1
|
Jiang S, Zhu L, Jiang S. Phosducin inhibits the cell proliferation and promotes the antitumor effect of temozolomide in glioma. Biochem Pharmacol 2025; 235:116841. [PMID: 40024352 DOI: 10.1016/j.bcp.2025.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/02/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Malignant gliomas are the most lethal form of brain cancer, characterized by rapid cell growth, substantial molecular heterogeneity, and a propensity for invasion into critical brain regions. Phosducin (PDC) is recognized for its involvement in sensory signal transmission, blood pressure regulation, and thyroid gland endocrine functions. However, the role of PDC in cell proliferation, drug sensitization, and its connection to RNA m6A modification in gliomas remains unclear. In this study, RNA sequencing analysis was performed on U251 glioma cells with knockdown and overexpression of fat mass and obesity-associated protein (FTO). The results revealed that FTO negatively regulates PDC expression. This finding was corroborated in U87, U251, and A172 glioma cells via qRT-PCR and western blot analysis. Additionally, MTT and EdU assays revealed that PDC overexpression inhibited cell proliferation, while PDC knockdown accelerated it. Moreover, the proliferation-enhancing effect of FTO overexpression was reduced by PDC overexpression, and the proliferation-inhibiting effect of FTO knockdown was reversed by PDC knockdown. These findings suggest that PDC serves as a functional target of FTO. Furthermore, PDC enhanced the antitumor efficacy of temozolomide (TMZ). In summary, this study demonstrates for the first time that PDC plays a crucial role in regulating cell proliferation and TMZ sensitivity in glioma cells, providing a potential therapeutic target to improve treatment outcomes for the patients with glioma.
Collapse
Affiliation(s)
- Shibin Jiang
- Department of Biology, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lifang Zhu
- Department of Biology, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Songshan Jiang
- Department of Biology, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
2
|
PDCL2 is essential for spermiogenesis and male fertility in mice. Cell Death Dis 2022; 8:419. [PMID: 36253364 PMCID: PMC9576706 DOI: 10.1038/s41420-022-01210-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
Patients with teratozoospermia exhibit low phosducin-like protein (Pdcl2) expression. As a member of the phosducin family, chaperonin-related Pdcl2, a germline-specific gene, may be involved in germ cell protein folding. Given that PDCL2 is highly conserved in evolution, it may be indispensable for mammalian spermiogenesis; however, the function of PDCL2 in higher mammalian species remains unknown. To determine the role of PDCL2 in male fertility, we generated Pdcl2 knockout mice using CRISPR/Cas9. Our results revealed that Pdcl2 heterozygous (Pdcl2+/−) male mice were normal, but male Pdcl2-null (Pdcl2−/−) mice were infertile. Accordingly, Pdcl2−/− male mice exhibited lower testis weight, epididymis weight, and sperm number than Pdcl2+/+ mice. Moreover, Pdcl2−/− mice displayed malformed and immotile sperm. Apoptotic cells were significantly enhanced in Pdcl2−/− testes and epididymis when compared with those in wild-type mice. Mechanistically, PDCL2 can interact with the CCT complex, and dysfunction in this complex might lead to infertility in Pdcl2−/− male mice. Collectively, these findings confirm that Pdcl2 knockout leads to male infertility in mice and that PDCL2 may function as a chaperone to promote protein folding during spermiogenesis.
Collapse
|
3
|
Date Y, Matsuura A, Itakura E. Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT. Cell Death Dis 2022; 8:37. [PMID: 35079001 PMCID: PMC8789831 DOI: 10.1038/s41420-022-00828-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/11/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022]
Abstract
Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system.
Collapse
|
4
|
Abstract
The eukaryotic group II chaperonin TRiC/CCT assists the folding of 10% of cytosolic proteins including many key structural and regulatory proteins. TRiC plays an essential role in maintaining protein homeostasis, and dysfunction of TRiC is closely related to human diseases including cancer and neurodegenerative diseases. TRiC consists of eight paralogous subunits, each of which plays a specific role in the assembly, allosteric cooperativity, and substrate recognition and folding of this complex macromolecular machine. TRiC-mediated substrate folding is regulated through its ATP-driven conformational changes. In recent years, progresses have been made on the structure, subunit arrangement, conformational cycle, and substrate folding of TRiC. Additionally, accumulating evidences also demonstrate the linkage between TRiC oligomer or monomer and diseases. In this review, we focus on the TRiC structure itself, TRiC assisted substrate folding, TRiC and disease, and the potential therapeutic application of TRiC in various diseases.
