrophosphatase. All three enzymes require a divalent cation for activity and are optimally active at alkaline pH, characteristic of the Nudix hydrolase superfamily. The question of whether or not Orf1.9 (wcaH) is a bona fide member of the Nudix hydrolase superfamily is discussed.
Collapse
Affiliation(s)
- Wenlian Xu
- Department of Biology and The McCollum Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
31
|
Ing NH, Wolfskill RL, Clark S, DeGraauw JA, Gill CA. Steroid hormones acutely regulate expression of a Nudix protein-encoding gene in the endometrial epithelium of sheep. Mol Reprod Dev 2006; 73:967-76. [PMID: 16700076 DOI: 10.1002/mrd.20510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steroid hormones regulate endometrial gene expression to meet the needs of developing embryos. Our hypothesis is that steroid hormones transiently induce expression of genes in the endometrial epithelium to make the uterine environment different between the earliest days of pregnancy. We identified one such gene product using differential display-polymerase chain reactions. The gene product that was strongly induced in ewes between day 3 and 6 of the estrous cycle was cloned and sequenced to identify it as encoding a member of the Nudix family of hydrolase enzymes. Northern blot analyses indicated that NUDT16 mRNA concentrations were elevated 10-fold in the endometrium of sheep from day 5 to 9 of the estrous cycle and returned to basal levels by day 11. In assays of RNA samples from 15 different tissues from an adult ewe, the concentrations of NUDT16 mRNA were greatest in endometrium. In situ hybridization localized NUDT16 mRNA exclusively to the endometrial epithelial cells of the glands and uterine lumen. In ovariectomized ewes, NUDT16 mRNA was induced by a regimen of alternating estrogen and progesterone therapy designed to mimic the hormonal experiences of a ewe at day 6 of the estrous cycle. The final estrogen treatment in the regimen was critical to the expression of NUDT16 as well as progesterone receptor and estrogen receptor-beta genes. Characterization of the NUDT16 gene identified putative steroid hormone response elements, which can now be investigated to understand its unique pattern of regulation in the earliest days of pregnancy.
Collapse
Affiliation(s)
- Nancy H Ing
- Department of Animal Science, Center for Environmental and Rural Health, 2471 TAMU, Texas A&M University, College Station, 77843-2471, USA.
| | | | | | | | | |
Collapse
|
32
|
Mildvan A, Xia Z, Azurmendi H, Legler P, Balfour M, Lairson L, Withers S, Gabelli S, Bianchet M, Amzel L. Hydrogen bonding in the mechanism of GDP-mannose mannosyl hydrolase. J Mol Struct 2006. [DOI: 10.1016/j.molstruc.2005.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Tirrell I, Wall J, Daley C, Denial S, Tennis F, Galens K, O'Handley S. YZGD from Paenibacillus thiaminolyticus, a pyridoxal phosphatase of the HAD (haloacid dehalogenase) superfamily and a versatile member of the Nudix (nucleoside diphosphate x) hydrolase superfamily. Biochem J 2006; 394:665-74. [PMID: 16336194 PMCID: PMC1383716 DOI: 10.1042/bj20051172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 11/30/2005] [Accepted: 12/08/2005] [Indexed: 11/17/2022]
Abstract
YZGD from Paenibacillus thiaminolyticus is a novel bifunctional enzyme with both PLPase (pyridoxal phosphatase) and Nudix (nucleoside diphosphate x) hydrolase activities. The PLPase activity is catalysed by the HAD (haloacid dehalogenase) superfamily motif of the enzyme, and the Nudix hydrolase activity is catalysed by the conserved Nudix signature sequence within a separate portion of the enzyme, as confirmed by site-directed mutagenesis. YZGD's phosphatase activity is very specific, with pyridoxal phosphate being the only natural substrate, while YZGD's Nudix activity is just the opposite, with YZGD being the most versatile Nudix hydrolase characterized to date. YZGD's Nudix substrates include the CDP-alcohols (CDP-ethanol, CDP-choline and CDP-glycerol), the ADP-coenzymes (NADH, NAD and FAD), ADP-sugars, TDP-glucose and, to a lesser extent, UDP- and GDP-sugars. Regardless of the Nudix substrate, one of the products is always a nucleoside monophosphate, suggesting a role in nucleotide salvage. Both the PLPase and Nudix hydrolase activities require a bivalent metal cation, but while PLPase activity is supported by Co2+, Mg2+, Zn2+ and Mn2+, the Nudix hydrolase activity is Mn2+-specific. YZGD's phosphatase activity is optimal at an acidic pH (pH 5), while YZGD's Nudix activities are optimal at an alkaline pH (pH 8.5). YZGD is the first enzyme reported to be a member of both the HAD and Nudix hydrolase superfamilies, the first PLPase to be recognized as a member of the HAD superfamily and the first Nudix hydrolase capable of hydrolysing ADP-x, CDP-x and TDP-x substrates with comparable substrate specificity.
