1
|
Lebeau G, Ah-Pine F, Daniel M, Bedoui Y, Vagner D, Frumence E, Gasque P. Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses? Int J Mol Sci 2022; 23:ijms23148038. [PMID: 35887383 PMCID: PMC9317325 DOI: 10.3390/ijms23148038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived ‘danger’ factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC’s immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Service Anatomo-Pathologie, CHU de la Réunion, 97400 Saint-Denis, France
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Damien Vagner
- Service de Médecine Interne, CHU de la Réunion, 97400 Saint-Denis, France;
| | - Etienne Frumence
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
2
|
Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines 2021; 9:biomedicines9010040. [PMID: 33466493 PMCID: PMC7824911 DOI: 10.3390/biomedicines9010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue resides in specific depots scattered in peripheral or deeper locations all over the body and it enwraps most of the organs. This tissue is always in a dynamic evolution as it must adapt to the metabolic demand and constraints. It exhibits also endocrine functions important to regulate energy homeostasis. This complex organ is composed of depots able to produce opposite functions to monitor energy: the so called white adipose tissue acts to store energy as triglycerides preventing ectopic fat deposition while the brown adipose depots dissipate it. It is composed of many cell types. Different types of adipocytes constitute the mature cells specialized to store or burn energy. Immature adipose progenitors (AP) presenting stem cells properties contribute not only to the maintenance but also to the expansion of this tissue as observed in overweight or obese individuals. They display a high regeneration potential offering a great interest for cell therapy. In this review, we will depict the attributes of the distinct types of adipocytes and their contribution to the function and metabolic features of adipose tissue. We will examine the specific role and properties of distinct depots according to their location. We will consider their cellular heterogeneity to present an updated picture of this sophisticated tissue. We will also introduce new trends pointing out a rational targeting of adipose tissue for medical applications.
Collapse
|
3
|
Ladoux A, Azoulay S, Dani C. Cibler la protéase majeure du SARS-CoV-2 pour fabriquer un médicament efficace contre ce coronavirus. Med Sci (Paris) 2020; 36:555-558. [DOI: 10.1051/medsci/2020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Pushpakom S, Kolamunnage-Dona R, Taylor C, Foster T, Spowart C, García-Fiñana M, Kemp GJ, Jaki T, Khoo S, Williamson P, Pirmohamed M. TAILoR (TelmisArtan and InsuLin Resistance in Human Immunodeficiency Virus [HIV]): An Adaptive-design, Dose-ranging Phase IIb Randomized Trial of Telmisartan for the Reduction of Insulin Resistance in HIV-positive Individuals on Combination Antiretroviral Therapy. Clin Infect Dis 2020; 70:2062-2072. [PMID: 31425580 PMCID: PMC7201422 DOI: 10.1093/cid/ciz589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Combination antiretroviral therapy results in metabolic abnormalities which increase cardiovascular disease risk. We evaluated whether telmisartan reduces insulin resistance in human immunodeficiency virus (HIV)-positive individuals on antiretrovirals. METHODS We conducted a multicenter, randomized, open-label, dose-ranging controlled trial of telmisartan. Participants with HIV infection receiving combination antiretroviral therapy were randomized equally to either no intervention (control) or 20, 40, or 80 mg telmisartan once daily. The adaptive design allowed testing of all dose(s) of telmisartan in stage I, with the promising dose(s) being taken into stage II. The primary outcome measure was reduction in homeostasis model assessment of insulin resistance (HOMA-IR) at 24 weeks. RESULTS A total of 377 patients were recruited. In stage I, 48, 49, 47, and 45 patients were randomized to control and 20, 40, and 80 mg telmisartan, respectively (total n = 189). At the interim analysis, 80 mg telmisartan was taken forward into stage II. At the end of stage II (n = 105, control; 106, 80-mg arm), there were no differences in HOMA-IR (estimated effect, 0.007; SE, 0.106) at 24 weeks between the telmisartan (80 mg) and nonintervention arms. Longitudinal analysis over 48 weeks showed no change in HOMA-IR, lipid or adipokine levels. There were significant (P ≤ .05), but marginal, improvements in revised Quantitative Insulin Sensitivity Check Index (QUICKI) (0.004) and plasma hs-CRP (-0.222 mg/L) and reduction in liver fat content (1.714 mean reduction; P = .005). CONCLUSIONS No significant effect of telmisartan was demonstrated on the primary outcome (HOMA-IR), but there were marginal improvements with some secondary outcome measures. Further studies in this population are warranted to identify novel strategies for preventing cardiovascular morbidity and mortality. CLINICAL TRIAL REGISTRATION ISRCTN registry (51069819).
Collapse
Affiliation(s)
- Sudeep Pushpakom
- Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom
| | | | - Claire Taylor
- Clinical Trials Research Centre, University of Liverpool, United Kingdom
| | - Terry Foster
- Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom
| | - Cath Spowart
- Clinical Trials Research Centre, University of Liverpool, United Kingdom
| | | | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre, University of Liverpool, United Kingdom
| | - Thomas Jaki
- Department of Mathematics and Statistics, Lancaster University, United Kingdom
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom
| | - Paula Williamson
- Department of Biostatistics, University of Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, United Kingdom
| |
Collapse
|
5
|
Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D, Le Grand R, Damouche A, Béréziat V, Lambotte O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front Microbiol 2019; 10:2837. [PMID: 31921023 PMCID: PMC6927940 DOI: 10.3389/fmicb.2019.02837] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Although white AT can contribute to anti-infectious immune responses, it can also be targeted and perturbed by pathogens. The AT's immune involvement is primarily due to strong pro-inflammatory responses (with both local and paracrine effects), and the large number of fat-resident macrophages. Adipocytes also exert direct antimicrobial responses. In recent years, it has been found that memory T cells accumulate in AT, where they provide efficient secondary responses against viral pathogens. These observations have prompted researchers to re-evaluate the links between obesity and susceptibility to infections. In contrast, AT serves as a reservoir for several persistence pathogens, such as human adenovirus Ad-36, Trypanosoma gondii, Mycobacterium tuberculosis, influenza A virus, and cytomegalovirus (CMV). The presence and persistence of bacterial DNA in AT has led to the concept of a tissue-specific microbiota. The unexpected coexistence of immune cells and pathogens within the specific AT environment is intriguing, and its impact on anti-infectious immune responses requires further evaluation. AT has been recently identified as a site of HIV persistence. In the context of HIV infection, AT is targeted by both the virus and the antiretroviral drugs. AT's intrinsic metabolic features, large overall mass, and wide distribution make it a major tissue reservoir, and one that may contribute to the pathophysiology of chronic HIV infections. Here, we review the immune, metabolic, viral, and pharmacological aspects that contribute to HIV persistence in AT. We also evaluate the respective impacts of both intrinsic and HIV-induced factors on AT's involvement as a viral reservoir. Lastly, we examine the potential consequences of HIV persistence on the metabolic and immune activities of AT.
Collapse
Affiliation(s)
- Christine Bourgeois
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Aurélie Barrail-Tran
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| | - Claire Lagathu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Jacqueline Capeau
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Delphine Desjardins
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Abderaouf Damouche
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Véronique Béréziat
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Olivier Lambotte
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Ravaud C, Paré M, Yao X, Azoulay S, Mazure NM, Dani C, Ladoux A. Resveratrol and HIV-protease inhibitors control UCP1 expression through opposite effects on p38 MAPK phosphorylation in human adipocytes. J Cell Physiol 2019; 235:1184-1196. [PMID: 31294462 DOI: 10.1002/jcp.29032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023]
Abstract
Brown and brown-like adipocytes (BBAs) control thermogenesis and are detected in adult humans. They express UCP1, which transforms energy into heat. They appear as promising cells to fight obesity. Deciphering the molecular mechanisms leading to the browning of human white adipocytes or the whitening of BBAs represents a goal to properly and safely control the pathways involved in these processes. Here, we analyzed how drugs endowed with therapeutic potential affect the differentiation of human adipose progenitor-cells into BBAs and/or their phenotype. We showed that HIV-protease inhibitors (PI) reduced UCP1 expression in BBAs modifying their metabolic profile and the mitochondria functionality. Lopinavir (LPV) was more potent than darunavir (DRV), a last PI generation. PPARγ and PGC-1α were decreased in a PI or cell-specific manner, thus altering UCP1's constitutive expression. In addition, LPV altered p38 MAPK phosphorylation, blunting then the β-adrenergic responses. In contrast, low doses of resveratrol stimulated the activatable expression of UCP1 in a p38 MAPK-dependent manner and counteracted the LPV induced loss of UCP1. This effect was independent of the resveratrol-induced sirtuin-1 expression. Altogether our results uncover how drugs impact crucial components of the networks regulating the expression of the thermogenic signature. They provide important information to control the relevant pathways involved in energy expenditure.
Collapse
Affiliation(s)
| | | | - Xi Yao
- Université Côte d'Azur, INSERM, iBV, France
| | | | - Nathalie M Mazure
- Université Côte d'Azur, Centre Antoine Lacassagne, CNRS-UMR 7284-Inserm U1081, Nice, France
| | | | | |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence. RECENT FINDINGS Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots. The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and selective distribution of antiretroviral drugs, the sequestration of infected immune cells within fat depots likely represents a major challenge for cure efforts.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Couturier J, Winchester LC, Suliburk JW, Wilkerson GK, Podany AT, Agarwal N, Xuan Chua CY, Nehete PN, Nehete BP, Grattoni A, Sastry KJ, Fletcher CV, Lake JE, Balasubramanyam A, Lewis DE. Adipocytes impair efficacy of antiretroviral therapy. Antiviral Res 2018; 154:140-148. [PMID: 29630975 DOI: 10.1016/j.antiviral.2018.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023]
Abstract
Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lee C Winchester
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - James W Suliburk
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Gregory K Wilkerson
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Anthony T Podany
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Neeti Agarwal
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Pramod N Nehete
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Bharti P Nehete
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - K Jagannadha Sastry
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney V Fletcher
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
9
|
Abstract
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017.
