1
|
Muthuswamy K, Vasanthakumar K, Panneerselvan P, Thangamani L, Krishnan V, Piramanayagam S, Subramaniam S. FAHFA promotes intracellular calcium signaling via activating the fat taste receptor, CD36 and Src protein kinases in mice taste bud cells. Biochim Biophys Acta Gen Subj 2024; 1868:130722. [PMID: 39426759 DOI: 10.1016/j.bbagen.2024.130722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Two lipid sensors, CD36 and GPR120, are crucial for the orosensory detection of fat taste and for mediating fat preference. However, the mechanism by which endogenous lipid (FAHFA) binds to CD36 to initiate intracellular signaling remains unexplained. Hence, the primary objective of this study is to investigate the binding mechanism of FAHFA to CD36 and its role in isolated mouse taste bud cells (mTBCs). The Schrodinger platform was used to assess the molecular dynamics of protein and ligand interactions, and an in vitro experiment was used to validate the findings. Based on the docking score of the ligand, the molecular mechanistic activities of the targeted complexes, CD36-5-POHSA (-8.2 kcal/mol), were investigated using the dynamic simulation. In comparison to linoleic acid (LA), POHSA rapidly increased [Ca2+]i via acting on CD36, and 5-POHSA treatment in mTBCs activated src-kinase at 20 μM. CD36 siRNA transfection in TBCs downregulate the CD36 protein expression as well as [Ca2+]i flux. This study suggests that 5-POHSA may help combat taste abnormalities and the adverse effects of obesity by binding to the lingual CD36 receptor and activating the tongue-brain axis.
Collapse
Affiliation(s)
- Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India; Men's Health Research Unit, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Lokesh Thangamani
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India.
| |
Collapse
|
2
|
Boda VK, Yasmen N, Jiang J, Li W. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev 2024; 44:2510-2544. [PMID: 38715347 PMCID: PMC11452291 DOI: 10.1002/med.22048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Transient receptor potential canonical 3 (TRPC3) protein belongs to the TRP family of nonselective cation channels. Its activation occurs by signaling through a G protein-coupled receptor (GPCR) and a phospholipase C-dependent (PLC) pathway. Perturbations in the expression of TRPC3 are associated with a plethora of pathophysiological conditions responsible for disorders of the cardiovascular, immune, and central nervous systems. The recently solved cryo-EM structure of TRPC3 provides detailed inputs about the underlying mechanistic aspects of the channel, which in turn enables more efficient ways of designing small-molecule modulators. Pharmacologically targeting TRPC3 in animal models has demonstrated great efficacy in treating diseases including cancers, neurological disorders, and cardiovascular diseases. Despite extensive scientific evidence supporting some strong correlations between the expression and activity of TRPC3 and various pathophysiological conditions, therapeutic strategies based on its pharmacological modulations have not led to clinical trials. The development of small-molecule TRPC3 modulators with high safety, sufficient brain penetration, and acceptable drug-like profiles remains in progress. Determining the pathological mechanisms for TRPC3 involvement in human diseases and understanding the requirements for a drug-like TRPC3 modulator will be valuable in advancing small-molecule therapeutics to future clinical trials. In this review, we provide an overview of the origin and activation mechanism of TRPC3 channels, diseases associated with irregularities in their expression, and new development in small-molecule modulators as potential therapeutic interventions for treating TRPC3 channelopathies.
Collapse
Affiliation(s)
- Vijay K. Boda
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
3
|
Thomas RE, Mudlaff F, Schweers K, Farmer WT, Suvrathan A. Heterogeneity in Slow Synaptic Transmission Diversifies Purkinje Cell Timing. J Neurosci 2024; 44:e0455242024. [PMID: 39147589 PMCID: PMC11391503 DOI: 10.1523/jneurosci.0455-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The cerebellum plays an important role in diverse brain functions, ranging from motor learning to cognition. Recent studies have suggested that molecular and cellular heterogeneity within cerebellar lobules contributes to functional differences across the cerebellum. However, the specific relationship between molecular and cellular heterogeneity and diverse functional outputs of different regions of the cerebellum remains unclear. Here, we describe a previously unappreciated form of synaptic heterogeneity at parallel fiber synapses to Purkinje cells in the mouse cerebellum (both sexes). In contrast to uniform fast synaptic transmission, we found that the properties of slow synaptic transmission varied by up to threefold across different lobules of the mouse cerebellum, resulting in surprising heterogeneity. Depending on the location of a Purkinje cell, the time of peak of slow synaptic currents varied by hundreds of milliseconds. The duration and decay time of these currents also spanned hundreds of milliseconds, based on lobule. We found that, as a consequence of the heterogeneous synaptic dynamics, the same brief input stimulus was transformed into prolonged firing patterns over a range of timescales that depended on Purkinje cell location.
Collapse
Affiliation(s)
- Riya Elizabeth Thomas
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Franziska Mudlaff
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Kyra Schweers
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| | - William Todd Farmer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| |
Collapse
|
4
|
Belozor OS, Vasilev A, Mileiko AG, Mosina LD, Mikhailov IG, Ox DA, Boitsova EB, Shuvaev AN, Teschemacher AG, Kasparov S, Shuvaev AN. Memantine suppresses the excitotoxicity but fails to rescue the ataxic phenotype in SCA1 model mice. Biomed Pharmacother 2024; 174:116526. [PMID: 38574621 DOI: 10.1016/j.biopha.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a debilitating neurodegenerative disorder of the cerebellum and brainstem. Memantine has been proposed as a potential treatment for SCA1. It blocks N-methyl-D-aspartate (NMDA) receptors on neurons, reduces excitotoxicity and decreases neurodegeneration in Alzheimer models. However, in cerebellar neurodegenerative diseases, the potential value of memantine is still unclear. We investigated the effects of memantine on motor performance and synaptic transmission in the cerebellum in a mouse model where mutant ataxin 1 is specifically targeted to glia. Lentiviral vectors (LVV) were used to express mutant ataxin 1 selectively in Bergmann glia (BG). In mice transduced with the mutant ataxin 1, chronic treatment with memantine improved motor activity during initial tests, presumably due to preserved BG and Purkinje cell (PC) morphology and numbers. However, mice were unable to improve their rota rod scores during next days of training. Memantine also compromised improvement in the rota rod scores in control mice upon repetitive training. These effects may be due to the effects of memantine on plasticity (LTD suppression) and NMDA receptor modulation. Some effects of chronically administered memantine persisted even after its wash-out from brain slices. Chronic memantine reduced morphological signs of neurodegeneration in the cerebellum of SCA1 model mice. This resulted in an apparent initial reduction of ataxic phenotype, but memantine also affected cerebellar plasticity and ultimately compromised motor learning. We speculate that that clinical application of memantine in SCA1 might be hampered by its ability to suppress NMDA-dependent plasticity in cerebellar cortex.
Collapse
Affiliation(s)
- Olga S Belozor
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, Krasnoyarsk 660022, Russia
| | - Alex Vasilev
- JSC «BIOCAD», Svyazi str. 34-A, Strelna, Saint-Petersburg 198515, Russia
| | | | - Lyudmila D Mosina
- Siberian Federal University, Svobodny pr., 79, Krasnoyarsk 660041, Russia
| | - Ilya G Mikhailov
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, Krasnoyarsk 660022, Russia; Siberian Federal University, Svobodny pr., 79, Krasnoyarsk 660041, Russia
| | - Darius A Ox
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, Krasnoyarsk 660022, Russia; Siberian Federal University, Svobodny pr., 79, Krasnoyarsk 660041, Russia
| | - Elizaveta B Boitsova
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, Krasnoyarsk 660022, Russia
| | - Andrey N Shuvaev
- Siberian Federal University, Svobodny pr., 79, Krasnoyarsk 660041, Russia
| | - Anja G Teschemacher
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Sergey Kasparov
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Anton N Shuvaev
- Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, Krasnoyarsk 660022, Russia; Siberian Federal University, Svobodny pr., 79, Krasnoyarsk 660041, Russia.