Collapse
Affiliation(s)
- Mingliang Jin
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Caixuan Liu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenyu Han
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Sokolov M, Yadav RP, Brooks C, Artemyev NO. Chaperones and retinal disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:85-117. [PMID: 30635087 DOI: 10.1016/bs.apcsb.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Defects in protein folding and trafficking are a common cause of photoreceptor degeneration, causing blindness. Photoreceptor cells present an unusual challenge to the protein folding and transport machinery due to the high rate of protein synthesis, trafficking and the renewal of the outer segment, a primary cilium that has been modified into a specialized light-sensing compartment. Phototransduction components, such as rhodopsin and cGMP-phosphodiesterase, and multimeric ciliary transport complexes, such as the BBSome, are hotspots for mutations that disrupt proteostasis and lead to the death of photoreceptors. In this chapter, we review recent studies that advance our understanding of the chaperone and transport machinery of phototransduction proteins.
Collapse
Affiliation(s)
- Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, WV, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
6
|
Krzemień-Ojak Ł, Góral A, Joachimiak E, Filipek A, Fabczak H. Interaction of a Novel Chaperone PhLP2A With the Heat Shock Protein Hsp90. J Cell Biochem 2016; 118:420-429. [PMID: 27496612 DOI: 10.1002/jcb.25669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/04/2016] [Indexed: 01/23/2023]
Abstract
PhLP2 is a small cytosolic protein that belongs to the highly conserved phosducin-like family of proteins. In amniote genomes there are two PhLP2 homologs, PhLP2A and PhLP2B. It has been shown that mammalian PhLP2A modulates the CCT/TRiC chaperonin activity during folding of cytoskeletal proteins. In order to better understand the function of PhLP2A in cellular protein quality control system, in the present study we have searched for its protein targets. Applying immunoprecipitation followed by mass spectrometry analysis we have identified Hsp90 as a partner of PhLP2A. With pull down experiments, we have confirmed this interaction in protein lysate and using purified proteins we have shown that PhLP2A interacts directly with Hsp90. Furthermore, the proximity ligation assay (PLA) performed on mIMCD-3 cells has shown that PhLP2A forms complexes with Hsp90 which are mainly localized in the cytoplasm of these cells. Further analysis has indicated that the level of PhLP2A increases after heat shock or radicicol treatment, similarly as the level of Hsp90, and that expression of PhLP2A after heat shock is regulated at the transcriptional level. Moreover, using recombinant luciferase we have shown that PhLP2A stabilizes this enzyme in a folding competent state and prevents its denaturation and aggregation. In addition, overexpression of PhLP2A in HEK-293 cells leads to increased heat stress resistance. Altogether, our results have shown that PhLP2A interacts with Hsp90 and exhibits molecular chaperone activity toward denatured proteins. J. Cell. Biochem. 118: 420-429, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Łucja Krzemień-Ojak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Agnieszka Góral
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Anna Filipek
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| |
Collapse
|
7
|
Srinivasan S, Chitalia V, Meyer RD, Hartsough E, Mehta M, Harrold I, Anderson N, Feng H, Smith LEH, Jiang Y, Costello CE, Rahimi N. Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 2015; 18:449-62. [PMID: 26059764 PMCID: PMC4600037 DOI: 10.1007/s10456-015-9468-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
Expression and activation of vascular endothelial growth factor receptor 2 (VEGFR-2) by VEGF ligands are the main events in the stimulation of pathological angiogenesis. VEGFR-2 expression is generally low in the healthy adult blood vessels, but its expression is markedly increased in the pathological angiogenesis. In this report, we demonstrate that phosducin-like 3 (PDCL3), a recently identified chaperone protein involved in the regulation of VEGFR-2 expression, is required for angiogenesis in zebrafish and mouse. PDCL3 undergoes N-terminal methionine acetylation, and this modification affects PDCL3 expression and its interaction with VEGFR-2. Expression of PDCL3 is regulated by hypoxia, the known stimulator of angiogenesis. The mutant PDCL3 that is unable to undergo N-terminal methionine acetylation was refractory to the effect of hypoxia. The siRNA-mediated silencing of PDCL3 decreased VEGFR-2 expression resulting in a decrease in VEGF-induced VEGFR-2 phosphorylation, whereas PDCL3 over-expression increased VEGFR-2 protein. Furthermore, we show that PDCL3 protects VEGFR-2 from misfolding and aggregation. The data provide new insights for the chaperone function of PDCL3 in angiogenesis and the roles of hypoxia and N-terminal methionine acetylation in PDCL3 expression and its effect on VEGFR-2.
Collapse
Affiliation(s)
- Srimathi Srinivasan
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Vipul Chitalia
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Rosana D Meyer
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Edward Hartsough
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Manisha Mehta
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Itrat Harrold
- Section of Hematology and Medical Oncology, Department of Pharmacology and Experimental Therapeutics, The Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Nicole Anderson
- Section of Hematology and Medical Oncology, Department of Pharmacology and Experimental Therapeutics, The Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Section of Hematology and Medical Oncology, Department of Pharmacology and Experimental Therapeutics, The Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan Jiang
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Catherine E Costello
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Nader Rahimi
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Pathology, Boston University Medical Campus, 670 Albany St., Room 510, Boston, MA, 02118, USA.
