1
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
2
|
Vegivinti CTR, Keesari PR, Veeraballi S, Martins Maia CMP, Mehta AK, Lavu RR, Thakur RK, Tella SH, Patel R, Kakumani VK, Pulakurthi YS, Aluri S, Aggarwal RK, Ramachandra N, Zhao R, Sahu S, Shastri A, Verma A. Role of innate immunological/inflammatory pathways in myelodysplastic syndromes and AML: a narrative review. Exp Hematol Oncol 2023; 12:60. [PMID: 37422676 DOI: 10.1186/s40164-023-00422-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Dysregulation of the innate immune system and inflammatory-related pathways has been implicated in hematopoietic defects in the bone marrow microenvironment and associated with aging, clonal hematopoiesis, myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). As the innate immune system and its pathway regulators have been implicated in the pathogenesis of MDS/AML, novel approaches targeting these pathways have shown promising results. Variability in expression of Toll like receptors (TLRs), abnormal levels of MyD88 and subsequent activation of NF-κβ, dysregulated IL1-receptor associated kinases (IRAK), alterations in TGF-β and SMAD signaling, high levels of S100A8/A9 have all been implicated in pathogenesis of MDS/AML. In this review we not only discuss the interplay of various innate immune pathways in MDS pathogenesis but also focus on potential therapeutic targets from recent clinical trials including the use of monoclonal antibodies and small molecule inhibitors against these pathways.
Collapse
Affiliation(s)
- Charan Thej Reddy Vegivinti
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | | | | | - Ansh Krishnachandra Mehta
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Hematology and Oncology, Jacobi Medical Center/ Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rohit Reddy Lavu
- Department of Oncology, Yashoda hospitals, Hyderabad, 500036, India
| | - Rahul Kumar Thakur
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Sri Harsha Tella
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, US
| | - Riya Patel
- Department of Hematology and Oncology, University of Buffalo - Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, US
| | | | | | - Srinivas Aluri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | - Nandini Ramachandra
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rongbao Zhao
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Srabani Sahu
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Aditi Shastri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US.
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US.
| |
Collapse
|
3
|
Novel Antibody Exerts Antitumor Effect through Downregulation of CD147 and Activation of Multiple Stress Signals. JOURNAL OF ONCOLOGY 2022; 2022:3552793. [PMID: 36385956 PMCID: PMC9652086 DOI: 10.1155/2022/3552793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
CD147 is an immunoglobulin-like receptor that is highly expressed in various cancers and involved in the growth, metastasis, and activation of inflammatory pathways via interactions with various functional molecules, such as integrins, CD44, and monocarboxylate transporters. Through screening of CD147-targeting antibodies with antitumor efficacy, we discovered a novel rat monoclonal antibody #147D. This humanized IgG4-formatted antibody, h4#147D, showed potent antitumor efficacy in xenograft mouse models harboring the human PDAC cell line MIA PaCa-2, HCC cell line Hep G2, and CML cell line KU812, which featured low sensitivity to the corresponding standard-of-care drugs (gemcitabine, sorafenib, and imatinib, respectively). An analysis of tumor cells derived from MIA PaCa-2 xenograft mice treated with h4#147D revealed that cell surface expression of CD147 and its binding partners, including CD44 and integrin α3β1/α6β1, was significantly reduced by h4#147D. Inhibition of focal adhesion kinase (FAK), activation of multiple stress responsible signal proteins such as c-JunN-terminal kinase (JNK) and mitogen-activated protein kinase p38 (p38MAPK), and expression of SMAD4, as well as activation of caspase-3 were obviously observed in the tumor cells, suggesting that h4#147D induced tumor shrinkage by inducing multiple stress responsible signals. These results suggest that the anti-CD147 antibody h4#147D offers promise as a new antibody drug candidate.
Collapse
|
4
|
Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021; 99:1209-1220. [PMID: 34059951 PMCID: PMC8367892 DOI: 10.1007/s00109-021-02083-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
Collapse
|
5
|
Melchionna R, Trono P, Tocci A, Nisticò P. Actin Cytoskeleton and Regulation of TGFβ Signaling: Exploring Their Links. Biomolecules 2021; 11:biom11020336. [PMID: 33672325 PMCID: PMC7926735 DOI: 10.3390/biom11020336] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human tissues, to maintain their architecture and function, respond to injuries by activating intricate biochemical and physical mechanisms that regulates intercellular communication crucial in maintaining tissue homeostasis. Coordination of the communication occurs through the activity of different actin cytoskeletal regulators, physically connected to extracellular matrix through integrins, generating a platform of biochemical and biomechanical signaling that is deregulated in cancer. Among the major pathways, a controller of cellular functions is the cytokine transforming growth factor β (TGFβ), which remains a complex and central signaling network still to be interpreted and explained in cancer progression. Here, we discuss the link between actin dynamics and TGFβ signaling with the aim of exploring their aberrant interaction in cancer.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, via Chianesi 53, 00144 Rome, Italy; (R.M.); (P.T.); (A.T.)
| | - Paola Trono
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, via Chianesi 53, 00144 Rome, Italy; (R.M.); (P.T.); (A.T.)
- Institute of Biochemistry and Cell Biology, National Research Council, via Ramarini 32, 00015 Monterotondo Scalo, Rome, Italy
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, via Chianesi 53, 00144 Rome, Italy; (R.M.); (P.T.); (A.T.)
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, via Chianesi 53, 00144 Rome, Italy; (R.M.); (P.T.); (A.T.)
