1
|
Lynskey SJ, Ling Z, Ziemann M, Gill SD, McGee SL, Page RS. Loosening the Lid on Shoulder Osteoarthritis: How the Transcriptome and Metabolic Syndrome Correlate with End-Stage Disease. Int J Mol Sci 2025; 26:3145. [PMID: 40243895 PMCID: PMC11988960 DOI: 10.3390/ijms26073145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) associated with Osteoarthritis (OA) is an increasingly recognised entity. Whilst the degenerative pattern in cuff-tear arthropathy (CTA) has been well documented, the biological processes behind primary shoulder OA and CTA remain less understood. This study investigates transcriptomic differences in these conditions, alongside the impact of MetS in patients undergoing total shoulder replacement. In a multi-centre study, 20 OA patients undergoing total shoulder replacement were included based on specific treatment indications for OA and cuff-tear arthropathy as well as 25 patients undergoing rotator cuff repair (RCR) as a comparator group. Tissues from subchondral bone, capsule (OA and RCR), and synovium were biopsied, and RNA sequencing was performed using Illumina platforms. Differential gene expression was conducted using DESeq2, adjusting for demographic factors, followed by pathway enrichment using the mitch package. Gene expressions in CTA and primary OA was differentially affected. CTA showed mitochondrial dysfunction, GATD3A downregulation, and increased cartilage degradation, while primary OA was marked by upregulated inflammatory and catabolic pathways. The effect of MetS on these pathologies was further shown. MetS further disrupted WNT/β-catenin signalling in CTA, and in OA. Genes such as ACAN, PANX3, CLU, and VAT1L were upregulated, highlighting potential biomarkers for early OA detection. This transcriptomic analysis reveals key differences between end-stage CTA and primary glenohumeral OA. CTA shows heightened metabolic/protein synthesis activity with less immune-driven inflammation. Under MetS, mitochondrial dysfunction (including GATD3A downregulation) and altered Wnt/β-catenin signalling intensify cartilage and bone damage. In contrast, primary OA features strong complement activation, inflammatory gene expression, and collagen remodelling. MetS worsens both conditions via oxidative stress, advanced glycation end products, and ECM disruption-particularly, increased CS/DS degradation. These distinctions support targeted treatments, from antioxidants and Wnt modulators to aggrecanase inhibitors or clusterin augmentation. Addressing specific molecular disruptions, especially those amplified by MetS, may preserve shoulder function, delay surgical intervention, and improve long-term patient outcomes.
Collapse
Affiliation(s)
- Samuel J. Lynskey
- Department of Orthopaedic Surgery, Geelong University Hospital, Geelong, VIC 3220, Australia
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC 3220, Australia
| | - Zihui Ling
- Peninsula Health, 2 Hastings Rd, Frankston, VIC 3199, Australia
| | - Mark Ziemann
- Burnet Institute, Melbourne, VIC 3004, Australia
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Stephen D. Gill
- Department of Orthopaedic Surgery, Geelong University Hospital, Geelong, VIC 3220, Australia
- Barwon Centre for Orthopaedic Research and Education (BCORE), St. John of God Hospital, Geelong, VIC 3220, Australia
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong, VIC 3220, Australia
| | - Sean L. McGee
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC 3220, Australia
| | - Richard S. Page
- Department of Orthopaedic Surgery, Geelong University Hospital, Geelong, VIC 3220, Australia
- Barwon Centre for Orthopaedic Research and Education (BCORE), St. John of God Hospital, Geelong, VIC 3220, Australia
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
2
|
Nile M, Folwaczny M, Kessler A, Wichelhaus A, Janjic Rankovic M, Baumert U. Development of a Custom Fluid Flow Chamber for Investigating the Effects of Shear Stress on Periodontal Ligament Cells. Cells 2024; 13:1751. [PMID: 39513858 PMCID: PMC11545369 DOI: 10.3390/cells13211751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The periodontal ligament (PDL) is crucial for maintaining the integrity and functionality of tooth-supporting structures. Mechanical forces applied to the tooth during orthodontic tooth movement generate pore pressure gradients, leading to interstitial fluid movement within the PDL. The generated fluid shear stress (FSS) stimulates the remodeling of PDL and alveolar bone. Herein, we present the construction of a parallel fluid-flow apparatus to determine the effect of FSS on PDL cells. The chamber was designed and optimized using computer-aided and computational fluid dynamics software. The chamber was formed by PDMS using a negative molding technique. hPDLCs from two donors were seeded on microscopic slides and exposed to FSS of 6 dyn/cm2 for 1 h. The effect of FSS on gene and protein expression was determined using RT-qPCR and Western blot. FSS upregulated genes responsible for mechanosensing (FOS), tissue formation (RUNX2, VEGFA), and inflammation (PTGS2/COX2, CXCL8/IL8, IL6) in both donors, with donor 2 showing higher gene upregulation. Protein expression of PTGS2/COX2 was higher in donor 2 but not in donor 1. RUNX2 protein was not expressed in either donor after FSS. In summary, FSS is crucial in regulating gene expression linked to PDL remodeling and inflammation, with donor variability potentially affecting outcomes.
Collapse
Affiliation(s)
- Mustafa Nile
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (M.F.); (A.K.)
| | - Andreas Kessler
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (M.F.); (A.K.)
- Department of Prosthetic Dentistry, Faculty of Medicine, Center for Dental Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (A.W.); (M.J.R.)
| |
Collapse
|
3
|
Sun W, Yi Q, Feng J. Comment on "Perception and response of skeleton to mechanical stress" by Ding S, Chen Y, Huang C, Song L, Liang Z and Wei B. Phys Life Rev 2024; 50:39-42. [PMID: 38905874 DOI: 10.1016/j.plrev.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Affiliation(s)
- Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China; The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646099, China; Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646099, China.
| |
Collapse
|
4
|
Strunz F, Stähli C, Heverhagen JT, Hofstetter W, Egli RJ. Gadolinium-Based Contrast Agents and Free Gadolinium Inhibit Differentiation and Activity of Bone Cell Lineages. Invest Radiol 2024; 59:495-503. [PMID: 38117137 DOI: 10.1097/rli.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
OBJECTIVES Administration of gadolinium-based contrast agents (GBCA) in magnetic resonance imaging results in the long-term retention of gadolinium (Gd) in tissues and organs, including the bone, and may affect their function and metabolism. This study aims to investigate the effects of Gd and GBCA on the proliferation/survival, differentiation, and function of bone cell lineages. MATERIALS AND METHODS Primary murine osteoblasts (OB) and osteoclast progenitor cells (OPC) isolated from C57BL/6J mice were used to test the effects of Gd 3+ (12.5-100 μM) and GBCA (100-2000 μM). Cultures were supplemented with the nonionic linear Gd-DTPA-BMA (gadodiamide), ionic linear Gd-DTPA (gadopentetic acid), and macrocyclic Gd-DOTA (gadoteric acid). Cell viability and differentiation were analyzed on days 4-6 of the culture. To assess the resorptive activity of osteoclasts, the cells were grown in OPC cultures and were seeded onto layers of amorphous calcium phosphate with incorporated Gd. RESULTS Gd 3+ did not affect OB viability, but differentiation was reduced dose-dependently up to 72.4% ± 6.2%-73.0% ± 13.2% (average ± SD) at 100 μM Gd 3+ on days 4-6 of culture as compared with unexposed controls ( P < 0.001). Exposure to GBCA had minor effects on OB viability with a dose-dependent reduction up to 23.3% ± 10.2% for Gd-DTPA-BMA at 2000 μM on day 5 ( P < 0.001). In contrast, all 3 GBCA caused a dose-dependent reduction of differentiation up to 88.3% ± 5.2% for Gd-DTPA-BMA, 49.8% ± 16.0% for Gd-DTPA, and 23.1% ± 8.7% for Gd-DOTA at 2000 μM on day 5 ( P < 0.001). In cultures of OPC, cell viability was not affected by Gd 3+ , whereas differentiation was decreased by 45.3% ± 9.8%-48.5% ± 15.8% at 100 μM Gd 3+ on days 4-6 ( P < 0.05). Exposure of OPC to GBCA resulted in a dose-dependent increase in cell viability of up to 34.1% ± 11.4% at 2000 μM on day 5 of culture ( P < 0.001). However, differentiation of OPC cultures was reduced on day 5 by 24.2% ± 9.4% for Gd-DTPA-BMA, 47.1% ± 14.0% for Gd-DTPA, and 38.2% ± 10.0% for Gd-DOTA ( P < 0.001). The dissolution of amorphous calcium phosphate by mature osteoclasts was reduced by 36.3% ± 5.3% upon incorporation of 4.3% Gd/Ca wt/wt ( P < 0.001). CONCLUSIONS Gadolinium and GBCA inhibit differentiation and activity of bone cell lineages in vitro. Thus, Gd retention in bone tissue could potentially impair the physiological regulation of bone turnover on a cellular level, leading to pathological changes in bone metabolism.
Collapse
Affiliation(s)
- Franziska Strunz
- From the Bone and Joint Program, Department for BioMedical Research, University of Bern, Bern, Switzerland (F.S., W.H., R.J.E.); Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland (F.S.); RMS-Foundation, Bettlach, Switzerland (C.S.); Department of Diagnostic, Interventional, and Pediatric Radiology, University Hospital, Inselspital, University of Bern, Bern, Switzerland (J.T.H., R.J.E.); and Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research, University of Bern, Bern, Switzerland (W.H.)
| | | | | | | | | |
Collapse
|
5
|
Hiasa M, Endo I, Matsumoto T. Bone-fat linkage via interleukin-11 in response to mechanical loading. J Bone Miner Metab 2024; 42:447-454. [PMID: 38324177 DOI: 10.1007/s00774-023-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 02/08/2024]
Abstract
Positive regulators of bone formation, such as mechanical loading and PTH, stimulate and negative regulators, such as aging and glucocorticoid excess, suppress IL-11 gene transcription in osteoblastic cells. Signal transduction from mechanical loading and PTH stimulation involves two pathways: one is Ca2+-ERK-CREB pathway which facilitates binding of ∆FosB/JunD to the AP-1 site to enhance IL-11 gene transcription, and the other is Smad1/5 phosphorylation that promotes IL-11 gene transcription via SBE binding and complex formation with ∆FosB/JunD. The increased IL-11 suppresses Sost expression via IL-11Rα-STAT1/3-HDAC4/5 pathway and enhances Wnt signaling in the bone to stimulate bone formation. Thus, IL-11 mediates stimulatory and inhibitory signals of bone formation by affecting Wnt signaling. Physiologically important stimulation of bone formation is exercise-induced mechanical loading, but exercise simultaneously requires energy source for muscle contraction. Exercise-induced stimulation of IL-11 expression in the bone increases the secretion of IL-11 from the bone. The increased circulating IL-11 acts like a hormone to enhance adipolysis as an energy source with a reduction in adipogenic differentiation via a suppression of Dkk1/2 expression in the adipose tissue. Such bone-fat linkage can be a mechanism whereby exercise increases bone mass and, at the same time, maintains energy supply from the adipose tissue.