| |
Collapse
|
5
|
Mao LM, Young L, Chu XP, Wang JQ. Regulation of Src family kinases by muscarinic acetylcholine receptors in heterologous cells and neurons. Front Mol Neurosci 2024; 16:1340725. [PMID: 38273940 PMCID: PMC10808654 DOI: 10.3389/fnmol.2023.1340725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Five muscarinic acetylcholine (mACh) receptor subtypes are divided into two classes: the M1 class (M1, M3, and M5) and the M2 class (M2 and M4). The former is coupled to Gq proteins, while the latter is coupled to Gi/o proteins. Accumulating evidence indicates that mACh receptors play a significant role in the regulation of the Src family kinase (SFK), a subfamily of non-receptor tyrosine kinases. mACh receptors exert their roles in a subtype-dependent fashion and preferentially target Src and Fyn, two members of SFKs that are expressed in the brain and enriched at synaptic sites. While the M1 receptor positively modulates SFK activity, the M4 receptor inhibits it. By modulating SFKs, mACh receptors are actively involved in the regulation of expression and function of a variety of receptors, structural proteins, and signaling molecules. In particular, the M4 receptor and the dopamine D1 receptor are coexpressed in striatonigral projection neurons of the striatum. Gi/o-coupled M4 and Gq-coupled D1 receptors antagonistically regulate SFK activity, thereby forming a dynamic balance controlling glutamate receptor activity, excitability of neurons, and synaptic plasticity. In summary, mACh receptors play a crucial role in regulating SFK activity in heterologous cells and neurons.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Lexi Young
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - John Q. Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
6
|
Norton CE, Shaw RL, Segal SS. Differential Effects of High Fat Diets on Resilience to H 2O 2-Induced Cell Death in Mouse Cerebral Arteries: Role for Processed Carbohydrates. Antioxidants (Basel) 2023; 12:1433. [PMID: 37507971 PMCID: PMC10376469 DOI: 10.3390/antiox12071433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
High fat, western-style diets increase vascular oxidative stress. We hypothesized that smooth muscle cells and endothelial cells adapt during the consumption of high fat diets to become more resilient to acute oxidative stress. Male C57Bl/6J mice were fed a western-style diet high in fat and processed carbohydrates (WD), a high fat diet that induces obesity (DIO), or their respective control (CD) and standard (SD) diets for 16 weeks. Posterior cerebral arteries (PCAs) were isolated and pressurized for study. During acute exposure to H2O2 (200 µM), smooth muscle cell and endothelial cell death were reduced in PCAs from WD, but not DIO mice. WD selectively attenuated mitochondrial membrane potential depolarization and vessel wall Ca2+ influx during H2O2 exposure. Selective inhibition of transient receptor potential (TRP) V4 or TRPC3 channels reduced smooth muscle cell and endothelial cell death in concert with the vessel wall [Ca2+]i response to H2O2 for PCAs from CD mice and eliminated differences between CD and WD. Inhibiting Src kinases reduced smooth muscle cell death along with [Ca2+]i response to H2O2 only in PCAs from CD mice and eliminated differences between diets. However, Src kinase inhibition did not alter endothelial cell death. These findings indicate that consuming a WD, but not high fat alone, leads to adaptations that limit Ca2+ influx and vascular cell death during exposure to acute oxidative stress.
Collapse
Affiliation(s)
- Charles E Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Rebecca L Shaw
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Dalton Cardiovascular Research Center, Columbia, MO 65211, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65201, USA
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Millet A, Jendzjowsky N. Pathogen recognition by sensory neurons: hypotheses on the specificity of sensory neuron signaling. Front Immunol 2023; 14:1184000. [PMID: 37207232 PMCID: PMC10189129 DOI: 10.3389/fimmu.2023.1184000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Sensory neurons cooperate with barrier tissues and resident immune cells to form a significant aspect of defensive strategies in concert with the immune system. This assembly of neuroimmune cellular units is exemplified across evolution from early metazoans to mammalian life. As such, sensory neurons possess the capability to detect pathogenic infiltrates at barrier surfaces. This capacity relies on mechanisms that unleash specific cell signaling, trafficking and defensive reflexes. These pathways exploit mechanisms to amplify and enhance the alerting response should pathogenic infiltration seep into other tissue compartments and/or systemic circulation. Here we explore two hypotheses: 1) that sensory neurons' potential cellular signaling pathways require the interaction of pathogen recognition receptors and ion channels specific to sensory neurons and; 2) mechanisms which amplify these sensing pathways require activation of multiple sensory neuron sites. Where possible, we provide references to other apt reviews which provide the reader more detail on specific aspects of the perspectives provided here.
Collapse
Affiliation(s)
- Antoine Millet
- Respiratory & Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Nicholas Jendzjowsky
- Respiratory & Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- Division of Respiratory and Critical Care Medicine and Physiology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
8
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
9
|
Bobkov D, Semenova S. Impact of lipid rafts on transient receptor potential channel activities. J Cell Physiol 2022; 237:2034-2044. [PMID: 35014032 DOI: 10.1002/jcp.30679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/06/2022]
Abstract
Members of the transient receptor potential (TRP) superfamily are cation channels that are expressed in nearly every mammalian cell type and respond as cellular sensors to various environmental stimuli. Light, pressure, osmolarity, temperature, and other stimuli can induce TRP calcium conductivity and correspondingly trigger many signaling processes in cells. Disruption of TRP channel activity, as a rule, harms cellular function. Despite numerous studies, the mechanisms of TRP channel regulation are not yet sufficiently clear, in part, because TRP channels are regulated by a broad set of ligands having diverse physical and chemical features. It is now known that some TRP members are located in membrane microdomains termed lipid rafts. Moreover, interaction between specific raft-associated lipids with channels may be a key regulation mechanism. This review examines recent findings related to the roles of lipid rafts in regulation of TRP channel activity. The mechanistic events of channel interactions with the main lipid raft constituent, cholesterol, are being clarified. Better understanding of mechanisms behind such interactions would help establish the key elements of TRP channel regulation and hence allow control of cellular responses to environmental stimuli.
Collapse
Affiliation(s)
- Danila Bobkov
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Svetlana Semenova
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
10
|
Muzorewa TT, Buerk DG, Jaron D, Barbee KA. Coordinated regulation of endothelial calcium signaling and shear stress-induced nitric oxide production by PKCβ and PKCη. Cell Signal 2021; 87:110125. [PMID: 34474112 DOI: 10.1016/j.cellsig.2021.110125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Protein Kinase C (PKC) is a promiscuous serine/threonine kinase regulating vasodilatory responses in vascular endothelial cells. Calcium-dependent PKCbeta (PKCβ) and calcium-independent PKCeta (PKCη) have both been implicated in the regulation and dysfunction of endothelial responses to shear stress and agonists. OBJECTIVE We hypothesized that PKCβ and PKCη differentially modulate shear stress-induced nitric oxide (NO) production by regulating the transduced calcium signals and the resultant eNOS activation. As such, this study sought to characterize the contribution of PKCη and PKCβ in regulating calcium signaling and endothelial nitric oxide synthase (eNOS) activation after exposure of endothelial cells to ATP or shear stress. METHODS Bovine aortic endothelial cells were stimulated in vitro under pharmacological inhibition of PKCβ with LY333531 or PKCη targeting with a pseudosubstrate inhibitor. The participation of PKC isozymes in calcium flux, eNOS phosphorylation and NO production was assessed following stimulation with ATP or shear stress. RESULTS PKCη proved to be a robust regulator of agonist- and shear stress-induced eNOS activation, modulating calcium fluxes and tuning eNOS activity by multi-site phosphorylation. PKCβ showed modest influence in this pathway, promoting eNOS activation basally and in response to shear stress. Both PKC isozymes contributed to the constitutive and induced phosphorylation of eNOS. The observed PKC signaling architecture is intricate, recruiting Src to mediate a portion of PKCη's control on calcium entry and eNOS phosphorylation. Elucidation of the importance of PKCη in this pathway was tempered by evidence of a single stimulus producing concurrent phosphorylation at ser1179 and thr497 which are antagonistic to eNOS activity. CONCLUSIONS We have, for the first time, shown in a single species in vitro that shear stress- and ATP-stimulated NO production are differentially regulated by classical and novel PKCs. This study furthers our understanding of the PKC isozyme interplay that optimizes NO production. These considerations will inform the ongoing design of drugs for the treatment of PKC-sensitive cardiovascular pathologies.
Collapse
Affiliation(s)
- Tenderano T Muzorewa
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Donald G Buerk
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Dov Jaron
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA
| | - Kenneth A Barbee
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Market St., Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
12
|
Lee GH, Park JS, Jin SW, Pham TH, Thai TN, Kim JY, Kim CY, Choi JH, Han EH, Jeong HG. Betulinic Acid Induces eNOS Expression via the AMPK-Dependent KLF2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14523-14530. [PMID: 33232606 DOI: 10.1021/acs.jafc.0c06250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Betulinic acid (BA) is a natural pentacyclic triterpenoid with protective effects against inflammation, metabolic diseases, and cardiovascular diseases. We have previously shown that BA prevents endothelial dysfunction by increasing nitric oxide (NO) synthesis through activating endothelial nitric oxide synthase (eNOS) in human endothelial cells. However, the effect of BA on eNOS expression remains unclear. Thus, the aim of our study was to investigate the intracellular pathways associated with the effect of BA to regulate eNOS expression in human endothelial cells. BA significantly increased eNOS expression in a time- and concentration-dependent manner. Additionally, BA upregulated the expression of the transcription factor KLF2, which is known to regulate eNOS expression. KLF2 silencing in human endothelial cells attenuated the ability of BA to upregulate eNOS. BA also increased levels of intracellular Ca2+, activating CaMKKβ, CaMKIIα, and AMPK. Inhibition of the TRPC calcium channel abolished BA-mediated effects on intracellular Ca2+ levels. Moreover, BA increased the phosphorylation levels of ERK5, HDAC5, and MEF2C. Pretreatment of cells with compound C (AMPK inhibitor), LMK235 (HDAC5 inhibitor), and XMD8-92 (ERK5 inhibitor) attenuated the BA-induced eNOS expression. Collectively, these findings suggest that BA induces eNOS expression by activating the HDAC5/ERK5/KLF2 pathway in endothelial cells. The data presented here provide strong evidence supporting the use of BA to prevent endothelial dysfunction and treat vascular diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Song Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tuyet Ngan Thai
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chae Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
13
|
Post-Translational Modification and Natural Mutation of TRPC Channels. Cells 2020; 9:cells9010135. [PMID: 31936014 PMCID: PMC7016788 DOI: 10.3390/cells9010135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transient Receptor Potential Canonical (TRPC) channels are homologues of Drosophila TRP channel first cloned in mammalian cells. TRPC family consists of seven members which are nonselective cation channels with a high Ca2+ permeability and are activated by a wide spectrum of stimuli. These channels are ubiquitously expressed in different tissues and organs in mammals and exert a variety of physiological functions. Post-translational modifications (PTMs) including phosphorylation, N-glycosylation, disulfide bond formation, ubiquitination, S-nitrosylation, S-glutathionylation, and acetylation play important roles in the modulation of channel gating, subcellular trafficking, protein-protein interaction, recycling, and protein architecture. PTMs also contribute to the polymodal activation of TRPCs and their subtle regulation in diverse physiological contexts and in pathological situations. Owing to their roles in the motor coordination and regulation of kidney podocyte structure, mutations of TRPCs have been implicated in diseases like cerebellar ataxia (moonwalker mice) and focal and segmental glomerulosclerosis (FSGS). The aim of this review is to comprehensively integrate all reported PTMs of TRPCs, to discuss their physiological/pathophysiological roles if available, and to summarize diseases linked to the natural mutations of TRPCs.