Collapse
Affiliation(s)
- John R Koethe
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Impairment of the activin A autocrine loop by lopinavir reduces self-renewal of distinct human adipose progenitors. Sci Rep 2017; 7:2986. [PMID: 28592814 PMCID: PMC5462747 DOI: 10.1038/s41598-017-02807-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 01/15/2023] Open
Abstract
Maintenance of the adipose tissue requires a proper balance between self-renewal and differentiation of adipose progenitors (AP). Any deregulation leads either to fat overexpansion and obesity or fat loss and consequent lipodystrophies. Depending on the fat pad location, APs and adipocytes are heterogeneous. However, information on the pharmacological sensitivity of distinct APs to drugs known to alter the function of adipose tissue, especially HIV protease inhibitors (PIs) is scant. Here we show that PIs decreased proliferation and clonal expansion of APs, modifying their self-renewal potential. Lopinavir was the most potent PI tested. Decrease in self-renewal was accompanied by a reduced expression of the immediate early response gene IER3, a gene associated with tissue expansion. It was more pronounced in chin-derived APs than in knee-derived APs. Furthermore, lopinavir lowered the activin A–induced ERK1/2 phosphorylation. Expressions of the transcription factor EGR1 and its targets, including INHBA were subsequently altered. Therefore, activin A secretion was reduced leading to a dramatic impairment of APs self-renewal sustained by the activin A autocrine loop. All together, these observations highlight the activin A autocrine loop as a crucial effector to maintain APs self-renewal. Targeting this pathway by HIV-PIs may participate in the induction of unwanted side effects.
Collapse
|
11
|
Srdic D, Khawla AM, Soldatovic I, Nikolic J, Jevtovic D, Nair D, Dragovic G. Correlation of Leptin, Adiponectin, and Resistin Levels in Different Types of Lipodystrophy in HIV/AIDS Patients. Metab Syndr Relat Disord 2017; 15:153-159. [PMID: 28339344 DOI: 10.1089/met.2016.0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Leptin, adiponectin, and resistin may play an important role in the development of lipodystrophy (LD) in HIV/AIDS patients. The aim of this study was to correlate levels of leptin, adiponectin, and resistin between HIV/AIDS patients with LD and without lipodystrophy (non-LD), as well as between subgroups of LD [lipoatrophy (LA), lipohypertrophy (LH), and mixed fat redistribution (MFR)] and non-LD patients. METHODS Cross-sectional study of 66 HIV/AIDS patients. Serum levels of leptin, adiponectin, and resistin were measured. The associations between adipocytokine levels and metabolic variables were estimated by Spearman correlation. Analysis of covariance with bootstrapping method was used to examine the relationship between adiponectin and leptin and lipodystrophy categories. RESULTS The LD was observed in 29 (44%) patients, while 15 (52%) of them had LA, 4 (14%) had LH, and 10 (34%) patients had MFR. No significant differences regarding leptin, adiponectin, and resistin levels, between LD and non-LD patients, were observed. LH patients had significantly higher levels of leptin and adiponectin in comparison with non-LD patients (P = 0.039, P = 0.011, respectively). Within the LD group, LA patients had significantly lower levels of leptin (LA vs. LH, P = 0.020; LA vs. MFR, P = 0.027), while LH patients had significantly higher levels of adiponectin (LH vs. LA, P = 0.027; LH vs. MFR, P = 0.028). Correlation of adiponectin with LD remains significant in the LH subgroup after adjustment for age, body mass index, cystatin-C, plasminogen activator inhibitor-1 (PAI-1), and interferon gamma (IFN-γ) (P = 0.001). CONCLUSIONS Adiponectin and leptin levels differ significantly between LH patients and non-LD patients, as well as between the LD subgroups. Adiponectin may be a more useful marker of LD in HIV/AIDS patients.
Collapse
Affiliation(s)
- Danica Srdic
- 1 Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Al Musalhi Khawla
- 2 Department of Clinical Biochemistry, Royal Free Hospital, University College London , London, United Kingdom
| | - Ivan Soldatovic
- 3 Institute for Biomedical Statistics, School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Jelena Nikolic
- 4 Infectious and Tropical Diseases Hospital, School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Djordje Jevtovic
- 4 Infectious and Tropical Diseases Hospital, School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Devaki Nair
- 2 Department of Clinical Biochemistry, Royal Free Hospital, University College London , London, United Kingdom
| | - Gordana Dragovic
- 1 Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade , Belgrade, Serbia
| |
Collapse
|
12
|
Couturier J, Agarwal N, Nehete PN, Baze WB, Barry MA, Jagannadha Sastry K, Balasubramanyam A, Lewis DE. Infectious SIV resides in adipose tissue and induces metabolic defects in chronically infected rhesus macaques. Retrovirology 2016; 13:30. [PMID: 27117277 PMCID: PMC4847269 DOI: 10.1186/s12977-016-0260-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
Background HIV reservoirs pose major challenges to viral eradication. The main cellular reservoirs include CD4 T cells and macrophages, whereas anatomic reservoirs are thought to be primarily lymphoid tissues. Adipose tissue represents a potentially important non-lymphoid location for HIV replication and persistence because the stromal-vascular-fraction (AT-SVF) contains activated innate and adaptive immune cells that increase in number during infections, obesity, and chronic inflammation. Results Adipose tissue from two groups of SHIV-SF162p3-infected (~4 weeks acute infection) or SIVmac251-infected (~38 weeks chronic infection) rhesus macaques (N = 8 for each group) were studied for immune cell content, viral infectiousness, and metabolic health. The AT-SVF cells from SHIV-infected monkeys contained abundant memory CD4 and CD8 T cells, with fewer NKT cells and macrophages, and no B cells. Proviral DNA (Gag and Env) was readily detectable by nested PCR in AT-SVF cells from multiple adipose depots (subcutaneous and visceral) of acutely infected monkeys, but mostly from visceral fat. More importantly, viral outgrowth assays using input CD4 T cells derived from AT-SVF cells or peripheral blood of chronically infected monkeys resulted in robust replication of infectious virus from both AT-SVF and peripheral blood CD4 T cells. Chronically infected monkeys also experienced adipocyte dysfunction (suppression of major adipogenic genes) and systemic dyslipidemia (decreased serum total cholesterol and free fatty acids, and increased triglycerides), similar to metabolic abnormalities of HIV patients. Conclusions Adipose tissues of SIV-infected rhesus macaques become major compartments for infected immune cells, which in turn induce defects in adipose tissue metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0260-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Neeti Agarwal
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Pramod N Nehete
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Wallace B Baze
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Michael A Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - K Jagannadha Sastry
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA.,Endocrine Service, Ben Taub General Hospital, Houston, TX, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
13
|
Damouche A, Lazure T, Avettand-Fènoël V, Huot N, Dejucq-Rainsford N, Satie AP, Mélard A, David L, Gommet C, Ghosn J, Noel N, Pourcher G, Martinez V, Benoist S, Béréziat V, Cosma A, Favier B, Vaslin B, Rouzioux C, Capeau J, Müller-Trutwin M, Dereuddre-Bosquet N, Le Grand R, Lambotte O, Bourgeois C. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection. PLoS Pathog 2015; 11:e1005153. [PMID: 26402858 PMCID: PMC4581628 DOI: 10.1371/journal.ppat.1005153] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/14/2015] [Indexed: 12/14/2022] Open
Abstract
Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways.
Collapse
Affiliation(s)
- Abderaouf Damouche
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Thierry Lazure
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’anatomo-pathologie, Le Kremlin-Bicêtre, France
| | - Véronique Avettand-Fènoël
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | | | - Anne-Pascale Satie
- INSERM, U1085-IRSET, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - Adeline Mélard
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Ludivine David
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | | | - Jade Ghosn
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
| | - Nicolas Noel
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie clinique, Le Kremlin-Bicêtre, France
| | - Guillaume Pourcher
- Assistance Publique—Hôpitaux de Paris, Hôpital Béclère, Service de Chirurgie Viscérale Minimale invasive, Clamart, France
- INSERM U972, Hôpital Paul Brousse, Villejuif, France
| | - Valérie Martinez
- Assistance Publique—Hôpitaux de Paris, Hôpital Antoine Béclère, Service de Médecine Interne et Immunologie clinique, Clamart, France
| | - Stéphane Benoist
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Chirurgie générale et digestive, Le Kremlin-Bicêtre, France
| | - Véronique Béréziat
- INSERM UMR S938, CDR Saint-Antoine; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Tenon, Service de Biochimie et Hormonologie; ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Antonio Cosma
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Bruno Vaslin
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Christine Rouzioux
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Jacqueline Capeau
- INSERM UMR S938, CDR Saint-Antoine; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Tenon, Service de Biochimie et Hormonologie; ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | | | - Nathalie Dereuddre-Bosquet
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie clinique, Le Kremlin-Bicêtre, France
| | - Christine Bourgeois
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
14
|
Different origin of adipogenic stem cells influences the response to antiretroviral drugs. Exp Cell Res 2015; 337:160-9. [PMID: 26238601 DOI: 10.1016/j.yexcr.2015.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022]
Abstract
Lipodystrophy (LD) is a main side effect of antiretroviral therapy for HIV infection, and can be provoked by nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). LD exists in different forms, characterized by fat loss, accumulation, or both, but its pathogenesis is still unclear. In particular, few data exist concerning the effects of antiretroviral drugs on adipocyte differentiation. Adipose tissue can arise either from mesenchymal stem cells (MSCs), that include bone marrow-derived MSCs (hBM-MSCs), or from ectodermal stem cells, that include dental pulp stem cells (hDPSCs). To analyze whether the embryonal origin of adipocytes might impact the occurrence of different phenotypes in LD, we quantified the effects of several antiretroviral drugs on the adipogenic differentiation of hBM-MSCs and hDPSCs. hBM-MSCs and hDPSCs were isolated from healthy donors. Cells were treated with 10 and 50 μM stavudine (d4T), efavirenz (EFV), atazanavir (ATV), ritonavir (RTV), and ATV-boosted RTV. Viability and adipogenesis were evaluated by staining with propidium iodide, oil red, and adipoRed; mRNA levels of genes involved in adipocyte differentiation, i.e. CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), and in adipocyte functions, i.e. fatty acid synthase (FASN), fatty acid binding protein-4 (FABP4), perilipin-1 (PLIN1) and 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2), were quantified by real time PCR. We found that ATV, RTV, EFV, and ATV-boosted RTV, but not d4T, caused massive cell death in both cell types. EFV and d4T affected the accumulation of lipid droplets and induced changes in mRNA levels of genes involved in adipocyte functions in hBM-MSCs, while RTV and ATV had little effects. All drugs stimulated the accumulation of lipid droplets in hDPSCs. Thus, the adipogenic differentiation of human stem cells can be influenced by antiretroviral drugs, and depends, at least in part, on their embryonal origin.