Collapse
Affiliation(s)
- Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Dentistry, Tokushima, 770-8503, Japan
| | - Itsuro Endo
- Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503,, Japan
| | - Toshio Matsumoto
- Department of Endocrinology, Metabolism and Hematology, Tokushima University Graduate School of Medical Sciences, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503,, Japan.
| |
Collapse
|
6
|
Poudel BH, Koks S. The whole transcriptome analysis using FFPE and fresh tissue samples identifies the molecular fingerprint of osteosarcoma. Exp Biol Med (Maywood) 2024; 249:10161. [PMID: 38966281 PMCID: PMC11222325 DOI: 10.3389/ebm.2024.10161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Osteosarcoma is a form of bone cancer that predominantly impacts osteoblasts, the cells responsible for creating fresh bone tissue. Typical indications include bone pain, inflammation, sensitivity, mobility constraints, and fractures. Utilising imaging techniques such as X-rays, MRI scans, and CT scans can provide insights into the size and location of the tumour. Additionally, a biopsy is employed to confirm the diagnosis. Analysing genes with distinct expression patterns unique to osteosarcoma can be valuable for early detection and the development of effective treatment approaches. In this research, we comprehensively examined the entire transcriptome and pinpointed genes with altered expression profiles specific to osteosarcoma. The study mainly aimed to identify the molecular fingerprint of osteosarcoma. In this study, we processed 90 FFPE samples from PathWest with an almost equal number of osteosarcoma and healthy tissues. RNA was extracted from Paraffin-embedded tissue; RNA was sequenced, the sequencing data was analysed, and gene expression was compared to the healthy samples of the same patients. Differentially expressed genes in osteosarcoma-derived samples were identified, and the functions of those genes were explored. This result was combined with our previous studies based on FFPE and fresh samples to perform a meta-analysis. We identified 1,500 identical differentially expressed genes in PathWest osteosarcoma samples compared to normal tissue samples of the same patients. Meta-analysis with combined fresh tissue samples identified 530 differentially expressed genes. IFITM5, MMP13, PANX3, and MAGEA6 were some of the most overexpressed genes in osteosarcoma samples, while SLC4A1, HBA1, HBB, AQP7 genes were some of the top downregulated genes. Through the meta-analysis, 530 differentially expressed genes were identified to be identical among FFPE (105 FFPE samples) and 36 fresh bone samples. Deconvolution analysis with single-cell RNAseq data confirmed the presence of specific cell clusters in FFPE samples. We propose these 530 DEGs as a molecular fingerprint of osteosarcoma.
Collapse
Affiliation(s)
- Bal Hari Poudel
- Center for Molecular Medicine and Innovative Therapy, Murdoch University, Perth, WA, Australia
- Perron Institute of Neurological Diseases, Perth, WA, Australia
- Central Department of Biotechnology, Tribhuvan University, Kathmandu, Nepal
| | - Sulev Koks
- Center for Molecular Medicine and Innovative Therapy, Murdoch University, Perth, WA, Australia
- Perron Institute of Neurological Diseases, Perth, WA, Australia
| |
Collapse
|
7
|
Yunusa S, Hassan Z, Müller CP. Mitragynine inhibits hippocampus neuroplasticity and its molecular mechanism. Pharmacol Rep 2023; 75:1488-1501. [PMID: 37924443 PMCID: PMC10661785 DOI: 10.1007/s43440-023-00541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Mitragynine (MIT), the primary indole alkaloid of kratom (Mitragyna speciosa), has been associated with addictive and cognitive decline potentials. In acute studies, MIT decreases spatial memory and inhibits hippocampal synaptic transmission in long-term potentiation (LTP). This study investigated the impacts of 14-day MIT treatment on hippocampus synaptic transmission and its possible underlying mechanisms. METHODS Under urethane anesthesia, field excitatory post-synaptic potentials (fEPSP) of the hippocampal CA1 region were recorded in the Sprague Dawley (SD) rats that received MIT (1, 5, and 10 mg/kg), morphine (MOR) 5 mg/kg, or vehicle (ip). The effects of the treatments on basal synaptic transmission, paired-pulse facilitation (PPF), and LTP were assessed in the CA1 region. Analysis of the brain's protein expression linked to neuroplasticity was then performed using a western blot. RESULTS The baseline synaptic transmission's amplitude was drastically decreased by MIT at 5 and 10 mg/kg doses, although the PPF ratio before TBS remained unchanged, the PPF ratio after TBS was significantly reduced by MIT (10 mg/kg). Strong and persistent inhibition of LTP was generated in the CA1 region by MIT (5 and 10 mg/kg) doses; this effect was not seen in MIT (1 mg/kg) treated rats. In contrast to MIT (1 mg/kg), MIT (5 and 10 mg/kg) significantly raised the extracellular glutamate levels. After exposure to MIT, GluR-1 receptor expression remained unaltered. However, NMDAε2 receptor expression was markedly downregulated. The expression of pCaMKII, pERK, pCREB, BDNF, synaptophysin, PSD-95, Delta fosB, and CDK-5 was significantly downregulated in response to MIT (5 and 10 mg/kg) exposure, while MOR (5 mg/kg) significantly raised synaptophysin and Delta fosB expression. CONCLUSION Findings from this work reveal that a smaller dose of MIT (1 mg/kg) poses no risk to hippocampal synaptic transmission. Alteration in neuroplasticity-associated proteins may be a molecular mechanism for MIT (5 and 10 mg/kg)-induced LTP disruption and cognitive impairments. Data from this work posit that MIT acted differently from MOR on neuroplasticity and its underlying mechanisms.
Collapse
Affiliation(s)
- Suleiman Yunusa
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Department of Pharmacology, Bauchi State University Gadau, PMB 65 Itas/Gadau, Bauchi, Bauchi State, Nigeria
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany.
- Psychiatric and Psychotherapeutic University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
8
|
Asgeirsson DO, Mehta A, Scheeder A, Li F, Wang X, Christiansen MG, Hesse N, Ward R, De Micheli AJ, Ildiz ES, Menghini S, Aceto N, Schuerle S. Magnetically controlled cyclic microscale deformation of in vitro cancer invasion models. Biomater Sci 2023; 11:7541-7555. [PMID: 37855703 DOI: 10.1039/d3bm00583f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Mechanical cues play an important role in the metastatic cascade of cancer. Three-dimensional (3D) tissue matrices with tunable stiffness have been extensively used as model systems of the tumor microenvironment for physiologically relevant studies. Tumor-associated cells actively deform these matrices, providing mechanical cues to other cancer cells residing in the tissue. Mimicking such dynamic deformation in the surrounding tumor matrix may help clarify the effect of local strain on cancer cell invasion. Remotely controlled microscale magnetic actuation of such 3D in vitro systems is a promising approach, offering a non-invasive means for in situ interrogation. Here, we investigate the influence of cyclic deformation on tumor spheroids embedded in matrices, continuously exerted for days by cell-sized anisotropic magnetic probes, referred to as μRods. Particle velocimetry analysis revealed the spatial extent of matrix deformation produced in response to a magnetic field, which was found to be on the order of 200 μm, resembling strain fields reported to originate from contracting cells. Intracellular calcium influx was observed in response to cyclic actuation, as well as an influence on cancer cell invasion from 3D spheroids, as compared to unactuated controls. Furthermore, RNA sequencing revealed subtle upregulation of certain genes associated with migration and stress, such as induced through mechanical deformation, for spheroids exposed to actuation vs. controls. Localized actuation at one side of a tumor spheroid tended to result in anisotropic invasion toward the μRods causing the deformation. In summary, our approach offers a strategy to test and control the influence of non-invasive micromechanical cues on cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Daphne O Asgeirsson
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Avni Mehta
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anna Scheeder
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Fan Li
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Xiang Wang
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Michael G Christiansen
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Nicolas Hesse
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Rachel Ward
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrea J De Micheli
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
- Department of Oncology, Children's Research Center, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Ece Su Ildiz
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Stefano Menghini
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Simone Schuerle
- Department of Health Sciences and Technology, Responsive Biomedical Systems Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
9
|
Osteoblast/osteocyte-derived interleukin-11 regulates osteogenesis and systemic adipogenesis. Nat Commun 2022; 13:7194. [PMID: 36424386 PMCID: PMC9691688 DOI: 10.1038/s41467-022-34869-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Exercise results in mechanical loading of the bone and stimulates energy expenditure in the adipose tissue. It is therefore likely that the bone secretes factors to communicate with adipose tissue in response to mechanical loading. Interleukin (IL)-11 is known to be expressed in the bone, it is upregulated by mechanical loading, enhances osteogenesis and suppresses adipogenesis. Here, we show that systemic IL-11 deletion (IL-11-/-) results in reduced bone mass, suppressed bone formation response to mechanical loading, enhanced expression of Wnt inhibitors, and suppressed Wnt signaling. At the same time, the enhancement of bone resorption by mechanical unloading was unaffected. Unexpectedly, IL-11-/- mice have increased systemic adiposity and glucose intolerance. Osteoblast/osteocyte-specific IL-11 deletion in osteocalcin-Cre;IL-11fl/fl mice have reduced serum IL-11 levels, blunted bone formation under mechanical loading, and increased systemic adiposity similar to IL-11-/- mice. Adipocyte-specific IL-11 deletion in adiponectin-Cre;IL-11fl/fl did not exhibit any abnormalities. We demonstrate that osteoblast/osteocyte-derived IL-11 controls both osteogenesis and systemic adiposity in response to mechanical loading, an important insight for our understanding of osteoporosis and metabolic syndromes.
