1
|
Joshi AS, Castillo MB, Tomaz da Silva M, Vuong AT, Gunaratne PH, Darabi R, Liu Y, Kumar A. Single-nucleus transcriptomic analysis reveals the regulatory circuitry of myofiber XBP1 during regenerative myogenesis. iScience 2024; 27:111372. [PMID: 39650729 PMCID: PMC11625362 DOI: 10.1016/j.isci.2024.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) is activated in skeletal muscle under multiple conditions. However, the role of the UPR in the regulation of muscle regeneration remains less understood. We demonstrate that gene expression of various markers of the UPR is induced in both myogenic and non-myogenic cells in regenerating muscle. Genetic ablation of X-box binding protein 1 (XBP1), a downstream target of the Inositol requiring enzyme 1α (IRE1α) arm of the UPR, in myofibers attenuates muscle regeneration in adult mice. Single nucleus RNA sequencing (snRNA-seq) analysis showed that deletion of XBP1 in myofibers perturbs proteolytic systems and mitochondrial function in myogenic cells. Trajectory analysis of snRNA-seq dataset showed that XBP1 regulates the abundance of satellite cells and the formation of new myofibers in regenerating muscle. In addition, ablation of XBP1 disrupts the composition of non-myogenic cells in injured muscle microenvironment. Collectively, our study suggests that myofiber XBP1 regulates muscle regeneration through both cell-autonomous and -non-autonomous mechanisms.
Collapse
Affiliation(s)
- Aniket S. Joshi
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Micah B. Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Meiricris Tomaz da Silva
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Anh Tuan Vuong
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Radbod Darabi
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Yu Liu
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Ashok Kumar
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
2
|
Nematisouldaragh D, Kirshenbaum E, Uzonna M, Kirshenbaum L, Rabinovich-Nikitin I. The Role of Retinoic-Acid-Related Orphan Receptor (RORs) in Cellular Homeostasis. Int J Mol Sci 2024; 25:11340. [PMID: 39518891 PMCID: PMC11545807 DOI: 10.3390/ijms252111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Retinoic-acid-related orphan receptors (RORs) are transcription factors belonging to the nuclear receptor subfamily consisting of RORα, RORβ, and RORγ. By binding to the ROR response elements (ROREs) on target gene promoters, RORs regulate a wide variety of cellular processes, including autophagy, mitophagy, oxidative stress, and inflammation. The regulatory roles of RORs are observed in cardiac cells, hepatocytes, pulmonary epithelial cells, renal cells, immune cells, and cancer cells. A growing body of clinical and experimental evidence suggests that ROR expression levels are markedly reduced under different pathological and stress conditions, suggesting that RORs may play a critical role in the pathogenesis of a variety of disease states, including myocardial infarction, immune disorders, cancer, and metabolic syndrome. Reductions in RORs are also associated with inhibition of autophagy, increased reactive oxygen species (ROS), and increased cell death, underscoring the importance of RORs in the regulation of these processes. Herein, we highlight the relationship between RORs and homeostatic processes that influence cell viability. Understanding how these intricate processes are governed at the cellular level is of high scientific and clinical importance to develop new therapeutic strategies that modulate ROR expression and disease progression.
Collapse
Affiliation(s)
- Darya Nematisouldaragh
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Eryn Kirshenbaum
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Michael Uzonna
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Lorrie Kirshenbaum
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, MB R2H 2A6, Canada
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
3
|
Xiong G, Obringer B, Jones A, Horton E, Xu R. Regulation of RORα Stability through PRMT5-Dependent Symmetric Dimethylation. Cancers (Basel) 2024; 16:1914. [PMID: 38791992 PMCID: PMC11120602 DOI: 10.3390/cancers16101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Retinoic acid receptor-related orphan receptor alpha (RORα), a candidate tumor suppressor, is prevalently downregulated or lost in malignant breast cancer cells. However, the mechanisms of how RORα expression is regulated in breast epithelial cells remain incompletely understood. Protein arginine N-methyltransferase 5 (PRMT5), a type II methyltransferase catalyzing the symmetric methylation of the amino acid arginine in target proteins, was reported to regulate protein stability. To study whether and how PRMT5 regulates RORα, we examined the direct interaction between RORα and PRMT5 by immunoprecipitation and GST pull-down assays. The results showed that PRMT5 directly bound to RORα, and PRMT5 mainly symmetrically dimethylated the DNA-binding domain (DBD) but not the ligand-binding domain (LBD) of RORα. To investigate whether RORα protein stability is regulated by PRMT5, we transfected HEK293FT cells with RORα and PRMT5-expressing or PRMT5-silencing (shPRMT5) vectors and then examined RORα protein stability by a cycloheximide chase assay. The results showed that PRMT5 increased RORα protein stability, while silencing PRMT5 accelerated RORα protein degradation. In PRMT5-silenced mammary epithelial cells, RORα protein expression was decreased, accompanied by an enhanced epithelial-mesenchymal transition morphology and cell invasion and migration abilities. In PRMT5-overexpressed mammary epithelial cells, RORα protein was accumulated, and cell invasion was suppressed. These findings revealed a novel mechanism by which PRMT5 regulates RORα protein stability.
Collapse
Affiliation(s)
- Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Brynne Obringer
- College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA; (B.O.); (A.J.)
| | - Austen Jones
- College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA; (B.O.); (A.J.)
| | - Elise Horton
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
Rani A. RAR-related orphan receptor alpha and the staggerer mice: a fine molecular story. Front Endocrinol (Lausanne) 2024; 14:1300729. [PMID: 38766309 PMCID: PMC11099308 DOI: 10.3389/fendo.2023.1300729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/15/2023] [Indexed: 05/22/2024] Open
Abstract
The retinoic acid-related orphan receptor alpha (RORα) protein first came into the limelight due to a set of staggerer mice, discovered at the Jackson Laboratories in the United States of America by Sidman, Lane, and Dickie (1962) and genetically deciphered by Hamilton et al. in 1996. These staggerer mice exhibited cerebellar defects, an ataxic gait, a stagger along with several other developmental abnormalities, compensatory mechanisms, and, most importantly, a deletion of 160 kilobases (kb), encompassing the RORα ligand binding domain (LBD). The discovery of the staggerer mice and the subsequent discovery of a loss of the LBD within the RORα gene of these mice at the genetic level clearly indicated that RORα's LBD played a crucial role in patterning during embryogenesis. Moreover, a chance study by Roffler-Tarlov and Sidman (1978) noted reduced concentrations of glutamic acid levels in the staggerer mice, indicating a possible role for the essence of a nutritionally balanced diet. The sequential organisation of the building blocks of intact genes, requires the nucleotide bases of deoxyribonucleic acid (DNA): purines and pyrimidines, both of which are synthesized, upon a constant supply of glutamine, an amino acid fortified in a balanced diet and a byproduct of the carbohydrate and lipid metabolic pathways. A nutritionally balanced diet, along with a metabolic "enzymatic machinery" devoid of mutations/aberrations, was essential in the uninterrupted transcription of RORα during embryogenesis. In addition to the above, following translation, a ligand-responsive RORα acts as a "molecular circadian regulator" during embryogenesis and not only is expressed selectively and differentially, but also promotes differential activity depending on the anatomical and pathological site of its expression. RORα is highly expressed in the central nervous system (CNS) and the endocrine organs. Additionally, RORα and the clock genes are core components of the circadian rhythmicity, with the expression of RORα fluctuating in a night-day-night sigmoidal pattern and undoubtedly serves as an endocrine-like, albeit "molecular-circadian regulator". Melatonin, a circadian hormone, along with tri-iodothyronine and some steroid hormones are known to regulate RORα-mediated molecular activity, with each of these hormones themselves being regulated rhythmically by the hypothalamic-pituitary axis (HPA). The HPA regulates the circadian rhythm and cyclical release of hormones, in a self-regulatory feedback loop. Irregular sleep-wake patterns affect circadian rhythmicity and the ability of the immune system to withstand infections. The staggerer mice with their thinner bones, an altered skeletal musculature, an aberrant metabolic profile, the ataxic gait and an underdeveloped cerebellar cortex; exhibited compensatory mechanisms, that not only allowed the survival of the staggerer mice, but also enhanced protection from microbial invasions and resistance to high-fat-diet induced obesity. This review has been compiled in its present form, more than 14 years later after a chromatin immunoprecipitation (ChIP) cloning and sequencing methodology helped me identify signal transducer and activator of transcription 5 (STAT5) target sequences, one of which was mapped to the first intron of the RORα gene. The 599-base-long sequence containing one consensus TTCNNNGAA (TTCN3GAA) gamma-activated sequence (GAS) and five other non-consensus TTN5AA sequences had been identified from the clones isolated from the STAT5 target sites (fragments) in human phytohemagglutinin-activated CD8+ T lymphocytes, during my doctoral studies between 2006 and 2009. Most importantly, preliminary studies noted a unique RORα expression profile, during a time-course study on the ribonucleic acid (RNA), extracted from human phytohemagglutinin (PHA) activated CD8+ T lymphocytes stimulated with interleukin-2 (IL-2). This review mainly focuses on the "staggerer mice" with one of its first roles materialising during embryogenesis, a molecular-endocrine mediated circadian-like regulatory process.
