1
|
Adamopoulos PG, Tsiakanikas P, Stolidi I, Scorilas A. A versatile 5′ RACE-Seq methodology for the accurate identification of the 5′ termini of mRNAs. BMC Genomics 2022; 23:163. [PMID: 35219290 PMCID: PMC8881849 DOI: 10.1186/s12864-022-08386-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Technological advancements in the era of massive parallel sequencing have enabled the functional dissection of the human transcriptome. However, 5′ ends of mRNAs are significantly underrepresented in these datasets, hindering the efficient analysis of the complex human transcriptome. The implementation of the template-switching mechanism at the reverse transcription stage along with 5′ rapid amplification of cDNA ends (RACE) constitutes the most prominent and efficient strategy to specify the actual 5′ ends of cDNAs. In the current study, we developed a 5′ RACE-seq method by coupling a custom template-switching and 5′ RACE assay with targeted nanopore sequencing, to accurately unveil 5′ termini of mRNA targets. Results The optimization of the described 5′ RACE-seq method was accomplished using the human BCL2L12 as control gene. We unveiled that the selection of hybrid DNA/RNA template-switching oligonucleotides as well as the complete separation of the cDNA extension incubation from the template-switching process, significantly increase the overall efficiency of the downstream 5′ RACE. Collectively, our results support the existence of two distinct 5′ termini for BCL2L12, being in complete accordance with the results derived from both direct RNA and PCR-cDNA sequencing approaches from Oxford Nanopore Technologies. As proof of concept, we implemented the described 5′ RACE-seq methodology to investigate the 5′ UTRs of several kallikrein-related peptidases (KLKs) gene family members. Our results confirmed the existence of multiple annotated 5′ UTRs of the human KLK gene family members, but also identified novel, previously uncharacterized ones. Conclusions In this work we present an in-house developed 5′ RACE-seq method, based on the template-switching mechanism and targeted nanopore sequencing. This approach enables the broad and in-depth study of 5′ UTRs of any mRNA of interest, by offering a tremendous sequencing depth, while significantly reducing the cost-per reaction compared to commercially available kits. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08386-y.
Collapse
|
2
|
Kadam PS, Mueller SC, Ji H, Liu J, Pai AV, Ma J, Speth RC, Sandberg K. Modulation of the rat angiotensin type 1a receptor by an upstream short open reading frame. Peptides 2021; 140:170529. [PMID: 33744369 DOI: 10.1016/j.peptides.2021.170529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
The rat angiotensin type 1a receptor (AT1aR) is a peptide hormone G protein-coupled receptor (GPCR) that plays a key role in electrolyte homeostasis and blood pressure control. There is a highly conserved short open reading frame (sORF) in exon 2 (E2) that is downstream from exon 1 (E1) and upstream of the AT1aR coding region located in exon 3 (E3). To determine the role of this E2 sORF in AT1aR signaling, human embryonic kidney-293 (HEK293) cells were transfected with plasmids containing AT1aR cDNA with either an intact or disrupted E2 sORF. The intact sORF attenuated the efficacy of angiotensin (Ang) II (p < 0.001) and sarcosine1,Ile4,Ile8-Ang II (SII), (p < 0.01) to activate AT1aR signaling through extracellular signal-related kinases 1/2 (ERK1/2). A time-course showed agonist-induced AT1aR-mediated ERK1/2 activation was slower in the presence of the intact compared to the disrupted sORF [Ang II: p < 0.01 and SII: p < 0.05]. Ang II-induced ERK1/2 activation was completely inhibited by the protein kinase C (PKC) inhibitor Ro 31-8220 regardless of whether the sORF was intact or disrupted. Flow cytometric analyses suggested the intact sORF improved cell survival; the percentage of live cells increased (p < 0.05) while the percentage of early apoptotic cells decreased (p < 0.01) in cells transfected with the AT1aR plasmid containing the intact sORF. These findings have implications for the regulation of AT1Rs in physiological and pathological conditions and warrant investigation of sORFs in the 5' leader sequence (5'LS) of other GPCRs.