Collapse
|
10
|
Chlebek C, Moore JA, Ross FP, van der Meulen MCH. Molecular Identification of Spatially Distinct Anabolic Responses to Mechanical Loading in Murine Cortical Bone. J Bone Miner Res 2022; 37:2277-2287. [PMID: 36054133 DOI: 10.1002/jbmr.4686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Osteoporosis affects over 200 million women worldwide, one-third of whom are predicted to suffer from an osteoporotic fracture in their lifetime. The most promising anabolic drugs involve administration of expensive antibodies. Because mechanical loading stimulates bone formation, our current data, using a mouse model, replicates the anabolic effects of loading in humans and may identify novel pathways amenable to oral treatment. Murine tibial compression produces axially varying deformations along the cortical bone, inducing highest strains at the mid-diaphysis and lowest at the metaphyseal shell. To test the hypothesis that load-induced transcriptomic responses at different axial locations of cortical bone would vary as a function of strain magnitude, we loaded the left tibias of 10-week-old female C57Bl/6 mice in vivo in compression, with contralateral limbs as controls. Animals were euthanized at 1, 3, or 24 hours post-loading or loaded for 1 week (n = 4-5/group). Bone marrow and cancellous bone were removed, cortical bone was segmented into the metaphyseal shell, proximal diaphysis, and mid-diaphysis, and load-induced differential gene expression and enriched biological processes were examined for the three segments. At each time point, the mid-diaphysis (highest strain) had the greatest transcriptomic response. Similarly, biological processes regulating bone formation and turnover increased earlier and to the greatest extent at the mid-diaphysis. Higher strain induced greater levels of osteoblast and osteocyte genes, whereas expression was lower in osteoclasts. Among the top differentially expressed genes at 24-hours post-loading, 17 had known functions in bone biology, of which 12 were present only in osteoblasts, 3 exclusively in osteoclasts, and 2 were present in both cell types. Based on these results, we conclude that murine tibial loading induces spatially unique transcriptomic responses correlating with strain magnitude in cortical bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jacob A Moore
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
11
|
Effect of micro-osteoperforations on the gene expression profile of the periodontal ligament of orthodontically moved human teeth. Clin Oral Investig 2021; 26:1985-1996. [PMID: 34499218 DOI: 10.1007/s00784-021-04178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effect of micro-osteoperforations (MOPs) on the gene expression profile of the periodontal ligament (PDL) of orthodontically moved teeth. MATERIALS AND METHODS Fifteen participants were randomly assigned into two groups: tooth movement only (Tr1, n = 7) and tooth movement supplemented with MOPs (Tr2, n = 8). In each subject, orthodontic tooth movement (OTM) was performed on premolar in one side, while no force was applied on contralateral premolar (Unt, n = 15). Seven days after loading, premolars were extracted for orthodontic reasons. RNA extraction from PDL and subsequent RNA-sequencing were performed. False discovery rates (Padj < 0.05) and log2 fold change (+ / - 1.5) thresholds were used to identify sets of differentially expressed genes (DEGs) among the groups. DEGs were analyzed with gene ontology enrichment, KEGG, and network analysis. RESULTS Three hundred thirty-one DEGs were found between Tr1 and Unt, and 356 between Tr2 and Unt. Although, there were no significantly DEGs between Tr2 and Tr1, DEGs identified exclusively in Tr1 vs. Unt were different from those identified exclusively in Tr2 vs. Unt. In Tr1, genes were related to bone metabolism processes, such as osteoclast and osteoblast differentiation. In Tr2, genes were associated to inflammation processes, like inflammatory and immune responses, and cellular response to tumor necrosis factor. CONCLUSIONS MOPs do not significantly alter the PDL gene expression profile of orthodontically moved human teeth. This study provides for the first time evidence on the whole PDL gene expression profiles associated to OTM in humans. Novel biomarkers for OTM are suggested for additional research. Clinical relevance The identified biomarkers provide new insights into the molecular mechanisms that would occur when OTM is supplemented with MOPs. These markers are expected to be useful in the near future for the application of personalized strategies related to the OTM.
Collapse
|
12
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
13
|
Crowe MS, Zavorotinskaya T, Voliva CF, Shirley MD, Wang Y, Ruddy DA, Rakiec DP, Engelman JA, Stuart DD, Freeman AK. RAF-Mutant Melanomas Differentially Depend on ERK2 Over ERK1 to Support Aberrant MAPK Pathway Activation and Cell Proliferation. Mol Cancer Res 2021; 19:1063-1075. [PMID: 33707308 DOI: 10.1158/1541-7786.mcr-20-1022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
Half of advanced human melanomas are driven by mutant BRAF and dependent on MAPK signaling. Interestingly, the results of three independent genetic screens highlight a dependency of BRAF-mutant melanoma cell lines on BRAF and ERK2, but not ERK1. ERK2 is expressed higher in melanoma compared with other cancer types and higher than ERK1 within melanoma. However, ERK1 and ERK2 are similarly required in primary human melanocytes transformed with mutant BRAF and are expressed at a similar, lower amount compared with established cancer cell lines. ERK1 can compensate for ERK2 loss as seen by expression of ERK1 rescuing the proliferation arrest mediated by ERK2 loss (both by shRNA or inhibition by an ERK inhibitor). ERK2 knockdown, as opposed to ERK1 knockdown, led to more robust suppression of MAPK signaling as seen by RNA-sequencing, qRT-PCR, and Western blot analysis. In addition, treatment with MAPK pathway inhibitors led to gene expression changes that closely resembled those seen upon knockdown of ERK2 but not ERK1. Together, these data demonstrate that ERK2 drives BRAF-mutant melanoma gene expression and proliferation as a function of its higher expression compared with ERK1. Selective inhibition of ERK2 for the treatment of melanomas may spare the toxicity associated with pan-ERK inhibition in normal tissues. IMPLICATIONS: BRAF-mutant melanomas overexpress and depend on ERK2 but not ERK1, suggesting that ERK2-selective inhibition may be toxicity sparing.
Collapse
Affiliation(s)
- Matthew S Crowe
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Charles F Voliva
- Oncology, Novartis Institutes for BioMedical Research, Emeryville, California
| | - Matthew D Shirley
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Yanqun Wang
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - David A Ruddy
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Daniel P Rakiec
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Jeffery A Engelman
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Darrin D Stuart
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Alyson K Freeman
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts.
| |
Collapse
|
14
|
Feng J, Xu X, Fan X, Yi Q, Tang L. BAF57/SMARCE1 Interacting with Splicing Factor SRSF1 Regulates Mechanical Stress-Induced Alternative Splicing of Cyclin D1. Genes (Basel) 2021; 12:306. [PMID: 33670012 PMCID: PMC7927079 DOI: 10.3390/genes12020306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Cyclin D1 regulates cyclin-dependent protein kinase activity of the cell cycle, and cyclin D1 alternative splicing generates a cyclin D1b isoform, acting as a mediator of aberrant cellular proliferation. As alternative splicing processes are sensitive to mechanical stimuli, whether the alternative splicing of cyclin D1 is regulated by mechanical stress and what kinds of factors may act as the regulator of mechano-induced alternative splicing remain unknown. Methods: The alternative splicing of Cyclin D1 was examined using reverse transcription polymerase chain reaction (RT-PCR) in osteoblast cell lines and keratinocyte cells loaded by a cyclic stretch. The expression of splicing factors and switching defective/sucrose non-fermenting (SWI/SNF) complex subunits were detected in stretched cells using real-time quantitative PCR (RT-qPCR). The protein interaction was tested by co-immunoprecipitation assay (Co-IP). Results:Cyclin D1 expression decreased with its splice variant upregulated in stretched cells. Serine/arginine-rich splicing factor 1 (SRSF1) and SWI/SNF complex subunit Brahma-related gene-1-associated factor 57 (BAF57), also named SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 (SMARCE1), could respond to mechanical stimuli. Overexpression and knockdown experiments indicated the BAF57/SMARCE1 is probably a critical factor regulating the alternative splicing of cyclin D1. Co-IP showed an interaction between BAF57/SMARCE1 and SRSF1, implying a possible underlying mechanism of the regulator role of BAF57/SMARCE1 in the splicing process of cyclin D1. Conclusions: The splicing factor SRSF1 and BAF57/SMARCE1 are possibly responsible for the mechanical stress-induced alternative splicing of cyclin D1.
Collapse
Affiliation(s)
- Jianguo Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401120, China; (J.F.); (X.X.)
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401120, China; (J.F.); (X.X.)
| | - Xin Fan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 401120, China;
| | - Qian Yi
- Department of Physiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China;
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401120, China; (J.F.); (X.X.)
| |
Collapse
|
15
|
Chermside-Scabbo CJ, Harris TL, Brodt MD, Braenne I, Zhang B, Farber CR, Silva MJ. Old Mice Have Less Transcriptional Activation But Similar Periosteal Cell Proliferation Compared to Young-Adult Mice in Response to in vivo Mechanical Loading. J Bone Miner Res 2020; 35:1751-1764. [PMID: 32311160 PMCID: PMC7486279 DOI: 10.1002/jbmr.4031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Mechanical loading is a potent strategy to induce bone formation, but with aging, the bone formation response to the same mechanical stimulus diminishes. Our main objectives were to (i) discover the potential transcriptional differences and (ii) compare the periosteal cell proliferation between tibias of young-adult and old mice in response to strain-matched mechanical loading. First, to discover potential age-related transcriptional differences, we performed RNA sequencing (RNA-seq) to compare the loading responses between tibias of young-adult (5-month) and old (22-month) C57BL/6N female mice following 1, 3, or 5 days of axial loading (loaded versus non-loaded). Compared to young-adult mice, old mice had less transcriptional activation following loading at each time point, as measured by the number of differentially expressed genes (DEGs) and the fold-changes of the DEGs. Old mice engaged fewer pathways and gene ontology (GO) processes, showing less activation of processes related to proliferation and differentiation. In tibias of young-adult mice, we observed prominent Wnt signaling, extracellular matrix (ECM), and neuronal responses, which were diminished with aging. Additionally, we identified several targets that may be effective in restoring the mechanoresponsiveness of aged bone, including nerve growth factor (NGF), Notum, prostaglandin signaling, Nell-1, and the AP-1 family. Second, to directly test the extent to which periosteal cell proliferation was diminished in old mice, we used bromodeoxyuridine (BrdU) in a separate cohort of mice to label cells that divided during the 5-day loading interval. Young-adult and old mice had an average of 15.5 and 16.7 BrdU+ surface cells/mm, respectively, suggesting that impaired proliferation in the first 5 days of loading does not explain the diminished bone formation response with aging. We conclude that old mice have diminished transcriptional activation following mechanical loading, but periosteal proliferation in the first 5 days of loading does not differ between tibias of young-adult and old mice. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher J Chermside-Scabbo
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Taylor L Harris
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Michael D Brodt
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Ingrid Braenne
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University, St. Louis, MO, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Matthew J Silva
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
16
|
Wang N, Niger C, Li N, Richards GO, Skerry TM. Cross-Species RNA-Seq Study Comparing Transcriptomes of Enriched Osteocyte Populations in the Tibia and Skull. Front Endocrinol (Lausanne) 2020; 11:581002. [PMID: 33071985 PMCID: PMC7543096 DOI: 10.3389/fendo.2020.581002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Local site-specific differences between bones in different regions of the skeleton account for their different properties and functions. To identify mechanisms behind these differences, we have performed a cross-species study comparing RNA transcriptomes of cranial and tibial osteocytes, from bones with very different primary functions and physiological responses, collected from the same individual mouse, rat, and rhesus macaque. Bioinformatic analysis was performed to identify 32 genes changed in the same direction between sites and shared across all three species. Several well-established key genes in bone growth and remodeling were upregulated in the tibias of all three species (BMP7, DKK1, FGF1, FRZB, SOST). Many of them associate or crosstalk with the Wnt signaling pathway. These results suggest Wnt signaling-related candidates for different control of regulatory mechanisms in bone homeostasis in the skull and tibia and indicate a different balance between genetically determined structure and feedback mechanisms to strains induced by mechanical loading at the different sites.