Collapse
|
15
|
Hernandez-Vallejo SJ, Beaupere C, Larghero J, Capeau J, Lagathu C. HIV protease inhibitors induce senescence and alter osteoblastic potential of human bone marrow mesenchymal stem cells: beneficial effect of pravastatin. Aging Cell 2013; 12:955-65. [PMID: 23795945 DOI: 10.1111/acel.12119] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2013] [Indexed: 12/22/2022] Open
Abstract
HIV-infected patients receiving antiretroviral therapy present an increased prevalence of age-related comorbidities, including osteoporosis. HIV protease inhibitors (PIs) have been suspected to participate to bone loss, but the mechanisms involved are unknown. In endothelial cells, some PIs have been shown to induce the accumulation of farnesylated prelamin-A, a biomarker of cell aging leading to cell senescence. Herein, we hypothesized that these PIs could induce premature aging of osteoblast precursors, human bone marrow mesenchymal stem cells (MSCs), and affect their capacity to differentiate into osteoblasts. Senescence was studied in proliferating human MSCs after a 30-day exposure to atazanavir and lopinavir with or without ritonavir. When compared to untreated cells, PI-treated MSCs had a reduced proliferative capacity that worsened with increasing passages. PI treatment led to increased oxidative stress and expression of senescence markers, including prelamin-A. Pravastatin, which blocks prelamin-A farnesylation, prevented PI-induced senescence and oxidative stress, while treatment with antioxidants partly reversed these effects. Moreover, senescent MSCs presented a decreased osteoblastic potential, which was restored by pravastatin treatment. Because age-related bone loss is associated with increased bone marrow fat, we also evaluated the capacity of PI-treated MSCs to differentiate into adipocyte. We observed an altered adipocyte differentiation in PI-treated MSCs that was reverted by pravastatin. We have shown that some PIs alter osteoblast formation by affecting their differentiation potential in association with altered senescence in MSCs, with a beneficial effect of statin. These data corroborate the clinical observations and allow new insight into pathophysiological mechanisms of PI-induced bone loss in HIV-infected patients.
Collapse
Affiliation(s)
- Sandra J. Hernandez-Vallejo
- INSERM UMRS938; Paris France
- UPMC Univ Paris 06; UMRS 938; Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
| | - Carine Beaupere
- INSERM UMRS938; Paris France
- UPMC Univ Paris 06; UMRS 938; Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
| | - Jerome Larghero
- Cell Therapy Unit; Hôpital Saint Louis; Paris France
- Univ Paris Diderot; Sorbonne Paris Cite; Paris France
- INSERM UMRS940; Hôpital Saint-Louis; Paris France
| | - Jacqueline Capeau
- INSERM UMRS938; Paris France
- UPMC Univ Paris 06; UMRS 938; Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
- APHP; Hôpital Tenon; Paris France
| | - Claire Lagathu
- INSERM UMRS938; Paris France
- UPMC Univ Paris 06; UMRS 938; Paris France
- Institute of Cardiometabolism and Nutrition; Paris France
| |
Collapse
|
16
|
Reyskens KMSE, Essop MF. HIV protease inhibitors and onset of cardiovascular diseases: a central role for oxidative stress and dysregulation of the ubiquitin-proteasome system. Biochim Biophys Acta Mol Basis Dis 2013; 1842:256-68. [PMID: 24275553 DOI: 10.1016/j.bbadis.2013.11.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022]
Abstract
The successful roll-out of highly active antiretroviral therapy (HAART) has extended life expectancy and enhanced the overall well-being of HIV-positive individuals. There are, however, increased concerns regarding HAART-mediated metabolic derangements and its potential risk for cardiovascular diseases (CVD) in the long-term. Here certain classes of antiretroviral drugs such as the HIV protease inhibitors (PIs) are strongly implicated in this process. This article largely focuses on the direct PI-linked development of cardio-metabolic complications, and reviews the inter-linked roles of oxidative stress and the ubiquitin-proteasome system (UPS) as key mediators driving this process. It is proposed that PIs trigger reactive oxygen species (ROS) production that leads to serious downstream consequences such as cell death, impaired mitochondrial function, and UPS dysregulation. Moreover, we advocate that HIV PIs may also directly lower myocardial UPS function. The attenuation of cardiac UPS can initiate transcriptional changes that contribute to perturbed lipid metabolism, thereby fueling a pro-atherogenic milieu. It may also directly alter ionic channels and interfere with electrical signaling in the myocardium. Therefore HIV PI-induced ROS together with a dysfunctional UPS elicit detrimental effects on the cardiovascular system that will eventually result in the onset of heart diseases. Thus while HIV PIs substantially improve life expectancy and quality of life in HIV-positive patients, its longer-term side-effects on the cardiovascular system should lead to a) greater clinical awareness regarding its benefit-harm paradigm, and b) the development and evaluation of novel co-treatment strategies.
Collapse
Affiliation(s)
- Kathleen M S E Reyskens
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
17
|
Ismail WIW, King JA, Anwar K, Pillay TS. Indinavir and nelfinavir inhibit proximal insulin receptor signaling and salicylate abrogates inhibition: potential role of the NFkappa B pathway. J Cell Biochem 2013; 114:1729-37. [PMID: 23386514 DOI: 10.1002/jcb.24513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/24/2013] [Indexed: 01/21/2023]
Abstract
The molecular basis of insulin resistance induced by HIV protease inhibitors (HPIs) remains unclear. In this study, Chinese hamster ovary cells transfected with high levels of human insulin receptor (CHO-IR) and 3T3-L1 adipocytes were used to elucidate the mechanism of this side effect. Indinavir and nelfinavir induced a significant decrease in tyrosine phosphorylation of the insulin receptor β-subunit. Indinavir caused a significant increase in the phosphorylation of insulin receptor substrate-1 (IRS-1) on serine 307 (S307) in both CHO-IR cells and 3T3-L1 adipocytes. Nelfinavir also inhibited phosphorylation of Map/ERK kinase without affecting insulin-stimulated Akt phosphorylation. Concomitantly, levels of protein tyrosine phosphatase 1B (PTP1B), suppressor of cytokines signaling-1 and -3 (SOCS-1 and -3), Src homology 2B (SH2B) and adapter protein with a pleckstrin homology domain and an SH2 domain (APS) were not altered significantly. When CHO-IR cells were pre-treated with sodium salicylate (NaSal), the effects of indinavir on tyrosine phosphorylation of the IR β-subunit and phosphorylation of IRS-1 at S307 were abrogated. These data suggest a potential role for the NFκB pathway in insulin resistance induced by HPIs.
Collapse
Affiliation(s)
- Wan Iryani W Ismail
- Division of Chemical Pathology, University of Cape Town, Cape Town 7925, South Africa
| | | | | | | |
Collapse
|
18
|
Targeting cancer stem cells expressing an embryonic signature with anti-proteases to decrease their tumor potential. Cell Death Dis 2013; 4:e706. [PMID: 23828569 PMCID: PMC3730396 DOI: 10.1038/cddis.2013.206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/05/2013] [Accepted: 05/14/2013] [Indexed: 12/26/2022]
Abstract
Cancer stem cells (CSCs) are a specific subset of cancer cells that sustain tumor growth and dissemination. They might represent a significant treatment target to reduce malignant progression and prevent tumor recurrence. In solid tumors, several hierarchically organized CSC clones coexist, even within a single tumor. Among them, CSCs displaying an embryonic stem cell ‘stemness' signature, based on the expression of Oct-4, Nanog and Sox2, are present in distinct high-grade tumor types associated with poor prognosis. We previously designed a model to isolate pure populations of these CSCs from distinct solid tumors and used it to screen for molecules showing selective toxicity for this type of CSC. Here we show that human immunodeficiency virus (HIV)-protease inhibitors (HIV-PIs) specifically target CSCs expressing an embryonic signature derived from tumors with distinct origins. They reduced proliferation in a dose-dependent manner with a higher specificity as compared with the total population of cancer cells and/or healthy stem cells, and they were efficient in inducing cell death. Lopinavir was the most effective HIV-PI among those tested. It reduced self-renewal and induced apoptosis of CSCs, subsequently impairing in vivo CSC-induced allograft formation. Two key pharmacophores in the LPV structure were also identified. They are responsible for the specificity of CSC targeting and also for the overall antitumoral activity. These results contribute to the identification of molecules presenting selective toxicity for CSCs expressing an embryonic stemness signature. This paves the way to promising therapeutic opportunities for patients suffering from solid cancer tumors of poor prognosis.
Collapse
|
19
|
Zha BS, Wan X, Zhang X, Zha W, Zhou J, Wabitsch M, Wang G, Lyall V, Hylemon PB, Zhou H. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes. PLoS One 2013; 8:e59514. [PMID: 23533630 PMCID: PMC3606318 DOI: 10.1371/journal.pone.0059514] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/15/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND HIV protease inhibitors (PI) are core components of Highly Active Antiretroviral Therapy (HAART), the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER) stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/-) mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes. CONCLUSION AND SIGNIFICANCE Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.