Collapse
Affiliation(s)
- Parnika S Kadam
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States; Department of Medicine, Georgetown University, Washington, DC, United States
| | - Susette C Mueller
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Hong Ji
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Jun Liu
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Amrita V Pai
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States; Department of Medicine, Georgetown University, Washington, DC, United States
| | - Junfeng Ma
- Department of Oncology, Georgetown University, Washington, DC, United States
| | - Robert C Speth
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States; Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University, Washington, DC, United States.
| |
Collapse
|
3
|
Renz PF, Valdivia-Francia F, Sendoel A. Some like it translated: small ORFs in the 5'UTR. Exp Cell Res 2020; 396:112229. [PMID: 32818479 DOI: 10.1016/j.yexcr.2020.112229] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023]
Abstract
The 5' untranslated region (5'UTR) is critical in determining post-transcriptional control, which is partly mediated by short upstream open reading frames (uORFs) present in half of mammalian transcripts. uORFs are generally considered to provide functionally important repression of the main-ORF by engaging initiating ribosomes, but under specific environmental conditions such as cellular stress, uORFs can become essential to activate the translation of the main coding sequence. In addition, a growing number of uORF-encoded bioactive microproteins have been described, which have the potential to significantly increase cellular protein diversity. Here we review the diverse cellular contexts in which uORFs play a critical role and discuss the molecular mechanisms underlying their function and regulation. The progress over the last decades in dissecting uORF function suggests that the 5'UTR remains an exciting frontier towards understanding how the cellular proteome is shaped in health and disease.
Collapse
Affiliation(s)
- Peter F Renz
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Fabiola Valdivia-Francia
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ ETH Zurich, Switzerland
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
4
|
Yosten G, Stein L, Samson W. Novel Small Peptide Hormones. ENDOCRINOLOGY OF THE HEART IN HEALTH AND DISEASE 2017:115-135. [DOI: 10.1016/b978-0-12-803111-7.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Yosten GLC, Liu J, Ji H, Sandberg K, Speth R, Samson WK. A 5'-upstream short open reading frame encoded peptide regulates angiotensin type 1a receptor production and signalling via the β-arrestin pathway. J Physiol 2015; 594:1601-5. [PMID: 26333095 DOI: 10.1113/jp270567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
AUG sequences and short open reading frames are commonly present in the 5'-leader sequence of G protein-coupled receptor mRNAs. The presence of these upstream AUG sequences has been demonstrated to inhibit downstream receptor translation efficiency and, most recently, receptor signal transduction. A seven amino acid peptide encoded by a short open reading frame in exon 2 of the angiotensin type 1a receptor has been shown to inhibit non-G protein-coupled signalling of angiotensin II, without altering the classical G protein-coupled pathway activated by the ligand. This finding may lead to the development of a new class of angiotensin receptor antagonists with activities biased for one, but not all, of the signalling cascades activated by angiotensin II, which could have therapeutic implications for the myriad hormones and neurotransmitters that signal through G protein-coupled receptors.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jun Liu
- Department of Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Hong Ji
- Department of Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Robert Speth
- Department of Pharmaceutical Sciences, Nova University, Fort Lauderdale, FL, USA
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Liu J, Yosten GLC, Ji H, Zhang D, Zheng W, Speth RC, Samson WK, Sandberg K. Selective inhibition of angiotensin receptor signaling through Erk1/2 pathway by a novel peptide. Am J Physiol Regul Integr Comp Physiol 2014; 306:R619-26. [PMID: 24523339 DOI: 10.1152/ajpregu.00562.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A seven-amino acid peptide (PEP7) is encoded within a short open reading frame within exon 2 (E2) in the 5'-leader sequence (5'LS) upstream of the rat ANG 1a-receptor (rAT1aR) mRNA. A chemically synthesized PEP7 markedly inhibited ANG II-induced Erk1/2 activation in cell culture by 62% compared with a scrambled PEP7 (sPEP7) [pErk1/2/Erk1/2 (AU): ANG II, 1.000 ± 0.0, ANG II+PEP7, 0.3812 ± 0.086, ANG II+sPEP7, 1.069 ± 0.18; n = 3]. Under these same conditions, PEP7 had no effect on ANG II-stimulated inositol-trisphosphate production. PEP7 also had no effect on epidermal growth factor- and phorbol methyl ester-induced Erk1/2 activation, suggesting PEP7 selectively inhibits AT1aR-mediated Erk1/2 signaling. PEP7 intracerebroventricularly inhibited ANG II-induced saline intake but had no effect on water intake in male and female rats, indicating PEP7 also selectively inhibits the ANG II-Erk1/2 pathway in vivo since saline drinking is Erk1/2-mediated, while water drinking is not. PEP7 inhibition of ANG II-induced saline ingestion was rapidly reversed by a subsequent intracerebroventricular injection of an oxytocin antagonist, suggesting when PEP7 blocks ANG II-stimulated Erk1/2 activation, animals no longer ingest saline to balance the continued water intake, due to the release of oxytocin and its subsequent inhibitory effects on saline drinking. PEP7 also attenuated ANG II-induced increases in arterial pressure by 35% compared with sPEP7 at the same dose. Thus, we have identified a novel peptide encoded within the rAT1aR E2 that selectively inhibits Erk1/2 activation, resulting in physiological consequences for sodium ingestion and arterial pressure that may have implications for treating sodium-sensitive diseases like hypertension and chronic kidney disease.
