1
|
Li M, Wang X, Hong J, Mao J, Chen J, Chen X, Du Y, Song D. Transglutaminase 2 in breast cancer metastasis and drug resistance. Front Cell Dev Biol 2024; 12:1485258. [PMID: 39544364 PMCID: PMC11560871 DOI: 10.3389/fcell.2024.1485258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Transglutaminase 2 (TG2) is a widely distributed multifunctional protein with various enzymatic and non-enzymatic activities. It is becoming increasingly evident that high levels of TG2 in tumors induce the occurrence of epithelial to mesenchymal transition (EMT) and the acquisition of stem cell-like phenotypes, promoting tumor metastasis and drug resistance. By regulating intracellular and extracellular signaling pathways, TG2 promotes breast cancer metastasis to lung, brain, liver and bone, as well as resistance to various chemotherapy drugs including docetaxel, doxorubicin, platinum and neratinib. More importantly, recent studies described the involvement of TG2 in PD-1/PD-L1 inhibitors resistance. An in-depth understanding of the role that TG2 plays in the progression of metastasis and drug resistance will offer new therapeutic targets for breast cancer treatment. This review covers the extensive and rapidly growing field of the role of TG2 in breast cancer. Based on the role of TG2 in EMT, we summarize TG2-related signaling pathways in breast cancer metastasis and drug resistance and discuss TG2 as a therapeutic target.
Collapse
Affiliation(s)
- Mengxin Li
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xuanzhong Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jinghui Hong
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Juanjuan Mao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiasi Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuyang Chen
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Sugitani K, Mokuya T, Kanai Y, Takaya Y, Omori Y, Koriyama Y. Transglutaminase 2 Regulates HSF1 Gene Expression in the Acute Phase of Fish Optic Nerve Regeneration. Int J Mol Sci 2024; 25:9078. [PMID: 39201764 PMCID: PMC11354351 DOI: 10.3390/ijms25169078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Fish retinal ganglion cells (RGCs) can regenerate after optic nerve lesions (ONLs). We previously reported that heat shock factor 1 (HSF1) and Yamanaka factors increased in the zebrafish retina 0.5-24 h after ONLs, and they led to cell survival and the transformation of neuro-stem cells. We also showed that retinoic acid (RA) signaling and transglutaminase 2 (TG2) were activated in the fish retina, performing neurite outgrowth 5-30 days after ONLs. In this study, we found that RA signaling and TG2 increased within 0.5 h in the zebrafish retina after ONLs. We examined their interaction with the TG2-specific morpholino and inhibitor due to the significantly close initiation time of TG2 and HSF1. The inhibition of TG2 led to the complete suppression of HSF1 expression. Furthermore, the results of a ChIP assay with an anti-TG2 antibody evidenced significant anti-TG2 immunoprecipitation of HSF1 genome DNA after ONLs. The inhibition of TG2 also suppressed Yamanaka factors' gene expression. This rapid increase in TG2 expression occurred 30 min after the ONLs, and RA signaling occurred 15 min before this change. The present study demonstrates that TG2 regulates Yamanaka factors via HSF1 signals in the acute phase of fish optic nerve regeneration.
Collapse
Affiliation(s)
- Kayo Sugitani
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Takumi Mokuya
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Yu Kanai
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Yurina Takaya
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Yuya Omori
- Department of Clinical Laboratory Science, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka 513-8670, Japan;
| |
Collapse
|
3
|
Aguiari G, Crudele F, Taccioli C, Minotti L, Corrà F, Keillor JW, Grassilli S, Cervellati C, Volinia S, Bergamini CM, Bianchi N. Dysregulation of Transglutaminase type 2 through GATA3 defines aggressiveness and Doxorubicin sensitivity in breast cancer. Int J Biol Sci 2022; 18:1-14. [PMID: 34975314 PMCID: PMC8692156 DOI: 10.7150/ijbs.64167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/30/2021] [Indexed: 11/05/2022] Open
Abstract
The role of transglutaminase type 2 in cell physiology is related to protein transamidation and signal transduction (affecting extracellular, intracellular and nuclear processes) aided by the expression of truncated isoforms and of two lncRNAs with regulatory functions. In breast cancer TG2 is associated with disease progression supporting motility, epithelial-mesenchymal transition, invasion and drug resistance. The aim of his work is to clarify these issues by emphasizing the interconnections among TGM2 variants and transcription factors associated with an aggressive phenotype, in which the truncated TGH isoform correlates with malignancy. TGM2 transcripts are upregulated by several drugs in MCF-7, but only Doxorubicin is effective in MDA-MB-231 cells. These differences reflect the expression of GATA3, as demonstrated by silencing, suggesting a link between this transcription factor and gene dysregulation. Of note, NC9, an irreversible inhibitor of enzymatic TG2 activities, emerges to control NF-ĸB and apoptosis in breast cancer cell lines, showing potential for combination therapies with Doxorubicin.
Collapse
Affiliation(s)
- Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Crudele
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Linda Minotti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio Corrà
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44124 Ferrara FE, Italy
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), Via Fossato di Mortara 70, 44124 Ferrara FE, Italy
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
The Motility and Mesenchymal Features of Breast Cancer Cells Correlate with the Levels and Intracellular Localization of Transglutaminase Type 2. Cells 2021; 10:cells10113059. [PMID: 34831282 PMCID: PMC8616519 DOI: 10.3390/cells10113059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
We have investigated motility in breast cancer cell lines in association with the expression of Transglutaminase type 2 (TG2) as well as upon the administration of Doxorubicin (Dox), an active cytotoxic agent that is employed in chemotherapy. The exposure of MCF-7 cells to the drug increased TG2 levels, triggering epithelial–mesenchymal transition (EMT), thereby supporting cell motility. The effects of Dox on the movement of MCF-7 cells were counteracted by treatment with NC9, a TG2 inhibitor, which induced morphological changes and also reduced the migration of MDA-MB-231 cells exhibiting high levels of TG2. The physical association of TG2 with the cytoskeletal component vimentin appeared pivotal both in drug-treated MCF-7 and in MDA-MB-231 cells and seemed to be independent of the catalytic activity of TG2. NC9 altered the subcellular distribution of TG2 and, consequently, the co-localization of TG2 with vimentin. Furthermore, NC9 induced a nuclear accumulation of TG2 as a prelude to TG2-dependent gene expression modifications. Since enzyme activity can affect both motility and nuclear functions, targeting of this protein could represent a method to improve therapeutic interventions in breast tumors, particularly those to control progression and to limit drug resistance.
Collapse
|
5
|
Tatsukawa H, Hitomi K. Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis. Cells 2021; 10:cells10071842. [PMID: 34360011 PMCID: PMC8307792 DOI: 10.3390/cells10071842] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslinking between Gln and Lys residues and involved in various pathophysiological events. Besides this crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold, protein disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and serotonylation. Through these activities, TG2 is involved in cell growth, differentiation, cell death, inflammation, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its subcellular localization and biological activity, leading to cell death or survival. In normal unstressed cells, intracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions. However, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open conformation, demonstrating a transamidase activity involved in cell death or survival. These functional discrepancies of TG2 open form might be caused by its multifunctional nature, the existence of splicing variants, the cell type and stimulus, and the genetic backgrounds and variations of the mouse models used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in fibrosis during tissue repair. Here, we summarize and discuss the multifunctional and controversial roles of TG2, focusing on cell death/survival and fibrosis.
Collapse
|
6
|
Zhong W, Liu Y, Zeng P. A Model-free Variable Screening Method Based on Leverage Score. J Am Stat Assoc 2021; 118:135-146. [PMID: 37346228 PMCID: PMC10281711 DOI: 10.1080/01621459.2021.1918554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/14/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
With rapid advances in information technology, massive datasets are collected in all fields of science, such as biology, chemistry, and social science. Useful or meaningful information is extracted from these data often through statistical learning or model fitting. In massive datasets, both sample size and number of predictors can be large, in which case conventional methods face computational challenges. Recently, an innovative and effective sampling scheme based on leverage scores via singular value decompositions has been proposed to select rows of a design matrix as a surrogate of the full data in linear regression. Analogously, variable screening can be viewed as selecting rows of the design matrix. However, effective variable selection along this line of thinking remains elusive. In this article, we bridge this gap to propose a weighted leverage variable screening method by utilizing both the left and right singular vectors of the design matrix. We show theoretically and empirically that the predictors selected using our method can consistently include true predictors not only for linear models but also for complicated general index models. Extensive simulation studies show that the weighted leverage screening method is highly computationally efficient and effective. We also demonstrate its success in identifying carcinoma related genes using spatial transcriptome data.
Collapse
Affiliation(s)
- Wenxuan Zhong
- Department of Statistics, University of Georgia, Athens, GA, 30602
| | - Yiwen Liu
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, 85724
| | - Peng Zeng
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, 36849
| |
Collapse
|
7
|
Sharma M, Turaga RC, Yuan Y, Satyanarayana G, Mishra F, Bian Z, Liu W, Sun L, Yang J, Liu ZR. Simultaneously targeting cancer-associated fibroblasts and angiogenic vessel as a treatment for TNBC. J Exp Med 2021; 218:211769. [PMID: 33561195 PMCID: PMC7876552 DOI: 10.1084/jem.20200712] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Fibrotic tumor stroma plays an important role in facilitating triple-negative breast cancer (TNBC) progression and chemotherapeutic resistance. We previously reported a rationally designed protein (ProAgio) that targets integrin αvβ3 at a novel site. ProAgio induces apoptosis via the integrin. Cancer-associated fibroblasts (CAFs) and angiogenic endothelial cells (aECs) in TNBC tumor express high levels of integrin αvβ3. ProAgio effectively induces apoptosis in CAFs and aECs. The depletion of CAFs by ProAgio reduces intratumoral collagen and decreases growth factors released from CAFs in the tumor, resulting in decreased cancer cell proliferation and apoptotic resistance. ProAgio also eliminates leaky tumor angiogenic vessels, which consequently reduces tumor hypoxia and improves drug delivery. The depletion of CAFs and reduction in hypoxia by ProAgio decreases lysyl oxidase (LOX) secretion, which may play a role in the reduction of metastasis. ProAgio stand-alone or in combination with a chemotherapeutic agent provides survival benefit in TNBC murine models, highlighting the therapeutic potential of ProAgio as a treatment strategy.