Collapse
Affiliation(s)
- Beth S. Zha
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xiaoshan Wan
- School of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, P.R. China
| | - Xiaoxuan Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Weibin Zha
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Jun Zhou
- School of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, P.R. China
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University of Ulm, Ulm, Germany
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Vijay Lyall
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - Huiping Zhou
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- School of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang, P.R. China
- McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| |
Collapse
|
20
|
Abstract
BACKGROUND The association between HAART and lipodystrophy is well established, but lipodystrophy pathogenesis is still poorly understood. Drugs, and in particular protease inhibitors, accumulate in adipose tissue affecting adipocyte physiology and gene expression by several mechanisms. Recent studies have identified autophagy as another process affected by these classes of drugs, but no studies have been performed in adipose cells. METHODS SW872 preadipocytic human cell line was used to evaluate changes induced by amprenavir (APV), ritonavir (RTV), or atazanavir (ATV), all used at 10-200 μmol/l. A subline was stably transfected with murine stem cell virus (pMSCV)-enhanced green fluorescent protein (EGFP)-LC3 plasmid (to obtain a fluorescent LC3 protein) and treated with ATV at different doses. The distribution of LC3 and the colocalization of mitochondria, lysosome, and autophagosome were assessed by confocal microscopy. Transmission electron microscopy of ATV-treated cells was also performed. The cellular content of lysosomes was assessed using Lysotracker Green; apoptosis was evaluated by annexin V/propidium iodide staining, and mitochondrial superoxide anion (mtO2) was analyzed by mitoSOX red. Lysosomes, apoptosis, and mtO2 were studied by flow cytometry and multispectral imaging flow cytometry. RESULTS In SW872 cells, RTV caused massive apoptosis, more than autophagy, whereas APV was almost ineffective. ATV induced both apoptosis (high doses) and autophagy (low doses). ATV-treated cells displayed LC3-specific punctae, suggesting the formation of autophagosomes that enclosed mitochondria, as revealed by electron microscopy. At low doses, ATV promoted mitochondrial superoxide generation, whereas at high doses, it induced mitochondrial membrane depolarization. CONCLUSION Autophagy/mitophagy can be considered a mechanism triggered by ATV in SW872 preadipocytes.
Collapse
|
21
|
Loignon M, Brodeur H, Deschênes S, Phaneuf D, Bhat PV, Toma E. Combination antiretroviral therapy and chronic HIV infection affect serum retinoid concentrations: longitudinal and cross-sectional assessments. AIDS Res Ther 2012; 9:3. [PMID: 22296672 PMCID: PMC3305370 DOI: 10.1186/1742-6405-9-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/01/2012] [Indexed: 12/18/2022] Open
Abstract
Background Several lines of evidence suggest that retinoids (retinol-ROL or vitamin A, and its active metabolites, retinoic acids-RAs) play important pathogenic roles in HIV infection and combination antiretroviral therapy (cART)-related events. We previously reported that antiretrovirals alter RAs synthesis in vitro. We hypothesised that in vivo serum retinoid concentrations are affected by both cART and HIV infection. This might explain several clinical and laboratory abnormalities reported in HIV-infected patients receiving cART. Methods The effects of optimal cART and chronic HIV on serum retinoids were firstly assessed longitudinally in 10 HIV-infected adults (group1 = G1): twice while on optimal cART (first, during long-term and second, during short term cART) and twice during 2 cART interruptions when HIV viral load (VL) was detectable. Retinoid concentrations during optimal long term cART in G1 were compared with cross-sectional results from 12 patients (G2) with suboptimal cART (detectable VL) and from 28 healthy adults (G3). Serum retinoids were measured by HPLC with ultraviolet detection. Retinoid concentrations were correlated with VL, CD4+ T- cell count and percentages, CD8+38+ fluorescence, triglycerides, cholesterol and C-peptide serum levels. Results During optimal cART, G1 participants had drastically reduced RAs (0.5 ± 0.3 μg/dL; P < 0.01) but the highest ROL (82 ± 3.0 μg/dL) concentrations. During cART interruptions in these patients, RAs slightly increased whereas ROL levels diminished significantly (P < 0.05). G3 had the highest RAs levels (7.2 ± 1.1 μg/dL) and serum ROL comparable to values in North Americans. Serum ROL was decreased in G2 (37.7 ± 3.2 μg/dL; P < 0.01). No correlations were noted between RA and ROL levels or between retinoid concentrations and CD4+ T- cell count, CD8+38+ fluorescence, VL. ROL correlated with triglycerides and cholesterol in G1 (rs = 0.8; P = 0.01). Conclusions Serum RAs levels are significantly diminished by cART, whereas ROL concentrations significantly decreased during uncontrolled HIV infection but augmented with optimal cART. These alterations in retinoid concentrations may affect the expression of retinoid-responsive genes involved in metabolic, hormonal and immune processes and be responsible for some adverse events observed in HIV-infected persons treated with antiretrovirals. Further studies should assess concomitant serum and intracellular retinoid levels in different clinical situations in larger, homogenous populations.
Collapse
|
22
|
Gutierrez AD, Balasubramanyam A. Dysregulation of glucose metabolism in HIV patients: epidemiology, mechanisms, and management. Endocrine 2012; 41:1-10. [PMID: 22134974 PMCID: PMC3417129 DOI: 10.1007/s12020-011-9565-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/07/2011] [Indexed: 02/06/2023]
Abstract
HIV-infected patients on highly active antiretroviral therapy (HAART) have increased prevalence of a number of chronic metabolic disorders of multifactorial but unclear etiology. These include disorders of lipid metabolism with or without lipodystrophy, insulin resistance, and an increased prevalence of impaired glucose tolerance, diabetes mellitus, and cardiometabolic syndrome. While much attention has been focused on the lipid and cardiovascular disorders, few investigations have attempted to characterize the prevalence, incidence, etiology, mechanisms, and management of glycemic disorders in HIV patients. In this review, we have focused specifically on a comprehensive assessment of dysglycemia in the context of HIV infection and HAART.
Collapse
Affiliation(s)
- Absalon D. Gutierrez
- Translational Metabolism Unit, Diabetes and Endocrinology Research Center, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine; Houston, Texas, USA
| | - Ashok Balasubramanyam
- Translational Metabolism Unit, Diabetes and Endocrinology Research Center, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine; Houston, Texas, USA
- Endocrine Service, Ben Taub General Hospital, Houston, Texas, USA
| |
Collapse
|
23
|
Abstract
HIV-1/highly active antiretroviral therapy-associated lipodystrophy syndrome (HALS) is an adipose tissue redistribution disorder characterized by subcutaneous adipose tissue lipoatrophy, sometimes including visceral adipose tissue hypertrophy and accumulation of dorsocervical fat ('buffalo hump'). The pathophysiology of HALS appears to be multifactorial and several key pathophysiological factors associated with HALS have been identified. These include mitochondrial dysfunction, adipocyte differentiation disturbances, high adipocyte lipolysis, and adipocyte apoptosis. These alterations in adipose tissue biology expand to involve systemic metabolism through alterations in endocrine functions of adipose tissue (via disturbed adipokine release), enhanced production of pro-inflammatory cytokines and excessive free fatty-acid release due to lipolysis. The deleterious action of some antiretroviral drugs is an important factor in eliciting these alterations in adipose tissue. However, HIV-1 infection-related events and HIV-1-encoded proteins also contribute directly to the complex development of HALS through effects on adipocyte biology, or indirectly through the promotion of local inflammation in adipose tissue.
Collapse
Affiliation(s)
- Marta Giralt
- Department of Biochemistry and Molecular Biology and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain.
| | | | | |
Collapse
|
24
|
Díaz-Delfín J, del Mar Gutiérrez M, Gallego-Escuredo JM, Domingo JC, Gracia Mateo M, Villarroya F, Domingo P, Giralt M. Effects of nevirapine and efavirenz on human adipocyte differentiation, gene expression, and release of adipokines and cytokines. Antiviral Res 2011; 91:112-9. [PMID: 21619898 DOI: 10.1016/j.antiviral.2011.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/10/2011] [Accepted: 04/19/2011] [Indexed: 12/25/2022]
Abstract
The non-nucleoside reverse transcriptase inhibitors (NNRTIs) nevirapine and efavirenz are drugs of choice for initial antiretroviral treatment for HIV-1 infection. Although NNRTIs have not traditionally been associated with the appearance of adipose alterations, recent data suggest that efavirenz may contribute to adipose tissue alterations in antiretroviral-treated patients, consistent with its ability to impair differentiation of adipocytes in cell cultures. No such effects have been reported for nevirapine, the other most commonly used NNRTI. In this study, we determined the effects of nevirapine on differentiation, gene expression and release of regulatory proteins (adipokines and cytokines) in differentiating human adipocytes, and compared them with those of efavirenz. Efavirenz caused a dose-dependent repression of adipocyte differentiation that was associated with down-regulation of the master adipogenesis regulator genes SREBP-1, PPARγ and C/EBPα, and their target genes encoding lipoprotein lipase, leptin and adiponectin, which are key proteins in adipocyte function. In contrast, nevirapine does not affect adipogenesis and causes a modest but significant coordinate increase in the expression of SREBP-1, PPARγ and C/EBPα and their target genes only at a concentration of 20 μM. Whereas efavirenz caused a significant increase in the release of pro-inflammatory cytokines (interleukin [IL]-8, IL-6, monocyte chemoattractant protein-1), plasminogen activator inhibitor type-1 and hepatocyte growth factor (HGF), nevirapine either had no effect on these factors or decreased their release (IL-6 and HGF). Nevirapine significantly increased adiponectin release, whereas efavirenz strongly repressed it. Moreover, nevirapine inhibited preadipocyte endogenous reverse transcriptase activity, whereas efavirenz did not alter it. It is concluded that, in contrast with the profound anti-adipogenic and pro-inflammatory response elicited by efavirenz, nevirapine does not impair adipogenesis.
Collapse
Affiliation(s)
- Julieta Díaz-Delfín
- Department of Biochemistry and Molecular Biology and Institut de Biomedicina (IBUB), University of Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee JY, Hashizaki H, Goto T, Sakamoto T, Takahashi N, Kawada T. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes. Biochem Biophys Res Commun 2011; 407:818-22. [PMID: 21443859 DOI: 10.1016/j.bbrc.2011.03.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO(2) and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because PPARγ agonists, usually used as antidiabetic drugs, induce excessive lipid accumulation in adipocytes in addition to improvement of insulin resistance.