Collapse
Affiliation(s)
- Jun Liu
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, D.C.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Diniz GP, Takano APC, Bruneto E, Silva FGD, Nunes MT, Barreto-Chaves MLM. New insight into the mechanisms associated with the rapid effect of T₃ on AT1R expression. J Mol Endocrinol 2012; 49:11-20. [PMID: 22525353 DOI: 10.1530/jme-11-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The angiotensin II type 1 receptor (AT1R) is involved in the development of cardiac hypertrophy promoted by thyroid hormone. Recently, we demonstrated that triiodothyronine (T₃) rapidly increases AT1R mRNA and protein levels in cardiomyocyte cultures. However, the molecular mechanisms responsible for these rapid events are not yet known. In this study, we investigated the T₃ effect on AT1R mRNA polyadenylation in cultured cardiomyocytes as well as on the expression of microRNA-350 (miR-350), which targets AT1R mRNA. The transcriptional and translational actions mediated by T₃ on AT1R levels were also assessed. The total content of ubiquitinated proteins in cardiomyocytes treated with T₃ was investigated. Our data confirmed that T₃ rapidly raised AT1R mRNA and protein levels, as assessed by real-time PCR and western blotting respectively. The use of inhibitors of mRNA and protein synthesis prevented the rapid increase in AT1R protein levels mediated by T₃. In addition, T₃ rapidly increased the poly-A tail length of the AT1R mRNA, as determined by rapid amplification of cDNA ends poly-A test, and decreased the content of ubiquitinated proteins in cardiomyocytes. On the other hand, T₃ treatment increased miR-350 expression. In parallel with its transcriptional and translational effects on the AT1R, T₃ exerted a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increase transcript stability, as well as on translational efficiency, resulting to the rapid increase in AT1R mRNA expression and protein levels. Finally, these results show, for the first time, that T₃ rapidly triggers distinct mechanisms, which might contribute to the regulation of AT1R levels in cardiomyocytes.
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Department of Anatomy and Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes 2415, Cidade Universitária, São Paulo SP 05508-900, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct 2012; 7:11. [PMID: 22507701 PMCID: PMC3488318 DOI: 10.1186/1745-6150-7-11] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/15/2012] [Indexed: 12/31/2022] Open
Abstract
Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information NLM/NIH, 8600 Rockville Pike, Bldg, 38A, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
9
|
De Virgilio C, Pousis C, Bruno S, Gadaleta G. New isoforms of human mitochondrial transcription factor A detected in normal and tumoral cells. Mitochondrion 2010; 11:287-95. [PMID: 21081181 DOI: 10.1016/j.mito.2010.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 10/26/2010] [Accepted: 10/29/2010] [Indexed: 11/25/2022]
Abstract
Novel alternatively spliced variants of the human mitochondrial transcription factor A predicted by the computational tool ASPic were experimentally validated in different normal and tumoral human tissues by RT-PCR and DNA sequencing. The comparison between the 5'UTR length and the distribution of the different transcripts showed that the transcripts with the shortest 5'UTR are present in all the investigated tissues, while the longest 5'UTR seems to be related to tissue-specificity. Studies about the localization and function of the most widely diffuse alternative isoform Tr6 were carried out.