Collapse
Affiliation(s)
- Malvika Sharma
- Department of Biology, Georgia State University, Atlanta, GA
| | | | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA
| | | | - Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, GA
| | - Zhen Bian
- Department of Biology, Georgia State University, Atlanta, GA
| | - Wei Liu
- Department of Biology, Georgia State University, Atlanta, GA.,Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Li Sun
- Amoytop Biotech Inc., Xiamen, People's Republic of China
| | - Jenny Yang
- Department of Chemistry, Georgia State University, Atlanta, GA
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA
| |
Collapse
|
8
|
Ulukan B, Bihorac A, Sipahioglu T, Kiraly R, Fesus L, Telci D. Role of Tissue Transglutaminase Catalytic and Guanosine Triphosphate-Binding Domains in Renal Cell Carcinoma Progression. ACS OMEGA 2020; 5:28273-28284. [PMID: 33163811 PMCID: PMC7643270 DOI: 10.1021/acsomega.0c04226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Tissue transglutaminase (TG2) is a multifunctional protein that can act as a cross-linking enzyme, GTPase/ATPase, protein kinase, and protein disulfide isomerase. TG2 is involved in cell adhesion, migration, invasion, and growth, as well as epithelial-mesenchymal transition (EMT). Our previous findings indicate that the increased expression of TG2 in renal cell carcinoma (RCC) results in tumor metastasis with a significant decrease in disease- and cancer-specific survival outcome. Given the importance of the prometastatic activity of TG2 in RCC, in the present study, we aim to investigate the relative contribution of TG2's transamidase and guanosine triphosphate (GTP)-binding/GTPase activity in the cell migration, invasion, EMT, and cancer stemness of RCC. For this purpose, the mouse RCC cell line RenCa was transduced with wild-type-TG2 (wt-TG2), GTP-binding deficient-form TG2-R580A, transamidase-deficient form with low GTP-binding affinity TG2-C277S, and transamidase-inactive form TG2-W241A. Our results suggested that predominantly, GTP-binding activity of TG2 is responsible for cell migration and invasion. In addition, CD marker analysis and spheroid assay confirmed that GTP binding/GTPase activity of TG2 is important in the maintenance of mesenchymal character and the cancer stem cell profile. These findings support a prometastatic role for TG2 in RCC that is dependent on the GTP binding/GTPase activity of the enzyme.
Collapse
Affiliation(s)
- Burge Ulukan
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Ajna Bihorac
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Tarik Sipahioglu
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Robert Kiraly
- Department
of Biochemistry and Molecular Biology, University
of Debrecen, Debrecen H4010, Hungary
| | - Laszlo Fesus
- Department
of Biochemistry and Molecular Biology, University
of Debrecen, Debrecen H4010, Hungary
| | - Dilek Telci
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| |
Collapse
|
9
|
Transglutaminase 2: The Maestro of the Oncogenic Mediators in Renal Cell Carcinoma. Med Sci (Basel) 2019; 7:medsci7020024. [PMID: 30736384 PMCID: PMC6409915 DOI: 10.3390/medsci7020024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional crosslinking enzyme that displays transamidation, protein disulfide isomerase, protein kinase, as well as GTPase and ATPase activities. TG2 can also act as an adhesion molecule involved in the syndecan and integrin receptor signaling. In recent years, TG2 was implicated in cancer progression, survival, invasion, migration, and stemness of many cancer types, including renal cell carcinoma (RCC). Von Hippel-Lindau mutations leading to the subsequent activation of Hypoxia Inducible Factor (HIF)-1-mediated signaling pathways, survival signaling via the PI3K/Akt pathway resulting in Epithelial Mesenchymal Transition (EMT) metastasis and angiogenesis are the main factors in RCC progression. A number of studies have shown that TG2 was important in HIF-1- and PI3K-mediated signaling, VHL and p53 stabilization, glycolytic metabolism and migratory phenotype in RCC. This review focuses on the role of TG2 in the regulation of molecular pathways nurturing not only the development and propagation of RCC, but also drug-resistance and metastatic potential.
Collapse
|
10
|
Maeda A, Nishino T, Matsunaga R, Yokoyama A, Suga H, Yagi T, Konishi H. Transglutaminase-mediated cross-linking of WDR54 regulates EGF receptor-signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:285-295. [DOI: 10.1016/j.bbamcr.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022]
|
11
|
Marinucci L, Balloni S, Fettucciari K, Bodo M, Talesa VN, Antognelli C. Nicotine induces apoptosis in human osteoblasts via a novel mechanism driven by H 2O 2 and entailing Glyoxalase 1-dependent MG-H1 accumulation leading to TG2-mediated NF-kB desensitization: Implication for smokers-related osteoporosis. Free Radic Biol Med 2018; 117:6-17. [PMID: 29355739 DOI: 10.1016/j.freeradbiomed.2018.01.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Nicotine contained in cigarette smoke contributes to the onset of several diseases, including osteoporosis, whose emerging pathogenic mechanism is associated with osteoblasts apoptosis. Scanty information is available on the molecular mechanisms of nicotine on osteoblasts apoptosis and, consequently, on an important aspect of the pathogenesis of smokers-related osteoporosis. Glyoxalase 1 (Glo1) is the detoxification enzyme of methylglyoxal (MG), a major precursor of advanced glycation end products (AGEs), potent pro-apoptotic agents. Hydroimidazolone (MG-H1) is the major AGE derived from the spontaneous MG adduction of arginine residues. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 was involved in the apoptosis induced by 0.1 and 1µM nicotine in human primary osteoblasts chronically exposed for 11 and 21 days. By using gene overexpression/silencing and scavenging/inhibitory agents, we demonstrated that nicotine induces a significant intracellular accumulation of hydrogen peroxide (H2O2) that, by inhibiting Glo1, drives MG-H1 accumulation/release. MG-H1, in turn, triggers H2O2 overproduction via receptor for AGEs (RAGE) and, in parallel, an apoptotic mitochondrial pathway by inducing Transglutaminase 2 (TG2) downregulation-dependent NF-kB desensitization. Measurements of H2O2, Glo1 and MG-H1 circulating levels in smokers compared with non-smokers or in smokers with osteoporosis compared with those without this bone-related disease supported the results obtained in vitro. Our findings newly pose the antiglycation enzymatic defense Glo1 and MG-H1 among the molecular events involved in nicotine-induced reactive oxygen species-mediated osteoblasts apoptosis, a crucial event in smoker-related osteoporosis, and suggest novel exposure markers in health surveillance programmes related to smokers-associated osteoporosis.
Collapse
Affiliation(s)
| | - Stefania Balloni
- Department of Experimental Medicine, University of Perugia, Italy
| | | | - Maria Bodo
- Department of Experimental Medicine, University of Perugia, Italy
| | | | | |
Collapse
|
12
|
Martins FC, Teixeira F, Reis I, Geraldes N, Cabrita AMS, Dias MF. Increased Transglutaminase 2 and GLUT-1 Expression in Breast Tumors not Susceptible to Chemoprevention with Antioxidants. TUMORI JOURNAL 2018; 95:227-32. [DOI: 10.1177/030089160909500215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Goals Expression of GLUT-1 and transglutaminase 2 is increased in aggressive breast cancer, whereas claudin-1, which is expressed in normal tissues, is absent in such tumors. This experimental study was undertaken to establish the aggressiveness and prognosis of DMBA-induced mammary tumors in female Wistar rats based on the assessment of these markers. Materials and methods The rats were divided into two groups, a control group (n = 70) and a chemoprevention group (n = 70). Breast tumors were induced in both groups by administration of 7,12-dimethylbenz[a]anthracene (DMBA). The chemoprevention group also received alpha-tocopherol and a solution of micronutrients containing ascorbic acid and selenium. Neoplastic lesions of both groups were randomly selected for immunohistochemical assessment of the expression of GLUT-1, transglutaminase 2 and claudin-1. Results A higher proportion of mammary tumors expressed GLUT-1 and transglutaminase 2 in the chemoprevention group. Claudin-1 expression was absent in all tumors of both groups. Conclusions These results are suggestive of increased aggressiveness of tumors not susceptible to chemoprevention by the agents used in this study.