- Correspondence: ; Tel.: +39-0652662539
| |
Collapse
|
6
|
Feld C, Sahu P, Frech M, Finkernagel F, Nist A, Stiewe T, Bauer UM, Neubauer A. Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1. Nucleic Acids Res 2019; 46:3412-3428. [PMID: 29471413 PMCID: PMC5909421 DOI: 10.1093/nar/gky119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022] Open
Abstract
SKI is a transcriptional co-regulator and overexpressed in various human tumors, for example in acute myeloid leukemia (AML). SKI contributes to the origin and maintenance of the leukemic phenotype. Here, we use ChIP-seq and RNA-seq analysis to identify the epigenetic alterations induced by SKI overexpression in AML cells. We show that approximately two thirds of differentially expressed genes are up-regulated upon SKI deletion, of which >40% harbor SKI binding sites in their proximity, primarily in enhancer regions. Gene ontology analysis reveals that many of the differentially expressed genes are annotated to hematopoietic cell differentiation and inflammatory response, corroborating our finding that SKI contributes to a myeloid differentiation block in HL60 cells. We find that SKI peaks are enriched for RUNX1 consensus motifs, particularly in up-regulated SKI targets upon SKI deletion. RUNX1 ChIP-seq displays that nearly 70% of RUNX1 binding sites overlap with SKI peaks, mainly at enhancer regions. SKI and RUNX1 occupy the same genomic sites and cooperate in gene silencing. Our work demonstrates for the first time the predominant co-repressive function of SKI in AML cells on a genome-wide scale and uncovers the transcription factor RUNX1 as an important mediator of SKI-dependent transcriptional repression.
Collapse
Affiliation(s)
- Christine Feld
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.,Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Peeyush Sahu
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Miriam Frech
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.,Institute of Molecular Oncology, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| |
Collapse
|
7
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
8
|
Shu DY, Lovicu FJ. Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Prog Retin Eye Res 2017; 60:44-65. [PMID: 28807717 PMCID: PMC5600870 DOI: 10.1016/j.preteyeres.2017.08.001] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Wound healing is one of the most complex biological processes to occur in life. Repair of tissue following injury involves dynamic interactions between multiple cell types, growth factors, inflammatory mediators and components of the extracellular matrix (ECM). Aberrant and uncontrolled wound healing leads to a non-functional mass of fibrotic tissue. In the eye, fibrotic disease disrupts the normally transparent ocular tissues resulting in irreversible loss of vision. A common feature in fibrotic eye disease is the transdifferentiation of cells into myofibroblasts that can occur through a process known as epithelial-mesenchymal transition (EMT). Myofibroblasts rapidly produce excessive amounts of ECM and exert tractional forces across the ECM, resulting in the distortion of tissue architecture. Transforming growth factor-beta (TGFβ) plays a major role in myofibroblast transdifferentiation and has been implicated in numerous fibrotic eye diseases including corneal opacification, pterygium, anterior subcapsular cataract, posterior capsular opacification, proliferative vitreoretinopathy, fibrovascular membrane formation associated with proliferative diabetic retinopathy, submacular fibrosis, glaucoma and orbital fibrosis. This review serves to introduce the pathological functions of the myofibroblast in fibrotic eye disease. We also highlight recent developments in elucidating the multiple signaling pathways involved in fibrogenesis that may be exploited in the development of novel anti-fibrotic therapies to reduce ocular morbidity due to scarring.
Collapse
Affiliation(s)
- Daisy Y Shu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
9
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Caligaris C, Vázquez-Victorio G, Sosa-Garrocho M, Ríos-López DG, Marín-Hernández A, Macías-Silva M. Actin-cytoskeleton polymerization differentially controls the stability of Ski and SnoN co-repressors in normal but not in transformed hepatocytes. Biochim Biophys Acta Gen Subj 2015; 1850:1832-41. [PMID: 26002202 DOI: 10.1016/j.bbagen.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ski and SnoN proteins function as transcriptional co-repressors in the TGF-β pathway. They regulate cell proliferation and differentiation, and their aberrant expression results in altered TGF-β signalling, malignant transformation, and alterations in cell proliferation. METHODS We carried out a comparative characterization of the endogenous Ski and SnoN protein regulation by TGF-β, cell adhesion disruption and actin-cytoskeleton rearrangements between normal and transformed hepatocytes; we also analyzed Ski and SnoN protein stability, subcellular localization, and how their protein levels impact the TGF-β/Smad-driven gene transcription. RESULTS Ski and SnoN protein levels are lower in normal hepatocytes than in hepatoma cells. They exhibit a very short half-life and a nuclear/cytoplasmic distribution in normal hepatocytes opposed to a high stability and restricted nuclear localization in hepatoma cells. Interestingly, while normal cells exhibit a transient TGF-β-induced gene expression, the hepatoma cells are characterized by a strong and sustained TGF-β-induced gene expression. A novel finding is that Ski and SnoN stability is differentially regulated by cell adhesion and cytoskeleton rearrangements in the normal hepatocytes. The inhibition of protein turnover down-regulated both Ski and SnoN co-repressors impacting the kinetic of expression of TGF-β-target genes. CONCLUSION Normal regulatory mechanisms controlling Ski and SnoN stability, subcellular localization and expression are altered in hepatocarcinoma cells. GENERAL SIGNIFICANCE This work provides evidence that Ski and SnoN protein regulation is far more complex in normal than in transformed cells, since many of the normal regulatory mechanisms are lost in transformed cells.