Collapse
Affiliation(s)
- Caterina De Virgilio
- Department of Biochemistry and Molecular Biology Ernesto Quagliariello, University of Bari, Bari, Italy
| | | | | | | |
Collapse
|
10
|
Sathirapongsasuti JF, Sathira N, Suzuki Y, Huttenhower C, Sugano S. Ultraconserved cDNA segments in the human transcriptome exhibit resistance to folding and implicate function in translation and alternative splicing. Nucleic Acids Res 2010; 39:1967-79. [PMID: 21062826 PMCID: PMC3064809 DOI: 10.1093/nar/gkq949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ultraconservation, defined as perfect human-to-rodent sequence identity at least 200-bp long, is a strong indicator of evolutionary and functional importance and has been explored extensively at the genome level. However, it has not been investigated at the transcript level, where such extreme conservation might highlight loci with important post-transcriptional regulatory roles. We present 96 ultraconserved cDNA segments (UCSs), stretches of human mature mRNAs that match identically with orthologous regions in the mouse and rat genomes. UCSs can span multiple exons, a feature we leverage here to elucidate the role of ultraconservation in post-transcriptional regulation. UCS sites are implicated in functions at essentially every post-transcriptional stage: pre-mRNA splicing and degradation through alternative splicing and nonsense-mediated decay (AS-NMD), mature mRNA silencing by miRNA, fast mRNA decay rate and translational repression by upstream AUGs. We also found UCSs to exhibit resistance to formation of RNA secondary structure. These multiple layers of regulation underscore the importance of the UCS-containing genes as key global RNA processing regulators, including members of the serine/arginine-rich protein and heterogeneous nuclear ribonucleoprotein (hnRNP) families of essential splicing regulators. The discovery of UCSs shed new light on the multifaceted, fine-tuned and tight post-transcriptional regulation of gene families as conserved through the majority of the mammalian lineage.
Collapse
Affiliation(s)
- J Fah Sathirapongsasuti
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| | | | | | | | | |
Collapse
|
11
|
Resch AM, Ogurtsov AY, Rogozin IB, Shabalina SA, Koonin EV. Evolution of alternative and constitutive regions of mammalian 5'UTRs. BMC Genomics 2009; 10:162. [PMID: 19371439 PMCID: PMC2674463 DOI: 10.1186/1471-2164-10-162] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 04/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) in protein-coding sequences has emerged as an important mechanism of regulation and diversification of animal gene function. By contrast, the extent and roles of alternative events including AS and alternative transcription initiation (ATI) within the 5'-untranslated regions (5'UTRs) of mammalian genes are not well characterized. RESULTS We evaluated the abundance, conservation and evolution of putative regulatory control elements, namely, upstream start codons (uAUGs) and open reading frames (uORFs), in the 5'UTRs of human and mouse genes impacted by alternative events. For genes with alternative 5'UTRs, the fraction of alternative sequences (those present in a subset of the transcripts) is much greater than that in the corresponding coding sequence, conceivably, because 5'UTRs are not bound by constraints on protein structure that limit AS in coding regions. Alternative regions of mammalian 5'UTRs evolve faster and are subject to a weaker purifying selection than constitutive portions. This relatively weak selection results in over-abundance of uAUGs and uORFs in the alternative regions of 5'UTRs compared to constitutive regions. Nevertheless, even in alternative regions, uORFs evolve under a stronger selection than the rest of the sequences, indicating that some of the uORFs are conserved regulatory elements; some of the non-conserved uORFs could be involved in species-specific regulation. CONCLUSION The findings on the evolution and selection in alternative and constitutive regions presented here are consistent with the hypothesis that alternative events, namely, AS and ATI, in 5'UTRs of mammalian genes are likely to contribute to the regulation of translation.
Collapse
Affiliation(s)
- Alissa M Resch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Terry S Elton
- Davis Heart and Lung Research Institute, Ohio State University, DHLRI 515, 473 West 12th Ave, Columbus, OH 43210, USA.
| | | |
Collapse
|
13
|
Osanai M, Kojima KK, Futahashi R, Yaguchi S, Fujiwara H. Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene 2006; 376:281-9. [PMID: 16793225 DOI: 10.1016/j.gene.2006.04.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/14/2006] [Accepted: 04/15/2006] [Indexed: 11/29/2022]
Abstract
Chromosomal ends of most eukaryotes are composed of simple telomeric repeats. Arthropod telomeres are generally constituted by TTAGG pentanucleotide repeats; however, some insect species including Drosophila melanogaster do not have telomeric repeats. In contrast, the domestic silkworm Bombyx mori contains TTAGG-type telomeric repeats, but the telomerase activity has not been detected in all investigated tissues. To search for a cause of unusual telomere structure in insects, we here identified telomerase reverse transcriptase (TERT) subunit from the domestic silkworm B. mori and the flour beetle Tribolium castaneum. This is the first report of telomerase genes from arthropods. The domestic silkworm TERT gene (BmoTERT) and the flour beetle TERT gene (TcasTERT) both did not have the N-terminal GQ motif. Comparison between cDNA and genomic DNA of BmoTERT revealed that it includes no introns. BmoTERT contains five ATG codons in its 5'UTR, which could reduce the translation of BmoTERT proteins. Also, Northern hybridization indicated that BmoTERT is transcribed at a very low level. These unique features of BmoTERT possibly explain the undetectable Bombyx telomerase activity.