Collapse
Affiliation(s)
- Aradhana Rani
- Medical Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
- Human Resource Development and Management, Indian Institute of Technology (IIT) Kharagpur, West Bengal, India
- Immunology, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
Kim H, Lee S, Jeong C, Han Y, Lee M. RORα-GABP-TFAM axis alleviates myosteatosis with fatty atrophy through reinforcement of mitochondrial capacity. J Cachexia Sarcopenia Muscle 2024; 15:615-630. [PMID: 38272857 PMCID: PMC10995264 DOI: 10.1002/jcsm.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/22/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Fat infiltration in muscle, called 'myosteatosis', precedes muscle atrophy, which subsequently results in sarcopenia. Myosteatosis is frequently observed in patients with nonalcoholic fatty liver disease (NAFLD). We have previously reported that retinoic acid receptor-related orphan receptor-α (RORα) regulates mitochondrial dynamics and mitophagy in hepatocytes, resulting in an alleviation of NAFLD. In this study, we aimed to investigate the role of RORα in skeletal muscle and to understand molecular mechanisms by which RORα controls mitochondrial capacity, using an NAFLD-associated myosteatosis mouse model. METHODS To establish a myosteatosis model, 7-week-old C57BL/6N mice were fed with high-fat diet (HFD). After 15 weeks of diet feeding, an adeno-associated virus vector encoding RORα (AAV-RORα) was injected to gastrocnemius (GA) muscles, or after 7 weeks of HFD feeding, JC1-40, an RORα agonistic ligand, was administered daily at a dose of 5 mg/kg/day by oral gavage for 5 weeks. Histological, biochemical and molecular analyses in various in vivo and in vitro experiments were performed. RESULTS First, the number of oxidative MyHC2a fibres with intensive lipid infiltration increased by 3.8-fold in the red region of the GA of mice with myosteatosis (P < 0.001). RORα was expressed around MyHC2a fibres, and its level increased by 2.7-fold after HFD feeding (P < 0.01). Second, treatment of RORα ligands in C2C12 myoblasts, such as cholesterol sulfate and JC1-40, enhanced the number of oxidative fibres stained for MyHC1 and MyHC2a by two-fold to four-fold (P < 0.01), while it reduced the lipid levels in MyHC2a fibres by 20-50% (P < 0.001) in the presence of palmitic acids. Third, mitochondrial membrane potential (P < 0.01) and total area of mitochondria (P < 0.01) were enhanced by treatment of these ligands. Chromatin immunoprecipitation analysis showed that RORα bound the promoter of GA-binding protein α subunit gene that led to activation of mitochondrial transcription factor A (TFAM) in C2C12 myoblasts (P < 0.05). Finally, intramuscular transduction of AAV-RORα alleviated the HFD-induced myosteatosis with fatty atrophy; lipid contents in MyHC2a fibres decreased by 48% (P < 0.001), whereas the number of MyHC2b fibre increased by 22% (P < 0.001). Also, administration of JC1-40 improved the signs of myosteatosis in that it decreased the level of adipose differentiation-related protein (P < 0.01) but increased mitochondrial proteins such as cytochrome c oxidase 4 and TFAM in GA muscle (P < 0.01). CONCLUSIONS RORα plays a versatile role in regulating the quantity of mitochondria and the oxidative capacity, ultimately leading to an improvement in myosteatosis symptoms.
Collapse
Affiliation(s)
- Hyeon‐Ji Kim
- College of PharmacySeoul National UniversitySeoulSouth Korea
- Research Institute of Pharmaceutical SciencesSeoulSouth Korea
| | - Sang‐Heon Lee
- College of PharmacySeoul National UniversitySeoulSouth Korea
| | - Cheolhee Jeong
- College of PharmacySeoul National UniversitySeoulSouth Korea
| | - Yong‐Hyun Han
- College of PharmacyKangwon National UniversityChuncheonSouth Korea
| | - Mi‐Ock Lee
- College of PharmacySeoul National UniversitySeoulSouth Korea
- Research Institute of Pharmaceutical SciencesSeoulSouth Korea
- Bio‐MAX InstituteSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
6
|
Kim E, Mawatari K, Yoo SH, Chen Z. The Circadian Nobiletin-ROR Axis Suppresses Adipogenic Differentiation and IκBα/NF-κB Signaling in Adipocytes. Nutrients 2023; 15:3919. [PMID: 37764703 PMCID: PMC10537147 DOI: 10.3390/nu15183919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is a known risk factor for metabolic diseases and is often associated with chronic inflammation in adipose tissue. We previously identified the polyethoxylated flavonoid Nobiletin (NOB) as a circadian clock modulator that directly binds to and activates the ROR receptors in the core oscillator, markedly improving metabolic fitness in obese mice. Here, we show that NOB enhanced the oscillation of core clock genes in differentiated 3T3-L1 adipocytes, including ROR target genes such as Bmal1, Cry1, Dec1, and Dec2. NOB inhibited lipid accumulation in 3T3-L1 and SVF cells, concomitant with the dysregulated circadian expression of adipogenic differentiation-related genes including Cebpb, Pparg, Lpl, Scd1, and Fas. Importantly, RORα/RORγ double knockdown in 3T3-L1 cells (Ror DKD) significantly attenuated the effects of NOB on circadian gene expression and lipid accumulation. Furthermore, whereas NOB upregulated the expression of IκBα, a target of RORs, to inhibit NF-κB activation and proinflammatory cytokine expression, Ror DKD cells exhibited a heightened activation of the NF-κB pathway, further indicating a requisite role of RORs for NOB efficacy in adipocytes. Together, these results highlight a significant regulatory function of the NOB-ROR axis in the circadian expression of clock and clock-controlled genes in adipocytes, thereby governing adipogenic differentiation, lipogenesis, and inflammation.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA;
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima 770-8503, Japan;
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA;
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX 77030, USA;
| |
Collapse
|
7
|
Morales-Paytuví F, Fajardo A, Ruiz-Mirapeix C, Rae J, Tebar F, Bosch M, Enrich C, Collins BM, Parton RG, Pol A. Early proteostasis of caveolins synchronizes trafficking, degradation, and oligomerization to prevent toxic aggregation. J Cell Biol 2023; 222:e202204020. [PMID: 37526691 PMCID: PMC10394380 DOI: 10.1083/jcb.202204020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/05/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
Caveolin-1 (CAV1) and CAV3 are membrane-sculpting proteins driving the formation of the plasma membrane (PM) caveolae. Within the PM mosaic environment, caveola assembly is unique as it requires progressive oligomerization of newly synthesized caveolins while trafficking through the biosynthetic-secretory pathway. Here, we have investigated these early events by combining structural, biochemical, and microscopy studies. We uncover striking trafficking differences between caveolins, with CAV1 rapidly exported to the Golgi and PM while CAV3 is initially retained in the endoplasmic reticulum and laterally moves into lipid droplets. The levels of caveolins in the endoplasmic reticulum are controlled by proteasomal degradation, and only monomeric/low oligomeric caveolins are exported into the cis-Golgi with higher-order oligomers assembling beyond this compartment. When any of those early proteostatic mechanisms are compromised, chemically or genetically, caveolins tend to accumulate along the secretory pathway forming non-functional aggregates, causing organelle damage and triggering cellular stress. Accordingly, we propose a model in which disrupted proteostasis of newly synthesized caveolins contributes to pathogenesis.
Collapse
Affiliation(s)
- Frederic Morales-Paytuví
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Fajardo
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Ruiz-Mirapeix
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - James Rae
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
| | - Francesc Tebar
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Brett M Collins
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
- Centre for Microscopy and Microanalysis (CMM), The University of Queensland (UQ), Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona, Spain
| |
Collapse
|
8
|
Grosjean E, Simonneaux V, Challet E. Reciprocal Interactions between Circadian Clocks, Food Intake, and Energy Metabolism. BIOLOGY 2023; 12:biology12040539. [PMID: 37106739 PMCID: PMC10136292 DOI: 10.3390/biology12040539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Like other biological functions, food intake and energy metabolism display daily rhythms controlled by the circadian timing system that comprises a main circadian clock and numerous secondary clocks in the brain and peripheral tissues. Each secondary circadian clock delivers local temporal cues based on intracellular transcriptional and translational feedback loops that are tightly interconnected to intracellular nutrient-sensing pathways. Genetic impairment of molecular clocks and alteration in the rhythmic synchronizing cues, such as ambient light at night or mistimed meals, lead to circadian disruption that, in turn, negatively impacts metabolic health. Not all circadian clocks are sensitive to the same synchronizing signals. The master clock in the suprachiasmatic nuclei of the hypothalamus is mostly synchronized by ambient light and, to a lesser extent, by behavioral cues coupled to arousal and exercise. Secondary clocks are generally phase-shifted by timed metabolic cues associated with feeding, exercise, and changes in temperature. Furthermore, both the master and secondary clocks are modulated by calorie restriction and high-fat feeding. Taking into account the regularity of daily meals, the duration of eating periods, chronotype, and sex, chrononutritional strategies may be useful for improving the robustness of daily rhythmicity and maintaining or even restoring the appropriate energy balance.
Collapse
Affiliation(s)
- Emma Grosjean
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
9
|
Chen Y, Zhang SP, Gong WW, Zheng YY, Shen JR, Liu X, Gu YH, Shi JH, Meng GL. Novel Therapeutic Potential of Retinoid-Related Orphan Receptor α in Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24043462. [PMID: 36834872 PMCID: PMC9959049 DOI: 10.3390/ijms24043462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The retinoid-related orphan receptor α (RORα) is one subfamily of nuclear hormone receptors (NRs). This review summarizes the understanding and potential effects of RORα in the cardiovascular system and then analyzes current advances, limitations and challenges, and further strategy for RORα-related drugs in cardiovascular diseases. Besides regulating circadian rhythm, RORα also influences a wide range of physiological and pathological processes in the cardiovascular system, including atherosclerosis, hypoxia or ischemia, myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, hypertension, and myocardial hypertrophy. In terms of mechanism, RORα was involved in the regulation of inflammation, apoptosis, autophagy, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial function. Besides natural ligands for RORα, several synthetic RORα agonists or antagonists have been developed. This review mainly summarizes protective roles and possible mechanisms of RORα against cardiovascular diseases. However, there are also several limitations and challenges of current research on RORα, especially the difficulties on the transformability from the bench to the bedside. By the aid of multidisciplinary research, breakthrough progress on RORα-related drugs to combat cardiovascular disorder may appear.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shu-Ping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Wei-Wei Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yang-Yang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jie-Ru Shen
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
| | - Xiao Liu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
| | - Yun-Hui Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jia-Hai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Research Institution of Translational Medicine in Cardiothoracic Diseases, Nantong University, Nantong 226001, China
- Correspondence: (J.-H.S.); (G.-L.M.); Tel.: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1726 (G.-L.M.); Fax: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1728 (G.-L.M.)
| | - Guo-Liang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
- Correspondence: (J.-H.S.); (G.-L.M.); Tel.: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1726 (G.-L.M.); Fax: +86-513-8116-0901 (J.-H.S.); +86-513-8505-1728 (G.-L.M.)
| |
Collapse
|
10
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504 DOI: 10.12688/f1000research.126364.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
11
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504.2 DOI: 10.12688/f1000research.126364.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
12
|
Niu Y, Tang S. Circadian clock-mediated nuclear receptors in cancer. J Cell Physiol 2022; 237:4428-4442. [PMID: 36250982 DOI: 10.1002/jcp.30905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Circadian system coordinates the daily periodicity of physiological and biochemical functions to adapt to environmental changes. Circadian disruption has been identified to increase the risk of cancer and promote cancer progression, but the underlying mechanism remains unclear. And further mechanistic understanding of the crosstalk between clock components and cancer is urgent to achieve clinical anticancer benefits from chronochemotherapy. Recent studies discover that several nuclear receptors regulating circadian clock, also play crucial roles in mediating multiple cancer processes. In this review, we aim to summarize the latest developments of clock-related nuclear receptors in cancer biology and dissect mechanistic insights into how nuclear receptors coordinate with circadian clock to regulate tumorigenesis and cancer treatment. A better understanding of circadian clock-related nuclear receptors in cancer could help prevent tumorigenesis and improve anticancer efficacy.