Collapse
Affiliation(s)
- Cassandre Caligaris
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F., 04510, México
| | - Genaro Vázquez-Victorio
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F., 04510, México
| | - Marcela Sosa-Garrocho
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F., 04510, México
| | - Diana G Ríos-López
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F., 04510, México
| | - Alvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México D.F., 14080, México
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F., 04510, México.
| |
Collapse
|
11
|
Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell Mol Life Sci 2014; 71:1549. [PMID: 25031550 PMCID: PMC3962223 DOI: 10.1007/s00018-013-1376-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Estrogen and estrogen receptors (ERs) are critical regulators of breast epithelial cell proliferation, differentiation, and apoptosis. Compromised signaling vis-à-vis the estrogen receptor is believed to be a major contributing factor in the malignancy of breast cells. Targeting the ER signaling pathway has been a focal point in the development of breast cancer therapy. Although approximately 75 % of breast cancer patients are classified as luminal type (ER(+)), which predicts for response to endocrine-based therapy; however, innate or acquired resistance to endocrine-based drugs remains a serious challenge. The complexity of regulation for estrogen signaling coupled with the crosstalk of other oncogenic signaling pathways is a reason for endocrine therapy resistance. Alternative strategies that target novel molecular mechanisms are necessary to overcome this current and urgent gap in therapy. A thorough analysis of estrogen-signaling regulation is critical. In this review article, we will summarize current insights into the regulation of estrogen signaling as related to breast carcinogenesis and breast cancer therapy.
Collapse
|
12
|
Hernández-Damián J, Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Vázquez-Macías A, Caligaris C, Sosa-Garrocho M, Flores-Pérez B, Romero-Avila M, Macías-Silva M. Downregulation of SnoN oncoprotein induced by antibiotics anisomycin and puromycin positively regulates transforming growth factor-β signals. Biochim Biophys Acta Gen Subj 2013; 1830:5049-58. [PMID: 23872350 DOI: 10.1016/j.bbagen.2013.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/26/2013] [Accepted: 07/09/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND SnoN and Ski proteins function as Smad transcriptional corepressors and are implicated in the regulation of diverse cellular processes such as proliferation, differentiation and transformation. Transforming growth factor-β (TGF-β) signaling causes SnoN and Ski protein degradation via proteasome with the participation of phosphorylated R-Smad proteins. Intriguingly, the antibiotics anisomycin (ANS) and puromycin (PURO) are also able to downregulate Ski and SnoN proteins via proteasome. METHODS We explored the effects of ANS and PURO on SnoN protein downregulation when the activity of TGF-β signaling was inhibited by using different pharmacological and non-pharmacological approaches, either by using specific TβRI inhibitors, overexpressing the inhibitory Smad7 protein, or knocking-down TβRI receptor or Smad2 by specific shRNAs. The outcome of SnoN and Ski downregulation induced by ANS or PURO on TGF-β signaling was also studied. RESULTS SnoN protein downregulation induced by ANS and PURO did not involve the induction of R-Smad phosphorylation but it was abrogated after TGF-β signaling inhibition; this effect occurred in a cell type-specific manner and independently of protein synthesis inhibition or any other ribotoxic effect. Intriguingly, antibiotics seem to require components of the TGF-β/Smad pathway to downregulate SnoN. In addition, SnoN protein downregulation induced by antibiotics favored gene transcription induced by TGF-β signaling. CONCLUSIONS ANS and PURO require TGF-β/Smad pathway to induce SnoN and Ski protein downregulation independently of inducing R-Smad2 phosphorylation, which facilitates TGF-β signaling. GENERAL SIGNIFICANCE Antibiotic analogs lacking ribotoxic effects are useful as pharmacological tools to study TGF-β signaling by controlling Ski and SnoN protein levels.
Collapse
Affiliation(s)
- Jacqueline Hernández-Damián
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., 04510 Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Melling MA, Friendship CRC, Shepherd TG, Drysdale TA. Expression of Ski can act as a negative feedback mechanism on retinoic acid signaling. Dev Dyn 2013; 242:604-13. [PMID: 23441061 DOI: 10.1002/dvdy.23954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/23/2013] [Accepted: 02/08/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Retinoic acid signaling is essential for many aspects of early development in vertebrates. To control the levels of signaling, several retinoic acid target genes have been identified that act to suppress retinoic acid signaling in a negative feedback loop. The nuclear protein Ski has been extensively studied for its ability to suppress transforming growth factor-beta (TGF-β) signaling but has also been implicated in the repression of retinoic acid signaling. RESULTS We demonstrate that ski expression is up-regulated in response to retinoic acid in both early Xenopus embryos and in human cell lines. Blocking retinoic acid signaling using a retinoic acid antagonist results in a corresponding decrease in the levels of ski mRNA. Finally, overexpression of SKI in human cells results in reduced levels of CYP26A1 mRNA, a known target of retinoic acid signaling. CONCLUSIONS Our results, coupled with the known ability of Ski to repress retinoic acid signaling, demonstrate that Ski expression is a novel negative feedback mechanism acting on retinoic acid signaling.
Collapse
|
14
|
IHG-1 must be localised to mitochondria to decrease Smad7 expression and amplify TGF-β1-induced fibrotic responses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1969-78. [PMID: 23567938 DOI: 10.1016/j.bbamcr.2013.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/28/2013] [Accepted: 03/26/2013] [Indexed: 01/15/2023]
Abstract
TGF-β1 is a prototypic profibrotic cytokine and major driver of fibrosis in the kidney and other organs. Induced in high glucose-1 (IHG-1) is a mitochondrial protein which we have recently reported to be associated with renal disease. IHG-1 amplifies responses to TGF-β1 and regulates mitochondrial biogenesis by stabilising the transcriptional co-activator peroxisome proliferator-activated receptor gamma coactivator-1-alpha. Here we report that the mitochondrial localisation of IHG-1 is pivotal in the amplification of TGF-β1 signalling. We demonstrate that IHG-1 expression is associated with repression of the endogenous TGF-β1 inhibitor Smad7. Intriguingly, expression of a non-mitochondrial deletion mutant of IHG-1 (Δmts-IHG-1) repressed TGF-β1 fibrotic signalling in renal epithelial cells. In cells expressing Δmts-IHG-1 fibrotic responses including CCN2/connective tissue growth factor, fibronectin and jagged-1 expression were reduced following stimulation with TGF-β1. Δmts-IHG-1 modulation of TGF-β1 signalling was associated with increased Smad7 protein expression. Δmts-IHG-1 modulated TGF-β1 activity by increasing Smad7 protein expression as it failed to inhibit TGF-β1 transcriptional responses when endogenous Smad7 expression was knocked down. These data indicate that mitochondria modulate TGF-β1 signal transduction and that IHG-1 is a key player in this modulation.