Collapse
|
14
|
DeLalio LJ, Billaud M, Ruddiman CA, Johnstone SR, Butcher JT, Wolpe AG, Jin X, Keller TCS, Keller AS, Rivière T, Good ME, Best AK, Lohman AW, Swayne LA, Penuela S, Thompson RJ, Lampe PD, Yeager M, Isakson BE. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem 2019; 294:6940-6956. [PMID: 30814251 DOI: 10.1074/jbc.ra118.006982] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Indexed: 11/06/2022] Open
Abstract
Pannexin 1 (PANX1)-mediated ATP release in vascular smooth muscle coordinates α1-adrenergic receptor (α1-AR) vasoconstriction and blood pressure homeostasis. We recently identified amino acids 198-200 (YLK) on the PANX1 intracellular loop that are critical for α1-AR-mediated vasoconstriction and PANX1 channel function. We report herein that the YLK motif is contained within an SRC homology 2 domain and is directly phosphorylated by SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) at Tyr198 We demonstrate that PANX1-mediated ATP release occurs independently of intracellular calcium but is sensitive to SRC family kinase (SFK) inhibition, suggestive of channel regulation by tyrosine phosphorylation. Using a PANX1 Tyr198-specific antibody, SFK inhibitors, SRC knockdown, temperature-dependent SRC cells, and kinase assays, we found that PANX1-mediated ATP release and vasoconstriction involves constitutive phosphorylation of PANX1 Tyr198 by SRC. We specifically detected SRC-mediated Tyr198 phosphorylation at the plasma membrane and observed that it is not enhanced or induced by α1-AR activation. Last, we show that PANX1 immunostaining is enriched in the smooth muscle layer of arteries from hypertensive humans and that Tyr198 phosphorylation is detectable in these samples, indicative of a role for membrane-associated PANX1 in small arteries of hypertensive humans. Our discovery adds insight into the regulation of PANX1 by post-translational modifications and connects a significant purinergic vasoconstriction pathway with a previously identified, yet unexplored, tyrosine kinase-based α1-AR constriction mechanism. This work implicates SRC-mediated PANX1 function in normal vascular hemodynamics and suggests that Tyr198-phosphorylated PANX1 is involved in hypertensive vascular pathology.
Collapse
Affiliation(s)
- Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | - Marie Billaud
- the Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Claire A Ruddiman
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | | | - Joshua T Butcher
- the Department of Physiology, Augusta University, Augusta, Georgia 30912
| | - Abigail G Wolpe
- From the Robert M. Berne Cardiovascular Research Center.,Department of Cell Biology, and
| | - Xueyao Jin
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - T C Stevenson Keller
- From the Robert M. Berne Cardiovascular Research Center.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Alexander S Keller
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | - Thibaud Rivière
- the Department of Life and Health Sciences, University of Bordeaux, 33000 Bordeaux, France
| | | | - Angela K Best
- From the Robert M. Berne Cardiovascular Research Center
| | - Alexander W Lohman
- the Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Leigh Anne Swayne
- the Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Silvia Penuela
- the Departments of Anatomy and Cell Biology and Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada, and
| | - Roger J Thompson
- the Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul D Lampe
- the Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark Yeager
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
15
|
Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacol Ther 2017; 174:79-96. [DOI: 10.1016/j.pharmthera.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Ho YT, Adriani G, Beyer S, Nhan PT, Kamm RD, Kah JCY. A Facile Method to Probe the Vascular Permeability of Nanoparticles in Nanomedicine Applications. Sci Rep 2017; 7:707. [PMID: 28386096 PMCID: PMC5429672 DOI: 10.1038/s41598-017-00750-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
The effectiveness of nanoparticles (NP) in nanomedicine depends on their ability to extravasate from vasculature towards the target tissue. This is determined by their permeability across the endothelial barrier. Unfortunately, a quantitative study of the diffusion permeability coefficients (Pd) of NPs is difficult with in vivo models. Here, we utilize a relevant model of vascular-tissue interface with tunable endothelial permeability in vitro based on microfluidics. Human umbilical vein endothelial cells (HUVECs) grown in microfluidic devices were treated with Angiopoietin 1 and cyclic adenosine monophosphate (cAMP) to vary the Pd of the HUVECs monolayer towards fluorescent polystyrene NPs (pNPs) of different sizes, which was determined from image analysis of their fluorescence intensity when diffusing across the monolayer. Using 70 kDa dextran as a probe, untreated HUVECs yielded a Pd that approximated tumor vasculature while HUVECs treated with 25 μg/mL cAMP had Pd that approximated healthy vasculature in vivo. As the size of pNPs increased, its Pd decreased in tumor vasculature, but remained largely unchanged in healthy vasculature, demonstrating a trend similar to tumor selectivity for smaller NPs. This microfluidic model of vascular-tissue interface can be used in any laboratory to perform quantitative assessment of the tumor selectivity of nanomedicine-based systems.
Collapse
Affiliation(s)
- Yan Teck Ho
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Giulia Adriani
- BioSyM Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Sebastian Beyer
- BioSyM Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.,Federal Institute for Materials Research and Testing, Germany, Germany
| | - Phan-Thien Nhan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Roger D Kamm
- BioSyM Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore. .,Department of Biological Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Massachusetts, USA.
| | - James Chen Yong Kah
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. .,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Ferland DJ, Darios ES, Neubig RR, Sjögren B, Truong N, Torres R, Dexheimer TS, Thompson JM, Watts SW. Chemerin-induced arterial contraction is G i- and calcium-dependent. Vascul Pharmacol 2016; 88:30-41. [PMID: 27890480 DOI: 10.1016/j.vph.2016.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/27/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022]
Abstract
Chemerin is an adipokine associated with increased blood pressure, and may link obesity with hypertension. We tested the hypothesis that chemerin-induced contraction of the vasculature occurs via calcium flux in smooth muscle cells. Isometric contraction of rat aortic rings was performed in parallel with calcium kinetics of rat aortic smooth muscle cells to assess the possible signaling pathway. Chemerin-9 (nonapeptide of the chemerin S157 isoform) caused a concentration-dependent contraction of isolated aorta (EC50 100nM) and elicited a concentration-dependent intracellular calcium response (EC50 10nM). Pertussis toxin (Gi inhibitor), verapamil (L-type Ca2+ channel inhibitor), PP1 (Src inhibitor), and Y27632 (Rho kinase inhibitor) reduced both calcium influx and isometric contraction to chemerin-9 but PD098059 (Erk MAPK inhibitor) and U73122 (PLC inhibitor) had little to no effect on either measure of chemerin signaling. Although our primary aim was to examine chemerin signaling, we also highlight differences in the mechanisms of chemerin-9 and recombinant chemerin S157. These data support a chemerin-induced contractile mechanism in vascular smooth muscle that functions through Gi proteins to activate L-type Ca2+ channels, Src, and Rho kinase. There is mounting evidence linking chemerin to hypertension and this mechanism brings us closer to targeting chemerin as a form of therapy.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Calcium/metabolism
- Calcium Channels, L-Type/metabolism
- Chemokines/administration & dosage
- Chemokines/metabolism
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Hypertension/physiopathology
- Intercellular Signaling Peptides and Proteins/administration & dosage
- Intercellular Signaling Peptides and Proteins/metabolism
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- David J Ferland
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States.