Collapse
Affiliation(s)
- Ya Niu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shuang Tang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
13
|
Hu S, Liu X, Wang Y, Zhang R, Wei S. Melatonin protects against body weight gain induced by sleep deprivation in mice. Physiol Behav 2022; 257:113975. [PMID: 36183851 DOI: 10.1016/j.physbeh.2022.113975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/10/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Sleep deprivation is an epidemic phenomenon in modern society. Lack of sleep has been shown to result in metabolic and endocrine disorders that predispose to obesity and other chronic metabolic diseases. Melatonin is a sleep-related neurohormone and affected by the circadian rhythm and light/dark cycles. Melatonin has recently been used to ameliorate diet-induced or night light-induced energy metabolic imbalance. However, the effect of melatonin on sleep deprivation-induced obesity has been poorly characterized. This study focuses on the protective effects of melatonin on lipid metabolism and body weight homeostasis in sleep-deprived mice. Mice subjected to sleep deprivation had significantly decreased plasma melatonin content and increased food intake and body weight gain compared to that of control. Meanwhile, the transcription factor PPARγ protein in liver increased, but there were no significant changes in hepatic circadian proteins BMAL1 and REV-ERBα after 10 consecutive days of sleep deprivation. Moreover, melatonin supplementation increased liver AMPKα/PPARα signaling pathway activity, which leads to lipid catabolism and reduced fat accumulation. These findings suggested that melatonin may be a potential agent for protecting against sleep deprivation-induced obesity.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Xuan Liu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yuefan Wang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Zhang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Shougang Wei
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Schettini GP, Peripolli E, Alexandre PA, dos Santos WB, Pereira ASC, de Albuquerque LG, Baldi F, Curi RA. Transcriptome Profile Reveals Genetic and Metabolic Mechanisms Related to Essential Fatty Acid Content of Intramuscular Longissimus thoracis in Nellore Cattle. Metabolites 2022; 12:metabo12050471. [PMID: 35629975 PMCID: PMC9144777 DOI: 10.3390/metabo12050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Beef is a source of essential fatty acids (EFA), linoleic (LA) and alpha-linolenic (ALA) acids, which protect against inflammatory and cardiovascular diseases in humans. However, the intramuscular EFA profile in cattle is a complex and polygenic trait. Thus, this study aimed to identify potential regulatory genes of the essential fatty acid profile in Longissimus thoracis of Nellore cattle finished in feedlot. Forty-four young bulls clustered in four groups of fifteen animals with extreme values for each FA were evaluated through differentially expressed genes (DEG) analysis and two co-expression methodologies (WGCNA and PCIT). We highlight the ECHS1, IVD, ASB5, and ERLIN1 genes and the TF NFIA, indicated in both FA. Moreover, we associate the NFYA, NFYB, PPARG, FASN, and FADS2 genes with LA, and the RORA and ELOVL5 genes with ALA. Furthermore, the functional enrichment analysis points out several terms related to FA metabolism. These findings contribute to our understanding of the genetic mechanisms underlying the beef EFA profile in Nellore cattle finished in feedlot.
Collapse
Affiliation(s)
- Gustavo Pimenta Schettini
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
- Correspondence:
| | - Elisa Peripolli
- School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (E.P.); (A.S.C.P.)
| | - Pâmela Almeida Alexandre
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St Lucia, QLD 4067, Australia;
| | - Wellington Bizarria dos Santos
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
| | - Angélica Simone Cravo Pereira
- School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (E.P.); (A.S.C.P.)
| | - Lúcia Galvão de Albuquerque
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
| | - Fernando Baldi
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
| | - Rogério Abdallah Curi
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu 18618-681, SP, Brazil;
| |
Collapse
|
15
|
Retinoid orphan nuclear receptor alpha (RORα) suppresses the epithelial-mesenchymal transition (EMT) by directly repressing Snail transcription. J Biol Chem 2022; 298:102059. [PMID: 35605663 PMCID: PMC9218514 DOI: 10.1016/j.jbc.2022.102059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Retinoid orphan nuclear receptor alpha (RORα) is a member of the orphan nuclear factor family and regulates gene expression by binding to ROR response elements (ROREs). RORα has been identified as a potential tumor suppressor; however, how downregulation of RORα promotes cancer progression is not fully understood. Here, we showed that protein levels of RORα were downregulated during the Snail-, Twist-, or transforming growth factor-β–induced epithelial–mesenchymal transition (EMT). We found that silencing of RORα induced expression of mesenchymal markers in MCF10A cells, accompanied by enhanced cell invasion, migration, and mammosphere formation. Furthermore, ectopic expression of RORα suppressed transforming growth factor-β–induced EMT processes in MCF10A and HMLE cells. These results indicate that downregulation of RORα is crucial for the induction of EMT in mammary epithelial cells. By analyzing gene expression profiles in control and RORα-expressing cells, we also identified Snail, a key regulator of EMT, as a potential target of RORα. We show that RORα expression significantly inhibits Snail transcription in breast cancer cells. Chromatin immunoprecipitation analysis demonstrated that RORα bound to the ROREs in promoter region of SNAI1 gene, and using the luciferase reporter assay, we showed that binding to the ROREs was critical for RORα to repress Snail transcription. Finally, rescue experiments substantiated that Snail mediates RORα function in suppressing EMT and mammosphere formation. These results reveal a novel function of RORα in suppressing EMT and identify Snail as a direct target of RORα in mammary epithelial cells.
Collapse
|
16
|
Mansingh S, Handschin C. Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle. Front Physiol 2022; 13:902031. [PMID: 35547572 PMCID: PMC9081842 DOI: 10.3389/fphys.2022.902031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Circadian rhythms regulate a host of physiological processes in a time-dependent manner to maintain homeostasis in response to various environmental stimuli like day and night cycles, food intake, and physical activity. Disruptions in circadian rhythms due to genetic mutations, shift work, exposure to artificial light sources, aberrant eating habits, and abnormal sleep cycles can have dire consequences for health. Importantly, exercise training efficiently ameliorates many of these adverse effects and the role of skeletal muscle in mediating the benefits of exercise is a topic of great interest. However, the molecular and physiological interactions between the clock, skeletal muscle function and exercise are poorly understood, and are most likely a combination of molecular clock components directly acting in muscle as well as in concordance with other peripheral metabolic organ systems like the liver. This review aims to consolidate existing experimental evidence on the involvement of molecular clock factors in exercise adaptation of skeletal muscle and to highlight the existing gaps in knowledge that need to be investigated to develop therapeutic avenues for diseases that are associated with these systems.
Collapse
|
17
|
Mechanism of the switch from NO to H 2O 2 in endothelium-dependent vasodilation in diabetes. Basic Res Cardiol 2022; 117:2. [PMID: 35024970 PMCID: PMC8886611 DOI: 10.1007/s00395-022-00910-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Coronary microvascular dysfunction is prevalent among people with diabetes and is correlated with cardiac mortality. Compromised endothelial-dependent dilation (EDD) is an early event in the progression of diabetes, but its mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelium-dependent vasodilatory metabolite in the healthy coronary circulation, but this switches to hydrogen peroxide (H2O2) in coronary artery disease (CAD) patients. Because diabetes is a significant risk factor for CAD, we hypothesized that a similar NO-to-H2O2 switch would occur in diabetes. Vasodilation was measured ex vivo in isolated coronary arteries from wild type (WT) and microRNA-21 (miR-21) null mice on a chow or high-fat/high-sugar diet, and B6.BKS(D)-Leprdb/J (db/db) mice using myography. Myocardial blood flow (MBF), blood pressure, and heart rate were measured in vivo using contrast echocardiography and a solid-state pressure sensor catheter. RNA from coronary arteries, endothelial cells, and cardiac tissues was analyzed via quantitative real-time PCR for gene expression, and cardiac protein expression was assessed via western blot analyses. Superoxide was detected via electron paramagnetic resonance. (1) Ex vivo coronary EDD and in vivo MBF were impaired in diabetic mice. (2) Nω-Nitro-L-arginine methyl ester, an NO synthase inhibitor (L-NAME), inhibited ex vivo coronary EDD and in vivo MBF in WT. In contrast, polyethylene glycol-catalase, an H2O2 scavenger (Peg-Cat), inhibited diabetic mouse EDD ex vivo and MBF in vivo. (3) miR-21 was upregulated in diabetic mouse endothelial cells, and the deficiency of miR-21 prevented the NO-to-H2O2 switch and ameliorated diabetic mouse vasodilation impairments. (4) Diabetic mice displayed increased serum NO and H2O2, upregulated mRNA expression of Sod1, Sod2, iNos, and Cav1, and downregulated Pgc-1α in coronary arteries, but the deficiency of miR-21 reversed these changes. (5) miR-21-deficient mice exhibited increased cardiac PGC-1α, PPARα and eNOS protein and reduced endothelial superoxide. (6) Inhibition of PGC-1α changed the mRNA expression of genes regulated by miR-21, and overexpression of PGC-1α decreased the expression of miR-21 in high (25.5 mM) glucose treated coronary endothelial cells. Diabetic mice exhibit a NO-to-H2O2 switch in the mediator of coronary EDD, which contributes to microvascular dysfunction and is mediated by miR-21. This study represents the first mouse model recapitulating the NO-to-H2O2 switch seen in CAD patients in diabetes.