Collapse
Affiliation(s)
- Filipe C Martins
- Gynecology Department, University Hospital of Coimbra, Coimbra
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Filipa Teixeira
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Ines Reis
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Nuno Geraldes
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - AM Silvério Cabrita
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Margarida F Dias
- Gynecology Department, University Hospital of Coimbra, Coimbra
- Institute of Experimental Pathology, Coimbra Faculty of Medicine, Coimbra
- CIMAGO, Coimbra Faculty of Medicine, Coimbra, Portugal
| |
Collapse
|
13
|
Sullivan KE, Rojas K, Cerione RA, Nakano I, Wilson KF. The stem cell/cancer stem cell marker ALDH1A3 regulates the expression of the survival factor tissue transglutaminase, in mesenchymal glioma stem cells. Oncotarget 2017; 8:22325-22343. [PMID: 28423611 PMCID: PMC5410226 DOI: 10.18632/oncotarget.16479] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/13/2017] [Indexed: 12/15/2022] Open
Abstract
Tissue transglutaminase (tTG), a dual-function enzyme with GTP-binding and acyltransferase activities, has been implicated in the survival and chemotherapy resistance of aggressive cancer cells and cancer stem cells, including glioma stem cells (GSCs). Using a model system comprising two distinct subtypes of GSCs referred to as proneural (PN) and mesenchymal (MES), we find that the phenotypically aggressive and radiation therapy-resistant MES GSCs exclusively express tTG relative to PN GSCs. As such, the self-renewal, proliferation, and survival of these cells was sensitive to treatment with tTG inhibitors, with a benefit being observed when combined with the standard of care for high grade gliomas (i.e. radiation or temozolomide). Efforts to understand the molecular drivers of tTG expression in MES GSCs revealed an unexpected link between tTG and a common marker for stem cells and cancer stem cells, Aldehyde dehydrogenase 1A3 (ALDH1A3). ALDH1A3, as well as other members of the ALDH1 subfamily, can function in cells as a retinaldehyde dehydrogenase to generate retinoic acid (RA) from retinal. We show that the enzymatic activity of ALDH1A3 and its product, RA, are necessary for the observed expression of tTG in MES GSCs. Additionally, the ectopic expression of ALDH1A3 in PN GSCs is sufficient to induce the expression of tTG in these cells, further demonstrating a causal link between ALDH1A3 and tTG. Together, these findings ascribe a novel function for ALDH1A3 in an aggressive GSC phenotype via the up-regulation of tTG, and suggest the potential for a similar role by ALDH1 family members across cancer types.
Collapse
Affiliation(s)
- Kelly E Sullivan
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Kathy Rojas
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristin F Wilson
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Fernández-Aceñero MJ, Torres S, Garcia-Palmero I, Díaz Del Arco C, Casal JI. Prognostic role of tissue transglutaminase 2 in colon carcinoma. Virchows Arch 2016; 469:611-619. [PMID: 27620315 DOI: 10.1007/s00428-016-2020-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/14/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
Tissue transglutaminase 2 (TG2) is involved in many biological processes, from wound healing to neurodegeneration. Recently, there has been an increasing interest in this enzyme as a potential prognostic marker or therapy target in human neoplasms. The aim of this study was to analyze expression of TG2 messenger RNA (mRNA) and protein in colon cancer samples and to evaluate the potential value of TG2 as prognostic marker. We investigated not only expression level but also location of the protein in a series of human tumors. In silico analysis using the GSE39582 dataset showed that TG2 mRNA expression is associated with earlier relapse. The results of qPCR in our cohort showed TG2 mRNA to be up-regulated in 25 out of 70 samples (34 %). Kaplan-Meier plots and log-rank test showed that patients with high TG2 mRNA expression have significantly worse prognosis in terms of overall survival (OS) and a trend to earlier recurrence. Immunohistochemical staining of tumor sections for TG2 revealed stromal staining in 152 cases (88 %) and epithelial cell staining in 105 cases (62 %). In stage II patients, stromal expression showed a significant association with disease-free survival (DFS). In patients with metastatic disease, TG2 expression was also associated with poor prognosis. Cox multivariate analysis showed that TG2 expression in epithelial cells is significantly and independently associated with OS, together with node involvement and presence of metastasis. Stromal TG2 expression was associated with DFS. In summary, in non-metastatic colorectal cancer patients, stromal TG2 expression is significantly associated with DFS and epithelial TG2 expression with OS, independently of node involvement and metastasis.
Collapse
Affiliation(s)
- María Jesús Fernández-Aceñero
- Department of Surgical Pathology, Hospital Clínico San Carlos, C/Prof. Martín Lagos s/n 28040, Madrid, Spain.
- Fundación Jiménez Díaz, Madrid, Spain.
| | - Sofía Torres
- Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB), Madrid, Spain
| | - Irene Garcia-Palmero
- Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB), Madrid, Spain
| | - Cristina Díaz Del Arco
- Department of Surgical Pathology, Hospital Clínico San Carlos, C/Prof. Martín Lagos s/n 28040, Madrid, Spain
| | - J Ignacio Casal
- Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CIB), Madrid, Spain.
| |
Collapse
|
15
|
Carbone C, Di Gennaro E, Piro G, Milone MR, Pucci B, Caraglia M, Budillon A. Tissue transglutaminase (TG2) is involved in the resistance of cancer cells to the histone deacetylase (HDAC) inhibitor vorinostat. Amino Acids 2016; 49:517-528. [PMID: 27761756 DOI: 10.1007/s00726-016-2338-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022]
Abstract
Vorinostat demonstrated preclinical and clinical efficacy in human cancers and is the first histone deacetylase inhibitor (HDACi) approved for cancer treatment. Tissue transglutaminase (TG2) is a multifunctional enzyme that catalyzes a Ca2+ dependent transamidating reaction resulting in covalent cross-links between proteins. TG2 acts also as G-protein in trans-membrane signaling and as a cell surface adhesion mediator. TG2 up-regulation has been demonstrated in several cancers and its expression levels correlate with resistance to chemotherapy and metastatic potential. We demonstrated that the anti-proliferative effect of the HDACi vorinostat is paralleled by the induction of TG2 mRNA and protein expression in cancer cells but not in ex vivo treated peripheral blood lymphocytes. This effect was also shared by other pan-HDACi and resulted in increased TG2 transamidating activity. Notably, high TG2 basal levels in a panel of cancer cell lines correlated with lower vorinostat antiproliferative activity. Notably, in TG2-knockdown cancer cells vorinostat anti-proliferative and pro-apoptotic effects were enhanced, whereas in TG2-full-length transfected cells were impaired, suggesting that TG2 could represent a mechanism of intrinsic or acquired resistance to vorinostat. In fact, co-treatment of tumor cells with inhibitors of TG2 transamidating activity potentiated the antitumor effect of vorinostat. Moreover, vorinostat-resistant MCF7 cells selected by stepwise increasing concentrations of the drug, significantly overexpressed TG2 protein compared to parental cells, and co-treatment of these cells with TG2 inhibitors reversed vorinostat-resistance. Taken together, our data demonstrated that TG2 is involved in the resistance of cancer cells to vorinostat, as well as to other HDACi.
Collapse
Affiliation(s)
- Carmine Carbone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131, Naples, Italy.,Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131, Naples, Italy
| | - Geny Piro
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy.,Laboratory of Oncology and Molecular Therapy, Department of Medicine, University of Verona, Verona, Italy
| | - Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131, Naples, Italy. .,Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy.
| |
Collapse
|
16
|
Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 2016; 7:e2244. [PMID: 27253408 PMCID: PMC5143380 DOI: 10.1038/cddis.2016.150] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/27/2023]
Abstract
Transglutaminase 2 (TG2) is primarily known as the most ubiquitously expressed member of the transglutaminase family with Ca2+-dependent protein crosslinking activity; however, this enzyme exhibits multiple additional functions through GTPase, cell adhesion, protein disulfide isomerase, kinase, and scaffold activities and is associated with cell growth, differentiation, and apoptosis. TG2 is found in the extracellular matrix, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, and its subcellular localization is an important determinant of its function. Depending upon the cell type and stimuli, TG2 changes its subcellular localization and biological activities, playing both anti- and pro-apoptotic roles. Increasing evidence indicates that the GTP-bound form of the enzyme (in its closed form) protects cells from apoptosis but that the transamidation activity of TG2 (in its open form) participates in both facilitating and inhibiting apoptosis. A difficulty in the study and understanding of this enigmatic protein is that opposing effects have been reported regarding its roles in the same physiological and/or pathological systems. These include neuroprotective or neurodegenerative effects, hepatic cell growth-promoting or hepatic cell death-inducing effects, exacerbating or having no effect on liver fibrosis, and anti- and pro-apoptotic effects on cancer cells. The reasons for these discrepancies have been ascribed to TG2's multifunctional activities, genetic variants, conformational changes induced by the immediate environment, and differences in the genetic background of the mice used in each of the experiments. In this article, we first report that TG2 has opposing roles like the protagonist in the novel Dr. Jekyll and Mr. Hyde, followed by a summary of the controversies reported, and finally discuss the possible reasons for these discrepancies.
Collapse
Affiliation(s)
- H Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Y Furutani
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - K Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - S Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Singh G, Zhang J, Ma Y, Cerione RA, Antonyak MA. The Different Conformational States of Tissue Transglutaminase Have Opposing Affects on Cell Viability. J Biol Chem 2016; 291:9119-32. [PMID: 26893378 PMCID: PMC4861479 DOI: 10.1074/jbc.m115.699108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Tissue transglutaminase (tTG) is an acyltransferase/GTP-binding protein that contributes to the development of various diseases. In human cancer cells, tTG activates signaling pathways that promote cell growth and survival, whereas in other disorders (i.e. neurodegeneration), overexpression of tTG enhances cell death. Therefore, it is important to understand how tTG is differentially regulated and functioning to promote diametrically distinct cellular outcomes. Previous structural studies revealed that tTG adopts either a nucleotide-bound closed conformation or a transamidation-competent open conformation. Here we provide evidence showing that these different conformational states determine whether tTG promotes, or is detrimental to, cell survival, with the open conformation of the protein being responsible for inducing cell death. First, we demonstrate that a nucleotide binding-defective form of tTG, which has previously been shown to induce cell death, assumes an open conformation in solution as assessed by an enhanced sensitivity to trypsin digestion and by small angle x-ray scattering (SAXS) analysis. We next identify two pairs of intramolecular hydrogen bonds that, based on existing x-ray structures, are predicted to form between the most C-terminal β-barrel domain and the catalytic core domain of tTG. By disrupting these hydrogen bonds, we are able to generate forms of tTG that constitutively assume an open conformation and induce apoptosis. These findings provide important insights into how tTG participates in the pathogenesis of neurodegenerative diseases, particularly with regard to the actions of a C-terminal truncated form of tTG (TG-Short) that has been linked to such disorders and induces apoptosis by assuming an open-like conformation.