| |
Collapse
|
8
|
Zhang P, Kofron CM, Mende U. Heterotrimeric G protein-mediated signaling and its non-canonical regulation in the heart. Life Sci 2015; 129:35-41. [PMID: 25818188 PMCID: PMC4415990 DOI: 10.1016/j.lfs.2015.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/31/2015] [Accepted: 02/11/2015] [Indexed: 11/20/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) regulate a multitude of signaling pathways in mammalian cells by transducing signals from G protein-coupled receptors (GPCRs) to effectors, which in turn regulate cellular function. In the myocardium, G protein signaling occurs in all cardiac cell types and is centrally involved in the regulation of heart rate, pump function, and vascular tone and in the response to hemodynamic stress and injury. Perturbations in G protein-mediated signaling are well known to contribute to cardiac hypertrophy, failure, and arrhythmias. Most of the currently used drugs for cardiac and other diseases target GPCR signaling. In the canonical G protein signaling paradigm, G proteins that are located at the cytoplasmic surface of the plasma membrane become activated after an agonist-induced conformational change of GPCRs, which then allows GTP-bound Gα and free Gβγ subunits to activate or inhibit effector proteins. Research over the past two decades has markedly broadened the original paradigm with a GPCR-G protein-effector at the cell surface at its core by revealing novel binding partners and additional subcellular localizations for heterotrimeric G proteins that facilitate many previously unrecognized functional effects. In this review, we focus on non-canonical and epigenetic-related mechanisms that regulate heterotrimeric G protein expression, activation, and localization and discuss functional consequences using cardiac examples where possible. Mechanisms reviewed involve microRNAs, histone deacetylases, chaperones, alternative modes of G protein activation, and posttranslational modifications. Some of these newly characterized mechanisms may be further developed into novel strategies for the treatment of cardiac disease and beyond.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Providence, RI, USA
| | - Celinda M Kofron
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
9
|
G protein-coupled receptors: what a difference a 'partner' makes. Int J Mol Sci 2014; 15:1112-42. [PMID: 24441568 PMCID: PMC3907859 DOI: 10.3390/ijms15011112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 01/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types. Here, we review some of the main interacting proteins of GPCRs. A greater understanding of the mechanisms regulating their interactions may lead to the discovery of new drug targets for therapy.
Collapse
|
10
|
Tracy CM, Gray AJ, Cuéllar J, Shaw TS, Howlett AC, Taylor RM, Prince JT, Ahn NG, Valpuesta JM, Willardson BM. Programmed cell death protein 5 interacts with the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) to regulate β-tubulin folding. J Biol Chem 2013; 289:4490-502. [PMID: 24375412 DOI: 10.1074/jbc.m113.542159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death protein 5 (PDCD5) has been proposed to act as a pro-apoptotic factor and tumor suppressor. However, the mechanisms underlying its apoptotic function are largely unknown. A proteomics search for binding partners of phosducin-like protein, a co-chaperone for the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT), revealed a robust interaction between PDCD5 and CCT. PDCD5 formed a complex with CCT and β-tubulin, a key CCT-folding substrate, and specifically inhibited β-tubulin folding. Cryo-electron microscopy studies of the PDCD5·CCT complex suggested a possible mechanism of inhibition of β-tubulin folding. PDCD5 bound the apical domain of the CCTβ subunit, projecting above the folding cavity without entering it. Like PDCD5, β-tubulin also interacts with the CCTβ apical domain, but a second site is found at the sensor loop deep within the folding cavity. These orientations of PDCD5 and β-tubulin suggest that PDCD5 sterically interferes with β-tubulin binding to the CCTβ apical domain and inhibits β-tubulin folding. Given the importance of tubulins in cell division and proliferation, PDCD5 might exert its apoptotic function at least in part through inhibition of β-tubulin folding.
Collapse
Affiliation(s)
- Christopher M Tracy
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bregier C, Krzemień-Ojak L, Włoga D, Jerka-Dziadosz M, Joachimiak E, Batko K, Filipiuk I, Smietanka U, Gaertig J, Fabczak S, Fabczak H. PHLP2 is essential and plays a role in ciliogenesis and microtubule assembly in Tetrahymena thermophila. J Cell Physiol 2013; 228:2175-89. [PMID: 23588994 DOI: 10.1002/jcp.24384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 04/04/2013] [Indexed: 01/23/2023]
Abstract
Recent studies have implicated the phosducin-like protein-2 (PHLP2) in regulation of CCT, a chaperonin whose activity is essential for folding of tubulin and actin. However, the exact molecular function of PHLP2 is unclear. Here we investigate the significance of PHLP2 in a ciliated unicellular model, Tetrahymena thermophila, by deleting its single homolog, Phlp2p. Cells lacking Phlp2p became larger and died within 96 h. Overexpressed Phlp2p-HA localized to cilia, basal bodies, and cytosol without an obvious change in the phenotype. Despite similar localization, overexpressed GFP-Phlp2p caused a dominant-negative effect. Cells overproducing GFP-Phlp2p had decreased rates of proliferation, motility and phagocytosis, as compared to wild type cells or cells overproducing a non-tagged Phlp2p. Growing GFP-Phlp2p-overexpressing cells had fewer cilia and, when deciliated, failed to regenerate cilia, indicating defects in cilia assembly. Paclitaxel-treated GFP-Phlp2p cells failed to elongate cilia, indicating a change in the microtubules dynamics. The pattern of ciliary and cytosolic tubulin isoforms on 2D gels differed between wild type and GFP-Phlp2p-overexpressing cells. Thus, in Tetrahymena, PhLP2 is essential and under specific experimental conditions its activity affects tubulin and microtubule-dependent functions including cilia assembly.