Collapse
|
18
|
Lo HP, Lim YW, Xiong Z, Martel N, Ferguson C, Ariotti N, Giacomotto J, Rae J, Floetenmeyer M, Moradi SV, Gao Y, Tillu VA, Xia D, Wang H, Rahnama S, Nixon SJ, Bastiani M, Day RD, Smith KA, Palpant NJ, Johnston WA, Alexandrov K, Collins BM, Hall TE, Parton RG. Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle. J Cell Biol 2021; 220:e201905065. [PMID: 34633413 PMCID: PMC8513623 DOI: 10.1083/jcb.201905065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/02/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.
Collapse
Affiliation(s)
- Harriet P. Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ye-Wheen Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Zherui Xiong
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service and University of Queensland, Brisbane, Queensland, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthias Floetenmeyer
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Shayli Varasteh Moradi
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ya Gao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Vikas A. Tillu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, Brisbane, Queensland, Australia
| | - Huang Wang
- Translational Research Institute, Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Samira Rahnama
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susan J. Nixon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Michele Bastiani
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ryan D. Day
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kelly A. Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nathan J. Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Wayne A. Johnston
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kirill Alexandrov
- CSIRO–Queensland University of Technology Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas E. Hall
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Beak JY, Kang HS, Huang W, Deshmukh R, Hong SJ, Kadakia N, Aghajanian A, Gerrish K, Jetten A, Jensen B. The nuclear receptor RORα preserves cardiomyocyte mitochondrial function by regulating caveolin-3-mediated mitophagy. J Biol Chem 2021; 297:101358. [PMID: 34756888 PMCID: PMC8626585 DOI: 10.1016/j.jbc.2021.101358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023] Open
Abstract
Preserving optimal mitochondrial function is critical in the heart, which is the most ATP-avid organ in the body. Recently, we showed that global deficiency of the nuclear receptor RORα in the "staggerer" mouse exacerbates angiotensin II-induced cardiac hypertrophy and compromises cardiomyocyte mitochondrial function. However, the mechanisms underlying these observations have not been defined previously. Here, we used pharmacological and genetic gain- and loss-of-function tools to demonstrate that RORα regulates cardiomyocyte mitophagy to preserve mitochondrial abundance and function. We found that cardiomyocyte mitochondria in staggerer mice with lack of functional RORα were less numerous and exhibited fewer mitophagy events than those in WT controls. The hearts of our novel cardiomyocyte-specific RORα KO mouse line demonstrated impaired contractile function, enhanced oxidative stress, increased apoptosis, and reduced autophagic flux relative to Cre(-) littermates. We found that cardiomyocyte mitochondria in "staggerer" mice with lack of functional RORα were upregulated by hypoxia, a classical inducer of mitophagy. The loss of RORα blunted mitophagy and broadly compromised mitochondrial function in normoxic and hypoxic conditions in vivo and in vitro. We also show that RORα is a direct transcriptional regulator of the mitophagy mediator caveolin-3 in cardiomyocytes and that enhanced expression of RORα increases caveolin-3 abundance and enhances mitophagy. Finally, knockdown of RORα impairs cardiomyocyte mitophagy, compromises mitochondrial function, and induces apoptosis, but these defects could be rescued by caveolin-3 overexpression. Collectively, these findings reveal a novel role for RORα in regulating mitophagy through caveolin-3 and expand our currently limited understanding of the mechanisms underlying RORα-mediated cardioprotection.
Collapse
Affiliation(s)
- Ju Youn Beak
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Hong Soon Kang
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, USA
| | - Wei Huang
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rishi Deshmukh
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Seok Jae Hong
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Nishi Kadakia
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina, USA
| | - Amir Aghajanian
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kevin Gerrish
- Molecular Genomics Core Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Anton Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina, USA
| | - Brian Jensen
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
20
|
Vahidi Ferdowsi P, Ahuja KDK, Beckett JM, Myers S. TRPV1 Activation by Capsaicin Mediates Glucose Oxidation and ATP Production Independent of Insulin Signalling in Mouse Skeletal Muscle Cells. Cells 2021; 10:cells10061560. [PMID: 34205555 PMCID: PMC8234135 DOI: 10.3390/cells10061560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Insulin resistance (IR), a key characteristic of type 2 diabetes (T2DM), is manifested by decreased insulin-stimulated glucose transport in target tissues. Emerging research has highlighted transient receptor potential cation channel subfamily V member (TRPV1) activation by capsaicin as a potential therapeutic target for these conditions. However, there are limited data on the effects of capsaicin on cell signalling molecules involved in glucose uptake. METHODS C2C12 cells were cultured and differentiated to acquire the myotube phenotype. The activation status of signalling molecules involved in glucose metabolism, including 5' adenosine monophosphate-activated protein kinase (AMPK), calcium/calmodulin-dependent protein kinase 2 (CAMKK2), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), protein kinase B (AKT), and src homology phosphatase 2 (SHP2), was examined. Finally, activation of CAMKK2 and AMPK, and glucose oxidation and ATP levels were measured in capsaicin-treated cells in the presence or absence of TRPV1 antagonist (SB-452533). RESULTS Capsaicin activated cell signalling molecules including CAMKK2 and AMPK leading to increased glucose oxidation and ATP generation independent of insulin in the differentiated C2C12 cells. Pharmacological inhibition of TRPV1 diminished the activation of CAMKK2 and AMPK as well as glucose oxidation and ATP production. Moreover, we observed an inhibitory effect of capsaicin in the phosphorylation of ERK1/2 in the mouse myotubes. CONCLUSION Our data show that capsaicin-mediated stimulation of TRPV1 in differentiated C2C12 cells leads to activation of CAMKK2 and AMPK, and increased glucose oxidation which is concomitant with an elevation in intracellular ATP level. Further studies of the effect of TRPV1 channel activation by capsaicin on glucose metabolism could provide novel therapeutic utility for the management of IR and T2DM.
Collapse
|
21
|
Sayed RKA, Mokhtar DM, Fernández-Ortiz M, Fernández-Martínez J, Aranda-Martínez P, Escames G, Acuña-Castroviejo D. Lack of retinoid acid receptor-related orphan receptor alpha accelerates and melatonin supplementation prevents testicular aging. Aging (Albany NY) 2020; 12:12648-12668. [PMID: 32644943 PMCID: PMC7377884 DOI: 10.18632/aging.103654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
The role of retinoid acid receptor-related orphan receptor alpha (RORα) on male reproductive functions during aging is unclear. Here, we analyze the morphological changes in the testis of both young and aged RORα-deficient mice, with and without melatonin supplementation. Young mutants showed vacuolation, degeneration and pyknosis of spermatogenic epithelium and Sertoli cells. Aged mutants showed atrophy of the seminiferous tubules and absence of mitotic spermatogenic cells. Absence of sperms in many tubules, loss of acrosomal cap, vacuolation and hypertrophy of Sertoli cells were detected in aged mice, with a significant reduction in the number of seminiferous tubules and a significant increase in the number of Leydig cells and telocytes. Repair in seminiferous tubules and interstitial tissues with enhancement of spermatogenesis was observed in melatonin-treated aged mice. Young mutants overexpressed VEGF that was weaker in aged animals and observed only in the spermatocytes, while melatonin increased VEGF expression in spermatocytes and spermatids. Caspase 3 increased in both young and aged mutant mice in all seminiferous tubules and interstitium; caspase 3 immunostaining in seminiferous tubules, however, showed a normal pattern of apoptosis with melatonin supplementation. The present study reports that age-dependent testicular changes in RORα mutant mice were recovered by melatonin treatment.
Collapse
Affiliation(s)
- Ramy K A Sayed
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Marisol Fernández-Ortiz
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - José Fernández-Martínez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Paula Aranda-Martínez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain.,CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada 18016, Spain
| | - Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain.,CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada 18016, Spain
| |
Collapse
|
22
|
Cardiolipin Synthesis in Skeletal Muscle Is Rhythmic and Modifiable by Age and Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5304768. [PMID: 32617138 PMCID: PMC7313160 DOI: 10.1155/2020/5304768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
Abstract
Circadian clocks regulate metabolic processes in a tissue-specific manner, which deteriorates during aging. Skeletal muscle is the largest metabolic organ in our body, and our previous studies highlight a key role of circadian regulation of skeletal muscle mitochondria in healthy aging. However, a possible circadian regulation of cardiolipin (CL), the signature lipid class in the mitochondrial inner membrane, remains largely unclear. Here, we show that CL levels oscillate during the diurnal cycle in C2C12 myotubes. Disruption of the Ror genes, encoding the ROR nuclear receptors in the secondary loop of the circadian oscillator, in C2C12 cells was found to dampen core circadian gene expression. Importantly, several genes involved in CL synthesis, including Taz and Ptpmt1, displayed rhythmic expression which was disrupted or diminished in Ror-deficient C2C12 cells. In vivo studies using skeletal muscle tissues collected from young and aged mice showed diverse effects of the clock and aging on the oscillatory expression of CL genes, and CL levels in skeletal muscle were enhanced in aged mice relative to young mice. Finally, consistent with a regulatory role of RORs, Nobiletin, a natural agonist of RORs, was found to partially restore transcripts levels of CL synthesis genes in aged muscle under a dietary challenge condition. Together, these observations highlight a rhythmic CL synthesis in skeletal muscle that is dependent on RORs and modifiable by age and diet.