Collapse
Affiliation(s)
| | | | - Yilun Ma
- From the Department of Molecular Medicine and
| | - Richard A Cerione
- From the Department of Molecular Medicine and the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
18
|
Tissue transglutaminase-interleukin-6 axis facilitates peritoneal tumor spreading and metastasis of human ovarian cancer cells. Lab Anim Res 2015; 31:188-97. [PMID: 26755922 PMCID: PMC4707147 DOI: 10.5625/lar.2015.31.4.188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022] Open
Abstract
Inflammation has recently been implicated in cancer formation and progression. As tissue transglutaminase (TG2) has been associated with both inflammatory signaling and tumor cell behavior, we propose that TG2 may be an important link inducing interleukin-6 (IL-6)-mediated cancer cell aggressiveness, including cancer stem cell-like characteristics and distant hematogenous metastasis. We evaluated the effect of differential TG2 and IL-6 expression on in vivo distant metastasis of human ovarian cancer cells. IL-6 production in human ovarian cancer cells was dependent on their TG2 expression levels. The size and efficiency of tumor sphere formation were correlated with TG2 expression levels and were dependent on TG2-mediated IL-6 secretion in human ovarian cancer cells. Primary tumor growth and propagation in the peritoneum and distant hematogenous metastasis into the liver and lung were also dependent on TG2 and downstream IL-6 expression levels in human ovarian cancer cells. In this report, we provide evidence that TG2 is an important link in IL-6-mediated tumor cell aggressiveness, and that TG2 and downstream IL-6 could be important mediators of distant hematogenous metastasis of human ovarian cancer cells. Intervention specific to TG2 and/or downstream IL-6 in ovarian cancer cells could provide a promising means to control tumor metastasis.
Collapse
|
19
|
Boroughs LK, Antonyak MA, Cerione RA. A novel mechanism by which tissue transglutaminase activates signaling events that promote cell survival. J Biol Chem 2014; 289:10115-25. [PMID: 24569994 DOI: 10.1074/jbc.m113.464693] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue transglutaminase (tTG) functions as a GTPase and an acyl transferase that catalyzes the formation of protein cross-links. tTG expression is frequently up-regulated in human cancer, where it has been implicated in various aspects of cancer progression, including cell survival and chemo-resistance. However, the extent to which tTG cooperates with other proteins within the context of a cancer cell, versus its intrinsic ability to confer transformed characteristics to cells, is poorly understood. To address this question, we asked what effect the ectopic expression of tTG in a non-transformed cellular background would have on the behavior of the cells. Using NIH3T3 fibroblasts stably expressing a Myc-tagged form of tTG, we found that tTG strongly protected these cells from serum starvation-induced apoptosis and triggered the activation of the PI3-kinase/mTOR Complex 1 (mTORC1)/p70 S6-kinase pathway. We determined that tTG forms a complex with the non-receptor tyrosine kinase c-Src and PI3-kinase, and that treating cells with inhibitors to block tTG function (monodansylcadaverine; MDC) or c-Src kinase activity (PP2) disrupted the formation of this complex, and prevented tTG from activating the PI3-kinase pathway. Moreover, treatment of fibroblasts over-expressing tTG with PP2, or with inhibitors that inactivate components of the PI3-kinase pathway, including PI3-kinase (LY294002) and mTORC1 (rapamycin), ablated the tTG-promoted survival of the cells. These findings demonstrate that tTG has an intrinsic capability to stimulate cell survival through a novel mechanism that activates PI3-kinase signaling events, thus highlighting tTG as a potential target for the treatment of human cancer.
Collapse
Affiliation(s)
- Lindsey K Boroughs
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
20
|
Identification of a specific one amino acid change in recombinant human transglutaminase 2 that regulates its activity and calcium sensitivity. Biochem J 2014; 455:261-72. [PMID: 23941696 DOI: 10.1042/bj20130696] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
TG2 (transglutaminase 2) is a calcium-dependent protein cross-linking enzyme which is involved in a variety of cellular processes. The threshold level of calcium needed for endogenous and recombinant TG2 activity has been controversial, the former being more sensitive to calcium than the latter. In the present study we address this question by identifying a single amino acid change from conserved valine to glycine at position 224 in recombinant TG2 compared with the endogenous sequence present in the available genomic databases. Substituting a valine residue for Gly224 in the recombinant TG2 increased its calcium-binding affinity and transamidation activity 10-fold and isopeptidase activity severalfold, explaining the inactivity of widely used recombinant TG2 at physiological calcium concentrations. ITC (isothermal titration calorimetry) measurements showed 7-fold higher calcium-binding affinities for TG2 valine residues which could be activated inside cells. The two forms had comparable substrate- and GTP-binding affinities and also bound fibronectin similarly, but coeliac antibodies had a higher affinity for TG2 valine residues. Structural analysis indicated a higher stability for TG2 valine residues and a decrease in flexibility of the calcium-binding loop resulting in improved metal-binding affinity. The results of the present study suggest that Val224 increases TG2 activity by modulating its calcium-binding affinity enabling transamidation reactions inside cells.
Collapse
|
21
|
Lee DY, Chang GD. Methylglyoxal in cells elicits a negative feedback loop entailing transglutaminase 2 and glyoxalase 1. Redox Biol 2014; 2:196-205. [PMID: 24494193 PMCID: PMC3909781 DOI: 10.1016/j.redox.2013.12.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 12/27/2013] [Accepted: 12/27/2013] [Indexed: 01/13/2023] Open
Abstract
Glyoxalase 1 (GlxI) is the key enzyme that converts the highly reactive α-oxo-aldehydes into the corresponding α-hydroxy acids using l-glutathione as a cofactor. In our preliminary data, GlxI was identified as a substrate of transglutaminase 2 (TG2), a ubiquitous enzyme with multiple functions. According to the catalytic properties of TG2, protein cross-linking, polyamine conjugation, and/or deamidation are potential post-translational modifications. In this article, we have demonstrated that TG2 catalyzes either polyamine conjugation or deamidation to GlxI depending on the presence of polyamines or not. Deamidation leads to activation of GlxI while polyamine conjugation results in activation of GlxI as well as stabilization of GlxI against denaturation treatment. In cultured HeLa cells, methylglyoxal challenge causes increase in intracellular levels of reactive oxygen species (ROS) and calcium leading to TG2 activation and subsequent transamidation and activation of GlxI. The inhibition of TG2 significantly weakens the cell resistance to the methylglyoxal challenge. Thus, GlxI is a novel substrate of TG2 and is activated by TG2 in vitro and in cellulo. Exposure to methylglyoxal elicits a negative feedback loop entailing ROS, calcium, TG2 and GlxI, thus leading to attenuation of the increase in the methylglyoxal level. The results imply that cancer cells highly express TG2 or GlxI can endure the oxidative stress derived from higher glycolytic flux and may gain extra growth advantage from the aerobic glycolysis. We have demonstrated novel modifications of glyoxalase I by transglutaminase 2. The modifications mediated by transglutaminse 2 modulate the glyoxalase I activities. Methylglyoxal treatment in cells induces increases in the levels of endogenous reactive oxygen species and activation transglutaminase 2 and glyoxalase I. Cells dispose the accumulated intracellular methylglyoxal by a negative feedback loop consisting of reactive oxygen species, calcium, transglutaminase 2 and glyoxalase I.
Collapse
Affiliation(s)
- Der-Yen Lee
- Graduate Institute of Biochemical Sciences, Technology Commons, Center for Systems Biology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
- Technology Commons, Center for Systems Biology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, Technology Commons, Center for Systems Biology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
- Center for Systems Biology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
- Correspondence to: Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan. Tel.: +886 2 3366 4071; fax: +886 2 2363 5038.
| |
Collapse
|
22
|
Extracellular tissue transglutaminase activates noncanonical NF-κB signaling and promotes metastasis in ovarian cancer. Neoplasia 2014; 15:609-19. [PMID: 23730209 DOI: 10.1593/neo.121878] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/06/2013] [Accepted: 03/18/2013] [Indexed: 12/26/2022] Open
Abstract
Tissue transglutaminase (TG2) is a multifunctional protein that binds to fibronectin and exerts protein transamidating activity in the presence of Ca(2+). We previously reported that TG2 is upregulated in ovarian tumors and enhances intraperitoneal (i.p.) metastasis. TG2 is secreted abundantly in ovarian cancer (OC) ascites as an active enzyme, yet its function in the extracellular compartment remains unknown. To study the distinct functions of secreted TG2, we used recombinant His6-tagged TG2 and catalytically inactive enzyme in vitro and in vivo. By using i.p. and orthotopic ovarian xenografts, we show that extracellular transglutaminase promoted OC peritoneal metastasis. The main pathway activated by extracellular TG2 was noncanonical nuclear factor-kappa B (NF-κB) signaling, and the enzymatic function of the protein was required to induce phosphorylation of IκB kinase α and processing of the precursor protein p100 into the active p52 subunit. A specific target of TG2-activated p52/RelB complex is the hyaluronan receptor, CD44. Noncanonical NF-κB activation by extracellular TG2 induced CD44 up-regulation and epithelial-to-mesenchymal transition, contributing to increased cancer cell invasiveness and OC peritoneal dissemination. Taken together, our data support that noncanonical NF-κB activation is the pathway through which extracellular TG2 promotes OC metastasis.