Collapse
Affiliation(s)
- Cezary Bregier
- Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gao X, Sinha S, Belcastro M, Woodard C, Ramamurthy V, Stoilov P, Sokolov M. Splice isoforms of phosducin-like protein control the expression of heterotrimeric G proteins. J Biol Chem 2013; 288:25760-25768. [PMID: 23888055 DOI: 10.1074/jbc.m113.486258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterotrimeric G proteins play an essential role in cellular signaling; however, the mechanism regulating their synthesis and assembly remains poorly understood. A line of evidence indicates that the posttranslational processing of G protein β subunits begins inside the protein-folding chamber of the chaperonin containing t-complex protein 1. This process is facilitated by the ubiquitously expressed phosducin-like protein (PhLP), which is thought to act as a CCT co-factor. Here we demonstrate that alternative splicing of the PhLP gene gives rise to a transcript encoding a truncated, short protein (PhLPs) that is broadly expressed in human tissues but absent in mice. Seeking to elucidate the function of PhLPs, we expressed this protein in the rod photoreceptors of mice and found that this manipulation caused a dramatic translational and posttranslational suppression of rod heterotrimeric G proteins. The investigation of the underlying mechanism revealed that PhLPs disrupts the folding of Gβ and the assembly of Gβ and Gγ subunits, events normally assisted by PhLP, by forming a stable and apparently inactive tertiary complex with CCT preloaded with nascent Gβ. As a result, the cellular levels of Gβ and Gγ, which depends on Gβ for stability, decline. In addition, PhLPs evokes a profound and rather specific down-regulation of the Gα transcript, leading to a complete disappearance of the protein. This study provides the first evidence of a generic mechanism, whereby the splicing of the PhLP gene could potentially and efficiently regulate the cellular levels of heterotrimeric G proteins.
Collapse
Affiliation(s)
- Xueli Gao
- From the Departments of Ophthalmology and
| | | | | | - Catherine Woodard
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Visvanathan Ramamurthy
- From the Departments of Ophthalmology and; Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Peter Stoilov
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Maxim Sokolov
- From the Departments of Ophthalmology and; Biochemistry, West Virginia University, Morgantown, West Virginia 26506.
| |
Collapse
|
13
|
Lai CWJ, Kolesnikov AV, Frederick JM, Blake DR, Jiang L, Stewart JS, Chen CK, Barrow JR, Baehr W, Kefalov VJ, Willardson BM. Phosducin-like protein 1 is essential for G-protein assembly and signaling in retinal rod photoreceptors. J Neurosci 2013; 33:7941-51. [PMID: 23637185 PMCID: PMC3695707 DOI: 10.1523/jneurosci.5001-12.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/11/2013] [Accepted: 03/25/2013] [Indexed: 01/15/2023] Open
Abstract
G-protein β subunits perform essential neuronal functions as part of G-protein βγ and Gβ5-regulators of G-protein signaling (RGS) complexes. Both Gβγ and Gβ5-RGS are obligate dimers that are thought to require the assistance of the cytosolic chaperonin CCT and a cochaperone, phosducin-like protein 1 (PhLP1) for dimer formation. To test this hypothesis in vivo, we deleted the Phlp1 gene in mouse (Mus musculus) retinal rod photoreceptor cells and measured the effects on G-protein biogenesis and visual signal transduction. In the PhLP1-depleted rods, Gβγ dimer formation was decreased 50-fold, resulting in a >10-fold decrease in light sensitivity. Moreover, a 20-fold reduction in Gβ5 and RGS9-1 expression was also observed, causing a 15-fold delay in the shutoff of light responses. These findings conclusively demonstrate in vivo that PhLP1 is required for the folding and assembly of both Gβγ and Gβ5-RGS9.