Collapse
|
23
|
Casas-Fraile L, Cornelis FM, Costamagna D, Rico A, Duelen R, Sampaolesi MM, López de Munain A, Lories RJ, Sáenz A. Frizzled related protein deficiency impairs muscle strength, gait and calpain 3 levels. Orphanet J Rare Dis 2020; 15:119. [PMID: 32448375 PMCID: PMC7245871 DOI: 10.1186/s13023-020-01372-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023] Open
Abstract
Background Limb-girdle muscular dystrophy recessive 1 calpain3-related (LGMDR1), previously known as LGMD2A, is a disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness and muscle degeneration. Frizzled related protein (FRZB), upregulated in LGMDR1, was identified as a key regulator of the crosstalk between Wnt and integrin signalling pathways. FRZB gene silencing showed a recovery in the expression of some of the costamere protein levels in myotubes. Results Here, we performed a comprehensive characterization of Frzb−/− mice muscles to study the absence of Frzb in skeletal muscle and eventual links with the molecular characteristics of LGMDR1 patient muscles. Frzb−/− mice showed reduced muscle size and strength. Gait analysis showed that Frzb−/− mice moved more slowly but no impaired regeneration capacity was observed after muscle injury. Additionally, Frzb−/− mice muscle showed an increased number of mesoangioblasts. Lack of Frzb gene in Frzb−/− mice and its increased expression in LGMDR1 patients, showed contrary regulation of Rora, Slc16a1, Tfrc and Capn3 genes. The reciprocal regulation of Frzb and Capn3 genes further supports this axis as a potential target for LGMDR1 patients. Conclusions Our data confirm a role for Frzb in the regulation of Rora, Slc16a1, Tfrc, and Capn3 genes in muscle cells. In vivo, reduced muscle strength and gait in the Frzb−/− mice are intriguing features. The reciprocal relationship between FRZB and CAPN3 further supports a key role for this axis in patients with LGMDR1.
Collapse
Affiliation(s)
- Leire Casas-Fraile
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain.,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.,Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Frederique M Cornelis
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium
| | - Anabel Rico
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain
| | - Robin Duelen
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium
| | - Maurilio M Sampaolesi
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium.,Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Adolfo López de Munain
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain.,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.,Department of Neurology, Donostia University Hospital, Donostia, Spain.,Department of Neurosciences, University of the Basque Country, Leioa, Spain
| | - Rik J Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Amets Sáenz
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain. .,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.
| |
Collapse
|
24
|
Chen Q, Wang F, Zhou B. Investigations of retinoic acid receptor-related orphan receptor-gamma t (RORγt) agonists: a combination of 3D-QSAR, molecular docking and molecular dynamics. J Biomol Struct Dyn 2020; 39:3501-3514. [PMID: 32375589 DOI: 10.1080/07391102.2020.1765873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Retinoic acid receptor-related orphan receptor-gamma t (RORγt) is an attractive target for Th17-driven autoimmune diseases. In the present work, a series of RORγt agonists were investigated by a molecular modeling study combining three-dimensional quantitative structure activity relationship (3D-QSAR), molecular docking, molecular dynamics (MD) simulations and binding free energies to get insight into the molecular features that would promote binding activity. The optimum comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models for 3D-QSAR studies possess satisfactory predictive ability, with R2cv=0.615, R2pred=0.8702 for CoMFA, and R2cv=0.670, R2pred=0.7683 for CoMSIA model, respectively. In addition, molecular docking studies, molecular dynamics simulations and binding free energies were used to find the actual conformations of compounds in the active site of RORγt, and key residues GLN-286, LEU-287, HIS-323 and ARG-367 for higher binding activity were pointed out. The predicted models will help us to understand the structural requirements of RORγt agonists for the designing of better active compounds. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Qinghua Chen
- School of Life Science, Linyi University, Linyi, China
| | - Fangfang Wang
- School of Life Science, Linyi University, Linyi, China
| | - Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Basic Medical, GuizhouMedical University, Guizhou, China
| |
Collapse
|
25
|
Functional Mechanisms of Mitochondrial Respiratory Chain Supercomplex Assembly Factors and Their Involvement in Muscle Quality. Int J Mol Sci 2020; 21:ijms21093182. [PMID: 32365950 PMCID: PMC7246575 DOI: 10.3390/ijms21093182] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
Impairment of skeletal muscle function causes disabilities in elderly people. Therefore, in an aged society, prevention and treatment of sarcopenia are important for expanding healthy life expectancy. In addition to aging, adipose tissue disfunction and inflammation also contribute to the pathogenesis of sarcopenia by causing the combined state called ‘sarcopenic obesity’. Muscle quality as well as muscle mass contributes to muscle strength and physical performance. Mitochondria in the skeletal muscles affect muscle quality by regulating the production of energy and reactive oxygen species. A certain portion of the mitochondrial respiratory chain complexes form a higher-order structure called a “supercomplex”, which plays important roles in efficient energy production, stabilization of respiratory chain complex I, and prevention of reactive oxygen species (ROS) generation. Several molecules including phospholipids, proteins, and certain chemicals are known to promote or stabilize mitochondrial respiratory chain supercomplex assembly directly or indirectly. In this article, we review the distinct mechanisms underlying the promotion or stabilization of mitochondrial respiratory chain supercomplex assembly by supercomplex assembly factors. Further, we introduce regulatory pathways of mitochondrial respiratory chain supercomplex assembly and discuss the roles of supercomplex assembly factors and regulatory pathways in skeletal muscles and adipose tissues, believing that this will lead to discovery of potential targets for prevention and treatment of muscle disorders such as sarcopenia.
Collapse
|
26
|
Isoform-Specific Lysine Methylation of RORα2 by SETD7 Is Required for Association of the TIP60 Coactivator Complex in Prostate Cancer Progression. Int J Mol Sci 2020; 21:ijms21051622. [PMID: 32120841 PMCID: PMC7084544 DOI: 10.3390/ijms21051622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The retinoid acid-related orphan receptor α (RORα), a member of the orphan nuclear receptor superfamily, functions as an unknown ligand-dependent transcription factor. RORα was shown to regulate a broad array of physiological processes such as Purkinje cell development in the cerebellum, circadian rhythm, lipid and bone metabolism, inhibition of inflammation, and anti-apoptosis. The human RORα gene encodes at least four distinct isoforms (RORα1, -2, -3, -4), which differ only in their N-terminal domain (NTD). Two isoforms, RORα2 and 3, are not expressed in mice, whereas RORα1 and 4 are expressed both in mice and humans. In the present study, we identified the specific NTD of RORα2 that enhances prostate tumor progression and proliferation via lysine methylation-mediated recruitment of coactivator complex pontin/Tip60. Upregulation of the RORα2 isoform in prostate cancers putatively promotes tumor formation and progression. Furthermore, binding between coactivator complex and RORα2 is increased by lysine methylation of RORα2 because methylation permits subsequent interaction with binding partners. This methylation-dependent activation is performed by SET domain containing 7 (SETD7) methyltransferase, inducing the oncogenic potential of RORα2. Thus, post-translational lysine methylation of RORα2 modulates oncogenic function of RORα2 in prostate cancer. Exploration of the post-translational modifications of RORα2 provides new avenues for the development of tumor-suppressive therapeutic agents through modulating the human isoform-specific tumorigenic role of RORα2.
Collapse
|
27
|
Mugahid DA, Sengul TG, You X, Wang Y, Steil L, Bergmann N, Radke MH, Ofenbauer A, Gesell-Salazar M, Balogh A, Kempa S, Tursun B, Robbins CT, Völker U, Chen W, Nelson L, Gotthardt M. Proteomic and Transcriptomic Changes in Hibernating Grizzly Bears Reveal Metabolic and Signaling Pathways that Protect against Muscle Atrophy. Sci Rep 2019; 9:19976. [PMID: 31882638 PMCID: PMC6934745 DOI: 10.1038/s41598-019-56007-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
Muscle atrophy is a physiological response to disuse and malnutrition, but hibernating bears are largely resistant to this phenomenon. Unlike other mammals, they efficiently reabsorb amino acids from urine, periodically activate muscle contraction, and their adipocytes differentially responds to insulin. The contribution of myocytes to the reduced atrophy remains largely unknown. Here we show how metabolism and atrophy signaling are regulated in skeletal muscle of hibernating grizzly bear. Metabolic modeling of proteomic changes suggests an autonomous increase of non-essential amino acids (NEAA) in muscle and treatment of differentiated myoblasts with NEAA is sufficient to induce hypertrophy. Our comparison of gene expression in hibernation versus muscle atrophy identified several genes differentially regulated during hibernation, including Pdk4 and Serpinf1. Their trophic effects extend to myoblasts from non-hibernating species (including C. elegans), as documented by a knockdown approach. Together, these changes reflect evolutionary favored adaptations that, once translated to the clinics, could help improve atrophy treatment.
Collapse
Affiliation(s)
- D A Mugahid
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - T G Sengul
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - X You
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Y Wang
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - L Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - N Bergmann
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - M H Radke
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - A Ofenbauer
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - M Gesell-Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - A Balogh
- Experimental and Clinical Research Center, Charité & Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - S Kempa
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - B Tursun
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - C T Robbins
- School of the Environment and School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - U Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - W Chen
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - L Nelson
- College of Veterinary Medicine and Department of Veterinary Clinical Science, Washington State University, Pullman, Washington, USA
| | - M Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany. .,Charité Universitätsmedizin Berlin, Berlin, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Retinoid-related orphan nuclear receptor alpha (RORα)-deficient mice display morphological testicular defects. J Transl Med 2019; 99:1835-1849. [PMID: 31409890 DOI: 10.1038/s41374-019-0299-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
The role of retinoid-related orphan receptor, one of the transcription factors reported in testis, in testicular function is unclear, so this study was performed to evaluate the qualitative and quantitative changes in the testicular structure of RORα-deficient mice using light-, electron-microscopy, and immunohistochemistry. Among the most striking alterations observed in the testis of the mutant mice were hypospermatogenesis, marked reduction in volume proportions of interstitial tissues and number of Leydig cells, significant decrease in the diameter of seminiferous tubules and height of their epithelium, vacuolation in the epithelium of the seminiferous tubules with occurrence of mast cells, appearance of delay spermiation signs, and changes in sperm morphology. Moreover, the testis of mutant mice showed symplasts, in addition to appearance of multinucleated giant bromophenol-positive cells. ATPase activity was limited to spermatogonia and some primary spermatocytes, with higher alkaline phosphatase expression. Stronger vimentin reaction was immunolocalized to spermatogonia, spermatids, Leydig cells, and Sertoli cells. The expression of CD117 (C-kit, stem cell growth factor receptor) was limited to spermatogonia, primary spermatocytes, and Leydig cells. Seminiferous tubules showed overexpression of vascular endothelial growth factor (VEGF). Transmission electron microscopy examination of the mutant mice revealed abnormal Sertoli cells, hypertrophied spermatogonia, spermatocytes with degenerated mitochondria, and incompletely developed sperms. In conclusion, RORα is one of the essential proteins that regulate testicular structure.