Collapse
Affiliation(s)
- Isaac M. Tirrell
- *Department of Chemistry, Rochester Institute of Technology, Rochester, NY 14623, U.S.A
| | - Jennifer L. Wall
- †Department of Chemistry, University of Richmond, Richmond, VA 23173, U.S.A
| | - Christopher J. Daley
- *Department of Chemistry, Rochester Institute of Technology, Rochester, NY 14623, U.S.A
| | - Sarah J. Denial
- *Department of Chemistry, Rochester Institute of Technology, Rochester, NY 14623, U.S.A
| | - Frances G. Tennis
- †Department of Chemistry, University of Richmond, Richmond, VA 23173, U.S.A
| | - Kevin G. Galens
- *Department of Chemistry, Rochester Institute of Technology, Rochester, NY 14623, U.S.A
| | - Suzanne F. O'Handley
- *Department of Chemistry, Rochester Institute of Technology, Rochester, NY 14623, U.S.A
| |
Collapse
|
34
|
Dal Bello F, Walter J, Roos S, Jonsson H, Hertel C. Inducible gene expression in Lactobacillus reuteri LTH5531 during type II sourdough fermentation. Appl Environ Microbiol 2005; 71:5873-8. [PMID: 16204499 PMCID: PMC1266011 DOI: 10.1128/aem.71.10.5873-5878.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus reuteri LTH5531 is a dominant member of the microbiota of type II sourdough fermentations. To investigate the genetic background of the ecological performance of LTH5531, in vivo expression technology was used to identify promoters that show elevated levels of expression during growth of this organism in a type II sourdough fermentation. Thirty-eight sourdough-induced fusions were detected, and 29 genes could be identified on the basis of the available sequence information. Four genes encoded stress-related functions (e.g., acid and general stress response), reflecting the harsh conditions prevailing during sourdough fermentation. Further, eight genes were involved in acquisition and synthesis of amino acids and nucleotides, indicating their limited availability in sourdough. The remaining genes were either part of functionally unrelated pathways or encoded hypothetical proteins. The identification of a putative proteinase and a component of the arginine deiminase pathway is of technological interest, as they are potentially involved in the formation of aroma precursors. Our study allowed insight into the transcriptional response of Lactobacillus reuteri to the dough environment, which establishes the molecular basis to investigate bacterial properties that are likely to contribute to the ecological performance of the organism and influence the final outcome of the fermentation.