Collapse
Affiliation(s)
| | - Alexander V. Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | - Li Jiang
- Departments of Ophthalmology and
| | - Jubal S. Stewart
- Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602
| | - Ching-Kang Chen
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, and
| | - Jeffery R. Barrow
- Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602
| | - Wolfgang Baehr
- Departments of Ophthalmology and
- Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, Utah 84132
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
14
|
Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbé JC, Miller GJ, Hébert TE. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev 2013; 65:545-77. [PMID: 23406670 DOI: 10.1124/pr.111.005603] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gβγ subunits from heterotrimeric G proteins perform a vast array of functions in cells with respect to signaling, often independently as well as in concert with Gα subunits. However, the eponymous term "Gβγ" does not do justice to the fact that 5 Gβ and 12 Gγ isoforms have evolved in mammals to serve much broader roles beyond their canonical roles in cellular signaling. We explore the phylogenetic diversity of Gβγ subunits with a view toward understanding these expanded roles in different cellular organelles. We suggest that the particular content of distinct Gβγ subunits regulates cellular activity, and that the granularity of individual Gβ and Gγ action is only beginning to be understood. Given the therapeutic potential of targeting Gβγ action, this larger view serves as a prelude to more specific development of drugs aimed at individual isoforms.
Collapse
Affiliation(s)
- Shahriar M Khan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1303, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Palatini P, Ceolotto G, Ragazzo F, Mos L, Santonastaso M, Zanata G, Saladini F, Casiglia E. Phosducin rs12402521 polymorphism predicts development of hypertension in young subjects with overweight or obesity. Nutr Metab Cardiovasc Dis 2013; 23:323-329. [PMID: 22365573 DOI: 10.1016/j.numecd.2011.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 07/15/2011] [Accepted: 08/08/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS The G-protein regulator phosducin has been shown to be associated with stress-dependent blood pressure, but whether obesity is a modulator of the relationship between phosducin and risk of hypertension is unknown. We studied the effect of two phosducin polymorphisms on risk of hypertension in 273 overweight or obese (Ov-Ob) young-to-middle-age participants from the HARVEST and 287 normal weight (NW) participants. METHODS AND RESULTS Genotyping of phosducin SNPs rs12402521 and rs6672836 was performed by real time PCR. For rs12402521, 64.6% of the participants were homozygous for the G allele, 27.9% heterozygous, and 7.5% homozygous for the A allele. During 7.7 years of follow-up, 339 subjects developed hypertension. In a Cox multivariable model, carriers of the A allele had a 1.28 (95% CI,1.00-1.63, p = 0.046) increased risk of hypertension. However, increased incidence of hypertension associated with A allele (AA + AG, 79% and GG, 59%, p = 0.001) was observed only among Ov-Ob individuals with a hazard ratio of 1.60 (95% CI, 1.13-2.21, p = 0.007) whereas in NW subjects the incidence of hypertension did not differ by genotype (56% in both groups). In the whole cohort, there was a significant interaction of phosducin genotype with body mass index on the risk of hypertension (p = 0.012). For SNP rs6672836 no association was found with incident hypertension. No haplotype effect was detected on the risk of hypertension. CONCLUSION These data suggest that phosducin rs12402521 polymorphism is an important genetic predictor of obesity-related hypertension. In Ov-Ob carriers of the A allele aggressive nonpharmacological measures should be implemented.
Collapse
Affiliation(s)
- P Palatini
- Department of Clinical and Experimental Medicine, Clinica Medica 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
17
|
Nino G, Hu A, Grunstein JS, McDonough J, Kreiger PA, Josephson MB, Choi JK, Grunstein MM. G Protein βγ-subunit signaling mediates airway hyperresponsiveness and inflammation in allergic asthma. PLoS One 2012; 7:e32078. [PMID: 22384144 PMCID: PMC3284547 DOI: 10.1371/journal.pone.0032078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/23/2012] [Indexed: 01/11/2023] Open
Abstract
Since the Gβγ subunit of Gi protein has been importantly implicated in regulating immune and inflammatory responses, this study investigated the potential role and mechanism of action of Gβγ signaling in regulating the induction of airway hyperresponsiveness (AHR) in a rabbit model of allergic asthma. Relative to non-sensitized animals, OVA-sensitized rabbits challenged with inhaled OVA exhibited AHR, lung inflammation, elevated BAL levels of IL-13, and increased airway phosphodiesterase-4 (PDE4) activity. These proasthmatic responses were suppressed by pretreatment with an inhaled membrane-permeable anti-Gβγ blocking peptide, similar to the suppressive effect of glucocorticoid pretreatment. Extended mechanistic studies demonstrated that: 1) corresponding proasthmatic changes in contractility exhibited in isolated airway smooth muscle (ASM) sensitized with serum from OVA-sensitized+challenged rabbits or IL-13 were also Gβγ-dependent and mediated by MAPK-upregulated PDE4 activity; and 2) the latter was attributed to Gβγ-induced direct stimulation of the non-receptor tyrosine kinase, c-Src, resulting in downstream activation of ERK1/2 and its consequent transcriptional upregulation of PDE4. Collectively, these data are the first to identify that a mechanism involving Gβγ-induced direct activation of c-Src, leading to ERK1/2-mediated upregulation of PDE4 activity, plays a decisive role in regulating the induction of AHR and inflammation in a rabbit model of allergic airway disease.