Collapse
Affiliation(s)
- Ning Wang
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Corinne Niger
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Nan Li
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Gareth O. Richards
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
| | - Tim M. Skerry
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Tim M. Skerry
| |
Collapse
|
17
|
Kalyanaraman H, Schall N, Pilz RB. Nitric oxide and cyclic GMP functions in bone. Nitric Oxide 2018; 76:62-70. [PMID: 29550520 PMCID: PMC9990405 DOI: 10.1016/j.niox.2018.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/24/2023]
Abstract
Nitric oxide plays a central role in the regulation of skeletal homeostasis. In cells of the osteoblastic lineage, NO is generated in response to mechanical stimulation and estrogen exposure. Via activation of soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinases (PKGs), NO enhances proliferation, differentiation, and survival of bone-forming cells in the osteoblastic lineage. NO also regulates the differentiation and activity of bone-resorbing osteoclasts; here the effects are largely inhibitory and partly cGMP-independent. We review the skeletal phenotypes of mice deficient in NO synthases and PKGs, and the effects of NO and cGMP on bone formation and resorption. We examine the roles of NO and cGMP in bone adaptation to mechanical stimulation. Finally, we discuss preclinical and clinical data showing that NO donors and NO-independent sGC activators may protect against estrogen deficiency-induced bone loss. sGC represents an attractive target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Nadine Schall
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA.
| |
Collapse
|
18
|
Li B, Jia S, Yue T, Yang L, Huang C, Verkhratsky A, Peng L. Biphasic Regulation of Caveolin-1 Gene Expression by Fluoxetine in Astrocytes: Opposite Effects of PI3K/AKT and MAPK/ERK Signaling Pathways on c-fos. Front Cell Neurosci 2017; 11:335. [PMID: 29163047 PMCID: PMC5671492 DOI: 10.3389/fncel.2017.00335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Previously, we reported that fluoxetine acts on 5-HT2B receptor and induces epidermal growth factor receptor (EGFR) transactivation in astrocytes. Recently, we have found that chronic treatment with fluoxetine regulates Caveolin-1 (Cav-1)/PTEN/PI3K/AKT/glycogen synthase kinase 3β (GSK-3β) signaling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. At low concentrations fluoxetine down-regulates Cav-1 gene expression, decreases membrane content of PTEN, increases PI3K activity and increases phosphorylation of GSK-3β and increases its activity; at high concentrations fluoxetine acts on PTEN/PI3K/AKT/GSK-3β in an inverse fashion. Here, we present the data indicating that acute treatment with fluoxetine at lower concentrations down-regulates c-Fos gene expression via PI3K/AKT signaling pathway; in contrast at higher concentrations fluoxetine up-regulates c-Fos gene expression via MAPK/extracellular-regulated kinase (ERK) signaling pathway. However, acute treatment with fluoxetine has no effect on Cav-1 protein content. Similarly, chronic effects of fluoxetine on Cav-1 gene expression are suppressed by inhibitor of PI3K at lower concentrations, but by inhibitor of MAPK at higher concentrations, indicating that the mechanism underlying bi-phasic regulation of Cav-1 gene expression by fluoxetine is opposing effects of PI3K/AKT and MAPK/ERK signal pathways on c-Fos gene expression. The effects of fluoxetine on Cav-1 gene expression at both lower and higher concentrations are abolished by AG1478, an inhibitor of EGFR, indicating the involvement of 5-HT2B receptor induced EGFR transactivation as we reported previously. However, PP1, an inhibitor of Src only abolished the effect by lower concentrations, suggesting the relevance of Src with PI3K/AKT signal pathway during activation of EGFR.
Collapse
Affiliation(s)
- Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Shu Jia
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Tingting Yue
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Li Yang
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Chen Huang
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Alexej Verkhratsky
- Faculty of Life Science, The University of Manchester, Manchester, United Kingdom.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| |
Collapse
|
19
|
Zhu Q, Gao J, Tian G, Tang Z, Tan Y. Adrenomedullin promotes the odontogenic differentiation of dental pulp stem cells through CREB/BMP2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2017; 49:609-616. [PMID: 28541393 DOI: 10.1093/abbs/gmx053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 01/25/2023] Open
Abstract
Adrenomedullin (AM) could promote the proliferation, the odontogenic differentiation and inhibit the apoptosis of dental pulp stem cells (DPSCs). AM in combination with DPSCs may be an effective strategy for pulp repair. However, there was no report on the mechanisms of AM in the odontogenic differentiation of DPSCs. The aim of this study is to investigate the molecular mechanisms through which AM promotes the odontogenic differentiation of DPSCs. Freshly extracted wisdom teeth were obtained from 27 patients. Cells at passage 3 to passage 5 were used in this study. DPSCs were treated with or without 10-7 M AM in Dulbecco's modified Eagle's medium culture, and then the accumulated calcium deposition was analyzed after 21 days by using alizarin red S staining. Odontogenic differentiation markers were determined by western blot analysis and quantitative real-time PCR. Western blot analysis results showed that AM had the capability of promoting the odontogenic differentiation of DPSCs and AM could enhance the phosphorylation of CREB and up-regulate the expression of BMP2. H89 is a CREB inhibitor which can inhibit the odontogenic differentiation of DPSCs through inhibiting the phosphorylation of CREB. Noggin could inhibit the odontogenic differentiation of DPSCs through inhibiting the activity of BMP2. These results indicated that AM could promote the odontogenic differentiation of DPSCs by upregulating the expression of BMP2 through the CREB signaling pathway.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Stomatology, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Jianyong Gao
- Department of Stomatology, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Gang Tian
- Department of Stomatology, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Zhen Tang
- Department of Stomatology, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Yinghui Tan
- Department of Stomatology, Xinqiao Hospital, the Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
20
|
Schneider AK, Cama G, Ghuman M, Hughes FJ, Gharibi B. Sprouty 2
, an Early Response Gene Regulator of FosB
and Mesenchymal Stem Cell Proliferation During Mechanical Loading and Osteogenic Differentiation. J Cell Biochem 2017; 118:2606-2614. [DOI: 10.1002/jcb.26035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/05/2017] [Indexed: 01/26/2023]
Affiliation(s)
- A. Kristin Schneider
- Division of Tissue Engineering and Biophotonics; Dental Institute; King's College London, Tower Wing, Guy's Hospital; London SE1 9RT UK
| | - Giuseppe Cama
- Division of Tissue Engineering and Biophotonics; Dental Institute; King's College London, Tower Wing, Guy's Hospital; London SE1 9RT UK
| | - Mandeep Ghuman
- Division of Tissue Engineering and Biophotonics; Dental Institute; King's College London, Tower Wing, Guy's Hospital; London SE1 9RT UK
| | - Francis J. Hughes
- Division of Tissue Engineering and Biophotonics; Dental Institute; King's College London, Tower Wing, Guy's Hospital; London SE1 9RT UK
| | - Borzo Gharibi
- Division of Tissue Engineering and Biophotonics; Dental Institute; King's College London, Tower Wing, Guy's Hospital; London SE1 9RT UK
| |
Collapse
|
21
|
Fukada T, Sakajiri H, Kuroda M, Kioka N, Sugimoto K. Fluid shear stress applied by orbital shaking induces MG-63 osteosarcoma cells to activate ERK in two phases through distinct signaling pathways. Biochem Biophys Rep 2017; 9:257-265. [PMID: 28956013 PMCID: PMC5614596 DOI: 10.1016/j.bbrep.2017.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 11/25/2016] [Accepted: 01/05/2017] [Indexed: 11/30/2022] Open
Abstract
Fluid shear stress (FSS) induces a series of biochemical responses in osteoblasts, and this “mechanoresponse” regulates their survival, proliferation and differentiation. However, the events in cells immediately after FSS application are unclear, and how biochemical signals from soluble factors modify the mechanoresponses is largely unknown. We used the orbital shaking method, instead of the frequently used parallel plate method, to examine activation of ERK and AKT by FSS for detailed tracking of its temporal transition. We found that ERK activation by orbital shaking was biphasic. The early phase was independent of Ca2+, PI3-kinase, and Rho kinase but required RAF activity. The late phase was dependent on Ca2+ but not RAF. These results suggest that the superior time-resolving capability of the orbital shaking method to separate the previously unrecognized Ca2+-independent early phase of ERK activation from the late phase. We also found that a certain combination of serum starvation and medium renewal affected ERK activation by FSS, suggesting that a soluble factor(s) may be secreted during serum starvation, which modified the phosphorylation level of ERK. These findings revealed novel aspects of the osteoblastic mechanoresponses and indicated that the orbital shaking method would be a useful, complementary alternative to the parallel plate method for certain types of study on cellular mechanoresponses. Fluid flow by orbital shaking induces biphasic activation of ERK in osteoblasts. Early-phase ERK activation is unique because of its independence of Ca2+ signaling. Serum starvation has complex effects on ERK activation by fluid flow. Orbital shaking is useful for certain types of study on cellular mechanoresponses.
Collapse
Affiliation(s)
- Takashi Fukada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroki Sakajiri
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mito Kuroda
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Noriyuki Kioka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Kenji Sugimoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
22
|
Compression of human primary cementoblasts leads to apoptosis. J Orofac Orthop 2014; 75:430-45. [DOI: 10.1007/s00056-014-0237-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/04/2014] [Indexed: 12/31/2022]
|
23
|
Yu F, Wang Y, Xu H, Dong J, Wei W, Wang Y, Shan Z, Teng W, Xi Q, Chen J. Developmental iodine deficiency delays the maturation of newborn granule neurons associated with downregulation of p35 in postnatal rat hippocampus. ENVIRONMENTAL TOXICOLOGY 2014; 29:847-855. [PMID: 22987596 DOI: 10.1002/tox.21811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/29/2012] [Accepted: 08/04/2012] [Indexed: 06/01/2023]
Abstract
We evaluated the role of p35 in the maturation of hippocampal granule neurons in offspring caused by developmental iodine deficiency. Two developmental rat models were established with either an iodine-deficient diet, or propylthiouracil-adulterated water (5 ppm) to impair thyroid function, in pregnant rats from gestational day 6 until postnatal day 28. The protein levels of p35, cyclin-dependent kinase 5, β-catenin, and N-cadherin were assessed on postnatal day 14, 21, and 28. Dendritic morphogenesis of newborn granule neurons in dentate gyrus was examined. Developmental hypothyroidism induced by iodine deficiency and PTU treatment delayed the maturation of hippocampal granule neurons in the offspring and decreased the percentage of Dcx-positive neurons that expressed β-catenin on postnatal day 21 and 28. In addition, downregulation of p35 was observed in dentate gyrus of hypothyroid groups. Developmental hypothyroidism induced by iodine deficiency and PTU treatment could delay the maturation of newborn granule neurons in dentate gyrus, and this deficit may be attributed to the downregulation of p35.