Collapse
|
15
|
Briones-Orta MA, Levy L, Madsen CD, Das D, Erker Y, Sahai E, Hill CS. Arkadia regulates tumor metastasis by modulation of the TGF-β pathway. Cancer Res 2013; 73:1800-10. [PMID: 23467611 PMCID: PMC3672972 DOI: 10.1158/0008-5472.can-12-1916] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TGF-β can act as a tumor suppressor at early stages of cancer progression and as a tumor promoter at later stages. The E3 ubiquitin ligase Arkadia (RNF111) is a critical component of the TGF-β signaling pathway, being required for a subset of responses, those mediated by Smad3-Smad4 complexes. It acts by mediating ligand-induced degradation of Ski and SnoN (SKIL), which are 2 potent transcriptional repressors. Here, we investigate the role of Arkadia in cancer using model systems to address both potential tumor-suppressive and tumor-promoting roles. Stable reexpression of Arkadia in lung carcinoma NCI-H460 cells, which we show contain a hemizygous nonsense mutation in the Arkadia/RNF111 gene, efficiently restored TGF-β-induced Smad3-dependent transcription, and substantially decreased the ability of these cells to grow in soft agar in vitro. However, it had no effect on tumor growth in vivo in mouse models. Moreover, loss of Arkadia in cancer cell lines and human tumors is rare, arguing against a prominent tumor-suppressive role. In contrast, we have uncovered a potent tumor-promoting function for Arkadia. Using 3 different cancer cell lines whose tumorigenic properties are driven by TGF-β signaling, we show that loss of Arkadia function, either by overexpression of dominant negative Arkadia or by siRNA-induced knockdown, substantially inhibited lung colonization in tail vein injection experiments in immunodeficient mice. Our findings indicate that Arkadia is not critical for regulating tumor growth per se, but is required for the early stages of cancer cell colonization at the sites of metastasis.
Collapse
Affiliation(s)
- Marco A. Briones-Orta
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Laurence Levy
- INSERM UMR S 938, Hôpital St-Antoine, 184 rue du Faubourg St-Antoine, 75012 Paris, France
| | - Chris D. Madsen
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Debipriya Das
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Yigit Erker
- INSERM UMR S 938, Hôpital St-Antoine, 184 rue du Faubourg St-Antoine, 75012 Paris, France
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom
| |
Collapse
|
16
|
Namachivayam K, Blanco CL, MohanKumar K, Jagadeeswaran R, Vasquez M, McGill-Vargas L, Garzon SA, Jain SK, Gill RK, Freitag NE, Weitkamp JH, Seidner SR, Maheshwari A. Smad7 inhibits autocrine expression of TGF-β2 in intestinal epithelial cells in baboon necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G167-80. [PMID: 23154975 PMCID: PMC3543645 DOI: 10.1152/ajpgi.00141.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Preterm infants may be at risk of necrotizing enterocolitis (NEC) due to deficiency of transforming growth factor-β 2 (TGF-β(2)) in the developing intestine. We hypothesized that low epithelial TGF-β(2) expression in preterm intestine and during NEC results from diminished autocrine induction of TGF-β(2) in these cells. Premature baboons delivered at 67% gestation were treated per current norms for human preterm infants. NEC was diagnosed by clinical and radiological findings. Inflammatory cytokines, TGF-β(2), Smad7, Ski, and strawberry notch N (SnoN)/Ski-like oncoprotein (SKIL) was measured using quantitative reverse transcriptase-polymerase chain reaction, immunoblots, and immunohistochemistry. Smad7 effects were examined in transfected IEC6 intestinal epithelial cells in vitro. Findings were validated in archived human tissue samples of NEC. NEC was recorded in seven premature baboons. Consistent with existing human data, premature baboon intestine expressed less TGF-β(2) than term intestine. TGF-β(2) expression was regulated in epithelial cells in an autocrine fashion, which was interrupted in the premature intestine and during NEC due to increased expression of Smad7. LPS increased Smad7 binding to the TGF-β(2) promoter and was associated with dimethylation of the lysine H3K9, a marker of transcriptional silencing, on the nucleosome of TGF-β(2). Increased Smad7 expression in preterm intestine was correlated with the deficiency of SnoN/SKIL, a repressor of the Smad7 promoter. Smad7 inhibits autocrine expression of TGF-β(2) in intestinal epithelial cells in the normal premature intestine and during NEC. Increased Smad7 expression in the developing intestine may be due to a developmental deficiency of the SnoN/SKIL oncoprotein.