Collapse
Affiliation(s)
- Mizuko Osanai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | | | | | | | | |
Collapse
|
14
|
Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem 2006; 281:18277-84. [PMID: 16675453 DOI: 10.1074/jbc.m601496200] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A large number of studies have demonstrated that the expression of the angiotensin II type 1 receptor (AT(1)R) is regulated predominantly by post-transcriptional mechanisms. Recently, it has been suggested that 10% of human genes may be regulated, in part, by a novel post-transcriptional mechanism involving microRNAs (miRNAs). miRNAs are small RNAs that regulate gene expression primarily through translational repression. The aim of this study was to determine whether miRNAs could regulate human AT(1)R expression. Luciferase reporter assays demonstrated that miR-155 could directly interact with the 3'-untranslated region of the hAT(1)R mRNA. Functional studies demonstrated that transfection of miR-155 into human primary lung fibroblasts (hPFBs) reduced the endogenous expression of the hAT(1)R compared with non-transfected cells. Additionally, miR-155 transfected cells showed a significant reduction in angiotensin II-induced extracellular signal-related kinase 1/2 (ERK1/2) activation. Furthermore, when hPFBs were transfected with an antisense miR-155 inhibitor, anti-miR-155, endogenous hAT(1)R expression and angiotensin II-induced ERK1/2 activation were significantly increased. Finally, transforming growth factor-beta(1) treatment of hPFBs resulted in the decreased expression of miR-155 and the increased expression of the hAT(1)R. In summary, our studies suggest that miR-155 can bind to the 3'-untranslated region (UTR) of hAT(1)R mRNAs and translationally repress the expression of this protein in vivo. Importantly, the translational repression mediated by miR-155 can be regulated by physiological stimuli.
Collapse
Affiliation(s)
- Mickey M Martin
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
15
|
Martin MM, Buckenberger JA, Knoell DL, Strauch AR, Elton TS. TGF-β1 regulation of human AT1 receptor mRNA splice variants harboring exon 2. Mol Cell Endocrinol 2006; 249:21-31. [PMID: 16504375 DOI: 10.1016/j.mce.2006.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/11/2006] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
At least four alternatively spliced mRNAs can be synthesized from the human AT(1)R (hAT(1)R) gene that differ only in the inclusion or exclusion of exon 2 and/or 3. RT-PCR experiments demonstrate that splice variants harboring exon 2 accounts for at least 30% of all the hAT(1)R mRNA transcripts expressed in the human tissues investigated. Since exon 2 contains two upstream AUGs or open reading frames (uORFs), we hypothesized that these AUGs would inhibit the translation of the downstream hAT(1)R protein ORF harbored in exon 4. This study demonstrates that the inclusion of exon 2 in hAT(1)R mRNA transcripts dramatically reduces hAT(1)R protein levels (nine-fold) and significantly attenuates Ang II responsiveness ( approximately four-fold). Interestingly, only when both AUGs were mutated in combination were the hAT(1)R density and Ang II signaling levels comparable with those values obtained using mRNA splice variants that did not include exon 2. This observation is consistent with a model where the majority of the ribosomes likely translate uORF#1 and are then unable to reinitiate at the downstream hAT(1)R ORF, in part due to the presence of AUG#2 and to the short intercistronic spacing. Importantly, TGF-beta(1) treatment (4ng/ml for 4h) of fibroblasts up-regulated hAT(1)R mRNA splice variants, which harbored exon 2, six-fold. Since AT(1)R activation is closely associated with cardiovascular disease, the inclusion of exon 2 by alternative splicing represents a novel mechanism to reduce the overall production of the hAT(1)R protein and possibly limit the potential pathological effects of AT(1)R activation.