Collapse
Affiliation(s)
- Fei Yu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110001, People's Republic of China; Liaoning Provincial Key Laboratory of Endocrine Diseases, China Medical University, Shenyang, People's Republic of China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mechanical loading in osteocytes induces formation of a Src/Pyk2/MBD2 complex that suppresses anabolic gene expression. PLoS One 2014; 9:e97942. [PMID: 24841674 PMCID: PMC4026426 DOI: 10.1371/journal.pone.0097942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022] Open
Abstract
Mechanical stimulation of the skeleton promotes bone gain and suppresses bone loss, ultimately resulting in improved bone strength and fracture resistance. The molecular mechanisms directing anabolic and/or anti-catabolic actions on the skeleton during loading are not fully understood. Identifying molecular mechanisms of mechanotransduction (MTD) signaling cascades could identify new therapeutic targets. Most research into MTD mechanisms is typically focused on understanding the signaling pathways that stimulate new bone formation in response to load. However, we investigated the structural, signaling and transcriptional molecules that suppress the stimulatory effects of loading. The high bone mass phenotype of mice with global deletion of either Pyk2 or Src suggests a role for these tyrosine kinases in repression of bone formation. We used fluid shear stress as a MTD stimulus to identify a novel Pyk2/Src-mediated MTD pathway that represses mechanically-induced bone formation. Our results suggest Pyk2 and Src function as molecular switches that inhibit MTD in our mechanically stimulated osteocyte culture experiments. Once activated by oscillatory fluid shear stress (OFSS), Pyk2 and Src translocate to and accumulate in the nucleus, where they associate with a protein involved in DNA methylation and the interpretation of DNA methylation patterns –methyl-CpG-binding domain protein 2 (MBD2). OFSS-induced Cox-2 and osteopontin expression was enhanced in Pyk2 KO osteoblasts, while inhibition of Src enhanced osteocalcin expression in response to OFSS. We found that Src kinase activity increased in the nucleus of osteocytes in response to OFSS and an interaction activated between Src (Y418) and Pyk2 (Y402) increased in response to OFSS. Thus, as a mechanism to prevent an over-reaction to physical stimulation, mechanical loading may induce the formation of a Src/Pyk2/MBD2 complex in the nucleus that functions to suppress anabolic gene expression.
Collapse
|
25
|
Zheng H, Li H, Li L, Ma S, Liu X. ΔFosB regulates Ca²⁺ release and proliferation of goat mammary epithelial cells. Gene 2014; 545:241-6. [PMID: 24831832 DOI: 10.1016/j.gene.2014.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 01/09/2023]
Abstract
ΔFosB is a member of the family of transcription factor activating proteins-1 (AP-1) and is known to play important roles in Ca(2+) metabolism processes of osteoblast formation and differentiation in humans and rodents. The postpartum mammary gland is one of the significant organs for Ca(2+) metabolism processes. However, very little information is available on the role of ΔFosB in goat mammary gland. In this investigation, the full-length cDNA of ΔFosB from Xinong Saanen dairy goats was cloned, which contains an open-reading frame (ORF) of 723 bp encoding 240 amino acids. The amino acid sequence is highly homologous with cattle (99.17%). Quantitative real time PCR (QRT-PCR) and western blotting assays showed that ΔFosB was expressed in goat heart, liver, lung, and breast, but little in the hypophysis and spleen. The fluorescence signals revealed that the Ca(2+) was decreased in goat mammary epithelial cells (GMECs) over-expressed ΔFosB at 72h. Consistently, intracellular Ca(2+) was increased in GMECs suppressing expressed ΔFosB at 72 h. QRT-PCR assay showed that ΔFosB positively regulated the mRNA expression of runt related transcription factor 2 (Runx2), SMAD family member 4 (Smad4), S100 calcium binding protein A4 (S100A4) and S100 calcium binding protein A13 (S100A13) genes in GMECs, which had been proven to be relative to calcium metabolism in humans and rodents. Ca(2+) could induce a dose-dependent increase of the ΔFosB mRNA expression and a dose-dependent decrease in cell viability when the GMECs were treated with CaCl2. Suppressing ΔFosB expression in GMECs also inhibited the cell viability. These discoveries suggest that ΔFosB plays important roles in regulating Ca(2+) release and proliferation of the GMECs, which may prove useful in regulation of milk production.
Collapse
Affiliation(s)
- Huiling Zheng
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| | - Hui Li
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Lihui Li
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shaoyang Ma
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xuemei Liu
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
26
|
Enhancement of Flow-Induced AP-1 Gene Expression by Cyclosporin A Requires NFAT-Independent Signaling in Bone Cells. Cell Mol Bioeng 2014; 7:254-265. [PMID: 25484988 DOI: 10.1007/s12195-014-0321-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Growing evidence suggests that aging compromises the ability of the skeleton to respond to anabolic mechanical stimuli. Recently, we reported that treating senescent mice with Cyclosporin A (CsA) rescued aging-related deficits in loading-induced bone formation. Given that the actions of CsA are often attributed to inhibition of the calcineurin/NFAT axis, we hypothesized that CsA enhances gene expression in bone cells exposed to fluid flow, by inhibiting nuclear NFATc1 accumulation. When exposed to flow, MC3T3-E1 osteoblastic cells exhibited rapid nuclear accumulation of NFATc1 that was abolished by CsA treatment. Under differentiation conditions, intermittent CsA treatment enhanced gene expression of late osteoblastic differentiation markers and activator protein 1 (AP-1) family members. Superimposing flow upon CsA further enhanced expression of the AP-1 members Fra-1 and c-Jun. To delineate the contribution of NFAT in this response, cells were treated with VIVIT, a specific inhibitor of the calcineurin/NFAT interaction. Treatment with VIVIT blocked flow-induced nuclear NFATc1 accumulation but did not recapitulate the CsA-mediated enhancement of flow-induced AP-1 component gene expression. Taken together, our study is the first to demonstrate that CsA enhances mechanically-induced gene expression of AP-1 components in bone cells, and suggests that this response requires calcineurin-dependent mechanisms that are independent of inhibiting NFATc1 nuclear accumulation.
Collapse
|
27
|
Gene expression profile of compressed primary human cementoblasts before and after IL-1β stimulation. Clin Oral Investig 2014; 18:1925-39. [DOI: 10.1007/s00784-013-1167-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
|
28
|
Gharibi B, Cama G, Capurro M, Thompson I, Deb S, Di Silvio L, Hughes FJ. Gene expression responses to mechanical stimulation of mesenchymal stem cells seeded on calcium phosphate cement. Tissue Eng Part A 2013; 19:2426-38. [PMID: 23968499 PMCID: PMC3807700 DOI: 10.1089/ten.tea.2012.0623] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/13/2013] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The aim of the study reported here was to investigate the molecular responses of human mesenchymal stem cells (MSC) to loading with a model that attempts to closely mimic the physiological mechanical loading of bone, using monetite calcium phosphate (CaP) scaffolds to mimic the biomechanical properties of bone and a bioreactor to induce appropriate load and strain. METHODS Human MSCs were seeded onto CaP scaffolds and subjected to a pulsating compressive force of 5.5±4.5 N at a frequency of 0.1 Hz. Early molecular responses to mechanical loading were assessed by microarray and quantitative reverse transcription-polymerase chain reaction and activation of signal transduction cascades was evaluated by western blotting analysis. RESULTS The maximum mechanical strain on cell/scaffolds was calculated at around 0.4%. After 2 h of loading, a total of 100 genes were differentially expressed. The largest cluster of genes activated with 2 h stimulation was the regulator of transcription, and it included FOSB. There were also changes in genes involved in cell cycle and regulation of protein kinase cascades. When cells were rested for 6 h after mechanical stimulation, gene expression returned to normal. Further resting for a total of 22 h induced upregulation of 63 totally distinct genes that were mainly involved in cell surface receptor signal transduction and regulation of metabolic and cell division processes. In addition, the osteogenic transcription factor RUNX-2 was upregulated. Twenty-four hours of persistent loading also markedly induced osterix expression. Mechanical loading resulted in upregulation of Erk1/2 phosphorylation and the gene expression study identified a number of possible genes (SPRY2, RIPK1, SPRED2, SERTAD1, TRIB1, and RAPGEF2) that may regulate this process. CONCLUSION The results suggest that mechanical loading activates a small number of immediate-early response genes that are mainly associated with transcriptional regulation, which subsequently results in activation of a wider group of genes including those associated with osteoblast proliferation and differentiation. The results provide a valuable insight into molecular events and signal transduction pathways involved in the regulation of MSC osteogenic differentiation in response to a physiological level of mechanical stimulation.
Collapse
Affiliation(s)
- Borzo Gharibi
- Department of Periodontology, Dental Institute, Kings College London, London, United Kingdom
| | - Giuseppe Cama
- Department of Dental Biomaterials and Tissue Engineering, Kings College London, London, United Kingdom
| | - Marco Capurro
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| | - Ian Thompson
- Department of Dental Biomaterials and Tissue Engineering, Kings College London, London, United Kingdom
| | - Sanjukta Deb
- Department of Dental Biomaterials and Tissue Engineering, Kings College London, London, United Kingdom
| | - Lucy Di Silvio
- Department of Dental Biomaterials and Tissue Engineering, Kings College London, London, United Kingdom
| | - Francis John Hughes
- Department of Periodontology, Dental Institute, Kings College London, London, United Kingdom
| |
Collapse
|
29
|
Liu H, Tang L. Mechano-regulation of alternative splicing. Curr Genomics 2013; 14:49-55. [PMID: 23997650 PMCID: PMC3580779 DOI: 10.2174/138920213804999156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 11/22/2012] [Accepted: 12/23/2012] [Indexed: 01/29/2023] Open
Abstract
Alternative splicing contributes to the complexity of proteome by producing multiple mRNAs from a single gene. Affymetrix exon arrays and experiments in vivo or in vitro demonstrated that alternative splicing was regulated by mechanical stress. Expression of mechano-growth factor (MGF) which is the splicing isoform of insulin-like growth factor 1(IGF-1) and vascular endothelial growth factor (VEGF) splicing variants such as VEGF121, VEGF165, VEGF206, VEGF189, VEGF165 and VEGF145 are regulated by mechanical stress. However, the mechanism of this process is not yet clear. Increasing evidences showed that the possible mechanism is related to Ca2+ signal pathway and phosphorylation signal pathway. This review proposes possible mechanisms of mechanical splicing regulation. This will contribute to the biomechanical study of alternative splicing.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | |
Collapse
|
30
|
Eliasson P, Andersson T, Hammerman M, Aspenberg P. Primary gene response to mechanical loading in healing rat Achilles tendons. J Appl Physiol (1985) 2013; 114:1519-26. [PMID: 23519232 DOI: 10.1152/japplphysiol.01500.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Loading can stimulate tendon healing. In healing rat Achilles tendons, we have found more than 150 genes upregulated or downregulated 3 h after one loading episode. We hypothesized that these changes were preceded by a smaller number of regulatory genes and thus performed a microarray 15 min after a short loading episode, to capture the primary response to loading. We transected the Achilles tendon of 54 rats and allowed them to heal. The hind limbs were unloaded by tail-suspension during the entire experiment, except during the loading episode. The healing tendon tissue was analyzed by mechanical testing, microarray, and quantitative real-time polymerase chain reaction (qRT-PCR). Mechanical testing showed that 5 min of loading each day for 4 days created stronger tissue. The microarray analysis after one loading episode identified 15 regulated genes. Ten genes were analyzed in a repeat experiment with new rats using qRT-PCR. This confirmed the increased expression of four genes: early growth response 2 (Egr2), c-Fos, FosB, and regulation of G protein signaling 1 (Rgs1). The other genes were unaltered. We also analyzed the expression of early growth response 1 (Egr1), which is often co-regulated with c-Fos or Egr2, and found that this was also increased after loading. Egr1, Egr2, c-Fos, and FosB are transcription factors that can be triggered by numerous stimuli. However, Egr1 and Egr2 are necessary for normal tendon development, and can induce ectopic expression of tendon markers. The five regulated genes appear to constitute a general activation machinery. The further development of gene regulation might depend on the tissue context.