Collapse
Affiliation(s)
- Kopperuncholan Namachivayam
- Departments of Pediatrics (1Division of Neonatology and ,2Center for Neonatal and Pediatric Gastrointestinal Disease),
| | - Cynthia L. Blanco
- 3Departments of Pediatrics (Division of Neonatology), University of Texas Health Sciences Center at San Antonio, San Antonio, Texas;
| | - Krishnan MohanKumar
- Departments of Pediatrics (1Division of Neonatology and ,2Center for Neonatal and Pediatric Gastrointestinal Disease),
| | - Ramasamy Jagadeeswaran
- Departments of Pediatrics (1Division of Neonatology and ,2Center for Neonatal and Pediatric Gastrointestinal Disease),
| | - Margarita Vasquez
- 3Departments of Pediatrics (Division of Neonatology), University of Texas Health Sciences Center at San Antonio, San Antonio, Texas;
| | - Lisa McGill-Vargas
- 3Departments of Pediatrics (Division of Neonatology), University of Texas Health Sciences Center at San Antonio, San Antonio, Texas;
| | - Steven A. Garzon
- 2Center for Neonatal and Pediatric Gastrointestinal Disease), ,4Pathology,
| | - Sunil K. Jain
- 5Department of Pediatrics (Division of Neonatology), University of Texas Medical Branch, Galveston, Texas; and
| | - Ravinder K. Gill
- 2Center for Neonatal and Pediatric Gastrointestinal Disease), ,6Medicine (Section of Digestive Diseases and Nutrition),
| | | | - Jörn-Hendrik Weitkamp
- 8Department of Pediatrics (Division of Neonatology), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven R. Seidner
- 3Departments of Pediatrics (Division of Neonatology), University of Texas Health Sciences Center at San Antonio, San Antonio, Texas;
| | - Akhil Maheshwari
- Departments of Pediatrics (1Division of Neonatology and ,2Center for Neonatal and Pediatric Gastrointestinal Disease), ,9Pharmacology, University of Illinois at Chicago, Chicago, Illinois;
| |
Collapse
|
17
|
Carmignac V, Thevenon J, Adès L, Callewaert B, Julia S, Thauvin-Robinet C, Gueneau L, Courcet JB, Lopez E, Holman K, Renard M, Plauchu H, Plessis G, De Backer J, Child A, Arno G, Duplomb L, Callier P, Aral B, Vabres P, Gigot N, Arbustini E, Grasso M, Robinson PN, Goizet C, Baumann C, Di Rocco M, Sanchez Del Pozo J, Huet F, Jondeau G, Collod-Beroud G, Beroud C, Amiel J, Cormier-Daire V, Rivière JB, Boileau C, De Paepe A, Faivre L. In-frame mutations in exon 1 of SKI cause dominant Shprintzen-Goldberg syndrome. Am J Hum Genet 2012; 91:950-7. [PMID: 23103230 DOI: 10.1016/j.ajhg.2012.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/20/2012] [Accepted: 10/10/2012] [Indexed: 11/17/2022] Open
Abstract
Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-β signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-β-signaling pathway.
Collapse
Affiliation(s)
- Virginie Carmignac
- Equipe d'Accueil 4271, Equipe Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tecalco-Cruz AC, Sosa-Garrocho M, Vázquez-Victorio G, Ortiz-García L, Domínguez-Hüttinger E, Macías-Silva M. Transforming growth factor-β/SMAD Target gene SKIL is negatively regulated by the transcriptional cofactor complex SNON-SMAD4. J Biol Chem 2012; 287:26764-76. [PMID: 22674574 PMCID: PMC3411014 DOI: 10.1074/jbc.m112.386599] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Indexed: 12/23/2022] Open
Abstract
The human SKI-like (SKIL) gene encodes the SMAD transcriptional corepressor SNON that antagonizes TGF-β signaling. SNON protein levels are tightly regulated by the TGF-β pathway: whereas a short stimulation with TGF-β decreases SNON levels by its degradation via the proteasome, longer TGF-β treatment increases SNON levels by inducing SKIL gene expression. Here, we investigated the molecular mechanisms involved in the self-regulation of SKIL gene expression by SNON. Bioinformatics analysis showed that the human SKIL gene proximal promoter contains a TGF-β response element (TRE) bearing four groups of SMAD-binding elements that are also conserved in mouse. Two regions of 408 and 648 bp of the human SKIL gene (∼2.4 kb upstream of the ATG initiation codon) containing the core promoter, transcription start site, and the TRE were cloned for functional analysis. Binding of SMAD and SNON proteins to the TRE region of the SKIL gene promoter after TGF-β treatment was demonstrated by ChIP and sequential ChIP assays. Interestingly, the SNON-SMAD4 complex negatively regulated basal SKIL gene expression through binding the promoter and recruiting histone deacetylases. In response to TGF-β signal, SNON is removed from the SKIL gene promoter, and then the activated SMAD complexes bind the promoter to induce SKIL gene expression. Subsequently, the up-regulated SNON protein in complex with SMAD4 represses its own expression as part of the negative feedback loop regulating the TGF-β pathway. Accordingly, when the SNON-SMAD4 complex is absent as in some cancer cells lacking SMAD4 the regulation of some TGF-β target genes is modified.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| | - Marcela Sosa-Garrocho
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| | - Genaro Vázquez-Victorio
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| | - Layla Ortiz-García
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| | - Elisa Domínguez-Hüttinger
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| | - Marina Macías-Silva
- From the Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal 04510, México
| |
Collapse
|
19
|
Bonnon C, Atanasoski S. c-Ski in health and disease. Cell Tissue Res 2011; 347:51-64. [DOI: 10.1007/s00441-011-1180-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/15/2011] [Indexed: 01/28/2023]
|
20
|
Band AM, Laiho M. Crosstalk of TGF-β and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 2011; 16:109-15. [PMID: 21390570 DOI: 10.1007/s10911-011-9203-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/17/2023] Open
Abstract
Estrogen receptor-α (ERα) and transforming growth factor (TGF)-β signaling pathways are major regulators during mammary gland development, function and tumorigenesis. Predominantly, they have opposing roles in proliferation and apoptosis. While ERα signaling supports growth and differentiation and is antiapoptotic, mammary gland epithelia cells are very sensitive to TGF-β-induced cell cycle arrest and apoptosis. Their regulatory pathways intersect, and ERα blocks TGF-β pathway by multiple means, including direct interactions of its signaling components, Smads. However, relatively little is known of the dysfunction of their interactions in cancer. A better understanding would help to develop new strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Arja M Band
- Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
21
|
Band AM, Björklund M, Laiho M. The phosphatidylinositol 3-kinase/Akt pathway regulates transforming growth factor-{beta} signaling by destabilizing ski and inducing Smad7. J Biol Chem 2010; 284:35441-9. [PMID: 19875456 DOI: 10.1074/jbc.m109.029488] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ski is an oncoprotein that negatively regulates transforming growth factor (TGF)-beta signaling. It acts as a transcriptional co-repressor by binding to TGF-beta signaling molecules, Smads. Efficient TGF-beta signaling is facilitated by rapid proteasome-mediated degradation of Ski by TGF-beta. Here we report that Ski is phosphorylated by Akt/PKB kinase. Akt phosphorylates Ski on a highly conserved Akt motif at threonine 458 both in vitro and in vivo. The phosphorylation of Ski at threonine 458 is induced by Akt pathway activators including insulin, insulin-like growth factor-1, and hepatocyte growth factor. The phosphorylation of Ski causes its destabilization and reduces Ski-mediated inhibition of expression of another negative regulator of TGF-beta, Smad7. Induction of Smad7 levels leads to inactivation of TGF-beta receptors and TGF-beta signaling cascade, as indicated by reduced induction of TGF-beta target p15. Therefore, Akt modulates TGF-beta signaling by temporarily adjusting the levels of two TGF-beta pathway negative regulators, Ski and Smad7. These novel findings demonstrate that Akt pathway activation directly impacts TGF-beta pathway.