Collapse
Affiliation(s)
- Joo-Young Lee
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Feeney ER, Mallon PWG. HIV and HAART-Associated Dyslipidemia. Open Cardiovasc Med J 2011; 5:49-63. [PMID: 21643501 PMCID: PMC3106351 DOI: 10.2174/1874192401105010049] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/01/2011] [Accepted: 01/06/2011] [Indexed: 01/09/2023] Open
Abstract
Effective highly active antiretroviral therapy (HAART) for human immunodeficiency virus-1 (HIV) infection has led to marked improvement in life-expectancy for those infected with HIV. Despite reductions in the incidence of AIDS with effective treatment, patients continue to experience considerable morbidity and mortality from non-AIDS illness such as premature cardiovascular disease, liver failure and renal failure. These morbidities, particularly premature cardiovascular disease, are thought to be related to a combination of the effects of an ageing HIV-infected population coupled with long-term effects of HIV infection and antiretroviral therapy (ART). One of the principle drivers behind the well documented increase in the risk of cardiovascular disease in HIV-infected patients is dyslipidemia. This review will focus on the clinical presentation of HIV and ART-associated dyslipidemia, what is known of its patho-physiology, including associations with use of specific antiretroviral medications, and suggest screening and management strategies.
Collapse
Affiliation(s)
- Eoin R Feeney
- HIV Molecular Research Group, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
27
|
Leroyer S, Vatier C, Kadiri S, Quette J, Chapron C, Capeau J, Antoine B. Glyceroneogenesis is inhibited through HIV protease inhibitor-induced inflammation in human subcutaneous but not visceral adipose tissue. J Lipid Res 2010; 52:207-20. [PMID: 21068005 DOI: 10.1194/jlr.m000869] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glyceroneogenesis, a metabolic pathway that participates during lipolysis in the recycling of free fatty acids to triglycerides into adipocytes, contributes to the lipid-buffering function of adipose tissue. We investigated whether glyceroneogenesis could be affected by human immunodeficiency virus (HIV) protease inhibitors (PIs) responsible or not for dyslipidemia in HIV-infected patients. We treated explants obtained from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots from lean individuals. We observed that the dyslipidemic PIs nelfinavir, lopinavir and ritonavir, but not the lipid-neutral PI atazanavir, increased lipolysis and decreased glyceroneogenesis, leading to an increased release of fatty acids from SAT but not from VAT. At the same time, dyslipidemic PIs decreased the amount of perilipin and increased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion in SAT but not in VAT. Parthenolide, an inhibitor of the NFκB pathway, counteracted PI-induced increased inflammation and decreased glyceroneogenesis. IL-6 (100 ng) inhibited the activity of phosphoenolpyruvate carboxykinase, the key enzyme of glyceroneogenesis, in SAT but not in VAT. Our data show that dyslipidemic but not lipid-neutral PIs decreased glyceroneogenesis as a consequence of PI-induced increased inflammation in SAT that could have an affect on adipocytes and/or macrophages. These results add a new link between fat inflammation and increased fatty acids release and suggest a greater sensitivity of SAT than VAT to PI-induced inflammation.
Collapse
|
28
|
The HIV-1/HAART associated metabolic syndrome – Novel adipokines, molecular associations and therapeutic implications. J Infect 2010; 61:101-13. [DOI: 10.1016/j.jinf.2010.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/18/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
29
|
Cardenas I, Means RE, Aldo P, Koga K, Lang SM, Booth CJ, Booth C, Manzur A, Oyarzun E, Romero R, Mor G. Viral infection of the placenta leads to fetal inflammation and sensitization to bacterial products predisposing to preterm labor. THE JOURNAL OF IMMUNOLOGY 2010; 185:1248-57. [PMID: 20554966 DOI: 10.4049/jimmunol.1000289] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pandemics pose a more significant threat to pregnant women than to the nonpregnant population and may have a detrimental effect on the well being of the fetus. We have developed an animal model to evaluate the consequences of a viral infection characterized by lack of fetal transmission. The experiments described in this work show that viral infection of the placenta can elicit a fetal inflammatory response that, in turn, can cause organ damage and potentially downstream developmental deficiencies. Furthermore, we demonstrate that viral infection of the placenta may sensitize the pregnant mother to bacterial products and promote preterm labor. It is critical to take into consideration the fact that during pregnancy it is not only the maternal immune system responding, but also the fetal/placental unit. Our results further support the immunological role of the placenta and the fetus affecting the global response of the mother to microbial infections. This is relevant for making decisions associated with treatment and prevention during pandemics.
Collapse
Affiliation(s)
- Ingrid Cardenas
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Adler-Wailes DC, Guiney EL, Wolins NE, Yanovski JA. Long-term ritonavir exposure increases fatty acid and glycerol recycling in 3T3-L1 adipocytes as compensatory mechanisms for increased triacylglycerol hydrolysis. Endocrinology 2010; 151:2097-105. [PMID: 20228169 PMCID: PMC2869264 DOI: 10.1210/en.2009-1364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipodystrophy with high nonesterified fatty acid (FA) efflux is reported in humans receiving highly active antiretroviral therapy (HAART) to treat HIV infection. Ritonavir, a common component of HAART, alters adipocyte FA efflux, but the mechanism for this effect is not established. To investigate ritonavir-induced changes in FA flux and recycling through acylglycerols, we exposed differentiated murine 3T3-L1 adipocytes to ritonavir for 14 d. FA efflux, uptake, and incorporation into acylglycerols were measured. To identify a mediator of FA efflux, we measured adipocyte triacylglycerol lipase (ATGL) transcript and protein. To determine whether ritonavir-treated adipocytes increased glycerol backbone synthesis for FA reesterification, we measured labeled glycerol and pyruvate incorporation into triacylglycerol (TAG). Ritonavir-treated cells had increased FA efflux, uptake, and incorporation into TAG (all P < 0.01). Ritonavir increased FA efflux without consistently increasing glycerol release or changing TAG mass, suggesting increased partial TAG hydrolysis. Ritonavir-treated adipocytes expressed significantly more ATGL mRNA (P < 0.05) and protein (P < 0.05). Ritonavir increased glycerol (P < 0.01) but not pyruvate (P = 0.41), utilization for TAG backbone synthesis. Consistent with this substrate utilization, glycerol kinase transcript (required for glycerol incorporation into TAG backbone) was up-regulated (P < 0.01), whereas phosphoenolpyruvate carboxykinase transcript (required for pyruvate utilization) was down-regulated (P < 0.001). In 3T3-L1 adipocytes, long-term ritonavir exposure perturbs FA metabolism by increasing ATGL-mediated partial TAG hydrolysis, thus increasing FA efflux, and leads to compensatory increases in FA reesterification with glycerol and acylglycerols. These changes in FA metabolism may, in part, explain the increased FA efflux observed in ritonavir-associated lipodystrophy.
Collapse
Affiliation(s)
- Diane C Adler-Wailes
- Head, Unit on Growth and Obesity, National Institutes of Health, Hatfield Clinical Research Center, Bethesda, Maryland 20892-1103, USA
| | | | | | | |
Collapse
|
31
|
Caso G, Mileva I, McNurlan MA, Mynarcik DC, Darras F, Gelato MC. Effect of ritonavir and atazanavir on human subcutaneous preadipocyte proliferation and differentiation. Antiviral Res 2010; 86:137-43. [PMID: 20153378 DOI: 10.1016/j.antiviral.2010.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/11/2010] [Accepted: 02/03/2010] [Indexed: 11/16/2022]
Abstract
Protease inhibitors (PIs) have been implicated in the development of HIV-associated lipodystrophy through a reduction in the differentiation of preadipocytes. While atazanavir (ATV) is associated with fewer clinical metabolic abnormalities in the short-term, the effects of long-term exposure are not known. ATV effects on preadipocyte replication or differentiation would indicate the potential for long-term problems. This study compared ritonavir (RTV) and ATV effects on preadipocyte replication and differentiation in human primary cultures. Preadipocytes from subcutaneous fat were studied in the presence of therapeutic concentrations of RTV and ATV for replication, differentiation, and adipokine secretion. The effects of the drugs on the expression of PPARgamma and related genes during differentiation were also assessed by real-time quantitative PCR. RTV induced a significant inhibition of preadipocyte proliferation, differentiation and adiponectin secretion. ATV at concentrations within the range of therapeutic levels did not affect differentiation or adiponectin secretion, but did have inhibitory effects on preadipocyte proliferation. Inhibition of differentiation by PIs was associated with decreased expression of PPARgamma, C/EBPalpha, and aP2 genes. In summary, although ATV at therapeutic levels has a smaller impact on adipogenesis, alterations in preadipocyte proliferation suggest the potential for adverse effects with long-term use.
Collapse
Affiliation(s)
- Giuseppe Caso
- Department of Surgery, Stony Brook University Medical Center, Stony Brook, NY 11794-8191, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Lam TN, Hunt CA. Mechanistic insight from in silico pharmacokinetic experiments: roles of P-glycoprotein, Cyp3A4 enzymes, and microenvironments. J Pharmacol Exp Ther 2010; 332:398-412. [PMID: 19864617 DOI: 10.1124/jpet.109.160739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saquinavir exhibits paradoxical transport across modified Caco-2 cell monolayers (doi: 10.1124/jpet.103.056390) expressing P-glycoprotein and Cyp3A4. The data implicate complicated intracellular transport mechanisms. Drawing on recent discrete event modeling and simulation advances, we built an in silico analog of the confluent, asymmetric cell monolayer used in the cited work. We call it in silico experimental Caco-2 (cell monolayer) culture (ISECC). Concrete, working, hypothesized spatial mechanisms were implemented. Validation was achieved when in silico experimental results met similarity measure (SM) expectations that targeted 16 wet-lab experimental conditions. Initial mechanistic hypotheses turned out to be necessary parts of a more complicated explanation. We progressed through four stages of an iterative refinement and validation protocol that enabled and facilitated discovery of plausible, new mechanistic details. The process exercised abductive reasoning, a primary means of scientific knowledge creation and creative cognition. The ISECC that survived the most stringent SM challenge produced transport data that was statistically indistinguishable from referent wet-lab observations. It required a 7:1 ratio of apical transporters to metabolizing enzymes, a 97% reduction of efflux activity by an inhibitor, a biased distribution of metabolizing enzymes, heterogeneous intracellular spaces, and restrictions on intracellular drug movement. Experimenting on synthetic analogs such as ISECC provides a former unavailable means of discovering new mechanistic details and testing their plausibility. The approach thus provides a powerful new expansion of the scientific method: an independent, scientific means to challenge, explore, better understand, and improve any inductive mechanism and, importantly, the assumptions on which it rests.