Collapse
|
23
|
Li Z, Zhang ZW, Zhao Q, Liu ZY, Yang K, Deng YJ, Wu SH, Yang L. Clinical significance of expression of tissue transglutaminase 2 in gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:3858-3862. [DOI: 10.11569/wcjd.v21.i34.3858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the clinical significance of expression of tissue transglutaminase 2 (TG2) in gastric carcinoma, so as to provide a new clue for finding new specific markers of gastric cancer.
METHODS: The expression of TG2 in gastric cancer tissues was detected by RT-PCR, Western blot and immunohistochemistry. The clinical significance of TG2 expression in gastric cancer was analyzed.
RESULTS: The result of RT-PCR and Western blot analyses showed that the mRNA and protein expression levels of TG2 were significantly lower in normal gastric mucosa than in gastric cancer tissues (0.274 ± 0.051 vs 0.671 ± 0.105, 0.317 ± 0.032 vs 0.918 ± 0.117, both P < 0.05). The immunohistochemical results demonstrated that the positive expression rate of TG2 protein in normal gastric mucosa was significantly lower than that in gastric cancer tissues [33.33% (8/24) vs 71.74% (33/46), P < 0.05].
CONCLUSION: Overexpression of TG2 protein may be closely related to the occurrence of gastric cancer.
Collapse
|
24
|
Jeong JH, Cho BC, Shim HS, Kim HR, Lim SM, Kim SK, Chung KY, Islam SBU, Song JJ, Kim SY, Kim JH. Transglutaminase 2 expression predicts progression free survival in non-small cell lung cancer patients treated with epidermal growth factor receptor tyrosine kinase inhibitor. J Korean Med Sci 2013; 28:1005-14. [PMID: 23853482 PMCID: PMC3708070 DOI: 10.3346/jkms.2013.28.7.1005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/03/2013] [Indexed: 11/20/2022] Open
Abstract
Transglutaminase 2 (TG2), a cross-linking enzyme, is involved in drug resistance and in the constitutive activation of nuclear factor kappa B (NF-κB). We investigated the association of non-small cell lung cancer (NSCLC) treatment efficacy with TG2 and NF-κB expression in 120 patients: 102 with adenocarcinoma and 18 with other histologic types. All patients underwent surgery; 88 received adjuvant chemotherapy, with 28 receiving platinum-based doublet chemotherapy as first-line treatment and 29 receiving epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy. Patients' TG2 and NF-κB expression values were calculated semiquantitatively. The median TG2 value was 50 (range, 0-300) and the median NF-κB value was 20 (range, 0-240). Disease-free survival did not differ between the low- and high-TG2 groups. Among patients who received palliative platinum-based doublet chemotherapy, progression free survival (PFS) was longer in the low-TG2 group than in the high-TG2 group (11.0 vs. 7.0 months; P=0.330). Among those who received EGFR-TKI therapy, PFS was also longer in the low-TG2 group than in the high-TG 2 group (11.0 vs. 2.0 months; P=0.013). Similarly, in EGFR wild-type patients treated with EGFR-TKI, PFS was longer in patients with low TG2 expression (9.0 vs. 2.0 months; P=0.013). TG2 expression levels can predict PFS in patients with NSCLC treated with EGFR-TKI.
Collapse
Affiliation(s)
- Jae-Heon Jeong
- Yonsei University Graduate School of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hye-Ryun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sun-Min Lim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Se Kyu Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Young Chung
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - S.M. Bakhtiar Ul Islam
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Jin Song
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Korea
| | - Joo Hang Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Zhang J, Antonyak MA, Singh G, Cerione RA. A mechanism for the upregulation of EGF receptor levels in glioblastomas. Cell Rep 2013; 3:2008-20. [PMID: 23770238 DOI: 10.1016/j.celrep.2013.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/04/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023] Open
Abstract
Tissue transglutaminase (tTG) is a GTP-binding protein/acyltransferase whose expression is upregulated in glioblastoma and associated with decreased patient survival. Here, we delineate a unique mechanism by which tTG contributes to the development of gliomas by using two glioblastoma cell lines, U87 and LN229, whose growth and survival are dependent on tTG. We show that tTG significantly enhances the signaling activity and lifespan of EGF receptors (EGFRs) in these brain cancer cells. Moreover, overexpressing tTG in T98G glioblastoma cells that normally express low levels of tTG caused a marked upregulation of EGFR expression and transforming activity. Furthermore, we show that tTG accentuates EGFR signaling by blocking c-Cbl-catalyzed EGFR ubiquitylation through the ability of tTG to bind GTP and adopt a specific conformation that enables it to interact with c-Cbl. These findings demonstrate that tTG contributes to gliomagenesis by interfering with EGFR downregulation and, thereby, promoting transformation.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
26
|
Pierce A, Whetton AD, Meyer S, Ravandi-Kashani F, Borthakur G, Coombes KR, Zhang N, Kornblau S. Transglutaminase 2 expression in acute myeloid leukemia: association with adhesion molecule expression and leukemic blast motility. Proteomics 2013; 13:2216-2224. [PMID: 23576428 DOI: 10.1002/pmic.201200471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/11/2013] [Accepted: 03/26/2013] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment.
Collapse
Affiliation(s)
- Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, The University of Manchester, Manchester, UK
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, The University of Manchester, Manchester, UK
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, The University of Manchester, Manchester, UK
| | - Farhad Ravandi-Kashani
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kevin R Coombes
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nianxiang Zhang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Condello S, Cao L, Matei D. Tissue transglutaminase regulates β-catenin signaling through a c-Src-dependent mechanism. FASEB J 2013; 27:3100-12. [PMID: 23640056 DOI: 10.1096/fj.12-222620] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tissue transglutaminase (TG2) is a multifunctional enzyme involved in protein cross-linking and cell adhesion to fibronectin (FN). In cancer, TG2 induces an epithelial to mesenchymal transition, contributing to metastasis. Because cadherins bind β-catenin at cell-cell junctions, disruption of adherens junctions destabilizes cadherin-catenin complexes. The goal of the present study was to analyze whether and how TG2 interacts with and regulates β-catenin signaling in ovarian cancer (OC) cells. We observed a significant correlation between TG2 and β-catenin expression levels in OC cells and tumors. TG2 augmented Wnt/β-catenin signaling, as evidenced by enhanced β-catenin transcriptional activity, inducing transcription of target genes cyclin D1 and c-Myc. By promoting integrin-mediated cell adhesion to FN, TG2 physically associates with and recruits c-Src, which in turn phosphorylates β-catenin at Tyr(654), releasing it from E-cadherin and rendering it available for transcriptional regulation. By interacting with FN and enhancing β-catenin signaling, complexed TG2 stimulates OC cell proliferation. In summary, our data demonstrate that TG2 regulates β-catenin expression and function in OC cells and define the c-Src-dependent mechanism through which this occurs.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
28
|
Agnihotri N, Kumar S, Mehta K. Tissue transglutaminase as a central mediator in inflammation-induced progression of breast cancer. Breast Cancer Res 2013; 15:202. [PMID: 23673317 PMCID: PMC3745644 DOI: 10.1186/bcr3371] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TGM2 is a stress-responsive gene that encodes a multifunctional and structurally complex protein called tissue transglutaminase (abbreviated as TG2 or tTG). TGM2 expression is frequently upregulated during inflammation and wounding. Emerging evidence indicates that TGM2 expression is aberrantly upregulated in multiple cancer cell types, particularly those selected for resistance to chemotherapy and radiation therapy and those isolated from metastatic sites. It is becoming increasingly evident that chronic expression of TG2 in epithelial cancer cells initiates a complex series of signaling networks which contributes to the development of drug resistance and an invasive phenotype. For example, forced or basal high expression of TG2 in mammary epithelial cells is associated with activation of nuclear transcription factor-kappa B (NF-κB), Akt, focal adhesion kinase, and hypoxia-inducible factor. All of these changes are considered hallmarks of aggressive tumors. TG2 expression is able to induce the developmentally regulated program of epithelial-to-mesenchymal transition (EMT) and to confer cancer stem cell (CSC) traits in mammary epithelial cells; both EMT and CSCs have been implicated in cancer metastasis and resistance to standard therapies. Importantly, TG2 expression in tumor samples is associated with poor disease outcome, increased drug resistance, and increased incidence of metastasis. These observations imply that TG2 plays a crucial role in promoting an aggressive phenotype in mammary epithelial cells. In this review, we discuss recent evidence that TG2-regulated pathways contribute to the aggressive phenotype in breast cancer.
Collapse
|
29
|
Villella VR, Esposito S, Bruscia EM, Maiuri MC, Raia V, Kroemer G, Maiuri L. Targeting the Intracellular Environment in Cystic Fibrosis: Restoring Autophagy as a Novel Strategy to Circumvent the CFTR Defect. Front Pharmacol 2013; 4:1. [PMID: 23346057 PMCID: PMC3549520 DOI: 10.3389/fphar.2013.00001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/01/2013] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) patients harboring the most common deletion mutation of the CF transmembrane conductance regulator (CFTR), F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane (PM)-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the PM even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1), a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the PM. We focus on the relationship between the improvement of peripheral proteostasis and CFTR PM stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent pre-clinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation.