| | - Emma S Darios
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Benita Sjögren
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Nguyen Truong
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Rosa Torres
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Thomas S Dexheimer
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Janice M Thompson
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, 1355 Bogue Street Rm B445, Michigan State University, East Lansing, MI 48824-1317, United States
| |
Collapse
|
18
|
Subramaniam S, Ozdener MH, Abdoul-Azize S, Saito K, Malik B, Maquart G, Hashimoto T, Marambaud P, Aribi M, Tordoff MG, Besnard P, Khan NA. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J 2016; 30:3489-3500. [PMID: 27358389 PMCID: PMC5024696 DOI: 10.1096/fj.201600422r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
Obesity is a major public health problem. An in-depth knowledge of the molecular mechanisms of oro-sensory detection of dietary lipids may help fight it. Humans and rodents can detect fatty acids via lipido-receptors, such as CD36 and GPR120. We studied the implication of the MAPK pathways, in particular, ERK1/2, in the gustatory detection of fatty acids. Linoleic acid, a dietary fatty acid, induced via CD36 the phosphorylation of MEK1/2-ERK1/2-ETS-like transcription factor-1 cascade, which requires Fyn-Src kinase and lipid rafts in human taste bud cells (TBCs). ERK1/2 cascade was activated by Ca2+ signaling via opening of the calcium-homeostasis modulator-1 (CALHM1) channel. Furthermore, fatty acid-evoked Ca2+ signaling and ERK1/2 phosphorylation were decreased in both human TBCs after small interfering RNA knockdown of CALHM1 channel and in TBCs from Calhm1-/- mice. Targeted knockdown of ERK1/2 by small interfering RNA or PD0325901 (MEK1/2 inhibitor) in the tongue and genetic ablation of Erk1 or Calhm1 genes impaired preference for dietary fat in mice. Lingual inhibition of ERK1/2 in healthy volunteers also decreased orogustatory sensitivity for linoleic acid. Our data demonstrate that ERK1/2-MAPK cascade is regulated by the opening of CALHM1 Ca2+ channel in TBCs to modulate orogustatory detection of dietary lipids in mice and humans.-Subramaniam, S., Ozdener, M. H., Abdoul-Azize, S., Saito, K., Malik, B., Maquart, G., Hashimoto, T., Marambaud, P., Aribi, M., Tordoff, M. G., Besnard, P., Khan, N. A. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans.
Collapse
Affiliation(s)
| | | | | | | | - Bilal Malik
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Guillaume Maquart
- Unité Mixte de Recherche U866, INSERM, Université de Bourgogne, AgroSup, Dijon, France
| | | | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, Abou Bekr Bel-Kaid University, Tlemcen, Algeria
| | | | - Philippe Besnard
- Unité Mixte de Recherche U866, INSERM, Université de Bourgogne, AgroSup, Dijon, France
| | - Naim Akhtar Khan
- Unité Mixte de Recherche U866, INSERM, Université de Bourgogne, AgroSup, Dijon, France;
| |
Collapse
|
19
|
Svobodova B, Groschner K. Reprint of "Mechanisms of lipid regulation and lipid gating in TRPC channels". Cell Calcium 2016; 60:133-41. [PMID: 27431463 DOI: 10.1016/j.ceca.2016.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/04/2023]
Abstract
TRPC proteins form cation channels that integrate and relay cellular signals by mechanisms involving lipid recognition and lipid-dependent gating. The lipohilic/amphiphilic molecules that function as cellular activators or modulators of TRPC proteins span a wide range of chemical structures. In this context, cellular redox balance is likely linked to the lipid recognition/gating features of TRPC channels. Both classical ligand-protein interactions as well as indirect and promiscuous sensory mechanisms have been proposed. Some of the recognition processes are suggested to involve ancillary lipid-binding scaffolds or regulators as well as dynamic protein-protein interactions determined by bilayer architecture. A complex interplay of protein-protein and protein-lipid interactions is likely to govern the gating and/or plasma membrane recruitment of TRPC channels, thereby providing a distinguished platform for signal integration and coincident signal detection. Both the primary molecular event(s) of lipid recognition by TRPC channels as well as the transformation of these events into distinct gating movements is poorly understood at the molecular level, and it remains elusive whether lipid sensing in TRPCs is conferred to a distinct sensor domain. Recent structural information on the molecular action of lipophilic activators in distantly related members of the TRP superfamily encourages speculations on TRPC gating mechanisms involved in lipid recognition/gating. This review aims to provide an update on the current understanding of the lipid-dependent control of TRPC channels with focus on the TRPC lipid sensing, signal-integration hub and a short discussion of potential links to redox signaling.
Collapse
Affiliation(s)
- Barbora Svobodova
- Institute of Biophysics, Medical University of Graz, A-8010 Graz, Austria
| | - Klaus Groschner
- Institute of Biophysics, Medical University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
20
|
Mechanisms of lipid regulation and lipid gating in TRPC channels. Cell Calcium 2016; 59:271-9. [PMID: 27125985 DOI: 10.1016/j.ceca.2016.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022]
Abstract
TRPC proteins form cation channels that integrate and relay cellular signals by mechanisms involving lipid recognition and lipid-dependent gating. The lipohilic/amphiphilic molecules that function as cellular activators or modulators of TRPC proteins span a wide range of chemical structures. In this context, cellular redox balance is likely linked to the lipid recognition/gating features of TRPC channels. Both classical ligand-protein interactions as well as indirect and promiscuous sensory mechanisms have been proposed. Some of the recognition processes are suggested to involve ancillary lipid-binding scaffolds or regulators as well as dynamic protein-protein interactions determined by bilayer architecture. A complex interplay of protein-protein and protein-lipid interactions is likely to govern the gating and/or plasma membrane recruitment of TRPC channels, thereby providing a distinguished platform for signal integration and coincident signal detection. Both the primary molecular event(s) of lipid recognition by TRPC channels as well as the transformation of these events into distinct gating movements is poorly understood at the molecular level, and it remains elusive whether lipid sensing in TRPCs is conferred to a distinct sensor domain. Recent structural information on the molecular action of lipophilic activators in distantly related members of the TRP superfamily encourages speculations on TRPC gating mechanisms involved in lipid recognition/gating. This review aims to provide an update on the current understanding of the lipid-dependent control of TRPC channels with focus on the TRPC lipid sensing, signal-integration hub and a short discussion of potential links to redox signaling.
Collapse
|
21
|
Bertin S, Raz E. Transient Receptor Potential (TRP) channels in T cells. Semin Immunopathol 2015; 38:309-19. [PMID: 26468011 DOI: 10.1007/s00281-015-0535-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022]
Abstract
The transient receptor potential (TRP) family of ion channels is widely expressed in many cell types and plays various physiological roles. Growing evidence suggests that certain TRP channels are functionally expressed in the immune system. Indeed, an increasing number of reports have demonstrated the functional expression of several TRP channels in innate and adaptive immune cells and have highlighted their critical role in the activation and function of these cells. However, very few reviews have been entirely dedicated to this subject. Here, we will summarize the recent findings with regards to TRP channel expression in T cells and discuss their emerging role as regulators of T cell activation and functions. Moreover, these studies suggest that beyond their pharmaceutical interest in pain management, certain TRP channels may represent potential novel therapeutic targets for various immune-related diseases.
Collapse
Affiliation(s)
- Samuel Bertin
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA.
| | - Eyal Raz
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| |
Collapse
|
22
|
Ampem PT, Smedlund K, Vazquez G. Pharmacological evidence for a role of the transient receptor potential canonical 3 (TRPC3) channel in endoplasmic reticulum stress-induced apoptosis of human coronary artery endothelial cells. Vascul Pharmacol 2015. [PMID: 26215710 DOI: 10.1016/j.vph.2015.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unresolved endoplasmic reticulum (ER) stress, with the subsequent persistent activation of the unfolded protein response (UPR) is a well-recognized mechanism of endothelial cell apoptosis with a major impact on the integrity of the endothelium during the course of cardiovascular diseases. As in other cell types, Ca(2+) influx into endothelial cells can promote ER stress and/or contribute to mechanisms associated with it. In previous work we showed that in human coronary artery endothelial cells (HCAECs) the Ca(2+)-permeable non-selective cation channel Transient Receptor Potential Canonical 3 (TRPC3) mediates constitutive Ca(2+) influx which is critical for operation of inflammatory signaling in these cells, through a mechanism that entails coupling of TRPC3 constitutive function to activation of Ca(2+)/calmodulin-dependent protein kinase II (CAMKII). TRPC3 has been linked to UPR signaling and apoptosis in cells other than endothelial, and CAMKII is a mediator of ER stress-induced apoptosis in various cell types, including endothelial cells. In the present work we used a pharmacological approach to examine whether in HCAECs TRPC3 and CAMKII also contribute to mechanisms of ER stress-induced apoptosis. The findings show for the first time that in HCAECs activation of the UPR and the subsequent ER stress-induced apoptosis exhibit a strong requirement for constitutive Ca(2+) influx and that TRPC3 contributes to this process. In addition, we obtained evidence indicating that, similar to its roles in non-endothelial cells, CAMKII participates in ER stress-induced apoptosis in HCAECs.