Collapse
Affiliation(s)
- Gustavo Nino
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Pediatric Pulmonary and Sleep Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Aihua Hu
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Judith S. Grunstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joseph McDonough
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Portia A. Kreiger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Maureen B. Josephson
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John K. Choi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael M. Grunstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Giguère PM, Laroche G, Oestreich EA, Siderovski DP. G-protein signaling modulator-3 regulates heterotrimeric G-protein dynamics through dual association with Gβ and Gαi protein subunits. J Biol Chem 2012; 287:4863-74. [PMID: 22167191 PMCID: PMC3281645 DOI: 10.1074/jbc.m111.311712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/06/2011] [Indexed: 11/06/2022] Open
Abstract
Regulation of the assembly and function of G-protein heterotrimers (Gα·GDP/Gβγ) is a complex process involving the participation of many accessory proteins. One of these regulators, GPSM3, is a member of a family of proteins containing one or more copies of a small regulatory motif known as the GoLoco (or GPR) motif. Although GPSM3 is known to bind Gα(i)·GDP subunits via its GoLoco motifs, here we report that GPSM3 also interacts with the Gβ subunits Gβ1 to Gβ4, independent of Gγ or Gα·GDP subunit interactions. Bimolecular fluorescence complementation studies suggest that the Gβ-GPSM3 complex is formed at, and transits through, the Golgi apparatus and also exists as a soluble complex in the cytoplasm. GPSM3 and Gβ co-localize endogenously in THP-1 cells at the plasma membrane and in a juxtanuclear compartment. We provide evidence that GPSM3 increases Gβ stability until formation of the Gβγ dimer, including association of the Gβ-GPSM3 complex with phosducin-like protein PhLP and T-complex protein 1 subunit eta (CCT7), two known chaperones of neosynthesized Gβ subunits. The Gβ interaction site within GPSM3 was mapped to a leucine-rich region proximal to the N-terminal side of its first GoLoco motif. Both Gβ and Gα(i)·GDP binding events are required for GPSM3 activity in inhibiting phospholipase-Cβ activation. GPSM3 is also shown in THP-1 cells to be important for Akt activation, a known Gβγ-dependent pathway. Discovery of a Gβ/GPSM3 interaction, independent of Gα·GDP and Gγ involvement, adds to the combinatorial complexity of the role of GPSM3 in heterotrimeric G-protein regulation.
Collapse
Affiliation(s)
| | | | | | - David P. Siderovski
- From the Department of Pharmacology
- Lineberger Comprehensive Cancer Center, and
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
| |
Collapse
|
19
|
Abstract
G protein signaling depends on the ability of the individual subunits of the G protein heterotrimer to assemble into functional complexes. Formation of the G protein βγ (Gβγ) dimer is particularly challenging because it is an obligate dimer in which the individual subunits are unstable on their own. Recent studies have revealed an intricate chaperone system that brings the Gβ and Gγ subunits together. This system includes the cytosolic chaperonin containing TCP-1 (CCT) and its co-chaperone phosducin-like protein 1 (PhLP1). CCT assists Gβ in achieving its β-propeller structure, while PhLP1 releases Gβ from CCT and facilitates its interaction with Gγ. Once Gβγ is formed, PhLP1 remains bound until it is displaced by the Gα subunit and the G protein heterotrimer is brought together. Another obligate dimer is the complex between the G protein β(5) subunit and a regulator of G protein signaling protein (Gβ(5)-RGS). Gβ(5)-RGS also requires CCT for Gβ(5) folding, but PhLP1 plays a different role. It stabilizes the interaction between Gβ(5) and CCT, perhaps to increase folding efficiency. After Gβ(5) folding PhLP1 must subsequently release, allowing the RGS protein to bind and form the Gβ(5)-RGS dimer directly on CCT. Gβ(5)-RGS is then freed from CCT to interact with its membrane anchoring protein and form a stable complex that turns off the G protein signal by catalyzing GTP hydrolysis on Gα.
Collapse
Affiliation(s)
- Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA,
| | | |
Collapse
|
20
|
Abstract
The classical view of heterotrimeric G protein signaling places G -proteins at the cytoplasmic surface of the cell's plasma membrane where they are activated by an appropriate G protein-coupled receptor. Once activated, the GTP-bound Gα and the free Gβγ are able to regulate plasma membrane-localized effectors, such as adenylyl cyclase, phospholipase C-β, RhoGEFs and ion channels. Hydrolysis of GTP by the Gα subunit returns the G protein to the inactive Gαβγ heterotrimer. Although all of these events in the G protein cycle can be restricted to the cytoplasmic surface of the plasma membrane, G protein localization is dynamic. Thus, it has become increasingly clear that G proteins are able to move to diverse subcellular locations where they perform non-canonical signaling functions. This chapter will highlight our current understanding of trafficking pathways that target newly synthesized G proteins to the plasma membrane, activation-induced and reversible translocation of G proteins from the plasma membrane to intracellular locations, and constitutive trafficking of G proteins.