Collapse
Affiliation(s)
- Valeria Rachela Villella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Helmerick EC, Loftus JP, Wakshlag JJ. The effects of baicalein on canine osteosarcoma cell proliferation and death. Vet Comp Oncol 2012; 12:299-309. [PMID: 23228048 DOI: 10.1111/vco.12013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 12/23/2022]
Abstract
Flavonoids are a group of modified triphenolic compounds from plants with medicinal properties. Baicalein, a specific flavone primarily isolated from plant roots (Scutellaria baicalensis), is commonly used in Eastern medicine for its anti-inflammatory and antineoplastic properties. Previous research shows greater efficacy for baicalein than most flavonoids; however, there has been little work examining their effects on sarcoma cells, let alone canine cells. Three canine osteosarcoma cell lines (HMPOS, D17 and OS 2.4) were treated with baicalein to examine cell viability, cell cycle kinetics, anchorage-independent growth and apoptosis. Results showed that osteosarcoma cells were sensitive to baicalein at concentrations from approximately 1 to 25 μM. Modest cell cycle changes were observed in one cell line. Baicalein was effective in inducing apoptosis and did not prevent doxorubicin cell proliferation inhibition in all the cell lines. The mechanism for induction of apoptosis has not been fully elucidated; however, changes in mitochondrial permeability supersede the apoptotic response.
Collapse
Affiliation(s)
- E C Helmerick
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | |
Collapse
|
31
|
Yang L, Xu L. GPR56 in cancer progression: current status and future perspective. Future Oncol 2012; 8:431-40. [PMID: 22515446 DOI: 10.2217/fon.12.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell adhesion is a critical process during cancer progression and is mediated by transmembrane receptors. Recently, GPR56, a member of the adhesion family of G protein-coupled receptors, was established as a new type of adhesion receptor that binds to extracellular matrix proteins and shown to play inhibitory roles in melanoma progression. Further studies revealed that the extracellular portion and the seven transmembrane domains of GPR56 function antagonistically to regulate VEGF production and angiogenesis via a signaling pathway mediated by PKCα. Tissue transglutaminase was identified as the first extracellular matrix protein that binds to GPR56. It is a crosslinking enzyme in the extracellular matrix but is also expressed in the cytosol. Tissue transglutaminase plays pleiotropic roles in cancer progression. Whether and how it might mediate GPR56-regulated cancer progression awaits further investigation.
Collapse
Affiliation(s)
- Liquan Yang
- Department of Biomedical Genetics, Department of Dermatology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
32
|
Cho SY, Jeong EM, Lee JH, Kim HJ, Lim J, Kim CW, Shin DM, Jeon JH, Choi K, Kim IG. Doxorubicin induces the persistent activation of intracellular transglutaminase 2 that protects from cell death. Mol Cells 2012; 33:235-41. [PMID: 22382681 PMCID: PMC3887707 DOI: 10.1007/s10059-012-2201-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/01/2012] [Accepted: 01/13/2012] [Indexed: 12/18/2022] Open
Abstract
The activation of transglutaminase 2 (TG2), an enzyme that catalyzes post-translational modifications of proteins, has been implicated in apoptosis, cell adhesion and inflammatory responses. We previously reported that intracellular TG2 is activated under oxidative stress conditions, such as ultraviolet irradiation, ischemia-reperfusion, and hypoxia. In this study, we examined the effect of genotoxic stress on the intracellular activity of TG2 using doxorubicin which generates reactive oxygen species that lead to double-strand breakage of DNA. We demonstrated that doxorubicin elicits the persistent activation of TG2. Doxorubicin-induced TG2 activity was suppressed by treatment with caffeine at the early phase, N-acetylcysteine at the mid-phase, and EGTA at the late phase. However, treatment with a blocking antibody against TGFβ or toll-like receptor 2 showed no effect on TG2 activity, indicating that at least three different signaling pathways may be involved in the process of TG2 activation. In addition, using MEF cells defective for TG2 and cells overexpressing an activesite mutant of TG2, we revealed that doxorubicin-induced cell death is inversely correlated with TG2 activity. Our findings indicate that the persistent activation of TG2 by doxorubicin contributes to cell survival, suggesting that the mechanism-based inhibition of TG2 may be a novel strategy to prevent drug-resistance in doxorubicin treatment.
Collapse
Affiliation(s)
- Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Hyo-Jun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jisun Lim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Chai-Wan Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | | | | | | | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
33
|
Goupil RC, Bushey JJ, Peters-Kennedy J, Wakshlag JJ. Prevalence of 5-lipoxygenase expression in canine osteosarcoma and the effects of a dual 5-lipoxygenase/cyclooxygenase inhibitor on osteosarcoma cells in vitro and in vivo. Vet Pathol 2012; 49:802-10. [PMID: 22287649 DOI: 10.1177/0300985811432350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Canine osteosarcoma is an insidious disease with few effective treatment modalities; therefore, use of pharmacologic intervention to improve mortality or morbidity is constantly sought. The use of cyclooxygenase enzyme inhibitors has been an area of interest with limited efficacy based on retrospective examination of tumor expression and in vivo cell proliferation models. Recently, examination of dual cyclooxygenase and 5-lipoxygenase inhibitors in human and canine oncology suggests that 5-lipoxygenase inhibitors may be an effective approach in vitro and during tumor induction in rodent models. Therefore, the authors decided to examine 5-lipoxygenase expression in primary canine osteosarcoma samples and have shown that approximately 65% of osteosarcomas label positive for cytoplasmic 5-lipoxygenase. Further examination of a cell culture and xenograft model shows similar 5-lipoxygenase expression. Surprisingly, a canine 5-lipoxygenase inhibitor (tepoxalin) significantly reduced cell proliferation at physiologic doses in vitro and diminished xenograft tumor growth in nude mice, suggesting that further investigation is needed. Traditionally, 5-lipoxygense leads to production of lipid mediators, such as leukotriene B(4) and 5-oxo-eicosatetraenoic acid, which, when added back to the media of tepoxalin-treated cells, did not recover cell proliferation. The lack of nuclear staining in primary and xenografted tumors and the lack of response to eicoasanoids suggest that lipid mediator production is not the primary means by which tepoxalin acts to alter proliferation. Regardless of the mechanisms involved in retarding cell proliferation, future investigation is warranted.
Collapse
Affiliation(s)
- R C Goupil
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, VMC 1-120, Box 34, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
34
|
Zhang L, Zhang L, Han X, Du M, Zhang Y, Feng Z, Yi H, Zhang Y. Enhancement of transglutaminase production in Streptomyces mobaraensis as achieved by treatment with excessive MgCl2. Appl Microbiol Biotechnol 2011; 93:2335-43. [DOI: 10.1007/s00253-011-3790-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 02/06/2023]
|
35
|
Budillon A, Carbone C, Di Gennaro E. Tissue transglutaminase: a new target to reverse cancer drug resistance. Amino Acids 2011; 44:63-72. [PMID: 22130737 PMCID: PMC3535412 DOI: 10.1007/s00726-011-1167-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/18/2011] [Indexed: 12/26/2022]
Abstract
Cancer resistance mechanisms, which result from intrinsic genetic alterations of tumor cells or acquired genetic and epigenetic changes, limit the long-lasting benefits of anti-cancer treatments. Tissue transglutaminase (TG2) has emerged as a putative gene involved in tumor cell drug resistance and evasion of apoptosis. Although some reports have indicated that TG2 can suppress tumor growth and enhance the growth inhibitory effects of anti-tumor agents, several studies have presented both pro-survival and anti-apoptotic roles for TG2 in malignant cells. Increased TG2 expression has been found in several tumors, where it was considered a potential negative prognostic marker, and it is often associated with advanced stages of disease, metastatic spread and drug resistance. TG2 mediates drug resistance through the activation of survival pathways and the inhibition of apoptosis, but also by regulating extracellular matrix (ECM) formation, the epithelial-to-mesenchymal transition (EMT) or autophagy. Because TG2 knockdown or inhibition of TG2 enzymatic activity may reverse drug resistance and sensitize cancer cells to drug-induced apoptosis, many small molecules capable of blocking TG2 have recently been developed. Additional insight into the multifunctional nature of TG2 as well as translational studies concerning the correlation between TG2 expression, function or location and cancer behavior will aid in translating these findings into new therapeutic approaches for cancer patients.