Collapse
Affiliation(s)
- Prince T Ampem
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Health Science Campus, 3000 Transverse Dr., Toledo, OH 43614, USA
| | - Kathryn Smedlund
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Health Science Campus, 3000 Transverse Dr., Toledo, OH 43614, USA
| | - Guillermo Vazquez
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Health Science Campus, 3000 Transverse Dr., Toledo, OH 43614, USA; Center for Diabetes and Endocrine Research, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Health Science Campus, 3000 Transverse Dr., Toledo, OH 43614, USA.
| |
Collapse
|
23
|
Abstract
The exact mechanisms underlying the lysosomal storage disorder (LSD) mucolipidosis type IV (MLIV) are unclear. In the present study, we provide evidence that mTOR regulates the opening and closing of the lysosomal channel responsible for MLIV through phosphorylation. Autophagy is a complex pathway regulated by numerous signalling events that recycles macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca2+ efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however, the exact mechanisms involved in the development of the pathology of this LSD are unknown. In the present study, we provide evidence that the target of rapamycin (TOR), a nutrient-sensitive protein kinase that negatively regulates autophagy, directly targets and inactivates the TRPML1 channel and thereby functional autophagy, through phosphorylation. Further, mutating these phosphorylation sites to unphosphorylatable residues proved to block TOR regulation of the TRPML1 channel. These findings suggest a mechanism for how TOR activity may regulate the TRPML1 channel.
Collapse
|
24
|
Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel. Proc Natl Acad Sci U S A 2015; 112:E2201-6. [PMID: 25870279 DOI: 10.1073/pnas.1505410112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In previous in vitro studies, we showed that Transient Receptor Potential Canonical 3 (TRPC3), a calcium-permeable, nonselective cation channel endowed with high constitutive function, is an obligatory component of the inflammatory signaling that controls expression of the vascular cell adhesion molecule-1 (VCAM-1) and monocyte adhesion to coronary artery endothelial cells. Also, TRPC3 expression in these cells was found to be up-regulated by proatherogenic factors, which enhanced inflammation and VCAM-1 expression. However, it remained to be determined whether these in vitro findings were of relevance to atherosclerotic lesion development in vivo. To answer this important question in the present work, we generated mice with endothelial-specific overexpression of human TRPC3 in an Apoe knockout background (TgEST3ApoeKO) and examined lesions in the aortic sinus following 10 and 16 wk on a high-fat diet. No significant differences were found in size or complexity of early stage lesions (10 wk). However, advanced plaques (16 wk) from TgEST3ApoeKO mice exhibited a significant increase in size and macrophage content compared with nontransgenic littermate controls. Remarkably, this change was correlated with increased VCAM-1 and phospho-IkBα immunoreactivity along the endothelial lining of lesions from transgenic animals compared with controls. These findings validate the in vivo relevance of previous in vitro findings and represent, to our knowledge, the first in vivo evidence for a proatherogenic role of endothelial TRPC3.
Collapse
|
25
|
Disruption of Src Is Associated with Phenotypes Related to Williams-Beuren Syndrome and Altered Cellular Localization of TFII-I. eNeuro 2015; 2:eN-NWR-0016-14. [PMID: 26464974 PMCID: PMC4596087 DOI: 10.1523/eneuro.0016-14.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 11/21/2022] Open
Abstract
Src is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src (thl/thl) ) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src (thl/thl) mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I). Src phosphorylation regulates the movement of GTF2I protein (TFII-I) between the nucleus, where it is a transcriptional activator, and the cytoplasm, where it regulates trafficking of transient receptor potential cation channel, subfamily C, member 3 (TRPC3) subunits to the plasma membrane. Here, we demonstrate altered cellular localization of both TFII-I and TRPC3 in the Src mutants, suggesting that disruption of Src can phenocopy behavioral phenotypes observed in WBS through its regulation of TFII-I.
Collapse
|
26
|
MacKay CE, Knock GA. Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease. J Physiol 2014; 593:3815-28. [PMID: 25384773 DOI: 10.1113/jphysiol.2014.285304] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca(2+) concentration, including transient receptor potential channels, voltage-gated Ca(2+) channels and various types of K(+) channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Charles E MacKay
- Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Greg A Knock
- Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
27
|
Saxena A, Bachelor M, Park YH, Carreno FR, Nedungadi TP, Cunningham JT. Angiotensin II induces membrane trafficking of natively expressed transient receptor potential vanilloid type 4 channels in hypothalamic 4B cells. Am J Physiol Regul Integr Comp Physiol 2014; 307:R945-55. [PMID: 25080500 DOI: 10.1152/ajpregu.00224.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transient receptor potential vanilloid family type 4 (TRPV4) channels are expressed in central neuroendocrine neurons and have been shown to be polymodal in other systems. We previously reported that in the rodent, a model of dilutional hyponatremia associated with hepatic cirrhosis, TRPV4 expression is increased in lipid rafts from the hypothalamus and that this effect may be angiotensin dependent. In this study, we utilized the immortalized neuroendocrine rat hypothalamic 4B cell line to more directly test the effects of angiotensin II (ANG II) on TRPV4 expression and function. Our results demonstrate the expression of corticotropin-releasing factor (CRF) transcripts, for sex-determining region Y (SRY) (male genotype), arginine vasopressin (AVP), TRPV4, and ANG II type 1a and 1b receptor in 4B cells. After a 1-h incubation in ANG II (100 nM), 4B cells showed increased TRPV4 abundance in the plasma membrane fraction, and this effect was prevented by the ANG II type 1 receptor antagonist losartan (1 μM) and by a Src kinase inhibitor PP2 (10 μM). Ratiometric calcium imaging experiments demonstrated that ANG II incubation potentiated TRPV4 agonist (GSK 1016790A, 20 nM)-induced calcium influx (control 18.4 ± 2.8% n = 5 and ANG II 80.5 ± 2.4% n = 5). This ANG II-induced increase in calcium influx was also blocked by 1 μM losartan and 10 μM PP2 (losartan 26.4 ± 3.8% n = 5 and PP2 19.7 ± 3.9% n = 5). Our data suggests that ANG II can increase TRPV4 channel membrane expression in 4B cells through its action on AT1R involving a Src kinase pathway.
Collapse
Affiliation(s)
- Ashwini Saxena
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Martha Bachelor
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Yong H Park
- Department of Pharmacology and Neuroscience & North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - Flavia R Carreno
- Department of Pharmacology & Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - T Prashant Nedungadi
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas;
| |
Collapse
|
28
|
Post-Translational Modifications of TRP Channels. Cells 2014; 3:258-87. [PMID: 24717323 PMCID: PMC4092855 DOI: 10.3390/cells3020258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 01/07/2023] Open
Abstract
Transient receptor potential (TRP) channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.
Collapse
|
29
|
Abstract
Transient receptor potential (TRP) ion channels have been detected in neurons that are part of the neural network controlling reproductive physiology and behavior. In this chapter we will primarily take a look at the classical/canonical TRP (TRPC) channels but will also examine some other members of the TRP channel superfamily in reproductive (neuro)endocrinology. The referenced data suggest that different TRP proteins could play functional roles at different levels of the reproductive pathway. Still, our understanding of TRP channel involvement in (neuro)endocrinology is quite limited. Due to their mechanism of activation and complex regulation, these channels are however ideally suited to be part of the transduction machinery of hormone-secreting cells.
Collapse
Affiliation(s)
- Trese Leinders-Zufall
- Department of Physiology, University of Saarland School of Medicine, 66421, Homburg, Germany,
| | | |
Collapse
|
30
|
Zhang X, Trebak M. Transient receptor potential canonical 7: a diacylglycerol-activated non-selective cation channel. Handb Exp Pharmacol 2014; 222:189-204. [PMID: 24756707 DOI: 10.1007/978-3-642-54215-2_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential canonical 7 (TRPC7) channel is the seventh member of the mammalian TRPC channel family. TRPC7 mRNA, protein, and channel activity have been detected in many tissues and organs from the mouse, rat, and human. TRPC7 has high sequence homology with TRPC3 and TRPC6, and all three channels are activated by membrane receptors that couple to isoforms of phospholipase C (PLC) and mediate non-selective cation currents. TRPC7, along with TRPC3 and TRPC6, can be activated by direct exogenous application of diacylglycerol (DAG) analogues and by pharmacological maneuvers that increase endogenous DAG in cells. TRPC7 shows distinct properties of activation, such as constitutive activity and susceptibility to negative regulation by extracellular Ca(2+) and by protein kinase C. TRPC7 can form heteromultimers with TRPC3 and TRPC6. Although TRPC7 remains one of the least studied TRPC channel, its role in various cell types and physiological and pathophysiological conditions is beginning to emerge.
Collapse
Affiliation(s)
- Xuexin Zhang
- Nanobioscience Constellation, The State University of New York (SUNY), College of Nanoscale Science and Engineering (CNSE), 257 Fuller Road, Albany, NY, 12203, USA
| | | |
Collapse
|
31
|
Abstract
TRPC3 represents one of the first identified mammalian relative of the Drosophila trp gene product. Despite extensive biochemical and biophysical characterization as well as ambitious attempts to uncover its physiological role in native cell systems, the channel protein still represents a rather enigmatic member of the TRP superfamily. TRPC3 is significantly expressed in the brain and heart and appears of (patho)physiological importance in both non-excitable and excitable cells, being potentially involved in a wide spectrum of Ca(2+) signaling mechanisms. TRPC3 cation channels display unique gating and regulatory properties that allow for recognition and integration of multiple input stimuli including lipid mediators, cellular Ca(2+) gradients, as well as redox signals. Physiological/pathophysiological functions of this highly versatile cation channel protein are as yet incompletely understood. Its ability to associate in a dynamic manner with a variety of partner proteins enables TRPC3 to serve coordination of multiple downstream signaling pathways and control of divergent cellular functions. Here, we summarize current knowledge on ion channel features as well as possible signaling functions of TRPC3 and discuss the potential biological relevance of this signaling molecule.