Collapse
|
29
|
Park SC, Park IG, Kim H, Lee JM. N-Terminal Domain Mediated Regulation of RORα1 Inhibits Invasive Growth in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20071684. [PMID: 30987323 PMCID: PMC6479703 DOI: 10.3390/ijms20071684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Four members of the retinoic acid-related orphan receptor α (RORα) family (RORα1, RORα2, RORα3 and RORα4) are transcription factors that regulate several processes including circadian rhythm, lipid metabolism, cerebellar development, immune function, and cancer. Only two isoforms, RORα1 and 4, are specifically co-expressed in the murine and human. In the present study, we identified a specific N-terminal domain (NTD) of RORα1 that potentiated the downregulation of target genes involved in tumor progression and proliferation, based on results from RORα-deficient mouse embryonic fibroblasts and prostate carcinoma tissues. The hyperactivation of proliferative target genes were observed in RORα-deficient embryonic fibroblasts, and reconstitution of RORα1 inhibited this activation by a NTD dependent manner. Downregulation of RORα1 and upregulation of Wnt/β-catenin target genes were correlated in prostate cancer patients. These findings revealed the control of invasive growth by NTD-mediated RORα1 signaling, suggesting advanced approaches for the development of therapeutic drugs.
Collapse
Affiliation(s)
- Su Chan Park
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Il-Geun Park
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Hyunkyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
30
|
Beak JY, Kang HS, Huang W, Myers PH, Bowles DE, Jetten AM, Jensen BC. The nuclear receptor RORα protects against angiotensin II-induced cardiac hypertrophy and heart failure. Am J Physiol Heart Circ Physiol 2019; 316:H186-H200. [PMID: 30387679 PMCID: PMC6383360 DOI: 10.1152/ajpheart.00531.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 01/01/2023]
Abstract
The nuclear receptor retinoic acid-related orphan receptor-α (RORα) regulates numerous critical biological processes, including central nervous system development, lymphocyte differentiation, and lipid metabolism. RORα has been recently identified in the heart, but very little is known about its role in cardiac physiology. We sought to determine whether RORα regulates myocardial hypertrophy and cardiomyocyte survival in the context of angiotensin II (ANG II) stimulation. For in vivo characterization of the function of RORα in the context of pathological cardiac hypertrophy and heart failure, we used the "staggerer" (RORαsg/sg) mouse, which harbors a germline mutation encoding a truncated and globally nonfunctional RORα. RORαsg/sg and wild-type littermate mice were infused with ANG II or vehicle for 14 days. For in vitro experiments, we overexpressed or silenced RORα in neonatal rat ventricular myocytes (NRVMs) and human cardiac fibroblasts exposed to ANG II. RORαsg/sg mice developed exaggerated myocardial hypertrophy and contractile dysfunction after ANG II treatment. In vitro gain- and loss-of-function experiments were consistent with the discovery that RORα inhibits ANG II-induced pathological hypertrophy and cardiomyocyte death in vivo. RORα directly repressed IL-6 transcription. Loss of RORα function led to enhanced IL-6 expression, proinflammatory STAT3 activation (phopho-STAT3 Tyr705), and decreased mitochondrial number and function, oxidative stress, hypertrophy, and death of cardiomyocytes upon ANG II exposure. RORα was less abundant in failing compared with nonfailing human heart tissue. In conclusion, RORα protects against ANG II-mediated pathological hypertrophy and heart failure by suppressing the IL-6-STAT3 pathway and enhancing mitochondrial function. NEW & NOTEWORTHY Mice lacking retinoic acid-related orphan receptor-α (RORα) develop exaggerated cardiac hypertrophy after angiotensin II infusion. Loss of RORα leads to enhanced IL-6 expression and NF-κB nuclear translocation. RORα maintains mitochondrial function and reduces oxidative stress after angiotensin II. The abundance of RORα is reduced in failing mouse and human hearts.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Cardiomegaly/etiology
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cells, Cultured
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Heart Failure/etiology
- Heart Failure/genetics
- Heart Failure/metabolism
- Humans
- Interleukin-6/metabolism
- Loss of Function Mutation
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Mitochondria, Heart/metabolism
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Rats
- Rats, Sprague-Dawley
- STAT3 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Ju Youn Beak
- McAllister Heart Institute University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | - Hong Soon Kang
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | - Wei Huang
- McAllister Heart Institute University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | - Page H Myers
- Veterinary Medicine Section, Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | - Dawn E Bowles
- Department of Surgery, Duke University Medical Center , Durham, North Carolina
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park, North Carolina
| | - Brian C Jensen
- McAllister Heart Institute University of North Carolina School of Medicine , Chapel Hill, North Carolina
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
31
|
Hirai T, Nomura K, Ikai R, Nakashima KI, Inoue M. Baicalein stimulates fibroblast growth factor 21 expression by up-regulating retinoic acid receptor-related orphan receptor α in C2C12 myotubes. Biomed Pharmacother 2019; 109:503-510. [DOI: 10.1016/j.biopha.2018.10.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/28/2023] Open
|
32
|
Bae SA, Androulakis IP. Mathematical analysis of circadian disruption and metabolic re-entrainment of hepatic gluconeogenesis: the intertwining entraining roles of light and feeding. Am J Physiol Endocrinol Metab 2018; 314:E531-E542. [PMID: 29351477 PMCID: PMC6032066 DOI: 10.1152/ajpendo.00271.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian rhythms influence the metabolic activity from molecular level to tissue, organ, and host level. Disruption of the circadian rhythms manifests to the host's health as metabolic syndromes, including obesity, diabetes, and elevated plasma glucose, eventually leading to cardiovascular diseases. Therefore, it is imperative to understand the mechanism behind the relationship between circadian rhythms and metabolism. To start answering this question, we propose a semimechanistic mathematical model to study the effect of circadian disruption on hepatic gluconeogenesis in humans. Our model takes the light-dark cycle and feeding-fasting cycle as two environmental inputs that entrain the metabolic activity in the liver. The model was validated by comparison with data from mice and rat experimental studies. Formal sensitivity and uncertainty analyses were conducted to elaborate on the driving forces for hepatic gluconeogenesis. Furthermore, simulating the impact of Clock gene knockout suggests that modification to the local pathways tied most closely to the feeding-fasting rhythms may be the most efficient way to restore the disrupted glucose metabolism in liver.
Collapse
Affiliation(s)
- Seul-A Bae
- Chemical & Biochemical Engineering Department, Rutgers University , Piscataway, New Jersey
| | - Ioannis P Androulakis
- Chemical & Biochemical Engineering Department, Rutgers University , Piscataway, New Jersey
- Biomedical Engineering Department, Rutgers University , Piscataway, New Jersey
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School , New Brunswick, New Jersey
| |
Collapse
|
33
|
Froy O, Garaulet M. The Circadian Clock in White and Brown Adipose Tissue: Mechanistic, Endocrine, and Clinical Aspects. Endocr Rev 2018; 39:261-273. [PMID: 29490014 PMCID: PMC6456924 DOI: 10.1210/er.2017-00193] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022]
Abstract
Obesity is a major risk factor for the development of illnesses, such as insulin resistance and hypertension, and has become a serious public health problem. Mammals have developed a circadian clock located in the hypothalamic suprachiasmatic nuclei (SCN) that responds to the environmental light-dark cycle. Clocks similar to the one located in the SCN are found in peripheral tissues, such as the kidney, liver, and adipose tissue. The circadian clock regulates metabolism and energy homeostasis in peripheral tissues by mediating activity and/or expression of key metabolic enzymes and transport systems. Knockouts or mutations in clock genes that lead to disruption of cellular rhythmicity have provided evidence to the tight link between the circadian clock and metabolism. In addition, key proteins play a dual role in regulating the core clock mechanism, as well as adipose tissue metabolism, and link circadian rhythms with lipogenesis and lipolysis. Adipose tissues are distinguished as white, brown, and beige (or brite), each with unique metabolic characteristics. Recently, the role of the circadian clock in regulating the differentiation into the different adipose tissues has been investigated. In this review, the role of clock proteins and the downstream signaling pathways in white, brown, and brite adipose tissue function and differentiation will be reviewed. In addition, chronodisruption and metabolic disorders and clinical aspects of circadian adiposity will be addressed.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marta Garaulet
- Department of Physiology, University of Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| |
Collapse
|
34
|
Amador A, Campbell S, Kazantzis M, Lan G, Burris TP, Solt LA. Distinct roles for REV-ERBα and REV-ERBβ in oxidative capacity and mitochondrial biogenesis in skeletal muscle. PLoS One 2018; 13:e0196787. [PMID: 29723273 PMCID: PMC5933789 DOI: 10.1371/journal.pone.0196787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/19/2018] [Indexed: 12/19/2022] Open
Abstract
The nuclear receptors REV-ERBα and REV-ERBβ have been demonstrated to be core members of the circadian clock and participate in the regulation of a diverse set of metabolic functions. Due to their overlapping tissue expression patterns and gene expression profiles, REV-ERBβ is thought to be redundant to REV-ERBα. Recent work has highlighted REV-ERBα's role in the regulation of skeletal muscle oxidative capacity and mitochondrial biogenesis. Considering the similarity between the REV-ERBs and the hypothesized overlap in function, we sought to determine whether REV-ERBβ-deficiency presented with a similar skeletal muscle phenotype as REV-ERBα-deficiency. Ectopic overexpression in C2C12 cells demonstrated that REV-ERBβ drives mitochondrial biogenesis and the expression of genes involved in fatty acid oxidation. Intriguingly, knock down of REV-ERBβ in C2C12 cultures also resulted in mitochondrial biogenesis and increased expression of genes involved in fatty acid β-oxidation. To determine whether these effects occurred in vivo, we examined REV-ERBβ-deficient mice and observed a similar increase in expression of genes involved in mitochondrial biogenesis and fatty acid β-oxidation. Consistent with these results, REV-ERBβ-deficient mice exhibited an altered metabolic phenotype compared to wild-type littermate controls when measured by indirect calorimetry. This likely compensated for the increased food consumption that occurred, possibly aiding in the maintenance of their weight over time. Since feeding behaviors are a direct circadian output, this study suggests that REV-ERBβ may have more subtle effects on circadian behaviors than originally identified. Furthermore, these data implicate REV-ERBβ in the control of skeletal muscle metabolism and energy expenditure and suggest that development of REV-ERBα versus REV-ERBβ selective ligands may have therapeutic utility in the treatment of metabolic syndrome.