Collapse
Affiliation(s)
- Arja M Band
- Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| | | | | |
Collapse
|
22
|
Turner AG, Dwivedi PP, Anderson PH, May BK, Morris HA. Regulation of the 5'-flanking region of the human CYP27B1 gene in osteoblast cells. Mol Cell Endocrinol 2009; 311:55-61. [PMID: 19524013 DOI: 10.1016/j.mce.2009.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/20/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
Synthesis of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is catalysed by the enzyme 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP27B1). Regulation of CYP27B1 gene expression is poorly understood, particularly in non-renal tissues including bone where 1,25(OH)(2)D(3) is hypothesised to serve autocrine/paracrine roles. Transient transfection of ROS 17/2.8 osteoblast-like cells with reporter gene constructs containing deletions of the 5'-flanking region of the human CYP27B1 gene revealed a proximal promoter, enhancer region and strong upstream repressive region. Putative CCAAT and GC boxes, as well as Ets protein binding sites were shown to contribute to promoter and enhancer activities respectively in common with kidney and prostate cells. Inhibition of basal expression was largely attributed to a palindrome 5'-GTCTCAGAC-3' (-1015/-1007bp) that contains two putative canonical Smad binding elements. We conclude that repression of CYP27B1 gene expression may be a common event but the novel inhibitory elements we have identified may be unique to osteoblasts.
Collapse
Affiliation(s)
- A G Turner
- Department of Medicine, Austin Health, University of Melbourne, Australia.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Transforming growth factor (TGF)-β is a pleiotropic cytokine regulating a variety of cellular processes such as cell growth, differentiation, apoptosis, migration, cell adhesion, and immune response. In the well-understood classical TGF-β signaling pathway, TGF-β activates Smad signalling via its two cell surface receptors such as TβRII and ALK5/TβRI, leading to Smad-mediated transcriptional regulation. In addition, TGF-β may also activate other signaling pathways like mitogen-activated protein kinase, PI3K, etc. The signaling of TGF-β is finely regulated at different levels. Inhibitory Smads, including Smad6 and Smad7, are key regulators of TGF-β/bone morphogenetic protein (BMP) signaling by negative feedback loops. They can form stable complexes with activated type I receptors and thereby blocking the phosphorylation of R-Smads, or recruit ubiquitin E3 ligases, such as Smurf1/2, resulting in the ubiquitination and degradation of the activated type I receptors. Besides, these inhibitory Smad proteins also inhibit TGF-β/BMP signaling in the nucleus by interacting with transcriptional repressors, such as histone deacetylases, Hoxc-8, and CtBP, or disrupting the formation of the TGF-β-induced functional Smad-DNA complexes. Smad7 is in turn regulated by different stimuli, including TGF-β, IFN-γ, TNF-α as well as ultraviolet and TPA, and mediates the crosstalk between TGF-β and other signaling pathways. Deregulation of Smad7 expression has been associated with various human diseases, such as tissue fibrosis, inflammatory disease as well as carcinogenesis. Overexpression of Smad7 has been shown to antagonize TGF-β-mediated fibrosis, carcinogenesis, and inflammation, suggesting a therapeutic potential of Smad7 to treat these diseases.
Collapse
Affiliation(s)
- Xiaohua Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Ziying Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Yeguang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
- Correspondence address. Tel: +86-10-62795184; Fax: +86-10-62794376; E-mail:
| |
Collapse
|
24
|
Tabata T, Kokura K, Ten Dijke P, Ishii S. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5. Genes Cells 2008; 14:17-28. [PMID: 19032343 DOI: 10.1111/j.1365-2443.2008.01246.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The products encoded by ski and its related gene, sno, (Ski and Sno) act as transcriptional co-repressors and interact with other co-repressors such as N-CoR/SMRT and mSin3A. Ski and Sno mediate transcriptional repression by various repressors, including Mad, Rb and Gli3. Ski/Sno also suppress transcription induced by multiple activators, such as Smads and c-Myb. In particular, the inhibition of TGF-beta-induced transcription by binding to Smads is correlated with the oncogenic activity of Ski and Sno. However, the molecular mechanism by which Ski and Sno mediate transcriptional repression remains unknown. In this study, we report the purification and characterization of Ski complexes. The Ski complexes purified from HeLa cells contained histone deacetylase 3 (HDAC3) and protein arginine methyltransferase 5 (PRMT5), in addition to multiple Smad proteins (Smad2, Smad3 and Smad4). Chromatin immunoprecipitation assays indicated that these components of the Ski complexes were localized on the SMAD7 gene promoter, which is the TGF-beta target gene, in TGF-beta-untreated HepG2 cells. Knockdown of these components using siRNA led to up-regulation of SMAD7 mRNA. These results indicate that Ski complexes serve to maintain a TGF-beta-responsive promoter at a repressed basal level via the activities of histone deacetylase and histone arginine methyltransferase.