Collapse
Affiliation(s)
- Alfredo Budillon
- Experimental Pharmacology Unit, Department of Research, Istituto Nazionale Tumori, National Cancer Institute G. Pascale, Via M. Semmola, 80131 Naples, Italy.
| | | | | |
Collapse
|
36
|
Wang Y, Ande SR, Mishra S. Overexpression of phospho mutant forms of transglutaminase 2 downregulates epidermal growth factor receptor. Biochem Biophys Res Commun 2011; 417:251-5. [PMID: 22142843 DOI: 10.1016/j.bbrc.2011.11.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 01/19/2023]
Abstract
Simultaneous upregulation of transglutaminase 2 (TG2) and epidermal growth factor receptor (EGFR) have been reported in a number of systems. Moreover, TG2 has been identified as a downstream target gene for EGF/EGFR. However, it is not known whether the relationship between EGFR and TG2 is only one-way or collaborative. Using embryonic fibroblasts derived from TG2 null mice (MEF(tg2-/-)), co-overexpressing native TG2 and EGFR, here we report that TG2 differentially regulates EGFR protein in the presence and absence of EGF. In the absence of EGF, TG2 facilitates EGFR downregulation whereas in the presence of EGF, TG2 has opposite effect on EGFR and facilitates Akt phosphorylation. TG2 mediated ligand-independent downregulation of EGFR was not observed in MEF(tg2-/-) cells overexpressing Ser212Ala phospho mutant form of TG2 suggesting a role of TG2 phosphorylation in this process. However, similar to native TG2, Ser212Ala-TG2 mutant was also able to attenuate ligand-dependent down regulation of EGFR in MEF(tg2-/-) cells. Interestingly, overexpression of Ser216Ala-TG2 mutant led to downregulation of EGFR in MEF(tg2-/-) cells irrespective of the ligand. These results were further confirmed in breast cancer cells expressing high levels of EGFR. Collectively, data presented here suggests that the relationship between EGFR and TG2 is collaborative and phosphorylation of TG2 play a key role in it. Phospho mutant forms of TG2 reported in this study may be utilized as a part of a novel strategy to downregulate EGFR in cancers with enhanced EGFR signaling.
Collapse
Affiliation(s)
- Yi Wang
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
37
|
Kim SY. Transglutaminase 2: a new paradigm for NF-kappaB involvement in disease. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:161-95. [PMID: 22220474 DOI: 10.1002/9781118105771.ch4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Kyonggi-do, Republic of Korea
| |
Collapse
|
38
|
Li B, Cerione RA, Antonyak M. Tissue transglutaminase and its role in human cancer progression. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:247-93. [PMID: 22220476 DOI: 10.1002/9781118105771.ch6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Bo Li
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
39
|
Piacentini M, D'Eletto M, Falasca L, Farrace MG, Rodolfo C. Transglutaminase 2 at the crossroads between cell death and survival. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:197-246. [PMID: 22220475 DOI: 10.1002/9781118105771.ch5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | |
Collapse
|
40
|
Transglutaminases and receptor tyrosine kinases. Amino Acids 2011; 44:19-24. [DOI: 10.1007/s00726-011-1113-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
|
41
|
Oh K, Ko E, Kim HS, Park AK, Moon HG, Noh DY, Lee DS. Transglutaminase 2 facilitates the distant hematogenous metastasis of breast cancer by modulating interleukin-6 in cancer cells. Breast Cancer Res 2011; 13:R96. [PMID: 21967801 PMCID: PMC3262209 DOI: 10.1186/bcr3034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 08/18/2011] [Accepted: 10/03/2011] [Indexed: 02/08/2023] Open
Abstract
Introduction Inflammation has been implicated in cancer aggressiveness. As transglutaminase 2 (TG2), which has been associated with inflammatory signaling, has been suggested to play a role in tumor behavior, we propose that TG2 may be an important linker inducing interleukin (IL)-6-mediated cancer-cell aggressiveness, including distant hematogenous metastasis. Methods To investigate the role for TG2 and IL-6, TG2-knocked-down and IL-6-knocked-down cancer cells were generated by using shRNA. Human breast cancer cell xenograft model in highly immunocompromised mice and human advanced breast cancer primary tumor tissue microarrays were used in this study. Results IL-6 production in human breast cancer cells was dependent on their TG2 expression level. In vitro tumor-sphere formation was dependent on TG2 and downstream IL-6 production from cancer cells. Primary tumor growth in the mammary fat pads and distant hematogenous metastasis into the lung was also dependent on TG2 and downstream IL-6 expression levels. The effect of TG2 expression on human breast cancer distant metastasis was investigated by analyzing a tissue microarray of primary tumors from 412 patients with their clinical data after 7 years. TG2 expression in primary tumor tissue was inversely correlated with recurrence-free survival (P = 0.019) and distant metastasis-free survival (DMFS) (P = 0.006) in patients with advanced breast cancer. Furthermore, by using public datasets that included a total of 684 breast cancer patients, we found that the combined high expression of TG2 and IL-6 was associated with shorter DMFS, compared with the high expression of IL-6 only (P = 0.013). Conclusions We provide evidence that TG2 is an important link in IL-6-mediated tumor aggressiveness, and that TG2 could be an important mediator of distant metastasis, both in a xenograft animal model and in patients with advanced breast cancer.
Collapse
Affiliation(s)
- Keunhee Oh
- Laboratory of Immunology, Interdisciplinary Program of Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, 28 Yongon-dong Chongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Wakshlag JJ, Peters-Kennedy J, Bushey JJ, Loftus JP. 5-lipoxygenase expression and tepoxalin-induced cell death in squamous cell carcinomas in cats. Am J Vet Res 2011; 72:1369-77. [PMID: 21962280 PMCID: PMC10957241 DOI: 10.2460/ajvr.72.10.1369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
OBJECTIVE To assess expression pattern and subcellular compartmentalization of 5-lipoxygenase in cutaneous, UV radiation-induced, and oral squamous cell carcinomas (SCCs) in cats and determine the effects of cyclooxygenase or 5-lipoxygenase inhibition on proliferation or apoptosis in a feline oral squamous cell carcinoma (SCCF1) cell line. SAMPLE 60 archived paraffin-embedded samples of SCCs from 60 cats and SCCF1 cells. PROCEDURES Retrospective immunohistochemical analysis of the archived samples of SCCs (20 cutaneous, 20 UV radiation-induced, and 20 oral tumors) was performed. Cell culture proliferation assays involving SCCF1 cells were performed, and tepoxalin-induced apoptosis and signaling were examined via western blotting and annexin V staining. RESULTS Immunohistochemically, staining for 5-lipoxygenase was most frequently of greatest intensity in oral SCCs, whereas staining of cutaneous and UV radiation-induced lesions had less consistent 5-lipoxygenase expression. Exposure of SCCF1 cells to the 5-lipoxygenase inhibitor tepoxalin resulted in apoptosis; the effect appeared to be mediated via alteration of cell signaling rather than via suppression of lipid mediators that are typically produced as a result of 5-lipoxygenase activity. CONCLUSIONS AND CLINICAL RELEVANCE In cats, expression of 5-lipoxygenase in SCCs appeared to differ depending on tumor location. The influence of tepoxalin-induced 5-lipoxygenase inhibition on a 5-lipoxygenase-expressing cell line coupled with the notable expression of 5-lipoxygenase in oral SCCs suggested that 5-lipoxygenase inhibition may have therapeutic benefits in affected cats. Although the safety of tepoxalin in cats has yet to be investigated, 5-lipoxygenase inhibitors should be evaluated for use as a potential treatment for SCCs in that species.
Collapse
Affiliation(s)
- Joseph J Wakshlag
- Departments of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
43
|
Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A 2011; 108:4852-7. [PMID: 21368175 DOI: 10.1073/pnas.1017667108] [Citation(s) in RCA: 387] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor progression involves the ability of cancer cells to communicate with each other and with neighboring normal cells in their microenvironment. Microvesicles (MV) derived from human cancer cells have received a good deal of attention because of their ability to participate in the horizontal transfer of signaling proteins between cancer cells and to contribute to their invasive activity. Here we show that MV may play another important role in oncogenesis. In particular, we demonstrate that MV shed by two different human cancer cells, MDAMB231 breast carcinoma cells and U87 glioma cells, are capable of conferring onto normal fibroblasts and epithelial cells the transformed characteristics of cancer cells (e.g., anchorage-independent growth and enhanced survival capability) and that this effect requires the transfer of the protein cross-linking enzyme tissue transglutaminase (tTG). We further demonstrate that tTG is not sufficient to transform fibroblasts but rather that it must collaborate with another protein to mediate the transforming actions of the cancer cell-derived MV. Proteomic analyses of the MV derived from MDAMB231 and U87 cells indicated that both these vesicle preparations contained the tTG-binding partner and cross-inking substrate fibronectin (FN). Moreover, we found that tTG cross-links FN in MV from cancer cells and that the ensuing MV-mediated transfers of cross-linked FN and tTG to recipient fibroblasts function cooperatively to activate mitogenic signaling activities and to induce their transformation. These findings highlight a role for MV in the induction of cellular transformation and identify tTG and FN as essential participants in this process.
Collapse
|
44
|
Song H, Kim BK, Chang W, Lim S, Song BW, Cha MJ, Jang Y, Hwang KC. Tissue transglutaminase 2 promotes apoptosis of rat neonatal cardiomyocytes under oxidative stress. J Recept Signal Transduct Res 2011; 31:66-74. [PMID: 21067463 DOI: 10.3109/10799893.2010.529577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The role of tissue transglutaminase 2 (TG2) in cardiac myocyte apoptosis under oxidative stress induced by ischemic injury remains unclear. Here, we investigated the effects of TG2 on apoptosis of cardiomyocytes under oxidative stress. Ectopic expression of TG2 increased caspase-3 activity and calcium overload in cardiomyocytes. Expression levels of TG2 were significantly increased in H(2)O(2)-treated cardiomyocytes. Caspase-3 activity assay demonstrated its considerable correlation with TG2 expression, which supported that caspase-3 inhibitor inhibited the apoptosis induced by the ectopic overexpression of TG2. In addition, the other apoptotic signals, such as caspase-8, cytochrome c, and Bax, were increased dependent with TG2 expression in H(2)O(2)-treated cardiomyocytes. These results indicated that apoptotic signals had a positive correlation with TG2 expression. The decreased expression of phospholipase C (PLC)-δ1 and phospho-PKC in H(2)O(2)-treated cardiomyocytes were rescued by TG2 silencing. Together, our data strongly suggest that oxidative stress up-regulates TG2 expression in cardiomyocytes, leading to apoptosis.