Collapse
Affiliation(s)
- Mickey M Martin
- College of Pharmacy, Division of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
16
|
Lee S, Ji H, Wu Z, Zheng W, Hassan A, Sandberg K. Translational regulation of ANG II type 1 receptors in proliferating vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 2006; 290:R50-6. [PMID: 16123226 DOI: 10.1152/ajpregu.00448.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current study examined angiotensin receptor (ATR) regulation in proliferating rat aortic vascular smooth muscle cells (VSMCs) in culture. Radioligand competition analysis coupled with RNase protection assays (RPAs) revealed that angiotensin type 1a receptor (AT1aR) densities (Bmax) increased by 30% between 5 and 7 days in culture [Bmax (fmol/mg protein): day 5, 379 ± 8.4 vs. day 7, 481 ± 12, n = 3, P < 0.05] under conditions in which no significant changes in AT1aR mRNA expression occurred [in RPA arbitrary units (AU): day 5, 0.23 ± 0.01 vs. day 7, 0.24 ± 0.04, n = 4] or in mRNA synthesis determined by nuclear run-on assays [AU: day 5, 0.35 ± 0.14 vs. day 7, 0.33 ± 0.11, n = 5]. In contrast, polysome distribution analysis indicated that AT1aR mRNA was more efficiently translated in day 7 cells compared with day 5 [% of AT1aR mRNA in fraction 2 out of total AT1R mRNA recovered from the sucrose gradient: day 5, 20.9 ± 9.9 vs. day 7, 56.8 ± 5.6, n = 3, P < 0.001]. Accompanying the polysome shift was 50% less RNA-protein complex (RPC) formation between VSMC cytosolic RNA binding proteins in day 7 cells compared with 5-day cultures and the 5′ leader sequence (5′LS) of the AT1aR [5′LS RPC (AU): day 5, 0.62 ± 0.15 vs. day 7, 0.23 ± 0.03; n = 4, P < 0.05] and also with exon 2 [Exon 2 RPC (AU): day 5, 35.0 ± 5.7 vs. day 7, 17.2 ± 3.6; n = 4, P < 0.05]. Taken together, these results suggest that AT1aR expression is regulated by translation during VSMC proliferation in part by RNA binding proteins that interact within exon 2 in the 5′LS of the AT1aR mRNA.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/metabolism
- Cell Proliferation
- Cells, Cultured
- Gene Expression Regulation/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Protein Binding
- Protein Biosynthesis
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
Collapse
Affiliation(s)
- Sunghou Lee
- Georgetown University, 4000 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
17
|
Hassan A, Ji H, Zhang Y, Sandberg K. Splice variant-specific silencing of angiotensin II type 1a receptor messenger RNA by RNA interference in vascular smooth muscle cells. Biochem Biophys Res Commun 2006; 339:499-505. [PMID: 16307726 DOI: 10.1016/j.bbrc.2005.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 11/07/2005] [Indexed: 11/20/2022]
Abstract
In the rat, two distinct angiotensin II type 1a (rAT(1a)) receptor mRNAs are synthesized from a single rAT(1a) receptor gene by alternative splicing. These two transcripts are comprised of exons 1, 2, and 3 (E1,2,3) or exons 1 and 3 (E1,3). Since exon 3 contains the entire coding region, both transcripts encode identical rAT(1a) receptors. Real-time PCR revealed that in rat aortic smooth muscle cells (RASMC), E1,2,3 mRNA accounted for 69.5+/-0.9% of total rAT(1a) receptor mRNA. The aim of this study was to use RNA interference (RNAi) to selectively silence the rAT(1a) receptor splice variants. Forty-eight hour treatment of RASMC with E1,3-targeting siRNA (10nM; S1(E1,3)) resulted in a 91.2+/-0.5% (n=3, P<0.001) reduction in E1,3 mRNA and a 19.0+/-3.0% (n=4, P<0.05) reduction in AT(1) receptor specific binding compared with cells treated with a non-silencing control siRNA; under these conditions, no effect was observed on levels of E1,2,3 mRNA. Conversely, treatment with E1,2,3-targeting siRNA (S2(E2)) had no effect on E1,3 mRNA while reducing E1,2,3 mRNA by 73.9+/-4.2% (n=3, P<0.001), and AT(1) receptor binding by 39.4+/-5.4% (n=4, P<0.001) compared with control. These data show that the majority of functional AT(1) receptor expression in RASMC derives from the E1,2,3 splice variant. These data also demonstrate that rAT(1a) receptor mRNA can be silenced in a splice-variant specific manner using siRNA in RASMC, thus providing an excellent model system for investigating the role of alternative splicing in the regulation of rAT(1a) receptor expression.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- Base Sequence
- Cells, Cultured
- Cricetinae
- Exons/genetics
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Substrate Specificity
- Time Factors
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Ali Hassan
- Center for the Study of Sex Differences in Health, Aging and Disease, Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
18
|