Collapse
|
21
|
Dingus J, Hildebrandt JD. Synthesis and assembly of G protein βγ dimers: comparison of in vitro and in vivo studies. Subcell Biochem 2012; 63:155-80. [PMID: 23161138 DOI: 10.1007/978-94-007-4765-4_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The heterotrimeric GTP-binding proteins (G proteins) are the canonical cellular machinery used with the approximately 700 G protein-coupled receptors (GPCRs) in the human genome to transduce extracellular signals across the plasma membrane. The synthesis of the constituent G protein subunits, and their assembly into Gβγ dimers and G protein heterotrimers, determines the signaling repertoire for G-protein/GPCR signaling in cells. These synthesis/assembly -processes are intimately related to two other overlapping events in the intricate pathway leading to formation of G protein signaling complexes, posttranslational modification and intracellular trafficking of G proteins. The assembly of the Gβγ dimer is a complex process involving multiple accessory proteins and organelles. The mechanisms involved are becoming increasingly appreciated, but are still incompletely understood. In vitro and in vivo (cellular) studies provide different perspectives of these processes, and a comparison of them can provide insight into both our current level of understanding and directions to be taken in future investigations.
Collapse
Affiliation(s)
- Jane Dingus
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | |
Collapse
|
22
|
Schwarz N, Novoselova TV, Wait R, Hardcastle AJ, Cheetham ME. The X-linked retinitis pigmentosa protein RP2 facilitates G protein traffic. Hum Mol Genet 2011; 21:863-73. [PMID: 22072390 DOI: 10.1093/hmg/ddr520] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The X-linked retinitis pigmentosa protein RP2 is a GTPase activating protein (GAP) for the small GTPase Arl3 and both proteins are implicated in the traffic of proteins to the primary cilia. Here, we show that RP2 can facilitate the traffic of the Gβ subunit of transducin (Gβ1). Glutathione S-transferase (GST)-RP2 pulled down Gβ from retinal lysates and the interaction was specific to Gβ1, as Gβ3 or Gβ5L did not bind RP2. RP2 did not appear to interact with the Gβ:Gγ heterodimer, in contrast Gγ1 competed with RP2 for Gβ binding. Overexpression of Gβ1 in SK-N-SH cells led to a cytoplasmic accumulation of Gβ1, while co-expression of RP2 or Gγ1 with Gβ1 restored membrane association of Gβ1. Furthermore, RP2 small interfering RNA in ARPE19 cells resulted in a reduction in Gβ1 membrane association that was rescued by Gγ1 overexpression. The interaction of RP2 with Gβ1 required RP2 N-terminal myristolyation and the co-factor C (TBCC) homology domain. The interaction was also disrupted by the pathogenic mutation R118H, which blocks Arl3 GAP activity. Interestingly, Arl3-Q71L competed with Gβ1 for RP2 binding, suggesting that Arl3-GTP binding by RP2 would release Gβ1. RP2 also stimulated the association of Gβ1 with Rab11 vesicles. Collectively, the data support a role for RP2 in facilitating the membrane association and traffic of Gβ1, potentially prior to the formation of the obligate Gβ:Gγ heterodimer. Combined with other recent evidence, this suggests that RP2 may co-operate with Arl3 and its effectors in the cilia-associated traffic of G proteins.
Collapse
Affiliation(s)
- Nele Schwarz
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | | | | | | |
Collapse
|
23
|
Beetz N, Hein L. The physiological roles of phosducin: from retinal function to stress-dependent hypertension. Cell Mol Life Sci 2011; 68:599-612. [PMID: 21069424 PMCID: PMC11114795 DOI: 10.1007/s00018-010-0550-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/09/2010] [Accepted: 09/29/2010] [Indexed: 01/26/2023]
Abstract
In the time since its discovery, phosducin's functions have been intensively studied both in vivo and in vitro. Phosducin's most important biochemical feature in in vitro studies is its binding to heterotrimeric G protein βγ-subunits. Data on phosducin's in vivo relevance, however, have only recently been published but expand the range of biological actions, as shown both in animal models as well as in human studies. This review gives an overview of different aspects of phosducin biology ranging from structure, phylogeny of phosducin family members, posttranscriptional modification, biochemical features, localization and levels of expression to its physiological functions. Special emphasis will be placed on phosducin's function in the regulation of blood pressure. In the second part of this article, findings concerning cardiovascular regulation and their clinical relevance will be discussed on the basis of recently published data from gene-targeted mouse models and human genetic studies.