Collapse
Affiliation(s)
- Michaela Lichtenegger
- Institute of Pharmaceutical Sciences - Pharmacology and Toxicology, University of Graz, A-8010, Graz, Austria
| | | |
Collapse
|
32
|
Abstract
TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels.
Collapse
Affiliation(s)
- Maarten Gees
- Laboratory Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
33
|
Abdoul-Azize S, Selvakumar S, Sadou H, Besnard P, Khan NA. Ca2+ signaling in taste bud cells and spontaneous preference for fat: unresolved roles of CD36 and GPR120. Biochimie 2013; 96:8-13. [PMID: 23774298 DOI: 10.1016/j.biochi.2013.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/06/2013] [Indexed: 01/21/2023]
Abstract
Recent compelling evidences from rodent and human studies raise the possibility for an additional sixth taste modality devoted to oro-gustatory perception of dietary lipids. Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. A number of studies have suggested that lingual CD36, a glycoprotein, highly expressed by circumvallate papillae of the tongue, is implicated in the perception of dietary fat taste. G protein-coupled receptors (GPCRs) are important signaling molecules for many aspects of cellular functions. It has been shown that these receptors, particularly GPR120, are also involved in lipid taste perception. We have shown that dietary long-chain fatty acids (LCFAs), in CD36-positive taste bud cells (TBC), induce increases in free intracellular Ca(2+) concentrations, [Ca(2+)]i, by recruiting Ca(2+) from endoplasmic reticulum (ER) pool via inositol 1,4,5-triphosphate production, followed by Ca(2+) influx via opening of store-operated Ca(2+) (SOC) channels. GPR120 is also coupled to increases in [Ca(2+)]i by dietary fatty acids. We observed that stromal interaction molecule 1 (STIM1), a sensor of Ca(2+) depletion in the ER, mediated fatty acid-induced Ca(2+) signaling and spontaneous preference for fat in the mouse. In this review article, we discuss the recent advances and unresolved roles of CD36 and GPR120 in lipid taste signaling in taste bud cells.
Collapse
Affiliation(s)
- Souleymane Abdoul-Azize
- Physiologie de la Nutrition & Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, 6 Boulevard Gabriel, Dijon 21000, France; Laboratoire de Nutrition, Université Abdou Moumouni, Niamey, Niger
| | | | | | | | | |
Collapse
|
34
|
Linde CI, Feng B, Wang JB, Golovina VA. Histidine triad nucleotide-binding protein 1 (HINT1) regulates Ca(2+) signaling in mouse fibroblasts and neuronal cells via store-operated Ca(2+) entry pathway. Am J Physiol Cell Physiol 2013; 304:C1098-104. [PMID: 23576580 DOI: 10.1152/ajpcell.00073.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent findings indicate that histidine triad nucleotide-binding protein 1 (HINT1) is implicated in the pathophysiology of certain psychiatric disorders and also exhibits tumor suppressor properties. However, the authentic functions of HINT1 in cellular physiology and especially its role in Ca(2+) signaling remain unclear. Here, we studied Ca(2+) signaling in cultured embryonic fibroblasts derived from wild-type control and HINT1 knockout (KO) mice. The resting cytosolic Ca(2+) level (measured with fura-2) was not altered in fibroblasts lacking HINT1. The stored Ca(2+) evaluated by measuring peak amplitude of ATP (10 μM)-induced Ca(2+) transients in Ca(2+)-free medium was significantly larger in HINT1 KO fibroblasts than in wild-type cells. Ca(2+) influx after external Ca(2+) restoration, likely via store- and receptor-operated channels (SOCs and ROCs, respectively), was greatly (by 2-fold) reduced in HINT1 KO fibroblasts. This correlated with a downregulated expression of Orai1 and stromal interacting molecule 1 (STIM1), essential components of store-operated Ca(2+) entry pathway. Expression of canonical transient receptor potential (TRPC)3 and TRPC6, which function as ROCs, was not altered in HINT1 KO fibroblasts. Immunoblots also revealed that Orai1 was downregulated by twofold in brain lysates of HINT1 KO mice compared with the wild-type littermates. Importantly, silencer RNA knockdown of HINT1 in Neuro-2A cells markedly downregulated Orai1 and STIM1 protein expression and significantly (by 2.5-fold) reduced ATP-induced Ca(2+) influx, while ATP-evoked Ca(2+) release was not changed. Thus the study demonstrates a novel function of HINT1 that involves the regulation of SOC-mediated Ca(2+) entry pathway (Orai1 and STIM1), essential for regulation of cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Cristina I Linde
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
35
|
Katsumoto TR, Kudo M, Chen C, Sundaram A, Callahan EC, Zhu JW, Lin J, Rosen CE, Manz BN, Lee JW, Matthay MA, Huang X, Sheppard D, Weiss A. The phosphatase CD148 promotes airway hyperresponsiveness through SRC family kinases. J Clin Invest 2013; 123:2037-48. [PMID: 23543053 DOI: 10.1172/jci66397] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/07/2013] [Indexed: 01/10/2023] Open
Abstract
Increased airway smooth muscle (ASM) contractility and the development of airway hyperresponsiveness (AHR) are cardinal features of asthma, but the signaling pathways that promote these changes are poorly understood. Tyrosine phosphorylation is tightly regulated by the opposing actions of protein tyrosine kinases and phosphatases, but little is known about whether tyrosine phosphatases influence AHR. Here, we demonstrate that genetic inactivation of receptor-like protein tyrosine phosphatase J (Ptprj), which encodes CD148, protected mice from the development of increased AHR in two different asthma models. Surprisingly, CD148 deficiency minimally affected the inflammatory response to allergen, but significantly altered baseline pulmonary resistance. Mice specifically lacking CD148 in smooth muscle had decreased AHR, and the frequency of calcium oscillations in CD148-deficient ASM was substantially attenuated, suggesting that signaling pathway alterations may underlie ASM contractility. Biochemical analysis of CD148-deficient ASM revealed hyperphosphorylation of the C-terminal inhibitory tyrosine of SRC family kinases (SFKs), implicating CD148 as a critical positive regulator of SFK signaling in ASM. The effect of CD148 deficiency on ASM contractility could be mimicked by treatment of both mouse trachea and human bronchi with specific SFK inhibitors. Our studies identify CD148 and the SFKs it regulates in ASM as potential targets for the treatment of AHR.
Collapse
Affiliation(s)
- Tamiko R Katsumoto
- Division of Rheumatology and Rosalind Russell Medical Research Center for Arthritis, University of California San Francisco (UCSF), San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Effects of protease-activated receptors (PARs) on intracellular calcium dynamics of acinar cells in rat lacrimal glands. Histochem Cell Biol 2013; 140:463-76. [PMID: 23463389 DOI: 10.1007/s00418-013-1082-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Protease-activated receptors (PARs) represent a novel class of seven transmembrane domain G-protein coupled receptors, which are activated by proteolytic cleavage. PARs are present in a variety of cells and have been prominently implicated in the regulation of a number of vital functions. Here, lacrimal gland acinar cell responses to PAR activation were examined, with special reference to intracellular Ca(2+) concentration ([Ca(2+)]i) dynamics. In the present study, detection of acinar cell mRNA specific to known PAR subtypes was determined by reverse transcriptase polymerase chain reaction. Only PAR2 mRNA was detected in acinar cells of lacrimal glands. Both trypsin and a PAR2-activating peptide (PAR2-AP), SLIGRL-NH2, induced an increase in [Ca(2+)]i in acinar cells. The removal of extracellular Ca(2+) and the use of Ca(2+) channel blockers did not inhibit PAR2-AP-induced [Ca(2+)]i increases. Furthermore, U73122 and xestospongin C failed to inhibit PAR2-induced increases in [Ca(2+)]i. The origin of the calcium influx observed after activated PAR2-induced Ca(2+) release from intracellular Ca(2+) stores was also evaluated. The NO donor, GEA 3162, mimicked the effects of PAR2 in activating non-capacitative calcium entry (NCCE). However, both calyculin A (100 nM) and a low concentration of Gd(3+) (5 μM) did not completely block the PAR2-AP-induced increase in [Ca(2+)]i. These findings indicated that PAR2 activation resulted primarily in Ca(2+) mobilization from intracellular Ca(2+) stores and that PAR2-mediated [Ca(2+)]i changes were mainly independent of IP3. RT-PCR indicated that TRPC 1, 3 and 6, which play a role in CCE and NCCE, are expressed in acinar cells. We suggest that PAR2-AP differentially regulates both NCCE and CCE, predominantly NCCE. Finally, our results suggested that PAR2 may function as a key receptor in calcium-related cell homeostasis under pathophysiological conditions such as tissue injury or inflammation.