Collapse
MESH Headings
- Animals
- Body Weight
- Calorimetry, Indirect
- Cell Line
- Circadian Rhythm/genetics
- Circadian Rhythm/physiology
- Energy Metabolism/genetics
- Energy Metabolism/physiology
- Fatty Acids/metabolism
- Feeding Behavior/physiology
- Female
- Gene Expression Regulation
- Male
- Mice
- Mice, Knockout
- Mitochondria, Muscle/physiology
- Muscle, Skeletal/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/physiology
- Organelle Biogenesis
- Oxidation-Reduction
- Oxidative Phosphorylation
- RNA Interference
- RNA, Small Interfering/genetics
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/deficiency
- Repressor Proteins/genetics
- Repressor Proteins/physiology
Collapse
Affiliation(s)
- Ariadna Amador
- Kellogg School of Science and Technology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Sean Campbell
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Melissa Kazantzis
- Metabolic Core, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Gary Lan
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Thomas P. Burris
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura A. Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
| |
Collapse
|
35
|
Abstract
Circadian clocks synchronize the daily functions of organisms with environmental cues like light-dark cycles and feeding rhythms. The master clock in the suprachiasmatic nucleus in the hypothalamus of the brain and the many clocks in the periphery are organized in a hierarchical manner; the master clock synchronizes the peripheral clocks, and the peripheral clocks provide feedback to the master clock in return. Not surprisingly, it has been shown that circadian rhythms and metabolism are closely linked. Metabolic disorders like obesity have a large cost to the individual and society and they are marked by adipose tissue and mitochondrial dysfunction. Mitochondria are central to energy metabolism and have key functions in processes like ATP production, oxidative phosphorylation, reactive oxygen species production and Ca2+ homeostasis. Mitochondria also play an important role in adipose tissue homeostasis and remodeling. Despite the extensive research investigating the link between circadian clock and metabolism, the circadian regulation of adipose tissue and mitochondria has mostly been unexplored until recently, and the emerging data in this topic are the focus of this review. Mitochondrial dynamics in BAT and WAT are central to energy homeostasis. Disruption of circadian genes specifically in adipose tissue leads to metabolic dysfunction in mice. Bidirectional communication between the adipocyte-hypothalamic axis clocks is crucial for coordination of energy expenditure and feeding rhythms. Circadian clock helps maintain the ratio of oxidative stress to antioxidant mechanisms in balance
Collapse
Affiliation(s)
- Yasemin Onder
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| |
Collapse
|
36
|
Sertoli cell specific knockdown of RAR-related orphan receptor (ROR) alpha at puberty reduces sperm count in rats. Gene 2018; 641:18-24. [DOI: 10.1016/j.gene.2017.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/28/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022]
|
37
|
Mi Y, Qi G, Fan R, Qiao Q, Sun Y, Gao Y, Liu X. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB J 2017; 31:4998-5011. [PMID: 28739640 DOI: 10.1096/fj.201700400rr] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2025]
Abstract
Obesity, which is caused by an energy imbalance between calorie intake and consumption, has become a major international health burden. Obesity increases the risk of insulin resistance and age-related cognitive decline, accompanied by peripheral inflammation. (-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, possesses antioxidant, anti-inflammatory, and cardioprotective activities; however, few reports have focused on its potential effect on cognitive disorders. In this study, our goal was to investigate the protective effects of EGCG treatment on insulin resistance and memory impairment induced by a high-fat and high-fructose diet (HFFD). We randomly assigned 3-mo-old C57BL/6J mice to 3 groups with different diets: control group, HFFD group, and HFFD plus EGCG group. Memory loss was assessed by using the Morris water maze test, during which EGCG was observed to prevent HFFD-elicited memory impairment and neuronal loss. Consistent with these results, EGCG attenuated HFFD-induced neuronal damage. Of note, EGCG significantly ameliorated insulin resistance and cognitive disorder by up-regulating the insulin receptor substrate-1 (IRS-1)/AKT and ERK/cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathways. Long-term HFFD-triggered neuroinflammation was restored by EGCG supplementation by inhibiting the MAPK and NF-κB pathways, as well as the expression of inflammatory mediators, such as TNF-α. EGCG also reversed high glucose and glucosamine-induced insulin resistance in SH-SY5Y neuronal cells by improving the oxidized cellular status and mitochondrial function. To our knowledge, this study is the first to provide compelling evidence that the nutritional compound EGCG has the potential to ameliorate HFFD-triggered learning and memory loss.-Mi, Y., Qi, G., Fan, R., Qiao, Q., Sun, Y., Gao, Y., Liu, X. EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS.
Collapse
Affiliation(s)
- Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Rong Fan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qinglian Qiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yali Sun
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuqi Gao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
38
|
RORα2 requires LSD1 to enhance tumor progression in breast cancer. Sci Rep 2017; 7:11994. [PMID: 28931919 PMCID: PMC5607251 DOI: 10.1038/s41598-017-12344-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/07/2017] [Indexed: 11/30/2022] Open
Abstract
Retinoic acid-related orphan receptor α (RORα) regulates diverse physiological processes, including inflammatory responses, lipid metabolism, circadian rhythm, and cancer biology. RORα has four different isoforms which have distinct N-terminal domains but share identical DNA binding domain and ligand binding domain in human. However, lack of specific antibody against each RORα isoform makes biochemical studies on each RORα isoform remain unclear. Here, we generate RORα2-specific antibody and characterize the role of RORα2 in promoting tumor progression in breast cancer. RORα2 requires lysine specific demethylase 1 (LSD1/KDM1A) as a coactivator for transcriptional activation of RORα2 target genes, exemplified by CTNND1. Intriguingly, RORα2 and LSD1 protein levels are dramatically elevated in human breast cancer specimens compared to normal counterparts. Taken together, our studies indicate that LSD1-mediated RORα2 transcriptional activity is important to promote tumor cell migration in human breast cancer as well as breast cancer cell lines. Therefore, our data establish that suppression of LSD1-mediated RORα2 transcriptional activity may be potent therapeutic strategy to attenuate tumor cell migration in human breast cancer.
Collapse
|
39
|
Abstract
Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.
Collapse
MESH Headings
- Animals
- Humans
- Molecular Targeted Therapy/methods
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Muscular Diseases/therapy
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repressor Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ryan D Welch
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, United States of America
| | | |
Collapse
|
40
|
Bae SA, Androulakis IP. The Synergistic Role of Light-Feeding Phase Relations on Entraining Robust Circadian Rhythms in the Periphery. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017702393. [PMID: 28469414 PMCID: PMC5404903 DOI: 10.1177/1177625017702393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
The feeding and fasting cycles are strong behavioral signals that entrain biological rhythms of the periphery. The feeding rhythms synchronize the activities of the metabolic organs, such as liver, synergistically with the light/dark cycle primarily entraining the suprachiasmatic nucleus. The likely phase misalignment between the feeding rhythms and the light/dark cycles appears to induce circadian disruptions leading to multiple physiological abnormalities motivating the need to investigate the mechanisms behind joint light-feeding circadian entrainment of peripheral tissues. To address this question, we propose a semimechanistic mathematical model describing the circadian dynamics of peripheral clock genes in human hepatocyte under the control of metabolic and light rhythmic signals. The model takes the synergistically acting light/dark cycles and feeding rhythms as inputs and incorporates the activity of sirtuin 1, a cellular energy sensor and a metabolic enzyme activated by nicotinamide adenine dinucleotide. The clock gene dynamics was simulated under various light-feeding phase relations and intensities, to explore the feeding entrainment mechanism as well as the convolution of light and feeding signals in the periphery. Our model predicts that the peripheral clock genes in hepatocyte can be completely entrained to the feeding rhythms, independent of the light/dark cycle. Furthermore, it predicts that light-feeding phase relationship is a critical factor in robust circadian oscillations.
Collapse
Affiliation(s)
- Seul-A Bae
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
41
|
Mi Y, Qi G, Fan R, Ji X, Liu Z, Liu X. EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1575-1589. [PMID: 28412321 DOI: 10.1016/j.bbadis.2017.04.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
In response to the daily light-dark (LD) cycle, organisms on Earth have evolved with the approximately 24-h endogenous oscillations to coordinate behavioral and physiological processes, including feeding, sleep, and metabolism homeostasis. Circadian desynchrony triggered by an energy-dense diet rich in fats and fructose is intimately connected with a series of metabolic disorders. Previous studies revealed that (-)-Epigallocatechin-3-gallate (EGCG) could mitigate metabolic misalignment; however, only a few reports have focused on its potential effect on directly manipulating circadian rhythms to ameliorate metabolic syndrome. Our goal was to investigate the regulating effect of EGCG treatment on metabolic misalignment triggered by a high-fat and high-fructose diet (HFFD) associating with the circadian clock. Our results indicated that HFFD treatment partially exhibited poor circadian oscillations of the core clock gene and the clock-controlled gene in the liver and fat relative to the control group. EGCG administration may ameliorate the diet-dependent decline in circadian function by controlling the Sirt1-PGC1αloop, implying the existence of an EGCG-entrainable oscillator. Subsequently, reducing fatty acid synthesis and elevating β-oxidation in the liver coupled with the increasing brown adipose tissue (BAT) energy expenditure observed in the EGCG group of mice prevented the adipocyte hypertrophy and fat accumulations common to BAT and white adipose tissue (WAT) derived from the HFFD mice. This study is the first to provide compelling evidences that EGCG may ameliorate diet-induced metabolic misalignment by regulating the rhythmic expression of the circadian clock genes in the liver and fat.