Collapse
Affiliation(s)
- Fabio Dal Bello
- Institute of Food Technology, University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
35
|
Okuda K, Hayashi H, Nishiyama Y. Systematic characterization of the ADP-ribose pyrophosphatase family in the Cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:4984-91. [PMID: 15995214 PMCID: PMC1169527 DOI: 10.1128/jb.187.14.4984-4991.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized four putative ADP-ribose pyrophosphatases Sll1054, Slr0920, Slr1134, and Slr1690 in the cyanobacterium Synechocystis sp. strain PCC 6803. Each of the recombinant proteins was overexpressed in Escherichia coli and purified. Sll1054 and Slr0920 hydrolyzed ADP-ribose specifically, while Slr1134 hydrolyzed not only ADP-ribose but also NADH and flavin adenine dinucleotide. By contrast, Slr1690 showed very low activity for ADP-ribose and had four substitutions of amino acids in the Nudix motif, indicating that Slr1690 is not an active ADP-ribose pyrophosphatase. However, the quadruple mutation of Slr1690, T73G/I88E/K92E/A94G, which replaced the mutated amino acids with those conserved in the Nudix motif, resulted in a significant (6.1 x 10(2)-fold) increase in the k(cat) value. These results suggest that Slr1690 might have evolved from an active ADP-ribose pyrophosphatase. Functional and clustering analyses suggested that Sll1054 is a bacterial type, while the other three and Slr0787, which was characterized previously (Raffaelli et al., FEBS Lett. 444:222-226, 1999), are phylogenetically diverse types that originated from an archaeal Nudix protein via molecular evolutionary mechanisms, such as domain fusion and amino acid substitution.
Collapse
Affiliation(s)
- Kenji Okuda
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Japan
| | | | | |
Collapse
|
36
|
Edelstein PH, Hu B, Shinzato T, Edelstein MAC, Xu W, Bessman MJ. Legionella pneumophila NudA Is a Nudix hydrolase and virulence factor. Infect Immun 2005; 73:6567-76. [PMID: 16177332 PMCID: PMC1230914 DOI: 10.1128/iai.73.10.6567-6576.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/12/2005] [Accepted: 05/26/2005] [Indexed: 11/20/2022] Open
Abstract
We studied the identity and function of the 528-bp gene immediately upstream of Legionella pneumophila F2310 ptsP (enzyme I(Ntr)). This gene, nudA, encoded for a Nudix hydrolase based on the inferred protein sequence. NudA had hydrolytic activity typical of other Nudix hydrolases, such as Escherichia coli YgdP, in that Ap(n)A's, in particular diadenosine pentaphosphate (Ap(5)A), were the preferred substrates. NudA hydrolyzed Ap(5)A to ATP plus ADP. Both ptsP and nudA were cotranscribed. Bacterial two-hybrid analysis showed no PtsP-NudA interactions. Gene nudA was present in 19 of 20 different L. pneumophila strains tested and in 5 of 10 different Legionella spp. other than L. pneumophila. An in-frame nudA mutation was made in L. pneumophila F2310 to determine the phenotype. The nudA mutant was an auxotroph that grew slowly in liquid and on solid media and had a smaller colony size than its parent. In addition, the mutant was more salt resistant than its parent and grew very poorly at 25 degrees C; all of these characteristics, as well as auxotrophy and slow-growth rate, were reversed by transcomplementation with nudA. The nudA mutant was outcompeted by about fourfold by the parent in competition studies in macrophages; transcomplementation almost completely restored this defect. Competition studies in guinea pigs with L. pneumophila pneumonia showed that the nudA mutant was outcompeted by its parent in both lung and spleen. NudA is of major importance for resisting stress in L. pneumophila and is a virulence factor.
Collapse
Affiliation(s)
- Paul H Edelstein
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-4283, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Zheng QC, Li ZS, Sun M, Zhang Y, Sun CC. Homology modeling and substrate binding study of Nudix hydrolase Ndx1 from Thermos thermophilus HB8. Biochem Biophys Res Commun 2005; 333:881-7. [PMID: 15963459 DOI: 10.1016/j.bbrc.2005.05.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
With homology modeling techniques, molecular mechanics, and molecular dynamics methods, a 3D structure model of Ndx1 is created and refined. This model is further assessed by Profile-3D and ProStat, which confirm that the refined model is reliable. With this model, a flexible docking study is performed and the result indicates that Glu46, Arg88, and Glu90 are three important determinant residues in binding, as they have strong hydrogen bonding interactions and electrostatic interactions with Ap6A. In addition, we further find that three residues, Ser38, Leu39 and Glu46, coordinate enzyme-bound Mg2+ ions in complex N-A. The Glu46 is consistent with the experimental results by Iwai et al., and the other four residues mentioned above may also play vital roles in catalysis of Ndx1.