Collapse
Affiliation(s)
- Pernilla Eliasson
- Orthopaedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
31
|
Kuriwaka-Kido R, Kido S, Miyatani Y, Ito Y, Kondo T, Omatsu T, Dong B, Endo I, Miyamoto KI, Matsumoto T. Parathyroid hormone (1-34) counteracts the suppression of interleukin-11 expression by glucocorticoid in murine osteoblasts: a possible mechanism for stimulating osteoblast differentiation against glucocorticoid excess. Endocrinology 2013; 154:1156-67. [PMID: 23397032 DOI: 10.1210/en.2013-1915] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid (GC) excess causes a rapid loss of bone with a reduction in bone formation. Intermittent PTH (1-34) administration stimulates bone formation and counteracts the inhibition of bone formation by GC excess. We have previously demonstrated that mechanical strain enhances interleukin (IL)-11 gene transcription by a rapid induction of ΔFosB expression and protein kinase C (PKC)-δ-mediated phosphorylation of phosphorylated mothers against decapentaplegic (Smad)-1. Because IL-11 suppresses the expression of dickkopf-1 and -2 and stimulates Wnt signaling, IL-11 appears to mediate at least a part of the effect of mechanical strain on osteoblast differentiation and bone formation. The present study was undertaken to examine the effect of PTH(1-34) and GCs on IL-11 expression in murine primary osteoblasts (mPOBs). PTH(1-34) treatment of mPOBs enhanced IL-11 expression in a time- and dose-dependent manner. PTH(1-34) also stimulated ΔFosB expression and Smad1 phosphorylation, which cooperatively stimulated IL-11 gene transcription. PTH(1-34)-induced Smad1 phosphorylation was mediated via PKCδ and was abrogated in mPOBs from PKCδ knockout mice. Dexamethasone suppressed IL-11 gene transcription enhanced by PTH(1-34) without affecting ΔFosB expression or Smad1 phosphorylation, and dexamethasone-GC receptor complex was bound to JunD, which forms heterodimers with ΔFosB. High doses of PTH(1-34) counteracted the effect of dexamethasone on apoptosis of mPOBs, which was blunted by neutralizing anti-IL-11 antibody or IL-11 small interfering RNA. These results demonstrate that PTH(1-34) and GCs interact to regulate IL-11 expression in parallel with osteoblast differentiation and apoptosis and suggest that PTH(1-34) and dexamethasone may regulate osteoblast differentiation and apoptosis via their effect on IL-11 expression.
Collapse
Affiliation(s)
- Rika Kuriwaka-Kido
- MD, Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medicine, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jonkman S, Kenny PJ. Molecular, cellular, and structural mechanisms of cocaine addiction: a key role for microRNAs. Neuropsychopharmacology 2013; 38:198-211. [PMID: 22968819 PMCID: PMC3521966 DOI: 10.1038/npp.2012.120] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rewarding properties of cocaine play a key role in establishing and maintaining the drug-taking habit. However, as exposure to cocaine increases, drug use can transition from controlled to compulsive. Importantly, very little is known about the neurobiological mechanisms that control this switch in drug use that defines addiction. MicroRNAs (miRNAs) are small non-protein coding RNA transcripts that can regulate the expression of messenger RNAs that code for proteins. Because of their highly pleiotropic nature, each miRNA has the potential to regulate hundreds or even thousands of protein-coding RNA transcripts. This property of miRNAs has generated considerable interest in their potential involvement in complex psychiatric disorders such as addiction, as each miRNA could potentially influence the many different molecular and cellular adaptations that arise in response to drug use that are hypothesized to drive the emergence of addiction. Here, we review recent evidence supporting a key role for miRNAs in the ventral striatum in regulating the rewarding and reinforcing properties of cocaine in animals with limited exposure to the drug. Moreover, we discuss evidence suggesting that miRNAs in the dorsal striatum control the escalation of drug intake in rats with extended cocaine access. These findings highlight the central role for miRNAs in drug-induced neuroplasticity in brain reward systems that drive the emergence of compulsive-like drug use in animals, and suggest that a better understanding of how miRNAs control drug intake will provide new insights into the neurobiology of drug addiction.
Collapse
Affiliation(s)
- Sietse Jonkman
- Laboratory of Behavioral and Molecular Neuroscience, Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute–Florida, Jupiter, FL, USA
| | - Paul J Kenny
- Laboratory of Behavioral and Molecular Neuroscience, Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute–Florida, Jupiter, FL, USA,Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute—Florida, 130 Scripps Way, Jupiter, FL 33458, USA, Tel: +1 561 228 2231, Fax: +1 561 799 8961, E-mail:
| |
Collapse
|
33
|
Li FF, Chen FL, Wang H, Yu SB, Cui JH, Ding Y, Feng X. Proteomics based detection of differentially expressed proteins in human osteoblasts subjected to mechanical stress. Biochem Cell Biol 2012; 91:109-15. [PMID: 23527640 DOI: 10.1139/bcb-2012-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mechanical stress is essential for bone development. Mechanical stimuli are transduced to biochemical signals that regulate proliferation, differentiation, and cytoskeletal reorganization in osteoblasts. In this study, we used proteomics to evaluate differences in the protein expression profiles of untreated Saos-2 osteoblast cells and Saos-2 cells subjected to mechanical stress loading. Using 2-D electrophoresis, MALDI-TOF mass spectroscopy, and bioinformatics, we identified a total of 26 proteins differentially expressed in stress loaded cells compared with control cells. Stress loaded Saos-2 cells exhibited significant upregulation of 17 proteins and significant downregulation of 9 proteins compared with control cells. Proteins that were most significantly upregulated in mechanically loaded cells included those regulating osteogenesis, energy metabolism, and the stress response, such as eukaryotic initiation factor 2 (12-fold), mitochondrial ATP synthase (8-fold), and peptidylprolyl isomerase A (cyclophilin A)-like 3 (6.5-fold). Among the proteins that were significantly downregulated were those involved in specific signaling pathways and cell proliferation, such as protein phosphatase regulatory (inhibitor) subunit 12B (13.8-fold), l-lactate dehydrogenase B (9.4-fold), Chain B proteasome activator Reg (Alpha) PA28 (7.7-fold), and ubiquitin carboxyl-terminal esterase L1 (6.9-fold). Our results provide a platform to understand the molecular mechanisms underlying mechanotransduction.
Collapse
Affiliation(s)
- Fei-Fei Li
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032 Shannxi Province, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Metabolic osteoarthritis (OA) has now been characterized as a subtype of OA, and links have been discovered between this phenotype and metabolic syndrome (MetS)--both with individual MetS components and with MetS as a whole. Hypertension associates with OA through subchondral ischaemia, which can compromise nutrient exchange into articular cartilage and trigger bone remodelling. Ectopic lipid deposition in chondrocytes induced by dyslipidemia might initiate OA development, exacerbated by deregulated cellular lipid metabolism in joint tissues. Hyperglycaemia and OA interact at both local and systemic levels; local effects of oxidative stress and advanced glycation end-products are implicated in cartilage damage, whereas low-grade systemic inflammation results from glucose accumulation and contributes to a toxic internal environment that can exacerbate OA. Obesity-related metabolic factors, particularly altered levels of adipokines, contribute to OA development by inducing the expression of proinflammatory factors as well as degradative enzymes, leading to the inhibition of cartilage matrix synthesis and stimulation of subchondral bone remodelling. In this Review, we summarize the shared mechanisms of inflammation, oxidative stress, common metabolites and endothelial dysfunction that characterize the aetiologies of OA and MetS, and nominate metabolic OA as the fifth component of MetS. We also describe therapeutic opportunities that might arise from uniting these concepts.
Collapse
Affiliation(s)
- Qi Zhuo
- Department of Orthopaedics, Chinese PLA General Hospital, Fuxing Road 28#, Haidian District, Beijing 100853, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 2012; 37:2480-95. [PMID: 22711334 DOI: 10.1007/s11064-012-0814-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/03/2012] [Accepted: 05/26/2012] [Indexed: 01/11/2023]
Abstract
Recently developed methods for fluorescence-activated cell sorting (FACS) of freshly-isolated brain cells from transgenic mice combining fluorescent signals with cell type-specific markers allow cell-type separation. Based upon previous observations in primary cultures of mouse astrocytes we treated transgenic mice tagged with a neuron-specific or an astrocyte-specific marker with fluoxetine, either acute (10 mg/kg for 2 h) or chronic (10 mg/kg daily for 2 weeks). Acute treatment upregulated cfos and fosB mRNA expression in astrocytes and neurons. Chronic effects on astrocytes replicated those demonstrated in cultures, i.e., upregulation of mRNA and/or protein expression of 5-HT(2B) receptors (5-HT(2B)R), and GluK2 receptors, and of cPLA(2a) and ADAR2, together with increased GluK2 and 5-HT(2B)R editing. Neurons showed increased GluK4 and 5-HT(2C) receptor expression. To further correlate these findings with major depression we compared the changes in gene expression with those in a mouse model of anhedonia. Three out of 4 genes up-regulated in astrocytes by fluoxetine were down-regulated, whereas the neuronally upregulated 5-HT(2C) receptor gene showed no change. References are made to recent review papers discussing potential relations between observed fluoxetine effects and clinical effects of SSRIs, emphasizing that all 5 clinically used SSRIs have identical and virtually equipotent effects on cultured astrocytes.
Collapse
|
36
|
Liu H, Yi Q, Liao Y, Feng J, Qiu M, Tang L. Characterizing the role of mechanical signals in gene regulatory networks using Long SAGE. Gene 2012; 501:153-163. [PMID: 22525039 DOI: 10.1016/j.gene.2012.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/13/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
A systems understanding of mechanical regulation is critical for determining how cells proliferate and differentiate. To better understand the biological process in which mechanical signals regulate cells, we globally investigated the gene expression profiling via long serial analysis of gene expression (Long SAGE) in osteoblasts after exposure to mechanical stretching. The analysis showed that the differentially expressed genes were related with many physiological processes, including signal transduction, cell proliferation and apoptosis. Several genes that were seldom or never studied in osteoblasts have been found in this study. We further analyzed the signal pathways and provided gene regulatory networks activated by mechanical signals. Many changed genes in our data were contributed to ECM-integrin-FAK mediated pathway and mainly influenced actin-cytoskeleton dynamic remodeling, cell proliferation and differentiation. We also provided evidence supporting the hypothesis that endoplasmic reticulum and mitochondrion were combined to dedicate to calcium regulation. Taken together, our experiments provided a systemic view on biological processes and mechanotransduction network in osteoblasts, suggesting that mechanical signals regulate osteoblast through a greater diversity of interactions and pathways than previously appreciated.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | | | | | | | | | |
Collapse
|
37
|
Cilomilast enhances osteoblast differentiation of mesenchymal stem cells and bone formation induced by bone morphogenetic protein 2. Biochimie 2012; 94:2360-5. [PMID: 22706281 DOI: 10.1016/j.biochi.2012.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/31/2012] [Indexed: 11/23/2022]
Abstract
A rapid and efficient method to stimulate bone regeneration would be useful in orthopaedic stem cell therapies. Rolipram is an inhibitor of phosphodiesterase 4 (PDE4), which mediates cyclic adenosine monophosphate (cAMP) degradation. Systemic injection of rolipram enhances osteogenesis induced by bone morphogenetic protein 2 (BMP-2) in mice. However, there is little data on the precise mechanism, by which the PDE4 inhibitor regulates osteoblast gene expression. In this study, we investigated the combined ability of BMP-2 and cilomilast, a second-generation PDE4 inhibitor, to enhance the osteoblastic differentiation of mesenchymal stem cells (MSCs). The alkaline phosphatase (ALP) activity of MSCs treated with PDE4 inhibitor (cilomilast or rolipram), BMP-2, and/or H89 was compared with the ALP activity of MSCs differentiated only by osteogenic medium (OM). Moreover, expression of Runx2, osterix, and osteocalcin was quantified using real-time polymerase chain reaction (RT-PCR). It was found that cilomilast enhances the osteoblastic differentiation of MSCs equally well as rolipram in primary cultured MSCs. Moreover, according to the H89 inhibition experiments, Smad pathway was found to be an important signal transduction pathway in mediating the osteogenic effect of BMP-2, and this effect is intensified by an increase in cAMP levels induced by PDE4 inhibitor.