Collapse
|
37
|
Store-operated Ca2+ entry in hippocampal neurons: Regulation by protein tyrosine phosphatase PTP1B. Cell Calcium 2012; 53:125-38. [PMID: 23218930 DOI: 10.1016/j.ceca.2012.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 10/12/2012] [Accepted: 11/04/2012] [Indexed: 11/20/2022]
Abstract
Store operated Ca(2+) entry (SOCE) replenishes intracellular Ca(2+) stores and activates a number of intracellular signalling pathways. Whilst several molecular components forming store operated Ca(2+) channels (SOCC) have been identified, their modulation in neurons remains poorly understood. Here, we extend on our previous findings and show that neuronal SOCE is modulated by tyrosine phosphorylation. Cyclopiazonic acid induced SOCE was characterised in hippocampal cultures derived from forebrain specific protein tyrosine phosphatase 1B knockout (PTP1B KO) mice and wild type (WT) litter mates using Fura-2 Ca(2+) imaging. PTP1B KO cultures expressed elevated SOCE relative to WT cultures without changes in cytoplasmic Ca(2+) homeostasis or depolarisation-induced Ca(2+) influx. WT and PTP1B KO cultures displayed similar pharmacological sensitivities towards the SOCE inhibitors gadolinium and 2-aminoethoxydiphenyl borate, as well as the tyrosine kinase inhibitor Ag126 indicating an augmentation of native SOCCs by PTP1B. Following store depletion WT culture homogenates showed heightened phospho-tyrosine levels, an increase in Src tyrosine kinase activation and two minor PTP1B species. These data suggest tyrosine phosphorylation gating SOCE, and implicate PTP1B as a key regulatory enzyme. The involvement of PTP1B in SOCE and its relation to SOCC components and mechanism of regulation are discussed.
Collapse
|
38
|
Zulian A, Linde CI, Pulina MV, Baryshnikov SG, Papparella I, Hamlyn JM, Golovina VA. Activation of c-SRC underlies the differential effects of ouabain and digoxin on Ca(2+) signaling in arterial smooth muscle cells. Am J Physiol Cell Physiol 2012. [PMID: 23195071 DOI: 10.1152/ajpcell.00337.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiotonic steroids (CTS) of the strophanthus and digitalis families have opposing effects on long-term blood pressure (BP). This implies hitherto unrecognized divergent signaling pathways for these CTS. Prolonged ouabain treatment upregulates Ca(2+) entry via Na(+)/Ca(2+) exchanger-1 (NCX1) and TRPC6 gene-encoded receptor-operated channels in mesenteric artery smooth muscle cells (ASMCs) in vivo and in vitro. Here, we test the effects of digoxin on Ca(2+) entry and signaling in ASMC. In contrast to ouabain treatment, the in vivo administration of digoxin (30 μg·kg(-1)·day(-1) for 3 wk) did not raise BP and had no effect on resting cytolic free Ca(2+) concentration ([Ca(2+)](cyt)) or phenylephrine-induced Ca(2+) signals in isolated ASMCs. Expression of transporters in the α2 Na(+) pump-NCX1-TRPC6 Ca(2+) signaling pathway was not altered in arteries from digoxin-treated rats. Upregulated α2 Na(+) pumps and a phosphorylated form of the c-SRC protein kinase (pY419-Src, ~4.5-fold) were observed in ASMCs from rats treated with ouabain but not digoxin. Moreover, in primary cultured ASMCs from normal rats, treatment with digoxin (100 nM, 72 h) did not upregulate NCX1 and TRPC6 but blocked the ouabain-induced upregulation of these transporters. Pretreatment of ASMCs with the c-Src inhibitor PP2 (1 μM; 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) but not its inactive analog eliminated the effect of ouabain on NCX1 and TRPC6 expression and ATP-induced Ca(2+) entry. Thus, in contrast to ouabain, the interaction of digoxin with α2 Na(+) pumps is unable to activate c-Src phosphorylation and upregulate the downstream NCX1-TRPC6 Ca(2+) signaling pathway in ASMCs. The inability of digoxin to upregulate c-Src may underlie its inability to raise long-term BP.
Collapse
Affiliation(s)
- Alessandra Zulian
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Putney JW, Tomita T. Phospholipase C signaling and calcium influx. Adv Biol Regul 2012; 52:152-64. [PMID: 21933679 PMCID: PMC3560308 DOI: 10.1016/j.advenzreg.2011.09.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 04/18/2023]
Affiliation(s)
- James W Putney
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences - NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
40
|
|
41
|
Song MY, Makino A, Yuan JXJ. Role of reactive oxygen species and redox in regulating the function of transient receptor potential channels. Antioxid Redox Signal 2011; 15:1549-65. [PMID: 21126186 PMCID: PMC3151422 DOI: 10.1089/ars.2010.3648] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cellular redox status, regulated by production of reactive oxygen species (ROS), greatly contributes to the regulation of vascular smooth muscle cell contraction, migration, proliferation, and apoptosis by modulating the function of transient receptor potential (TRP) channels in the plasma membrane. ROS functionally interact with the channel protein via oxidizing the redox-sensitive residues, whereas nitric oxide (NO) regulates TRP channel function by cyclic GMP/protein kinase G-dependent and -independent pathways. Based on the structural differences among different TRP isoforms, the effects of ROS and NO are also different. In addition to regulating TRP channels in the plasma membrane, ROS and NO also modulate Ca(2+) release channels (e.g., IP(3) and ryanodine receptors) on the sarcoplasmic/endoplasmic reticulum membrane. This review aims at briefly describing (a) the role of TRP channels in receptor-operated and store-operated Ca(2+) entry, and (b) the role of ROS and redox status in regulating the function and structure of TRP channels.
Collapse
Affiliation(s)
- Michael Y Song
- Biomedical Sciences Graduate Program, University of California-San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
42
|
Bollimuntha S, Selvaraj S, Singh BB. Emerging roles of canonical TRP channels in neuronal function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:573-93. [PMID: 21290317 DOI: 10.1007/978-94-007-0265-3_31] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca(2+) signaling in neurons is intimately associated with the regulation of vital physiological processes including growth, survival and differentiation. In neurons, Ca(2+) elicits two major functions. First as a charge carrier, Ca(2+) reveals an indispensable role in information relay via membrane depolarization, exocytosis, and the release of neurotransmitters. Second on a global basis, Ca(2+) acts as a ubiquitous intracellular messenger to modulate neuronal function. Thus, to mediate Ca(2+)-dependent physiological events, neurons engage multiple mode of Ca(2+) entry through a variety of Ca(2+) permeable plasma membrane channels. Here we discuss a subset of specialized Ca(2+)-permeable non-selective TRPC channels and summarize their physiological and pathological role in the context of excitable cells. TRPC channels are predominately expressed in neuronal cells and are activated through complex mechanisms, including second messengers and store depletion. A growing body of evidence suggests a prime contribution of TRPC channels in regulating fundamental neuronal functions. TRPC channels have been shown to be associated with neuronal development, proliferation and differentiation. In addition, TRPC channels have also been suggested to have a potential role in regulating neurosecretion, long term potentiation, and synaptic plasticity. During the past years, numerous seminal discoveries relating TRPC channels to neurons have constantly emphasized on the significant contribution of this group of ion channels in regulating neuronal function. Here we review the major groundbreaking work that has uniquely placed TRPC channels in a pivotal position for governing neuronal Ca(2+) signaling and associated physiological responses.
Collapse
Affiliation(s)
- Sunitha Bollimuntha
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA.
| | | | | |
Collapse
|
43
|
Hartmann J, Henning HA, Konnerth A. mGluR1/TRPC3-mediated Synaptic Transmission and Calcium Signaling in Mammalian Central Neurons. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006726. [PMID: 21441586 DOI: 10.1101/cshperspect.a006726] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metabotropic glutamate receptors type 1 (mGluR1s) are required for a normal function of the mammalian brain. They are particularly important for synaptic signaling and plasticity in the cerebellum. Unlike ionotropic glutamate receptors that mediate rapid synaptic transmission, mGluR1s produce in cerebellar Purkinje cells a complex postsynaptic response consisting of two distinct signal components, namely a local dendritic calcium signal and a slow excitatory postsynaptic potential. The basic mechanisms underlying these synaptic responses were clarified in recent years. First, the work of several groups established that the dendritic calcium signal results from IP(3) receptor-mediated calcium release from internal stores. Second, it was recently found that mGluR1-mediated slow excitatory postsynaptic potentials are mediated by the transient receptor potential channel TRPC3. This surprising finding established TRPC3 as a novel postsynaptic channel for glutamatergic synaptic transmission.