Collapse
Affiliation(s)
- Qing-Chuan Zheng
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, PR China
| | | | | | | | | |
Collapse
|
38
|
Mildvan AS, Xia Z, Azurmendi HF, Saraswat V, Legler PM, Massiah MA, Gabelli SB, Bianchet MA, Kang LW, Amzel LM. Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys 2005; 433:129-43. [PMID: 15581572 DOI: 10.1016/j.abb.2004.08.017] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 08/16/2004] [Indexed: 12/12/2022]
Abstract
Nudix hydrolases catalyze the hydrolysis of nucleoside diphosphates linked to other moieties, X, and contain the sequence motif or Nudix box, GX(5)EX(7)REUXEEXGU. The mechanisms of Nudix hydrolases are highly diverse in the position on the substrate at which nucleophilic substitution occurs, and in the number of required divalent cations. While most proceed by associative nucleophilic substitutions by water at specific internal phosphorus atoms of a diphosphate or polyphosphate chain, members of the GDP-mannose hydrolase sub-family catalyze dissociative nucleophilic substitutions, by water, at carbon. The site of substitution is likely determined by the positions of the general base and the entering water. The rate accelerations or catalytic powers of Nudix hydrolases range from 10(9)- to 10(12)-fold. The reactions are accelerated 10(3)-10(5)-fold by general base catalysis by a glutamate residue within, or beyond the Nudix box, or by a histidine beyond the Nudix box. Lewis acid catalysis, which contributes 10(3)-10(5)-fold to the rate acceleration, is provided by one, two, or three divalent cations. One divalent cation is coordinated by two or three conserved residues of the Nudix box, the initial glycine and one or two glutamate residues, together with a remote glutamate or glutamine ligand from beyond the Nudix box. Some Nudix enzymes require one (MutT) or two additional divalent cations (Ap(4)AP), to neutralize the charge of the polyphosphate chain, to help orient the attacking hydroxide or oxide nucleophile, and/or to facilitate the departure of the anionic leaving group. Additional catalysis (10-10(3)-fold) is provided by the cationic side chains of lysine and arginine residues and by H-bond donation by tyrosine residues, to orient the general base, or to promote the departure of the leaving group. The overall rate accelerations can be explained by both independent and cooperative effects of these catalytic components.
Collapse
Affiliation(s)
- A S Mildvan
- Department of Biological Chemistry, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu W, Jones CR, Dunn CA, Bessman MJ. Gene ytkD of Bacillus subtilis encodes an atypical nucleoside triphosphatase member of the Nudix hydrolase superfamily. J Bacteriol 2004; 186:8380-4. [PMID: 15576788 PMCID: PMC532436 DOI: 10.1128/jb.186.24.8380-8384.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 09/10/2004] [Indexed: 11/20/2022] Open
Abstract
Gene ytkD of Bacillus subtilis, a member of the Nudix hydrolase superfamily, has been cloned and expressed in Escherichia coli. The purified protein has been characterized as a nucleoside triphosphatase active on all of the canonical ribo- and deoxyribonucleoside triphosphates. Whereas all other nucleoside triphosphatase members of the superfamily release inorganic pyrophosphate and the cognate nucleoside monophosphate, YtkD hydrolyses nucleoside triphosphates in a stepwise fashion through the diphosphate to the monophosphate, releasing two molecules of inorganic orthophosphate. Contrary to a previous report, our enzymological and genetic studies indicate that ytkD is not an orthologue of E. coli mutT.
Collapse
Affiliation(s)
- Wenlian Xu
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|