Collapse
|
38
|
Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 2012; 7:e36964. [PMID: 22615857 PMCID: PMC3355169 DOI: 10.1371/journal.pone.0036964] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces.
Collapse
|
39
|
Williams EL, Edwards CJ, Cooper C, Oreffo ROC. The osteoarthritic niche and modulation of skeletal stem cell function for regenerative medicine. J Tissue Eng Regen Med 2012; 7:589-608. [PMID: 22489025 DOI: 10.1002/term.1455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 10/18/2011] [Accepted: 11/24/2011] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is the most common cause of arthritis worldwide and represents a significant healthcare burden, particularly in the context of an ageing population. Traditionally, painkillers, injections and physiotherapy have been the mainstay of treatment, with patients being referred for joint replacement surgery (arthroplasty) when these options fail. Whilst effective in reducing pain and improving joint function, these approaches are not without potential complications. With the development of tissue-engineering techniques over recent years there has been considerable interest in applying these strategies to provide new, innovative, alternative effective means of treating OA. This review explores the unique microenvironment present within an osteoarthritic joint, highlighting the features that comprise the osteoarthritic niche and could be modulated in the development of novel treatments for OA. Existing tissue-engineering strategies for repairing bone and cartilage defects are discussed, with particular reference to how these might be modified, both to improve existing treatments, such as impaction bone grafting, as well as in the development of future treatments for OA.
Collapse
Affiliation(s)
- E L Williams
- Bone and Joint Research Group, Human Development and Health, University of Southampton Medical School, UK.
| | | | | | | |
Collapse
|
40
|
Mantila Roosa SM, Turner CH, Liu Y. Regulatory mechanisms in bone following mechanical loading. GENE REGULATION AND SYSTEMS BIOLOGY 2012; 6:43-53. [PMID: 22346344 PMCID: PMC3273934 DOI: 10.4137/grsb.s8068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bone responds with increased bone formation to mechanical loading, and the time course of bone formation after initiating mechanical loading is well characterized. However, the regulatory activities governing the loading-dependent changes in gene expression are not well understood. The goal of this study was to identify the time-dependent regulatory mechanisms that governed mechanical loading-induced gene expression in bone using a predictive bioinformatics algorithm. A standard model for bone loading in rodents was employed in which the right forelimb was loaded axially for three minutes per day, while the left forearm served as a non-loaded, contralateral control. Animals were subjected to loading sessions every day, with 24 hours between sessions. Ulnas were sampled at 11 time points, from 4 hours to 32 days after beginning loading. Using a predictive bioinformatics algorithm, we created a linear model of gene expression and identified 44 transcription factor binding motifs and 29 microRNA binding sites that were predicted to regulate gene expression across the time course. Known and novel transcription factor binding motifs were identified throughout the time course, as were several novel microRNA binding sites. These time-dependent regulatory mechanisms may be important in controlling the loading-induced bone formation process.
Collapse
Affiliation(s)
- Sara M Mantila Roosa
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
41
|
Matsumoto T, Kuriwaka-Kido R, Kondo T, Endo I, Kido S. Regulation of osteoblast differentiation by interleukin-11 via AP-1 and Smad signaling. Endocr J 2012; 59:91-101. [PMID: 21931225 DOI: 10.1507/endocrj.ej11-0219] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mechanical stress and parathyroid hormone (PTH) are major stimulators, and aging and glucocorticoids excess are important suppressors of osteoblast differentiation. Mechanical stress and PTH stimulate interleukin (IL)-11 expression in cells of osteoblast lineage by enhancing transcription of IL-11 gene via an increase in intracellular Ca²⁺. The elevated Ca²⁺ activates extracellular signal-regulated kinase (ERK) to enhance phosphorylation of cyclic AMP response element-binding protein (CREB), which binds to the fosB gene promoter and enhances ΔFosB expression. ΔFosB dimerizes with JunD on the IL-11 gene promoter to enhance its transcription. Both mechanical stress and PTH also stimulate phosphorylation of Smad1 via an activation of protein kinase Cδ (PKCδ). Phosphorylated Smad1 binds to the IL-11 gene promoter and forms complex with ΔFosB/JunD to further enhance IL-11 gene transcription. The increased IL-11 then suppresses expression of Wnt inhibitors, including Dickkopf 1 (Dkk1) and 2, and enhances Wnt signaling to stimulate osteoblast differentiation and inhibit adipocyte differentiation. The suppression of osteoblast differentiation by aging involves a decrease in IL-11 gene transcription by a reduction in JunD binding to the activator protein (AP)-1 site of the IL-11 gene promoter. Glucocorticoids inhibit transcriptional activation of IL-11 gene by an interaction of glucocorticoid-glucocorticoid receptor (GR) complex with ΔFosB/JunD heterodimer. Thus, factors that enhance osteoblast differentiation stimulate, and those which suppress osteoblast differentiation inhibit IL-11 gene transcription, and IL-11 enhances Wnt signaling by suppressing expression of its inhibitors. These observations are consistent with the notion that IL-11 mediates stimulatory and inhibitory signals of osteoblast differentiation by affecting Wnt signaling.
Collapse
Affiliation(s)
- Toshio Matsumoto
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan.
| | | | | | | | | |
Collapse
|
42
|
Asada K, Obata K, Horiguchi K, Takaki M. Age-related changes in afferent responses in sensory neurons to mechanical stimulation of osteoblasts in coculture system. Am J Physiol Cell Physiol 2011; 302:C757-65. [PMID: 22094334 DOI: 10.1152/ajpcell.00362.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone homeostasis is regulated by mechanical stimulation (MS). The sensory mechanism of bone tissue for MS remains unknown in the maintenance of bone homeostasis. We aimed to investigate the sensory mechanism from osteoblasts to sensory neurons in a coculture system by MS of osteoblasts. Primary sensory neurons isolated from dorsal root ganglia (DRG) of neonatal, juvenile, and adult mice and osteoblasts isolated from calvaria of neonatal mice were cocultured for 24 h. The responses in DRG neurons elicited by MS of osteoblasts with a glass micropipette were detected by increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) with fluo 3-AM. In all developmental stages mice, [Ca(2+)](i)-increasing responses in osteoblasts were promptly elicited by MS. After a short delay, [Ca(2+)](i)-increasing responses were observed in neurites of DRG neurons. The osteoblastic response to second MS was largely attenuated by a stretch-activated Ca(2+) channel blocker, gadolinium. The increases of [Ca(2+)](i) in DRG neurons were abolished by a P2 receptor antagonist; suramin, a P2X receptor antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate; and an ATP-hydrolyzing enzyme, apyrase. Satellite cells were found around DRG neurons in cocultured cells of only neonatal and juvenile mice. After satellite cells were removed, excessive abnormal responses to MS of osteoblasts were observed in neonatal neurites with unchanged osteoblast responses. The present study indicated that MS of bone tissue elicited afferent P2X receptor-mediated purinergic transmission to sensory neurons in all stages mice. This transmission is modulated by satellite cells, which may have protective actions on sensory neurons.
Collapse
Affiliation(s)
- Keiji Asada
- Dept. of Physiology II, Nara Medical Univ., Kashihara, Nara, Japan
| | | | | | | |
Collapse
|
43
|
Sanchez C, Pesesse L, Gabay O, Delcour JP, Msika P, Baudouin C, Henrotin YE. Regulation of subchondral bone osteoblast metabolism by cyclic compression. ACTA ACUST UNITED AC 2011; 64:1193-203. [PMID: 22034083 DOI: 10.1002/art.33445] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Recent data have shown that abnormal subchondral bone remodeling plays an important role in osteoarthritis (OA) onset and progression, and it was suggested that abnormal mechanical pressure applied to the articulation was responsible for these metabolic changes. This study was undertaken to evaluate the effects of cyclic compression on osteoblasts from OA subchondral bone. METHODS Osteoblasts were isolated from sclerotic and nonsclerotic areas of human OA subchondral bone. After 28 days, the osteoblasts were surrounded by an abundant extracellular matrix and formed a resistant membrane, which was submitted to cyclic compression (1 MPa at 1 Hz) for 4 hours. Gene expression was evaluated by reverse transcription-polymerase chain reaction. Protein production in culture supernatants was quantified by enzyme-linked immunosorbent assay or visualized by immunohistochemistry. RESULTS Compression increased the expression of genes coding for interleukin-6 (IL-6), cyclooxygenase 2, RANKL, fibroblast growth factor 2, IL-8, matrix metalloproteinase 3 (MMP-3), MMP-9, and MMP-13 but reduced the expression of osteoprotegerin in osteoblasts in both sclerotic and nonsclerotic areas. Colα1(I) and MMP-2 were not significantly affected by mechanical stimuli. Nonsclerotic osteoblasts were significantly more sensitive to compression than sclerotic ones, but after compression, differences in messenger RNA levels between nonsclerotic and sclerotic osteoblasts were largely reduced or even abolished. Under basal conditions, sclerotic osteoblasts expressed similar levels of α5, αv, β1, and β3 integrins and CD44 as nonsclerotic osteoblasts but 30% less connexin 43, an important mechanoreceptor. CONCLUSION Genes involved in subchondral bone sclerosis are mechanosensitive. After compression, nonsclerotic and sclerotic osteoblasts expressed a similar phenotype, suggesting that compression could be responsible for the phenotype changes in OA subchondral osteoblasts.