Collapse
Affiliation(s)
- Tai Ning Lam
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143-0446, USA
| | | |
Collapse
|
33
|
HIV protease inhibitors and insulin resistance: lessons from in-vitro, rodent and healthy human volunteer models. Curr Opin HIV AIDS 2009; 3:660-5. [PMID: 19373039 DOI: 10.1097/coh.0b013e3283139134] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Although the use of HIV protease inhibitors is linked to the development of insulin resistance and other metabolic changes that greatly increase the risk for cardiovascular disease, the molecular mechanisms responsible remain incompletely understood. This review summarizes recent advances that have been made in understanding the relative contributions of individual protease inhibitors to both acute and chronic insulin resistance together with newly identified cellular mediators. RECENT FINDINGS Individual protease inhibitors, alone and in combination, have differing propensities to induce insulin resistance, reflecting relative differences in both affinities for identified molecular targets and pharmacokinetic profiles. Several of the most recent protease inhibitors approved for clinical use or in development appear to be less likely to induce insulin resistance. In addition to direct effects on glucose transporter-4 activity, induction of oxidative stress, proteosome inhibition, alteration of adipokine levels, and changes in suppressors of cytokine signaling-1 have been implicated. SUMMARY A better understanding of the propensity of individual HIV protease inhibitors to produce insulin resistance will allow the tailoring of individual treatment plans based upon overall risk for diabetes. The elucidation of the molecular mechanisms for alterations in glucose homeostasis will facilitate the development of newer generations of HIV protease inhibitors that maintain their clinical efficacy without contributing to the development of diabetes mellitus and other proatherogenic effects.
Collapse
|
34
|
Stankov MV, Schmidt RE, Behrens GMN. Impact of stimulatory pathways on adipogenesis and HIV-therapy associated lipoatrophy. Exp Biol Med (Maywood) 2009; 234:1484-92. [PMID: 19934369 DOI: 10.3181/0907-rm-205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Current understanding of adipogenesis derives mainly from studies with in vitro cell culture systems with divergent experimental requirements. We aimed to investigate the discrepancy between the anti-adipogenic effects of the HIV protease-inhibitor indinavir (IDV) in vitro and the lack of evidence that IDV inhibits adipogenesis in humans. DESIGN AND METHODS We studied cell viability and adipogenesis in murine 3T3-F442A, 3T3-L1 and primary human subcutaneous preadipocytes (phsPA). Differentiation was studied after activation of the established four signalling pathways in different combinations. We analyzed CCAAT/enhancer-binding protein (C/EBP) alpha and peroxisome proliferator-activated receptor (PPAR) gamma expression and triacylglyceride accumulation. Cells were exposed to IDV at concentrations around therapeutic C(max) levels and higher (10 muM and 20 muM) for up to 30 days. RESULTS Under insulin and fetal calf serum (FCS) input, IDV inhibited 3T3-F442A differentiation, an effect that was partially rescued by the addition of 3-isobutyl-1-methylxanthine (IBMX) stimulation. Combined stimulation with FCS, insulin, dexamethasone (DEX) and IBMX led to normal 3T3-L1 differentiation even in the presence of IDV. However, omission of IBMX rendered this cell line sensitive to IDV's anti-adipogenic effects. Differentiation of phsPA requiring complete adipogenic stimulation was not affected by IDV presence. CONCLUSIONS Our data suggest that the potency of IDV to impair differentiation under partial stimulation disappears when all of the differentiation pathways are activated. Such compensatory mechanisms might be responsible for the inability of the drug to affect adipogenesis in vivo.
Collapse
Affiliation(s)
- Metodi V Stankov
- Clinic for Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
35
|
Adipocyte dysfunction in response to antiretroviral therapy: clinical, tissue and in-vitro studies. Curr Opin HIV AIDS 2009; 2:268-73. [PMID: 19372898 DOI: 10.1097/coh.0b013e32814b1638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Lipodystrophy, a major complication of antiretroviral therapy, is an adipose tissue disease involving severe alterations of fat tissue distribution and metabolic functions. Protease inhibitors and nucleoside reverse transcriptase inhibitors (NRTIs) are implicated to different extents. We review recent findings on the toxicity of HIV antiretroviral drugs at the fat cell and tissue levels and point out the underlying pathophysiological mechanisms. RECENT FINDINGS Peripheral fat loss and central accumulation are distinct phenomena. Lipoatrophy is the dominant feature after prolonged treatment. Protease inhibitors and NRTIs promote fat tissue disease by separate mechanisms that converge and worsen adipocyte dysfunctions. The pathogenesis involves the mitochondrial toxicity of NRTIs and the adverse effects of protease inhibitors and NRTIs on adipocyte differentiation status, insulin sensitivity, survival and adipokine secretion. Oxidative stress and local inflammation induced by these drugs may participate in the setup of lipodystrophy. Partial and slow reversion can be obtained by switch strategies or drug therapy. SUMMARY Patients using antiviral therapy develop severe fat tissue damage. The toxicity of protease inhibitors and NRTIs remains an important issue for patients and clinicians. Since fat tissue regeneration is difficult, it is important to understand the mechanisms by which these drugs alter fat tissue depots.
Collapse
|
36
|
Mitochondrial DNA depletion and respiratory chain activity in primary human subcutaneous adipocytes treated with nucleoside analogue reverse transcriptase inhibitors. Antimicrob Agents Chemother 2009; 54:280-7. [PMID: 19805555 DOI: 10.1128/aac.00914-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction as a consequence of mitochondrial DNA (mtDNA) depletion due to therapy with nucleoside analogue reverse transcriptase inhibitors (NRTI) has been proposed as a pathogenic mechanism leading to lipoatrophy in HIV-infected patients. The aim of our study was to investigate the impact of NRTI treatment on mtDNA abundance and the activities of respiratory chain complexes in primary human subcutaneous preadipocytes (phsPA). We studied adipocyte phenotypes, viability, and differentiation (CCAAT/enhancer-binding protein alpha [C/EBPalpha] and peroxisome proliferator-activated receptor gamma [PPARgamma] expression) and adiponectin production, mtDNA content, mitochondrial membrane potential, mitochondrial mass, and respiratory chain enzyme and citrate synthase activities in both proliferating and differentiating phsPA. Cells were exposed to zidovudine (6 microM), stavudine (d4T; 3 microM), and zalcitabine (ddC; 0.1 microM) for 8 weeks. NRTI-induced mtDNA depletion occurred in proliferating and differentiating phsPA after exposure to therapeutic drug concentrations of d4T and ddC. At these concentrations, ddC and d4T led to an almost 50% decrease in the number of mtDNA copies per cell without major impact on adipocyte differentiation. Despite mtDNA depletion by NRTI, the activities of the respiratory chain complexes, the mitochondrial membrane potential, and the mitochondrial mass were found to be unaffected. Severe NRTI-mediated mtDNA depletion in phsPA is not inevitably associated with impaired respiratory chain activity or altered mitochondrial membrane potential.
Collapse
|
37
|
Effects of switching from lopinavir/ritonavir to atazanavir/ritonavir on muscle glucose uptake and visceral fat in HIV-infected patients. AIDS 2009; 23:1349-57. [PMID: 19474651 DOI: 10.1097/qad.0b013e32832ba904] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine the effects of switching from lopinavir/ritonavir (LPV/r) to atazanavir/ritonavir (ATV/r) on muscle glucose uptake, glucose homeostasis, lipids, and body composition. METHODS Fifteen HIV-infected men and women on a regimen containing LPV/r and with evidence of hyperinsulinemia and/or dyslipidemia were randomized to continue LPV/r or to switch to ATV/r (ATV 300 mg and ritonavir 100 mg daily) for 6 months. The primary endpoint was change in thigh muscle glucose uptake as measured by positron emission tomography. Secondary endpoints included abdominal visceral adipose tissue, fasting lipids, and safety parameters. The difference over time between treatment groups (treatment effect of ATV/r relative to LPV/r) was determined by repeated measures ANCOVA. RESULTS After 6 months, anterior thigh muscle glucose uptake increased significantly (treatment effect +18.2 +/- 5.9 micromol/kg per min, ATV/r vs. LPV/r, P = 0.035), and visceral adipose tissue area decreased significantly in individuals who switched to ATV/r (treatment effect -31 +/- 11 cm, ATV/r vs. LPV/r, P = 0.047). Switching to ATV/r significantly decreased triglyceride (treatment effect -182 +/- 64 mg/dl, ATV/r vs. LPV/r, P = 0.02) and total cholesterol (treatment effect -23 +/- 8 mg/dl, ATV/r vs. LPV/r, P = 0.01), whereas high-density lipoprotein and low-density lipoprotein did not change significantly. Fasting glucose also decreased significantly following switch to ATV/r (treatment effect -15 +/- 4 mg/dl, ATV/r vs. LPV/r, P = 0.002). CONCLUSION Switching from LPV/r to ATV/r significantly increases glucose uptake by muscle, decreases abdominal visceral adipose tissue, improves lipid parameters, and decreases fasting glucose over 6 months.
Collapse
|
38
|
Djedaini M, Peraldi P, Drici MD, Darini C, Saint-Marc P, Dani C, Ladoux A. Lopinavir co-induces insulin resistance and ER stress in human adipocytes. Biochem Biophys Res Commun 2009; 386:96-100. [PMID: 19501568 DOI: 10.1016/j.bbrc.2009.05.148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
HIV-protease inhibitors (PIs) markedly decreased mortality of HIV-infected patients. However, their use has been associated with occurence of metabolic abnormalities the causes of which are not well understood. We report here that lopinavir, one of the most prescribed PI, dose-dependently co-induced insulin resistance and ER stress in human adipocytes obtained from differentiation of precursor cells. Insulin resistance was subsequent to IRS1 phosphorylation defects and resulted in a concentration-dependent decrease of glucose uptake. The major ER stress pathway involved was the phosphorylation of eIF2-alpha. Salubrinal, a selective eIF2-alpha dephosphorylation inhibitor, induced insulin resistance by targeting IRS1 phosphorylation at serine 312 and acted synergistically with LPV when both drugs were used in combination. This study points out the key role of eIF2-alpha phosphorylation in the development of PI-associated insulin resistance and ER stress. Thus, this protein represents a promising therapeutic target for development of new PIs devoid of adverse metabolic effects.