Collapse
Affiliation(s)
- Takanori Tabata
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | |
Collapse
|
25
|
Zhang H, Stavnezer E. Ski regulates muscle terminal differentiation by transcriptional activation of Myog in a complex with Six1 and Eya3. J Biol Chem 2008; 284:2867-2879. [PMID: 19008232 DOI: 10.1074/jbc.m807526200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Overexpression of the Ski pro-oncogene has been shown to induce myogenesis in non-muscle cells, to promote muscle hypertrophy in postnatal mice, and to activate transcription of muscle-specific genes. However, the precise role of Ski in muscle cell differentiation and its underlying molecular mechanism are not fully understood. To elucidate the involvement of Ski in muscle terminal differentiation, two retroviral systems were used to achieve conditional overexpression or knockdown of Ski in satellite cell-derived C2C12 myoblasts. We found that enforced expression of Ski promoted differentiation, whereas loss of Ski severely impaired it. Compromised terminal differentiation in the absence of Ski was likely because of the failure to induce myogenin (Myog) and p21 despite normal expression of MyoD. Chromatin immunoprecipitation and transcriptional reporter experiments showed that Ski occupied the endogenous Myog regulatory region and activated transcription from the Myog regulatory region upon differentiation. Transactivation of Myog was largely dependent on a MEF3 site bound by Six1, not on the binding site of MyoD or MEF2. Activation of the MEF3 site required direct interaction of Ski with Six1 and Eya3 mediated by the evolutionarily conserved Dachshund homology domain of Ski. Our results indicate that Ski is necessary for muscle terminal differentiation and that it exerts this role, at least in part, through its association with Six1 and Eya3 to regulate the Myog transcription.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ed Stavnezer
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
26
|
Upregulation of mRNA expression of MCP-1 by TGF-β1 in fibroblast cells from Peyronie’s disease. World J Urol 2008; 27:123-30. [DOI: 10.1007/s00345-008-0320-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 07/28/2008] [Indexed: 02/06/2023] Open
|
27
|
Luwor RB, Kaye AH, Zhu HJ. Transforming growth factor-beta (TGF-beta) and brain tumours. J Clin Neurosci 2008; 15:845-55. [PMID: 18550374 DOI: 10.1016/j.jocn.2008.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 01/27/2008] [Indexed: 12/29/2022]
Abstract
Since its discovery in the late 1970s considerable research has linked transforming growth factor-beta (TGF-beta) to several human diseases such as fibrosis, auto-immunity and cancer. TGF-beta acts initially as a growth inhibitory factor in early stages of tumour development. In contrast, as tumours evolve, they develop mechanisms to evade the growth-regulatory effects of TGF-beta, resulting in greater tumour invasiveness, increased metastatic potential and inhibition of surrounding immune responses. However, although extensively studied, the molecular mechanisms that trigger tumour cells to "switch" from TGF-beta-inhibited to TGF-beta-promoted are still not fully understood. Contradictory studies that demonstrate opposite cellular effects mediated by TGF-beta are abundant throughout the literature. This review summarizes the current molecular mechanisms involved in the tumour suppressive and tumour progressive characteristics of TGF-beta in brain tumours. Potential therapeutic agents that target TGF-beta and related proteins being evaluated against brain tumours is also discussed.
Collapse
Affiliation(s)
- Rodney B Luwor
- Department of Surgery, University of Melbourne, Level 6, Clinical Sciences Building, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|
28
|
Nagano Y, Mavrakis KJ, Lee KL, Fujii T, Koinuma D, Sase H, Yuki K, Isogaya K, Saitoh M, Imamura T, Episkopou V, Miyazono K, Miyazawa K. Arkadia induces degradation of SnoN and c-Ski to enhance transforming growth factor-beta signaling. J Biol Chem 2007; 282:20492-501. [PMID: 17510063 DOI: 10.1074/jbc.m701294200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) signaling is controlled by a variety of regulators that target either signaling receptors or activated Smad complexes. Among the negative regulators, Smad7 antagonizes TGF-beta signaling mainly through targeting the signaling receptors, whereas SnoN and c-Ski repress signaling at the transcriptional level through inactivation of Smad complexes. We previously found that Arkadia is a positive regulator of TGF-beta signaling that induces ubiquitin-dependent degradation of Smad7 through its C-terminal RING domain. We report here that Arkadia induces degradation of SnoN and c-Ski in addition to Smad7. Arkadia interacts with SnoN and c-Ski in their free forms as well as in the forms bound to Smad proteins, and constitutively down-regulates levels of their expression. Arkadia thus appears to effectively enhance TGF-beta signaling through simultaneous down-regulation of two distinct types of negative regulators, Smad7 and SnoN/c-Ski, and may play an important role in determining the intensity of TGF-beta family signaling in target cells.