Collapse
|
44
|
Ramachandran A, Gong EM, Pelton K, Ranpura SA, Mulone M, Seth A, Gomez P, Adam RM. FosB regulates stretch-induced expression of extracellular matrix proteins in smooth muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2977-89. [PMID: 21996678 DOI: 10.1016/j.ajpath.2011.08.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/29/2011] [Accepted: 08/09/2011] [Indexed: 11/19/2022]
Abstract
Fibroproliferative remodeling in smooth muscle-rich hollow organs is associated with aberrant extracellular matrix (ECM) production. Although mechanical stimuli regulate ECM protein expression, the transcriptional mediators of this process remain poorly defined. Previously, we implicated AP-1 as a mediator of smooth muscle cell (SMC) mechanotransduction; however, its role in stretch-induced ECM regulation has not been explored. Herein, we identify a novel role for the AP-1 subunit FosB in stretch-induced ECM expression in SMCs. The DNA-binding activity of AP-1 increased after stretch stimulation of SMCs in vitro. In contrast to c-Jun and c-fos, which are also activated by the SMC mitogen platelet-derived growth factor, FosB was only activated by stretch. FosB silencing attenuated the expression of the profibrotic factors tenascin C (TNC) and connective tissue growth factor (CTGF), whereas forced expression of Jun~FosB stimulated TNC and CTGF promoter activity. Chromatin immunoprecipitation revealed enrichment of AP-1 at the TNC and CTGF promoters. Bladder distension in vivo enhanced nuclear localization of c-jun and FosB. Finally, the distension-induced expression of TNC and CTGF in the detrusor smooth muscle of bladders from wild-type mice was significantly attenuated in FosB-null mice. Together, these findings identify FosB as a mechanosensitive regulator of ECM production in smooth muscle.
Collapse
Affiliation(s)
- Aruna Ramachandran
- Urological Diseases Research Center, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang R, Edwards JR, Ko SY, Dong S, Liu H, Oyajobi BO, Papasian C, Deng HW, Zhao M. Transcriptional regulation of BMP2 expression by the PTH-CREB signaling pathway in osteoblasts. PLoS One 2011; 6:e20780. [PMID: 21695256 PMCID: PMC3111437 DOI: 10.1371/journal.pone.0020780] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
Intermittent application of parathyroid hormone (PTH) has well established anabolic effects on bone mass in rodents and humans. Although transcriptional mechanisms responsible for these effects are not fully understood, it is recognized that transcriptional factor cAMP response element binding protein (CREB) mediates PTH signaling in osteoblasts, and that there is a communication between the PTH-CREB pathway and the BMP2 signaling pathway, which is important for osteoblast differentiation and bone formations. These findings, in conjunction with putative cAMP response elements (CREs) in the BMP2 promoter, led us to hypothesize that the PTH-CREB pathway could be a positive regulator of BMP2 transcription in osteoblasts. To test this hypothesis, we first demonstrated that PTH signaling activated CREB by phosphorylation in osteoblasts, and that both PTH and CREB were capable of promoting osteoblastic differentiation of primary mouse osteoblast cells and multiple rodent osteoblast cell lines. Importantly, we found that the PTH-CREB signaling pathway functioned as an effective activator of BMP2 expression, as pharmacologic and genetic modulation of PTH-CREB activity significantly affected BMP2 expression levels in these cells. Lastly, through multiple promoter assays, including promoter reporter deletion, mutation, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA), we identified a specific CRE in the BMP2 promoter which is responsible for CREB transactivation of the BMP2 gene in osteoblasts. Together, these results demonstrate that the anabolic function of PTH signaling in bone is mediated, at least in part, by CREB transactivation of BMP2 expression in osteoblasts.
Collapse
Affiliation(s)
- Rongrong Zhang
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
| | - James R. Edwards
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seon-Yle Ko
- School of Dentistry, Dankook University, Cheonan, Choongnam, Korea
| | - Shanshan Dong
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
| | - Hongbin Liu
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
| | - Babatunde O. Oyajobi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christopher Papasian
- Department of Basic Medical Sciences, University of Missouri – Kansas City, Kansas City, Missouri, United States of America
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
| | - Ming Zhao
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, Louisiana, United States of America
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
46
|
Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells. Biomech Model Mechanobiol 2011; 11:391-401. [PMID: 21633819 DOI: 10.1007/s10237-011-0319-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/17/2011] [Indexed: 12/13/2022]
Abstract
A reasonable mechanical microenvironment similar to the bone microenvironment in vivo is critical to the formation of engineering bone tissues. As fluid shear stress (FSS) produced by perfusion culture system can lead to the osteogenic differentiation of human mesenchymal stem cells (hMSCs), it is widely used in studies of bone tissue engineering. However, effects of FSS on the differentiation of hMSCs largely depend on the FSS application manner. It is interesting how different FSS application manners influence the differentiation of hMSCs. In this study, we examined the effects of intermittent FSS and continuous FSS on the osteogenic differentiation of hMSCs. The phosphorylation level of ERK1/2 and FAK is measured to investigate the effects of different FSS application manners on the activation of signaling molecules. The results showed that intermittent FSS could promote the osteogenic differentiation of hMSCs. The expression level of osteogenic genes and the alkaline phosphatase (ALP) activity in cells under intermittent FSS application were significantly higher than those in cells under continuous FSS application. Moreover, intermittent FSS up-regulated the activity of ERK1/2 and FAK. Our study demonstrated that intermittent FSS is more effective to induce the osteogenic differentiation of hMSCs than continuous FSS.
Collapse
|
47
|
Mantila Roosa SM, Liu Y, Turner CH. Alternative splicing in bone following mechanical loading. Bone 2011; 48:543-51. [PMID: 21095247 PMCID: PMC3039044 DOI: 10.1016/j.bone.2010.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 12/22/2022]
Abstract
It is estimated that more than 90% of human genes express multiple mRNA transcripts due to alternative splicing. Consequently, the proteins produced by different splice variants will likely have different functions and expression levels. Several genes with splice variants are known in bone, with functions that affect osteoblast function and bone formation. The primary goal of this study was to evaluate the extent of alternative splicing in a bone subjected to mechanical loading and subsequent bone formation. We used the rat forelimb loading model, in which the right forelimb was loaded axially for 3 min, while the left forearm served as a non-loaded control. Animals were subjected to loading sessions every day, with 24 h between sessions. Ulnae were sampled at 11 time points, from 4 h to 32days after beginning loading. RNA was isolated and mRNA abundance was measured at each time point using Affymetrix exon arrays (GeneChip® Rat Exon 1.0 ST Arrays). An ANOVA model was used to identify potential alternatively spliced genes across the time course, and five alternatively spliced genes were validated with qPCR: Akap12, Fn1, Pcolce, Sfrp4, and Tpm1. The number of alternatively spliced genes varied with time, ranging from a low of 68 at 12h to a high of 992 at 16d. We identified genes across the time course that encoded proteins with known functions in bone formation, including collagens, matrix proteins, and components of the Wnt/β-catenin and TGF-β signaling pathways. We also identified alternatively spliced genes encoding cytokines, ion channels, muscle-related genes, and solute carriers that do not have a known function in bone formation and represent potentially novel findings. In addition, a functional characterization was performed to categorize the global functions of the alternatively spliced genes in our data set. In conclusion, mechanical loading induces alternative splicing in bone, which may play an important role in the response of bone to mechanical loading.
Collapse
Affiliation(s)
- Sara M Mantila Roosa
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
48
|
Abstract
The advent of high-throughput measurements of gene expression and bioinformatics analysis methods offers new ways to study gene expression patterns. The primary goal of this study was to determine the time sequence for gene expression in a bone subjected to mechanical loading during key periods of the bone-formation process, including expression of matrix-related genes, the appearance of active osteoblasts, and bone desensitization. A standard model for bone loading was employed in which the right forelimb was loaded axially for 3 minutes per day, whereas the left forearm served as a nonloaded contralateral control. We evaluated loading-induced gene expression over a time course of 4 hours to 32 days after the first loading session. Six distinct time-dependent patterns of gene expression were identified over the time course and were categorized into three primary clusters: genes upregulated early in the time course, genes upregulated during matrix formation, and genes downregulated during matrix formation. Genes then were grouped based on function and/or signaling pathways. Many gene groups known to be important in loading-induced bone formation were identified within the clusters, including AP-1-related genes in the early-response cluster, matrix-related genes in the upregulated gene clusters, and Wnt/β-catenin signaling pathway inhibitors in the downregulated gene clusters. Several novel gene groups were identified as well, including chemokine-related genes, which were upregulated early but downregulated later in the time course; solute carrier genes, which were both upregulated and downregulated; and muscle-related genes, which were primarily downregulated.
Collapse
Affiliation(s)
- Sara M Mantila Roosa
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | | | | |
Collapse
|
49
|
Gavala ML, Hill LM, Lenertz LY, Karta MR, Bertics PJ. Activation of the transcription factor FosB/activating protein-1 (AP-1) is a prominent downstream signal of the extracellular nucleotide receptor P2RX7 in monocytic and osteoblastic cells. J Biol Chem 2010; 285:34288-98. [PMID: 20813842 PMCID: PMC2962527 DOI: 10.1074/jbc.m110.142091] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/30/2010] [Indexed: 01/25/2023] Open
Abstract
Activation of the ionotropic P2RX7 nucleotide receptor by extracellular ATP has been implicated in modulating inflammatory disease progression. Continuous exposure of P2RX7 to ligand can result in apoptosis in many cell types, including monocytic cells, whereas transient activation of P2RX7 is linked to inflammatory mediator production and the promotion of cell growth. Given the rapid hydrolysis of ATP in the circulation and interstitial space, transient activation of P2RX7 appears critically important for its action, yet its effects on gene expression are unclear. The present study demonstrates that short-term stimulation of human and mouse monocytic cells as well as mouse osteoblasts with P2RX7 agonists substantially induces the expression of several activating protein-1 (AP-1) members, particularly FosB. The potent activation of FosB after P2RX7 stimulation is especially noteworthy considering that little is known concerning the role of FosB in immunological regulation. Interestingly, the magnitude of FosB activation induced by P2RX7 stimulation appears greater than that observed with other known inducers of FosB expression. In addition, we have identified a previously unrecognized role for FosB in osteoblasts with respect to nucleotide-induced expression of cyclooxygenase-2 (COX-2), which is the rate-limiting enzyme in prostaglandin biosynthesis from arachidonic acid and is critical for osteoblastic differentiation and immune behavior. The present studies are the first to link P2RX7 action to FosB/AP-1 regulation in multiple cell types, including a role in nucleotide-induced COX-2 expression, and support a role for FosB in the control of immune and osteogenic function by P2RX7.
Collapse
Affiliation(s)
- Monica L. Gavala
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Lindsay M. Hill
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Lisa Y. Lenertz
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Maya R. Karta
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Paul J. Bertics
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| |
Collapse
|
50
|
Mechanical stress activates Smad pathway through PKCδ to enhance interleukin-11 gene transcription in osteoblasts. PLoS One 2010; 5. [PMID: 20927330 PMCID: PMC2947522 DOI: 10.1371/journal.pone.0013090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/02/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL)-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs) also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS Mechanical loading by fluid shear stress (FSS) induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads), Smad1/5, in murine primary osteoblasts (mPOBs). FSS rapidly phosphorylated Y311 of protein kinase C (PKC)δ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE) of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress.
Collapse
|