Gilbert JS, Lang AL, Nijland MJ. Maternal nutrient restriction and the fetal left ventricle: decreased angiotensin receptor expression. Reprod Biol Endocrinol 2005; 3:27. [PMID: 16018810 PMCID: PMC1187921 DOI: 10.1186/1477-7827-3-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 07/14/2005] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Adequate maternal nutrition during gestation is requisite for fetal nutrition and development. While a large group of epidemiological studies indicate poor fetal nutrition increases heart disease risk and mortality in later life, little work has focused on the effects of impaired maternal nutrition on fetal heart development. We have previously shown that 50% global nutrient restriction from 28-78 days of gestation (early to mid-pregnancy; term = 147 days) in sheep at mid-gestation retards fetal growth while protecting growth of heart and results in hypertensive male offspring at nine months of age. In the present study, we evaluate LV gene transcription using RNA protection assay and real-time reverse transcriptase polymerase chain reaction, and protein expression using western blot, of VEGF and AT1 and AT2 receptors for AngII at mid-gestation in fetuses from pregnant ewes fed either 100% (C) or 50% (NR) diet during early to mid-gestation. RESULTS No difference between the NR (n = 6) and C (n = 6) groups was found in gene transcription of the AngII receptors. Immunoreactive AT1 (1918.4 +/- 154.2 vs. 3881.2 +/- 494.9; P < 0.01) and AT2 (1729.9 +/- 293.6 vs. 3043.3 +/- 373.2; P < 0.02) was decreased in the LV of NR fetuses compared to C fetuses. The LV of fetuses exposed to NR had greater transcription of mRNA for VEGF (5.42 +/- 0.85 vs. 3.05 +/- 0.19; P < 0.03) than respective C LV, while no change was observed in immunoreactive VEGF. CONCLUSION The present study demonstrates that VEGF, AT1 and AT2 message and protein are not tightly coupled, pointing to post-transcriptional control points in the mid gestation NR fetus. The present data also suggest that the role of VEGF and the renin-angiotensin system receptors during conditions inducing protected cardiac growth is distinct from the role these proteins may play in normal fetal cardiac growth. The present findings may help explain epidemiological studies that indicate fetuses with low birth weight carry an increased risk of mortality from coronary and cardiovascular disease, particularly if these individuals have reduced cardiovascular reserve due to an epigenetic decrease in vascularization.
Collapse
Affiliation(s)
- Jeffrey S Gilbert
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Alvin L Lang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Mark J Nijland
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
19
|
Cowling RT, Zhang X, Reese VC, Iwata M, Gurantz D, Dillmann WH, Greenberg BH. Effects of cytokine treatment on angiotensin II type 1A receptor transcription and splicing in rat cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2005; 289:H1176-83. [PMID: 15879490 DOI: 10.1152/ajpheart.00088.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) plays important roles in cardiac extracellular matrix remodeling via its type 1A (AT(1A)) receptor. The cytokines tumor necrosis factor-alpha and interleukin-1beta (IL-1beta) were shown previously to upregulate AT(1A) receptor mRNA and protein, thereby increasing the profibrotic response to ANG II in cardiac fibroblasts. The present experiments implicate increased nuclear factor-kappaB (NF-kappaB)-dependent transcription and also, to a lesser extent, altered mRNA splicing in the mechanism of receptor upregulation. Cytokine stimulation was found to increase AT(1A) heterogeneous nuclear RNA levels, which strongly suggests that mRNA upregulation occurs transcriptionally. The transcription factor NF-kappaB was previously deemed necessary for cytokine-induced AT(1A) receptor mRNA upregulation. Computer analysis of upstream DNA sequences revealed putative NF-kappaB elements at -365 and -2540 bp. Both isolated elements were shown to bind NF-kappaB (using gel-shift assays) and to transactivate a minimal promoter (using reporter assays), although the element at -365 bp appeared stronger. Three splice variants of AT(1A) receptor mRNA that have different 5' untranslated regions were detected in rat tissues, namely, exons 1-2-3 (predominant), 1-2-3+6, and 1-3. Cytokine treatment of fibroblasts upregulated all splice variants, but exon 1-3 increased more than the others. This differential upregulation, albeit of modest magnitude, was statistically significant with IL-1beta treatment. Exon 2 contains an inhibitory minicistron and a predicted inhibitory hairpin structure. Luciferase reporter assays indicated that each splice variant translates at a different efficiency, with exon 1-2-3+6 (both minicistron and hairpin) < exon 1-2-3 (minicistron only) < exon 1-3 (neither minicistron or hairpin). These results provide evidence that cytokines increase AT(1) protein levels by altering both transcription and splicing.