Collapse
Affiliation(s)
- Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Fan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohua Ji
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
42
|
Adhikary N, Shrestha SL, Sun JZ. Metabolic disturbances: role of the circadian timing system and sleep. Diabetol Int 2017; 8:14-22. [PMID: 30603302 PMCID: PMC6224937 DOI: 10.1007/s13340-016-0279-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022]
Abstract
The incidence of metabolic disorders such as obesity and diabetes is on the rise, and food quality is not alone to blame. Sleep disturbances, altered feeding time and circadian disruption are linked to metabolic disturbances in many clinical research studies and cross-sectional analyses. This review tried to summarize the role of the circadian timing system and sleep on energy and metabolic homeostasis. We also tried to explain the molecular and endocrine mechanisms behind circadian misalignment and sleep disorders that lead to metabolic disorders.
Collapse
Affiliation(s)
- Navin Adhikary
- Department of Endocrinology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| | - Santosh Lal Shrestha
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, 430060 China
| | - Jia Zhong Sun
- Department of Endocrinology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| |
Collapse
|
43
|
Aoyama S, Shibata S. The Role of Circadian Rhythms in Muscular and Osseous Physiology and Their Regulation by Nutrition and Exercise. Front Neurosci 2017; 11:63. [PMID: 28261043 PMCID: PMC5306200 DOI: 10.3389/fnins.2017.00063] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/27/2017] [Indexed: 01/13/2023] Open
Abstract
The mammalian circadian clock regulates the day and night cycles of various physiological functions. The circadian clock system consists of a central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks in peripheral tissues. According to the results of circadian transcriptomic studies in several tissues, the majority of rhythmic genes are expressed in a tissue-specific manner and are influenced by tissue-specific circadian rhythms. Here we review the diurnal variations of musculoskeletal functions and discuss the impact of the circadian clock on homeostasis in skeletal muscle and bone. Peripheral clocks are controlled by not only photic stimulation from the central clock in the SCN but also by external cues, such as feeding and exercise. In this review, we discuss the effects of feeding and exercise on the circadian clock and diurnal variation of musculoskeletal functions. We also discuss the therapeutic potential of chrono-nutrition and chrono-exercise on circadian disturbances and the failure of homeostasis in skeletal muscle and bone.
Collapse
Affiliation(s)
- Shinya Aoyama
- Organization for University Research Initiatives, Waseda UniversityTokyo, Japan; Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda UniversityTokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University Tokyo, Japan
| |
Collapse
|
44
|
Coban N, Gulec C, Ozsait-Selcuk B, Erginel-Unaltuna N. CYP19A1,MIFandABCA1genes are targets of the RORα in monocyte and endothelial cells. Cell Biol Int 2017; 41:163-176. [DOI: 10.1002/cbin.10712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/29/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Neslihan Coban
- Department of Genetics, Institute for Experimental Medicine; Istanbul University; Vakif Gureba Cad. 34080 Sehremini Istanbul Turkey
| | - Cagri Gulec
- Department of Genetics, Institute for Experimental Medicine; Istanbul University; Vakif Gureba Cad. 34080 Sehremini Istanbul Turkey
| | - Bilge Ozsait-Selcuk
- Department of Genetics, Institute for Experimental Medicine; Istanbul University; Vakif Gureba Cad. 34080 Sehremini Istanbul Turkey
| | - Nihan Erginel-Unaltuna
- Department of Genetics, Institute for Experimental Medicine; Istanbul University; Vakif Gureba Cad. 34080 Sehremini Istanbul Turkey
| |
Collapse
|
45
|
Ren J, Li B. The Functional Stability of FOXP3 and RORγt in Treg and Th17 and Their Therapeutic Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:155-189. [PMID: 28215223 DOI: 10.1016/bs.apcsb.2016.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The balance of CD4+CD25+FOXP3+ regulatory T cells (Tregs) and effector T cells plays a key role in maintaining immune homeostasis, while the imbalance of them is related to many inflammatory diseases in both human and mice. Here we discuss about the plasticity of Tregs and Th17 cells, and the related human diseases resulted from the imbalance of them. Further, we will focus on the mechanisms regulating the plasticity between Tregs and Th17 cells and the potential therapeutic strategies by targeting regulators of the expression and activity of FOXP3 and RORγt or regulators of Treg/Th17 balance in autoimmune diseases, allergy, infection, and cancer.
Collapse
Affiliation(s)
- J Ren
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China
| | - B Li
- Key Laboratory of Molecular Virology and Immunology, CAS Center for Excellence in Molecular Cell Science, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Universities and Colleges Admissions Service, Shanghai, PR China; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
46
|
Vancura P, Wolloscheck T, Baba K, Tosini G, Iuvone PM, Spessert R. Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells. PLoS One 2016; 11:e0164665. [PMID: 27727308 PMCID: PMC5058478 DOI: 10.1371/journal.pone.0164665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy-one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (Acadm) to display daily rhythms with peak values during daytime in preparations of the whole retina and microdissected photoreceptors. The cycling of both enzymes persisted in constant darkness, was dampened in mice deficient for dopamine D4 (D4) receptors and was altered in db/db mice-a model of diabetic retinopathy. The data of the present study are consistent with circadian clock-dependent and dopaminergic regulation of fatty acid oxidation in retina and its putative disturbance in diabetic retina.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase/genetics
- Acyl-CoA Dehydrogenase/metabolism
- Animals
- Carnitine O-Palmitoyltransferase/genetics
- Carnitine O-Palmitoyltransferase/metabolism
- Circadian Rhythm/physiology
- Diabetic Retinopathy/metabolism
- Diabetic Retinopathy/pathology
- Disease Models, Animal
- Dopamine/metabolism
- Energy Metabolism
- Fatty Acids/chemistry
- Fatty Acids/metabolism
- Female
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Obese
- Microscopy, Fluorescence
- Oxidation-Reduction
- Photoreceptor Cells/metabolism
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptors, Dopamine D4/deficiency
- Receptors, Dopamine D4/genetics
- Retina/metabolism
Collapse
Affiliation(s)
- Patrick Vancura
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Tanja Wolloscheck
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kenkichi Baba
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - P. Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
47
|
Transgenic Adipose-specific Expression of the Nuclear Receptor RORα Drives a Striking Shift in Fat Distribution and Impairs Glycemic Control. EBioMedicine 2016; 11:101-117. [PMID: 27568222 PMCID: PMC5049998 DOI: 10.1016/j.ebiom.2016.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
RORα is a member of the nuclear receptor (NR) superfamily and analysis of the (global) RORα-deficient mouse model revealed this NR has a role in glycemic control and fat deposition. Therefore, we generated an adipose-specific RORα ‘gain of function’ mouse model under the control of the fatty acid binding protein 4 (FABP4) promoter to elucidate the function of RORα in adipose tissue. The Tg-FABP4-RORα4 mice demonstrated a shift in fat distribution to non-adipose tissues when challenged with a high fat diet (HFD). Specifically, we observed a subcutaneous lipodystrophy, accompanied by hepatomegaly (fatty liver/mild portal fibrosis) and splenomegaly; in a background of decreased weight gain and total body fat after HFD. Moreover, we observed significantly higher fasting blood glucose and impaired clearance of glucose in Tg-FABP4-RORα4 mice. Genome wide expression and qPCR profiling analysis identified: (i) subcutaneous adipose specific decreases in the expression of genes involved in fatty acid biosynthesis, lipid droplet expansion and glycemic control, and (ii) the fibrosis pathway as the most significant pathway [including dysregulation of the collagen/extracellular matrix (ECM) pathways] in subcutaneous adipose and liver. The pathology presented in the Tg-FABP4-RORα4 mice is reminiscent of human metabolic disease (associated with aberrant ECM expression) highlighting the therapeutic potential of this NR. Adipose-specific expression of RORα is associated with subcutaneous lipodystrophy and hepatomegaly with fibrosis. The phenotype is associated with impaired glycemic control and decreased weight gain on a high fat diet. Gene expression profiling reveals significant dysregulation of extra cellular matrix signaling.
We have generated a ‘gain of function’ animal model with the nuclear hormone receptor RORα4 to understand the function of this protein in fat. Over expression of the RORα4 gene, was associated with fat deposition in non-adipose tissues on a high fat diet. Moreover, we observed a decrease in fat tissue (located under the skin) accompanied by enlargement of the liver and spleen. In addition, over expression of this receptor was associated with impaired glycemic control. The pathology in this animal model is reminiscent of metabolic disease in humans, highlighting the therapeutic potential of pharmacologically manipulating this nuclear receptor.
Collapse
|
48
|
Post-translational regulation of RORγt—A therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases. Cytokine Growth Factor Rev 2016; 30:1-17. [DOI: 10.1016/j.cytogfr.2016.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 01/16/2023]
|
49
|
Abstract
Accumulating evidence indicates that the circadian clock, a transcriptional/translational feedback circuit that generates ~24-hour oscillations in behavior and physiology, is a key temporal regulatory mechanism involved in many important aspects of muscle physiology. Given the clock as an evolutionarily-conserved time-keeping mechanism that synchronizes internal physiology to environmental cues, locomotor activities initiated by skeletal muscle enable entrainment to the light-dark cycles on earth, thus ensuring organismal survival and fitness. Despite the current understanding of the role of molecular clock in preventing age-related sarcopenia, investigations into the underlying molecular pathways that transmit clock signals to the maintenance of skeletal muscle growth and function are only emerging. In the current review, the importance of the muscle clock in maintaining muscle mass during development, repair and aging, together with its contribution to muscle metabolism, will be discussed. Based on our current understandings of how tissue-intrinsic muscle clock functions in the key aspects muscle physiology, interventions targeting the myogenic-modulatory activities of the clock circuit may offer new avenues for prevention and treatment of muscular diseases. Studies of mechanisms underlying circadian clock function and regulation in skeletal muscle warrant continued efforts.
Collapse
Affiliation(s)
- Somik Chatterjee
- Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ke Ma
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
50
|
Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. NUCLEAR RECEPTOR RESEARCH 2015; 2. [PMID: 26878025 PMCID: PMC4750502 DOI: 10.11131/2015/101185] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|