Collapse
Affiliation(s)
- Mansour Djedaini
- Institute of Biology Development and Cancer, University of Nice Sophia-Antipolis, CNRS, 28 Avenue de Valombrose, 06107 NICE Cedex2, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Antiretroviral-related adipocyte dysfunction and lipodystrophy in HIV-infected patients: Alteration of the PPARγ-dependent pathways. PPAR Res 2008; 2009:507141. [PMID: 19125203 PMCID: PMC2612527 DOI: 10.1155/2009/507141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022] Open
Abstract
Lipodystrophy and metabolic alterations are major complications of antiretroviral therapy in HIV-infected patients. In vitro studies using cultured murine and human adipocytes revealed that some protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs) were implicated to a different extent in adipose cell dysfunction and that a chronic incubation with some PIs decreased mRNA and protein expression of PPARγ. Defective lamin A maturation linked to PI inhibitory activity could impede the nuclear translocation of SREBP1c, therefore, reducing PPARγ expression. Adipose cell function was partially restored by the PPARγ agonists, thiazolidinediones. Adverse effects of PIs and NRTIs have also been reported in macrophages, a cell type that coexists with, and modulates, adipocyte function in fat tissue. In HIV-infected patients under ART, a decreased expression of PPARγ and of PPARγ-related genes was observed in adipose tissue, these anomalies being more severe in patients with ART-induced lipoatrophy. Altered PPARγ expression was reversed in patients stopping PIs. Treatment of patients with agonists of PPARγ could improve, at least partially, the subcutaneous lipoatrophy. These data indicate that decreased PPARγ expression and PPARγ-related function, resulting from ART-induced adipose tissue toxicity, play a central role in HIV-related lipoatrophy and metabolic consequences.
Collapse
|
40
|
Adler-Wailes DC, Guiney EL, Koo J, Yanovski JA. Effects of ritonavir on adipocyte gene expression: evidence for a stress-related response. Obesity (Silver Spring) 2008; 16:2379-87. [PMID: 18719645 PMCID: PMC2614385 DOI: 10.1038/oby.2008.350] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To understand the molecular mechanisms underlying the development of dyslipidemia and lipodystrophy that occurs after administration of aspartic acid protease inhibitors, we examined transcriptional profiles using cDNA microarrays in 3T3-L1 adipocytes exposed to 10 micromol/l ritonavir for 2-21 days. The expression levels of approximately 12,000 transcripts were assessed using the MgU74Av2 mouse microarray chip. Ritonavir altered gene expression of inflammatory cytokines, stress response genes localized to endoplasmic reticulum, oxidative stress genes, apoptosis-related genes, and expression of genes involved in cell adhesion and extracellular matrix remodeling. Microarray analysis also identified a novel gene downregulated by ritonavir, Cidea, whose expression levels may affect free-fatty acid metabolism. These changes suggest a unique, stress-related pattern in adipocytes induced by chronic exposure to the protease inhibitor, ritonavir.
Collapse
Affiliation(s)
- Diane C Adler-Wailes
- Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
41
|
Effect of atazanavir and ritonavir on the differentiation and adipokine secretion of human subcutaneous and omental preadipocytes. AIDS 2008; 22:1293-8. [PMID: 18580608 DOI: 10.1097/qad.0b013e3283021a4f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Treatment of HIV with some protease inhibitors has been associated with dyslipidemia, insulin resistance and fat redistribution. It has been hypothesized that some protease inhibitors may alter the differentiation of subcutaneous and visceral adipocytes in a disparate manner. The aim of this study was to investigate whether isolated human preadipocytes display regio-specific sensitivity to the effects of ritonavir and atazanavir by examining differentiation, as well as adipokine secretion, following a 10-day drug exposure. METHODS Paired subcutaneous and omental human preadipocytes (n = 8) were induced to differentiate for 6 days, before being exposed to atazanavir or ritonavir (1-10 micromol/l) for 10 days. Lipid metabolism was assessed by Oil Red O staining and glycerol 3-phosphate dehydrogenase enzyme activity, whereas leptin and adiponectin secretion were assessed by enzyme-linked immunosorbent assay. RESULTS There was no difference in differentiation between subcutaneous and omental adipocytes. Repeated exposure to ritonavir, but not to atazanavir, led to significant reductions in adipocyte differentiation. There were no differences in adiponectin secretion for any of the atazanavir treatments in both subcutaneous and omental adipocytes, whereas significant reductions were evident at 10 mumol/l for ritonavir exposed subcutaneous adipocytes. In contrast, both atazanavir and ritonavir were associated with altered leptin secretion. CONCLUSIONS Ritonavir, but not atazanavir exposure, can inhibit differentiation of subcutaneous and omental adipocytes to a similar extent. Regio-specific differences, however, were apparent for adiponectin and leptin secretion. The role of region-specific alterations in adipokine secretion and apoptosis in the pathogenesis of HIV-lipodystrophy requires further attention.
Collapse
|
42
|
Mallewa JE, Wilkins E, Vilar J, Mallewa M, Doran D, Back D, Pirmohamed M. HIV-associated lipodystrophy: a review of underlying mechanisms and therapeutic options. J Antimicrob Chemother 2008; 62:648-60. [PMID: 18565973 DOI: 10.1093/jac/dkn251] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lipodystrophy (LD) is a common adverse effect of HIV treatment with highly active antiretroviral therapy, which comprises morphological and metabolic changes. The underlying mechanisms for LD are thought to be due to mitochondrial toxicity and insulin resistance, which results from derangements in levels of adipose tissue-derived proteins (adipocytokines) that are actively involved in energy homeostasis. Several management strategies for combating this syndrome are available, but they all have limitations. They include: switching from thymidine analogues to tenofovir or abacavir in lipoatrophy, or switching from protease inhibitors associated with hyperlipidaemia to a protease-sparing option; injection into the face with either biodegradable fillers such as poly-L-lactic acid and hyaluronic acid (a temporary measure requiring re-treatment) or permanent fillers such as bio-alcamid (with the risk of foreign body reaction or granuloma formation); and structured treatment interruption with the risk of loss of virological control and disease progression. There is therefore a need to explore alternative therapeutic options. Some new approaches including adipocytokines, uridine supplementation, glitazones, growth hormone (or growth hormone-releasing hormone analogues), metformin and statins (used alone or in combination) merit further investigation.
Collapse
Affiliation(s)
- Jane E Mallewa
- Department of Infectious Diseases, North Manchester General Hospital, Delaunays Road, Manchester M8 5RB, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Drug-specific effect of nelfinavir and stavudine on primary culture of human preadipocytes. J Acquir Immune Defic Syndr 2008; 48:20-5. [PMID: 18344876 DOI: 10.1097/qai.0b013e31816b6aa4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lipodystrophic syndrome is a major side effect of antiviral therapy leading to profound disturbances in adipose tissue. Human preadipocyte primary culture represents a model to understand mechanisms by which antiretroviral drugs alter adipocyte biology. The aim of this study was to evaluate the effects of various protease and nucleoside reverse transcriptase inhibitors in this model. We tested the effect of drugs on triglyceride accumulation and expression of specific genes by real-time polymerase chain reaction. To determine differential mechanisms by which the efficient drugs operate, we studied mitochondrial effects by evaluating oxygen consumption rates and nuclear lamina alteration by immunocytology. Only stavudine and nelfinavir, both at 10 microM, altered human adipose cell differentiation, as shown by reduced triglyceride accumulation. Our studies revealed that stavudine increased expression of genes such as PGC1 and LPL and affected mitochondrial respiration. Cells treated with nelfinavir had a lower expression of PPARgamma, LPL, and ap2 and presented disorganization of lamin A/C. Our data suggest for the first time in a model of human adipocytes differentiated in vitro that stavudine and nelfinavir interfere with the process of differentiation by 2 distinct mechanisms. This may be particularly relevant in understanding the physiopathologic mechanisms underlying the lipodystrophic syndrome.
Collapse
|
44
|
Dubé MP, Gorski JC, Shen C. Severe impairment of endothelial function with the HIV-1 protease inhibitor indinavir is not mediated by insulin resistance in healthy subjects. Cardiovasc Toxicol 2008; 8:15-22. [PMID: 18172783 PMCID: PMC2861038 DOI: 10.1007/s12012-007-9010-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 12/05/2007] [Indexed: 01/04/2023]
Abstract
Endothelial dysfunction may contribute to increased cardiovascular events among HIV-1-infected patients receiving antiretroviral therapy. The HIV-1 protease inhibitor indinavir causes both vascular dysfunction and insulin resistance, but the relationship between the two disturbances is not established. Endothelium-dependent vasodilation (EDV), insulin-mediated vasodilation (IMV), and whole body and leg glucose uptake during a euglycemic hyperinsulinemic clamp (40 mU/m(2)/min) were measured before and after four weeks of indinavir in nine healthy men. EDV fell from 270 +/- 67% above basal to 124 +/- 30% (P = 0.04) and IMV from 56 +/- 14% above basal to 8 +/- 8% (P = 0.001) with indinavir. During the clamp, arteriovenous glucose difference and leg glucose uptake were not significantly different after indinavir and whole-body glucose uptake was only modestly reduced (8.0 +/- 0.8 vs. 7.2 +/- 0.8 mg/kg/min, P = 0.04). The change in EDV did not correlate with the change in whole-body glucose uptake after indinavir (r = 0.21, P = 0.6). Despite marked impairment of endothelial function and IMV with indinavir, only modest, inconsistent reductions in measures of insulin-stimulated glucose uptake occurred. This suggests that indinavir's effects on glucose metabolism are not directly related to indinavir-associated endothelial dysfunction. Studies of the vascular effects of newer protease inhibitors are needed.