Collapse
Affiliation(s)
- Jana Hartmann
- Institute of Neuroscience and Center for Integrated Protein Science, Technical University of Munich, Germany.
| | | | | |
Collapse
|
44
|
Kuda O, Jenkins CM, Skinner JR, Moon SH, Su X, Gross RW, Abumrad NA. CD36 protein is involved in store-operated calcium flux, phospholipase A2 activation, and production of prostaglandin E2. J Biol Chem 2011; 286:17785-95. [PMID: 21454644 DOI: 10.1074/jbc.m111.232975] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The scavenger receptor FAT/CD36 contributes to the inflammation associated with diabetes, atherosclerosis, thrombosis, and Alzheimer disease. Underlying mechanisms include CD36 promotion of oxidative stress and its signaling to stress kinases. Here we document an additional mechanism for the role of CD36 in inflammation. CD36 regulates membrane calcium influx in response to endoplasmic reticulum (ER) stress, release of arachidonic acid (AA) from cellular membranes by cytoplasmic phospholipase A(2)α (cPLA(2)α) and contributes to the generation of proinflammatory eicosanoids. CHO cells stably expressing human CD36 released severalfold more AA and prostaglandin E(2) (PGE(2)), a major product of AA metabolism by cyclooxygenases, in response to thapsigargin-induced ER stress as compared with control cells. Calcium influx after ER calcium release resulted in phosphorylation of cPLA(2) and its translocation to membranes in a CD36-dependent manner. Peritoneal macrophages from CD36(-/-) mice exhibited diminished calcium transients and reduced AA release after thapsigargin or UTP treatment with decreased ERK1/2 and cPLA(2) phosphorylation. However, PGE(2) production was unexpectedly enhanced in CD36(-/-) macrophages, which probably resulted from a large induction of cyclooxygenase 2 mRNA and protein. The data demonstrate participation of CD36 in membrane calcium influx in response to ER stress or purinergic receptor stimulation resulting in AA liberation for PGE(2) formation. Collectively, these results identify a mechanism contributing to the pleiotropic proinflammatory effects of CD36 and suggest that its targeted inhibition may reduce the acute inflammatory response.
Collapse
Affiliation(s)
- Ondrej Kuda
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Spehr J, Gelis L, Osterloh M, Oberland S, Hatt H, Spehr M, Neuhaus EM. G protein-coupled receptor signaling via Src kinase induces endogenous human transient receptor potential vanilloid type 6 (TRPV6) channel activation. J Biol Chem 2011; 286:13184-92. [PMID: 21349844 DOI: 10.1074/jbc.m110.183525] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) homeostasis plays a critical role in a variety of cellular processes. We showed previously that stimulation of the prostate-specific G protein-coupled receptor (PSGR) enhances cytosolic Ca(2+) and inhibits proliferation of prostate cells. Here, we analyzed the signaling mechanisms underlying the PSGR-mediated Ca(2+) increase. Using complementary molecular, biochemical, electrophysiological, and live-cell imaging techniques, we found that endogenous Ca(2+)-selective transient receptor potential vanilloid type 6 (TRPV6) channels are critically involved in the PSGR-induced Ca(2+) signal. Biophysical characterization of the current activated by PSGR stimulation revealed characteristic properties of TRPV6. The molecular identity of the involved channel was confirmed using RNA interference targeting TrpV6. TRPV6-mediated Ca(2+) influx depended on Src kinase activity. Src kinase activation occurred independently of G protein activation, presumably by direct interaction with PSGR. Taken together, we report that endogenous TRPV6 channels are activated downstream of a G protein-coupled receptor and present the first physiological characterization of these channels in situ.
Collapse
Affiliation(s)
- Jennifer Spehr
- Department of Chemosensation, RTWH Aachen University, 52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Harper MT, Sage SO. Src family tyrosine kinases activate thrombin-induced non-capacitative cation entry in human platelets. Platelets 2011; 21:445-50. [PMID: 20482247 DOI: 10.3109/09537104.2010.483295] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Platelet activation is critically regulated by an increase in intracellular calcium concentration ([Ca2+](i)). Although Ca2+ release from intracellular Ca2+ stores and subsequent store-operated Ca2+ entry are often thought to be the major contributors to increases in [Ca2+](i) evoked by most agonists, high concentrations of thrombin activate a Ca2+ entry pathway that is independent of Ca2+ store depletion (known as 'non-capacitative cation entry'-NCCE). The channel that conducts NCCE has not previously been clearly identified, and the mechanisms that regulate its activation are also unknown. Here we have investigated NCCE using fura-2-loaded human platelets. To investigate NCCE independently of other Ca2+ signaling pathways, the intracellular Ca2+ stores were first rapidly depleted in the absence of extracellular Ca2+. Sr2+ was then added to monitor maximal store-operated cation influx. Thrombin was then added to stimulate NCCE. Flufenamic acid, which inhibits Ca2+ entry through most TRPC isoforms, but potentiates entry through TRPC6, was found to block store-operated cation entry. In contrast, thrombin-induced NCCE was increased, suggesting the possible involvement of TRPC6. Since TRPC6 is regulated by Src family tyrosine kinases in some cells, we investigated the possible role of this kinase family in NCCE. PP2, a Src family tyrosine kinase inhibitor, completely abolished thrombin-induced NCCE. Furthermore, NCCE was enhanced by phenylarsine oxide and could be directly induced by vanadyl hydroperoxide, both tyrosine phosphatase inhibitors. These data indicate that Src family tyrosine kinase activation is a required step in NCCE activation. In conclusion NCCE may be an important regulator of platelet activation when local thrombin concentrations are high.
Collapse
Affiliation(s)
- Matthew T Harper
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB23EG, UK.
| | | |
Collapse
|
47
|
Albert AP. Gating Mechanisms of Canonical Transient Receptor Potential Channel Proteins: Role of Phosphoinositols and Diacylglycerol. TRANSIENT RECEPTOR POTENTIAL CHANNELS 2011; 704:391-411. [DOI: 10.1007/978-94-007-0265-3_22] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Kumar PG, Shoeb M. The Role of TRP Ion Channels in Testicular Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:881-908. [DOI: 10.1007/978-94-007-0265-3_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Reboreda A, Jiménez-Díaz L, Navarro-López JD. TRP channels and neural persistent activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:595-613. [PMID: 21290318 DOI: 10.1007/978-94-007-0265-3_32] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the integrative properties of the nervous system is its capability to, by transient motor commands or brief sensory stimuli, evoke persistent neuronal changes, mainly as a sustained, tonic action potential firing. This neural activity, named persistent activity, is found in a good number of brain regions and is thought to be a neural substrate for short-term storage and accumulation of sensory or motor information [1]. Examples of this persistent neural activity have been reported in prefrontal [2] and entorhinal [3] cortices, as part of the neural mechanisms involved in short-term working memory [4]. Interestingly, the general organization of the motor systems assumes the presence of bursts of short-lasting motor commands encoding movement characteristics such as velocity, duration, and amplitude, followed by a maintained tonic firing encoding the position at which the moving appendage should be maintained [5, 6]. Generation of qualitatively similar sustained discharges have also been found in spinal and supraspinal regions in relation to pain processing [7, 8]. Thus, persistent neural activity seems to be necessary for both behavioral (positions of fixation) and cognitive (working memory) processes. Persistent firing mechanisms have been proposed to involve the participation of a non-specific cationic current (CAN current) mainly mediated by activation of TRPC channels. Because the function and generation of persistent activity is still poorly understood, here we aimed to review and discuss the putative role of TRP-like channels on its generation and/or maintenance.
Collapse
Affiliation(s)
- Antonio Reboreda
- Section of Physiology, Department of Functional Biology and Health Sciences, School of Biology, University of Vigo, Campus Lagoas-Marcosende 36310 Vigo (Pontevedra), Spain.
| | | | | |
Collapse
|
50
|
Antigny F, Jousset H, König S, Frieden M. Thapsigargin activates Ca²+ entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium 2010; 49:115-27. [PMID: 21193229 DOI: 10.1016/j.ceca.2010.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 11/30/2022]
Abstract
The ER Ca²+ sensor STIM1 and the Ca²+ channel Orai1 are key players in store-operated Ca²+ entry (SOCE). In addition, channels from the TRPC family were also shown to be engaged during SOCE, while their precise implication remains controversial. In this study, we investigated the molecular players involved in SOCE triggered by the SERCA pump inhibitor thapsigargin in an endothelial cell line, the EA.hy926. siRNA directed against STIM1 or Orai1 reduced Ca²+ entry by about 50-60%, showing that a large part of the entry is independent from these proteins. Blocking the PLC or the PKC pathway completely abolished thapsigargin-induced Ca²+ entry in cells depleted from STIM1 and/or Orai1. The phorbol ester PMA or the DAG analog OAG restored the Ca²+ entry inhibited by PLC blockers, showing an involvement of PLC/PKC pathway in SOCE. Using pharmacological inhibitors or siRNA revealed that the PKCeta is required for Ca²+ entry, and pharmacological inhibition of the tyrosine kinase Src also reduced Ca²+ entry. TRPC3 silencing diminished the entry by 45%, while the double STIM1/TRPC3 invalidation reduced Ca²+ entry by more than 85%. Hence, in EA.hy926 cells, TG-induced Ca²+ entry results from the activation of the STIM1/Orai1 machinery, and from the activation of TRPC3.
Collapse
Affiliation(s)
- Fabrice Antigny
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|