Collapse
Affiliation(s)
- Randy T Cowling
- Department of Medicine, University of California, San Diego, 200 West Arbor Dr., San Diego, CA 92103-8411, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Mee L, Honkala H, Kopra O, Vesa J, Finnilä S, Visapää I, Sang TK, Jackson GR, Salonen R, Kestilä M, Peltonen L. Hydrolethalus syndrome is caused by a missense mutation in a novel gene HYLS1. Hum Mol Genet 2005; 14:1475-88. [PMID: 15843405 DOI: 10.1093/hmg/ddi157] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hydrolethalus syndrome (HLS) is an autosomal recessive lethal malformation syndrome characterized by multiple developmental defects of fetus. We have earlier mapped and restricted the HLS region to a critical 1 cM interval on 11q23-25. The linkage disequilibrium (LD) and haplotype analyses of single nucleotide polymorphism (SNP) markers helped to further restrict the HLS locus to 476 kb between genes PKNOX2 and DDX25. An HLS associated mutation was identified in a novel regional transcript (GenBank accession no. FLJ32915), referred to here as the HYLS1 gene. The identified A to G transition results in a D211G change in the 299 amino acid polypeptide with unknown function. The HYLS1 gene shows alternative splicing and the transcript is found in multiple tissues during fetal development. In situ hybridization shows spatial and temporal distributions of transcripts in good agreement with the tissue phenotype of HLS patients. Immunostaining of in vitro expressed polypeptides from wild-type (WT) cDNA revealed cytoplasmic staining, whereas mutant polypeptides became localized in distinct nuclear structures, implying a disturbed cellular localization of the mutant protein. The Drosophila melanogaster model confirmed these findings and provides evidence for the significance of the mutation both in vitro and in vivo.
Collapse
Affiliation(s)
- Lisa Mee
- Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rodman DM, Reese K, Harral J, Fouty B, Wu S, West J, Hoedt-Miller M, Tada Y, Li KX, Cool C, Fagan K, Cribbs L. Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ Res 2005; 96:864-72. [PMID: 15774856 DOI: 10.1161/01.res.0000163066.07472.ff] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While Ca2+ influx is essential for activation of the cell cycle machinery, the processes that regulate Ca2+ influx in this context have not been fully elucidated. Electrophysiological and molecular studies have identified multiple Ca2+ channel genes expressed in mammalian cells. Ca(v)3.x gene family members, encoding low voltage-activated (LVA) or T-type channels, were first identified in the central nervous system and subsequently in non-neuronal tissue. Reports of a potential role for T-type Ca2+ channels in controlling cell proliferation conflict. The present study tested the hypothesis that T-type Ca2+ channels, encoded by Ca(v)3.x genes, control pulmonary artery smooth muscle cell proliferation and cell cycle progression. Using quantitative RT/PCR, immunocytochemistry, and immunohistochemistry we found that Ca(v)3.1 was the predominant Ca(v)3.x channel expressed in early passage human pulmonary artery smooth muscle cells in vitro and in the media of human pulmonary arteries, in vivo. Selective blockade of Ca(v)3.1 expression with small interfering RNA (siRNA) and pharmacological blockade of T-type channels completely inhibited proliferation in response to 5% serum and prevented cell cycle entry. These studies establish that T-type voltage-operated Ca2+ channels are required for cell cycle progression and proliferation of human PA SMC.
Collapse
MESH Headings
- Calcium Channels, T-Type/analysis
- Calcium Channels, T-Type/genetics
- Calcium Channels, T-Type/physiology
- Cell Proliferation
- Cells, Cultured
- Diltiazem/pharmacology
- Humans
- Lung/metabolism
- Mibefradil/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/cytology
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- David M Rodman
- Center for Genetic Lung Disease, University of Colorado Health Sciences Center, Denver, Colo 80262, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|