Collapse
Affiliation(s)
- Michael P Dubé
- Department of Medicine and the Division of Infectious Diseases, Indiana University School of Medicine, Wishard Memorial Hospital, 1001 W. 10th Street, Suite OPW-430, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
45
|
Lum PY, He YD, Slatter JG, Waring JF, Zelinsky N, Cavet G, Dai X, Fong O, Gum R, Jin L, Adamson GE, Roberts CJ, Olsen DB, Hazuda DJ, Ulrich RG. Gene expression profiling of rat liver reveals a mechanistic basis for ritonavir-induced hyperlipidemia. Genomics 2007; 90:464-73. [PMID: 17719200 DOI: 10.1016/j.ygeno.2007.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/16/2007] [Accepted: 06/19/2007] [Indexed: 11/26/2022]
Abstract
The molecular mechanisms of action of a HIV protease inhibitor, ritonavir, on hepatic function were explored on a genomic scale using microarrays comprising genes expressed in the liver of Sprague-Dawley rats (Rattus norvegicus). Analyses of hepatic transcriptional fingerprints led to the identification of several key cellular pathways affected by ritonavir treatment. These effects were compared to a compendium of gene expression responses for 52 unrelated compounds and to other protease inhibitors, including atazanavir and two experimental compounds. We identified genes involved in cholesterol and fatty acid biosynthesis, as well as genes involved in fatty acid and cholesterol breakdown, whose expressions were regulated in opposite manners by ritonavir and bezafibrate, a hypolipidemic agonist of the peroxisome proliferator-activated receptor alpha. Ritonavir also upregulated multiple proteasomal subunit transcripts as well as genes involved in ubiquitination, consistent with its known inhibitory effect on proteasomal activity. We also tested three other protease inhibitors in addition to ritonavir. Atazanavir did not impact ubiquitin or proteasomal gene expression, although the two other experimental protease inhibitors impacted both proteasomal gene expression and sterol regulatory element-binding protein-activated genes, similar to ritonavir. Identification of key metabolic pathways that are affected by ritonavir and other protease inhibitors will enable us to understand better the downstream effects of protease inhibitors, thus leading to better drug design and an effective method to mitigate the side effects of this important class of HIV therapeutics.
Collapse
Affiliation(s)
- Pek Yee Lum
- Rosetta Inpharmatics LLC, 401 Terry Avenue North, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mechanisms of antiretroviral-induced mitochondrial dysfunction in adipocytes and adipose tissue: in-vitro, animal and human adipose tissue studies. Curr Opin HIV AIDS 2007; 2:261-7. [DOI: 10.1097/coh.0b013e32810fd785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Florescu D, Kotler DP. Insulin resistance, glucose intolerance and diabetes mellitus in HIV-infected patients. Antivir Ther 2007; 12:149-62. [PMID: 17503657 DOI: 10.1177/135965350701200214] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An increased prevalence of insulin resistance, glucose intolerance and diabetes has been reported in HIV infection in the highly active antiretroviral therapy (HAART) era. This development might be clinically significant because of its association with cardiovascular morbidity and mortality as well as the therapeutic challenges of managing polypharmacy. The development of insulin resistance, glucose intolerance and diabetes could be related to the underlying HIV infection, the contribution of different antiretroviral agents, treatment-associated weight gain, immune restoration, as well as the non-HIV related factors. Dissecting these factors in clinical practice might be difficult. Clinical studies include short-term treatments in healthy, non-HIV-infected individuals; randomized, controlled trials; comparative studies of different HAART regimens; and randomized studies of switching regimens in patients with viral suppression and stable immune function. This article reviews the latest knowledge regarding the epidemiology, pathogenesis, prevention and treatment of insulin resistance, glucose intolerance and diabetes mellitus in HIV-infected individuals.
Collapse
Affiliation(s)
- Diana Florescu
- Immunocompromised Host Infectious Diseases Program, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
48
|
Lagathu C, Eustace B, Prot M, Frantz D, Gu Y, Bastard JP, Maachi M, Azoulay S, Briggs M, Caron M, Capeau J. Some HIV Antiretrovirals Increase Oxidative Stress and Alter Chemokine, Cytokine or Adiponectin Production in Human Adipocytes and Macrophages. Antivir Ther 2007. [DOI: 10.1177/135965350701200407] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives Adipose tissue from patients with HIV-related lipodystrophy presents a state of chronic inflammation. Altered expression of cytokines/adipokines and macrophage infiltration could be involved in patients’ insulin resistance and lipoatrophy. We tested whether antiretrovirals affected adipokine release by human subcutaneous adipocytes and cytokine/chemokine production by human macrophages and examined whether reactive oxygen species (ROS) hyperproduction was related to the effect of antiretrovirals. Methods Differentiated human adipocytes and PMA-THP-1 macrophages were treated with protease inhibitors (PIs: indinavir, nelfinavir, amprenavir, lopinavir, ritonavir and atazanavir) or nucleoside reverse transcriptase inhibitors (NRTIs: stavudine, zidovudine and abacavir) for 24–48 h without or with diphenylene iodonium (DPI), an inhibitor of oxidative stress. Lipid content was assessed by Oil Red O staining and ROS production by nitroblue tetrazolium (NBT) reduction. Cytokine/chemokines, adiponectin and leptin release was evaluated by ELISA or multiplex assays. Results In human adipocytes, PIs and NRTIs (except amprenavir, atazanavir and abacavir) reduced lipid content, adiponectin and leptin release and increased in parallel ROS production and monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-6 release. The effects of PIs, but not of NRTIs, were prevented by the addition of DPI. In PMA-THP-1 macrophages, all PIs, but no NRTI, increased macrophage inflammatory protein-1α and MCP-1 release. Lopinavir, nelfinavir, zidovudine and stavudine markedly increased ROS production and release of IL-1β and tumour necrosis factor-α. Conclusions Some PIs altered adipokine secretion and lipid content through ROS production in human subcutaneous adipocytes. Thymidine analogues altered adipocyte functions but their effect on adipokine secretion was not reverted by ROS production inhibition. Increased chemokine/cytokine production by adipocytes and macrophages could be involved in macrophage recruitment and participate in lipoatrophy and insulin resistance.
Collapse
Affiliation(s)
- Claire Lagathu
- Inserm, U680, Paris, France
- Université Pierre et Marie Curie Paris6, UMR S680, Paris, France
| | - Brenda Eustace
- Vertex Pharmaceuticals Inc., Biology Sector, Cambridge, MA, USA
| | - Matthieu Prot
- Inserm, U680, Paris, France
- Université Pierre et Marie Curie Paris6, UMR S680, Paris, France
| | - Dan Frantz
- Vertex Pharmaceuticals Inc., Biology Sector, Cambridge, MA, USA
| | - Yong Gu
- Vertex Pharmaceuticals Inc., Biology Sector, Cambridge, MA, USA
| | - Jean-Philippe Bastard
- Inserm, U680, Paris, France
- Université Pierre et Marie Curie Paris6, UMR S680, Paris, France
- AP-HP, Hôpital Tenon, Service de Biochimie et Hormonologie, Paris, France
| | - Mustapha Maachi
- Inserm, U680, Paris, France
- Université Pierre et Marie Curie Paris6, UMR S680, Paris, France
- AP-HP, Hôpital Tenon, Service de Biochimie et Hormonologie, Paris, France
| | - Stephane Azoulay
- Laboratoire de Chimie des Molécules Bioactives et Aromatiques, UMR 6001, Université Nice-Sophia Antipolis, Nice, France
| | - Michael Briggs
- Vertex Pharmaceuticals Inc., Biology Sector, Cambridge, MA, USA
| | - Martine Caron
- Inserm, U680, Paris, France
- Université Pierre et Marie Curie Paris6, UMR S680, Paris, France
| | - Jacqueline Capeau
- Inserm, U680, Paris, France
- Université Pierre et Marie Curie Paris6, UMR S680, Paris, France
- AP-HP, Hôpital Tenon, Service de Biochimie et Hormonologie, Paris, France
| |
Collapse
|
49
|
Casteilla L, Dani C. Adipose tissue-derived cells: from physiology to regenerative medicine. DIABETES & METABOLISM 2007; 32:393-401. [PMID: 17110894 DOI: 10.1016/s1262-3636(07)70297-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During the last past years, the importance and the role of adipose tissues have been greatly expanded. After finding that adipose tissues are metabolically very active, the discovery of leptin moved the status of adipose tissue towards an endocrine tissue able to interact with all major organs via secretion of adipokines. Some years ago, the presence of adipocyte precursors, termed preadipocytes, has been described in all adipose tissue depots from various species of different age. More recently, the discovery that different phenotypes can be obtained from stroma cells of adipose tissue has largely emphazised the concept of adipose tissue plasticity. Therefore, raising great hope in regenerative medicine as adipose tissue can be easily harvested in adults it could represent an abundant source of therapeutic cells. Thus, adipose tissue plays the dual role of Mr Obese Hyde as a main actor of obesity and of Dr Regenerative Jekyll as a source of therapeutic cells. Adipose tissue has not yet revealed all its mysteries although one facet could not be well understood without the other one.
Collapse
Affiliation(s)
- L Casteilla
- UMR 5018 CNRS-UPS, IFR 31, Institut Louis-Bugnard, BP 84225, 31432 Toulouse Cedex 4, France.
| | | |
Collapse
|
50
|
Guo W, Zingg JM, Meydani M, Azzi A. Alpha-Tocopherol counteracts ritonavir-induced proinflammatory cytokines expression in differentiated THP-1 cells. Biofactors 2007; 31:171-9. [PMID: 18997280 DOI: 10.1002/biof.5520310304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Treatment of HIV-infected individuals with HIV protease inhibitor (HPI) drugs has significantly increased their life span. However, one of the side effects of HPI drugs is the development of premature atherosclerosis, whose molecular pathogenesis remains unclear. Previously we have reported that alpha-tocopherol (alpha-T) normalizes CD36 overexpression induced by ritonavir treatment and reduces oxLDL uptake in THP-1 cells. Since inflammation is a major player in the pathogenesis of atherosclerosis, we hypothesized that HPI drugs, such as ritonavir, increase proinflammatory cytokines synthesis and that alpha-T supplementation counteracts this effect by suppressing proinflammatory cytokines levels. Here, we report that after differentiating THP-1 cells to macrophages, ritonavir treatment (10 microg/mL) significantly increases expression of proinflammatory cytokines, IL-6, MCP-1 and IL-8, at both mRNA and protein levels. This ritonavir-induced effect is significantly suppressed by treatment of THP-1/macrophages with 50 muM alpha-T. We conclude that ritonavir can induce proinflammatory cytokines synthesis in THP-1/macrophages, which might be associated with the development of premature atherosclerosis in ritonavir-treated patients and that this effect is prevented by alpha-T.
Collapse
Affiliation(s)
- Weimin Guo
- Vascular Biology Laboratory, JM USDA-HNRCA at Tufts University, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|