Collapse
Affiliation(s)
- Heesang Song
- Research Institute of Science for Aging, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Han I, Park HJ, Seong SC, Lee S, Kim IG, Lee MC. Role of transglutaminase 2 in apoptosis induced by hydrogen peroxide in human chondrocytes. J Orthop Res 2011; 29:252-7. [PMID: 21226238 DOI: 10.1002/jor.21241] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chondrocyte apoptosis has been implicated in the pathogenesis of osteoarthritis. Transglutaminase 2 (TG2), the expression of which is higher in osteoarthritis patients, has been shown to be up-regulated during apoptosis in many experimental models. This study investigated the expression and role of TG2 in human chondrocytes undergoing apoptosis induced by hydrogen peroxide (H₂O₂). Human chondrocytes were obtained from the knee articular cartilage of patients undergoing total joint arthroplasty. Apoptosis was induced by H₂O₂ and was measured with Annexin-V flow cytometry, DNA Fragmentation ELISA and DAPI staining. Western Blot, an in situ activity assay and immunocytochemistry were used to examine TG2 expression. The role of TG2 was evaluated by TG-specific siRNA transfection and monodansylcadaverine (MDC), a competitive substrate for TG2. H₂O₂ induced apoptosis of human chondrocytes in a dose- and time-dependent manner. The level of TG2 expression was higher in the chondrocytes undergoing H₂O₂-induced apoptosis. Inhibition of TG2 by siRNA or MDC increased the level of apoptosis in the H₂O₂-treated chondrocytes. TG2 expression is higher in human chondrocytes undergoing apoptosis, and inhibition of TG2 leads to increased apoptosis. These results may raise the possibility of TG2 as a modulator of cartilage damage in osteoarthritis by offering protection against chondrocyte apoptosis.
Collapse
Affiliation(s)
- Ilkyu Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, 101 Daehangno, Jongnogu, Seoul 110-744, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Cho SY, Lee JH, Bae HD, Jeong EM, Jang GY, Kim CW, Shin DM, Jeon JH, Kim IG. Transglutaminase 2 inhibits apoptosis induced by calcium- overload through down-regulation of Bax. Exp Mol Med 2011; 42:639-50. [PMID: 20676023 DOI: 10.3858/emm.2010.42.9.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An abrupt increase of intracellular Ca(2+) is observed in cells under hypoxic or oxidatively stressed conditions. The dysregulated increase of cytosolic Ca(2+) triggers apoptotic cell death through mitochondrial swelling and activation of Ca(2+)-dependent enzymes. Transglutaminase 2 (TG2) is a Ca(2+)-dependent enzyme that catalyzes transamidation reaction producing cross-linked and polyaminated proteins. TG2 activity is known to be involved in the apoptotic process. However, the pro-apoptotic role of TG2 is still controversial. In this study, we investigate the role of TG2 in apoptosis induced by Ca(2+)-overload. Overexpression of TG2 inhibited the A23187-induced apoptosis through suppression of caspase-3 and -9 activities, cytochrome c release into cytosol, and mitochondria membrane depolarization. Conversely, down-regulation of TG2 caused the increases of cell death, caspase-3 activity and cytochrome c in cytosol in response to Ca(2+)-overload. Western blot analysis of Bcl-2 family proteins showed that TG2 reduced the expression level of Bax protein. Moreover, overexpression of Bax abrogated the anti-apoptotic effect of TG2, indicating that TG2-mediated suppression of Bax is responsible for inhibiting cell death under Ca(2+)-overloaded conditions. Our findings revealed a novel anti-apoptotic pathway involving TG2, and suggested the induction of TG2 as a novel strategy for promoting cell survival in diseases such as ischemia and neurodegeneration.
Collapse
Affiliation(s)
- Sung-Yup Cho
- Department of Biochemistry and Molecular Biology/Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wakshlag JJ, Balkman CE. Effects of lycopene on proliferation and death of canine osteosarcoma cells. Am J Vet Res 2010; 71:1362-70. [PMID: 21034328 DOI: 10.2460/ajvr.71.11.1362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effects of lycopene with and without concurrent chemotherapeutic treatment on growth and apoptosis of canine osteosarcoma cells. SAMPLE POPULATION Cell cultures of 3 established canine osteosarcoma cell lines (D17, OS 2.4, and HMPOS). PROCEDURES Growth curve kinetics and cell cytotoxicosis for various treatment combinations were assessed by use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Additionally, cell cycle kinetics and colony-forming soft agar assays were performed to determine the influences of lycopene on the cell cycle and anchorage-independent growth. Western immunoblotting of HMPOS cells was performed to examine signaling and apoptotic pathways implicated in lycopene-induced apoptosis. RESULTS Lycopene alone caused mild to pronounced attenuation of cell proliferation of all 3 cell lines as well as apoptosis in HMPOS cells but did not interfere with cell death in response to doxorubicin. Soft agar anchorage-independent growth assays revealed complete inhibition of cell proliferation in 2 of 3 osteosarcoma cell lines. Further investigation into the apoptotic response revealed activation of mitochondrial-induced apoptosis primarily through expression of truncated Bid and a decrease in protein kinase B (ie, AKT) phosphorylation. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that lycopene may be beneficial during treatment of osteosarcomas. Lycopene did not negatively or positively affect survival of osteosarcoma cells during doxorubicin treatment and independently induced apoptosis in the HMPOS cell line. These findings warrant further in vitro and in vivo studies into the use of this natural compound as an adjuvant antiproliferative, proapoptotic treatment in dogs with osteosarcoma.
Collapse
Affiliation(s)
- Joseph J Wakshlag
- Department of Clinical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
48
|
Caccamo D, Currò M, Ientile R. Potential of transglutaminase 2 as a therapeutic target. Expert Opin Ther Targets 2010; 14:989-1003. [PMID: 20670177 DOI: 10.1517/14728222.2010.510134] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
IMPORTANCE OF THE FIELD Increased expression and activity of transglutaminase 2 - a calcium-dependent enzyme which catalyzes protein cross-linking, polyamination or deamidation at selective glutamine residues - are involved in the etiopathogenesis of several pathological conditions, such as neurodegenerative disorders, autoimmune diseases and inflammatory diseases. Inhibition of enzyme activity has potential for therapeutic management of these diseases. AREAS COVERED IN THIS REVIEW The major results achieved in the last twelve years of research in the field of inhibition of tranglutaminase activity using cell cultures as well as in vivo models of high-social-impact or widespread diseases, such as CNS neurodegenerative disorders, celiac sprue, cancer and fibrotic diseases. WHAT THE READER WILL GAIN Beneficial effects of enzyme activity inhibition have been observed in neurodegeneration and fibrosis in vivo models by delivery of the competitive inhibitor cystamine and more recently designed inhibitors, such as thiomidaziolium or norleucine derivatives, which irreversibly bind the active site cysteine residue. Transglutaminase 2 targeting with specific antibodies has also been shown to be a promising tool for celiac disease treatment. TAKE HOME MESSAGE New insights from transglutaminase inhibition studies dealing with side effects of in vivo administration of pan-transglutaminase inhibitors will help in design of novel therapeutic approaches to various diseases.
Collapse
Affiliation(s)
- Daniela Caccamo
- University of Messina, Policlinico Universitario, Department of Biochemical, Physiological and Nutritional Sciences, Italy
| | | | | |
Collapse
|
49
|
I-κBα depletion by transglutaminase 2 and μ-calpain occurs in parallel with the ubiquitin–proteasome pathway. Biochem Biophys Res Commun 2010; 399:300-6. [DOI: 10.1016/j.bbrc.2010.07.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 01/05/2023]
|
50
|
Transglutaminase 2: a multi-tasking protein in the complex circuitry of inflammation and cancer. Biochem Pharmacol 2010; 80:1921-9. [PMID: 20599779 DOI: 10.1016/j.bcp.2010.06.029] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 01/05/2023]
Abstract
Metastasis of primary tumors to distant sites and their inherent or acquired resistance to currently available therapies pose major clinical challenge to the successful treatment of cancer. The identification of tumor-coded genes and how they contribute to the progression of cancer is required to improve patient outcomes. Recently, cells that have undergone the epithelial-mesenchymal transition (EMT), which share characteristics with cancer stem cells (CSC) have been implicated to play a role in drug resistance and metastasis of several types of cancer. In this review, we discuss the relationship among transglutaminase 2 (TG2), the EMT, and CSCs in inflammation and cancer. TG2 is a structurally and functionally complex protein implicated in such diverse processes as tissue fibrosis, wound healing, apoptosis, neurodegenerative disorders, celiac disease, atherosclerosis and cancer. Depending on the cellular context, TG2 can either promote or inhibit cell death. Increased expression of TG2 in several types of cancer cells has been associated with increased cell invasiveness, cell survival and decreased survival of patients with cancer. Down-regulation of TG2 by small interfering RNA (siRNA) or its inhibition by small molecule inhibitors has been shown to significantly enhances the therapeutic efficacy of anticancer drugs and inhibit metastatic spread. In addition, TG2-regulated pathways are involved in promoting or protecting normal and tumor cells from death-induced signaling. We discuss the contribution of TG2-regulated pathways to the development of drug resistance and progression to metastatic disease and the therapeutic potential of TG2 for treating advanced-stage cancer.
Collapse
|