Collapse
Affiliation(s)
- Yoshiko Nagano
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mnich CD, Hoek KS, Oberholzer PA, Seifert B, Hafner J, Dummer R, Mihic D. Reduced pSmad2 immunodetection correlates with increased primary melanoma thickness. Melanoma Res 2007; 17:131-6. [PMID: 17496789 DOI: 10.1097/cmr.0b013e3280dec693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cutaneous melanoma is the most aggressive of cutaneous neoplasms. Identifying patients with an increased risk for the development of metastases is critical. This study investigates phospho-Smad2, a central factor of the transforming growth factor beta pathway, on formalin-fixed, paraffin-embedded tissues from 60 primary cutaneous melanomas (Breslow >1 mm), for its candidacy for being a prognostic marker in primary cutaneous melanoma. Phospho-Smad2 positivity was assessed for correlation with clinical parameters including Breslow index, melanoma type, survival, development of metastases, sentinel lymph node status and age. Phospho-Smad2 positivity was not associated with survival or development of metastases, suggesting that it would not be a useful prognostic marker. Despite this, we found phospho-Smad2 positivity to be correlated with low tumour thickness, indicating that as the primary tumour grows there is an increased inhibition of transforming growth factor beta signalling resulting in suppressed Smad2 phosphorylation. Additionally, phosphorylation of Smad2 in neighbouring melanoma cells and keratinocytes was interrelated, which is a further indication that Smad2 phosphorylation in primary melanoma is affected by local area microenvironmental factors. We hypothesize that the observed decrease in transforming growth factor beta signalling in thicker primary melanomas is due to the increased production of signalling inhibitors.
Collapse
Affiliation(s)
- Christian D Mnich
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Nagata M, Goto K, Ehata S, Kobayashi N, Saitoh M, Miyoshi H, Imamura T, Miyazawa K, Miyazono K. Nuclear and cytoplasmic c-Ski differently modulate cellular functions. Genes Cells 2006; 11:1267-80. [PMID: 17054724 DOI: 10.1111/j.1365-2443.2006.01018.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
c-Ski is a proto-oncogene product that induces morphologic transformation, anchorage independence, and myogenic differentiation when it is over-expressed in mesenchymal cells. c-Ski also inhibits signaling of transforming growth factor-beta (TGF-beta) superfamily members through interaction with Smad proteins. Although c-Ski is predominantly localized in the nucleus, aberrant cytoplasmic localization of it has also been reported in some tumor tissues and cell lines. In the present study, we identified the nuclear localization signal (NLS) in c-Ski. By introducing a mutation to abolish NLS activity, we examined the function of cytoplasmic c-Ski. Although cytoplasmic c-Ski suppressed TGF-beta superfamily-induced Smad signaling through sequestration of activated Smad complex to the cytoplasm, it failed to exhibit some of the activities that require nuclear localization of c-Ski, including suppression of basal transcription of the Smad7 gene. These findings indicate that subcellular localization of c-Ski affects its biologic activities. We also found that c-Ski accumulated in the cytoplasm when proteasome activity was inhibited. Mapping of the regions required for cytoplasmic accumulation by proteasome inhibitors suggests that subcellular localization of c-Ski may be regulated by proteasome-sensitive processes through amino acid residues 94-210 and 491-548.
Collapse
Affiliation(s)
- Motoko Nagata
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Briones-Orta MA, Sosa-Garrocho M, Moreno-Alvarez P, Fonseca-Sánchez MA, Macías-Silva M. SnoN co-repressor binds and represses smad7 gene promoter. Biochem Biophys Res Commun 2006; 341:889-94. [PMID: 16442497 DOI: 10.1016/j.bbrc.2006.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 02/04/2023]
Abstract
SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.
Collapse
Affiliation(s)
- Marco A Briones-Orta
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | | | | | | | | |
Collapse
|
32
|
Vázquez-Macías A, Ruíz-Mendoza AB, Fonseca-Sánchez MA, Briones-Orta MA, Macías-Silva M. Downregulation of Ski and SnoN co-repressors by anisomycin. FEBS Lett 2005; 579:3701-6. [PMID: 15967445 DOI: 10.1016/j.febslet.2005.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/07/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
Proteasome pathway regulates TGF-beta signaling; degradation of activated Smad2/3 and receptors turns TGF-beta signal off, while degradation of negative modulators such as Ski and SnoN maintains the signal. We have found that anisomycin is able to downregulate Ski and SnoN via proteasome as TGF-beta does, but through a mechanism independent of Smad activation. The mechanism used by anisomycin to downregulate Ski and SnoN is also independent of MAPK activation and protein synthesis inhibition. TGF-beta signal was the only pathway described causing Ski and SnoN degradation, thus this new effect of anisomycin on endogenous Ski and SnoN proteins suggests alternative processes to downregulate these negative modulators of TGF-beta signaling.
Collapse
Affiliation(s)
- Aleida Vázquez-Macías
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | | | | | | | | |
Collapse
|
33
|
Abstract
Transforming Growth Factor (TGF)-beta family, including TGF-beta, bone morphorgenic protein (BMP), and activn, plays an important role in essential cellular functions such as proliferation, differentiation, apoptosis, tissue remodeling, angiognesis, immune responses, and cell adhesions. TGF-beta predominantly transmits the signals through serine/threonine receptor kinases and cytoplasmic proteins called Smads. Since the discovery of TGF-beta in the early 1980s, the dysregulation of TGF-beta /Smad signaling has been implicated in the pathogenesis of human diseases. Among signal transducers in TGF-beta/Smad signaling, inhibitory Smads (I-Smads), Smad6 and Smad7, act as major negative regulators forming autoinhibitory feedback loops and mediate the cross-talking with other signaling pathways. Expressions of I-Smads are mainly regulated on the transcriptional levels and post-translational protein degradations and their intracellular levels are tightly controlled to maintain the homeostatic balances. However, abnormal levels of I-Smads in the pathological conditions elicit the altered TGF-beta signaling in cells, eventually causing TGF-beta-related human diseases. Thus, exploring the molecular mechanisms about the regulations of I-Smads may provide the therapeutic clues for human diseases induced by the abnormal TGF-beta signaling.
Collapse
Affiliation(s)
- Seok Hee Park
- Department of Pathology and Research Institute of Medical Science, Inha University College of Medicine, Incheon, Republic of Korea.
| |
Collapse
|