Collapse
Affiliation(s)
- Nadine Beetz
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
- Centre for Biological Signaling Studies (bioss), University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
- Centre for Biological Signaling Studies (bioss), University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Posokhova E, Song H, Belcastro M, Higgins L, Bigley LR, Michaud NA, Martemyanov KA, Sokolov M. Disruption of the chaperonin containing TCP-1 function affects protein networks essential for rod outer segment morphogenesis and survival. Mol Cell Proteomics 2010; 10:M110.000570. [PMID: 20852191 DOI: 10.1074/mcp.m110.000570] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Type II Chaperonin Containing TCP-1 (CCT, also known as TCP-1 Ring Complex, TRiC) is a multi-subunit molecular machine thought to assist in the folding of ∼ 10% of newly translated cytosolic proteins in eukaryotes. A number of proteins folded by CCT have been identified in yeast and cultured mammalian cells, however, the function of this chaperonin in vivo has never been addressed. Here we demonstrate that suppressing the CCT activity in mouse photoreceptors by transgenic expression of a dominant-negative mutant of the CCT cofactor, phosducin-like protein (PhLP), results in the malformation of the outer segment, a cellular compartment responsible for light detection, and triggers rapid retinal degeneration. Investigation of the underlying causes by quantitative proteomics identified distinct protein networks, encompassing ∼ 200 proteins, which were significantly affected by the chaperonin deficiency. Notably among those were several essential proteins crucially engaged in structural support and visual signaling of the outer segment such as peripherin 2, Rom1, rhodopsin, transducin, and PDE6. These data for the first time demonstrate that normal CCT function is ultimately required for the morphogenesis and survival of sensory neurons of the retina, and suggest the chaperonin CCT deficiency as a potential, yet unexplored, cause of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ekaterina Posokhova
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Beetz N, Harrison MD, Brede M, Zong X, Urbanski MJ, Sietmann A, Kaufling J, Lorkowski S, Barrot M, Seeliger MW, Vieira-Coelho MA, Hamet P, Gaudet D, Seda O, Tremblay J, Kotchen TA, Kaldunski M, Nüsing R, Szabo B, Jacob HJ, Cowley AW, Biel M, Stoll M, Lohse MJ, Broeckel U, Hein L. Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. J Clin Invest 2010; 119:3597-3612. [PMID: 19959875 DOI: 10.1172/jci38433] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/30/2009] [Indexed: 12/13/2022] Open
Abstract
Hypertension and its complications represent leading causes of morbidity and mortality. Although the cause of hypertension is unknown in most patients, genetic factors are recognized as contributing significantly to an individual's lifetime risk of developing the condition. Here, we investigated the role of the G protein regulator phosducin (Pdc) in hypertension. Mice with a targeted deletion of the gene encoding Pdc (Pdc-/- mice) had increased blood pressure despite normal cardiac function and vascular reactivity, and displayed elevated catecholamine turnover in the peripheral sympathetic system. Isolated postganglionic sympathetic neurons from Pdc-/- mice showed prolonged action potential firing after stimulation with acetylcholine and increased firing frequencies during membrane depolarization. Furthermore, Pdc-/- mice displayed exaggerated increases in blood pressure in response to post-operative stress. Candidate gene-based association studies in 2 different human populations revealed several SNPs in the PDC gene to be associated with stress-dependent blood pressure phenotypes. Individuals homozygous for the G allele of an intronic PDC SNP (rs12402521) had 12-15 mmHg higher blood pressure than those carrying the A allele. These findings demonstrate that PDC is an important modulator of sympathetic activity and blood pressure and may thus represent a promising target for treatment of stress-dependent hypertension.
Collapse
Affiliation(s)
- Nadine Beetz
- Institute of Experimental and Clinical Pharmacology and Toxicology and Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ahmed SM, Daulat AM, Meunier A, Angers S. G protein betagamma subunits regulate cell adhesion through Rap1a and its effector Radil. J Biol Chem 2010; 285:6538-51. [PMID: 20048162 DOI: 10.1074/jbc.m109.069948] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The activation of several G protein-coupled receptors is known to regulate the adhesive properties of cells in different contexts. Here, we reveal that Gbetagamma subunits of heterotrimeric G proteins regulate cell-matrix adhesiveness by activating Rap1a-dependent inside-out signals and integrin activation. We show that Gbetagamma subunits enter in a protein complex with activated Rap1a and its effector Radil and establish that this complex is required downstream of receptor stimulation for the activation of integrins and the positive modulation of cell-matrix adhesiveness. Moreover, we demonstrate that Gbetagamma and activated Rap1a promote the translocation of Radil to the plasma membrane at sites of cell-matrix contacts. These results add to the molecular understanding of how G protein-coupled receptors impinge on cell adhesion and suggest that the Gbetagamma x Rap1 x Radil complex plays important roles in this process.
Collapse
Affiliation(s)
- Syed M Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | | | | |
Collapse
|
27
|
McCormack EA, Altschuler GM, Dekker C, Filmore H, Willison KR. Yeast phosducin-like protein 2 acts as a stimulatory co-factor for the folding of actin by the chaperonin CCT via a ternary complex. J Mol Biol 2009; 391:192-206. [PMID: 19501098 DOI: 10.1016/j.jmb.2009.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 11/18/2022]
Abstract
The eukaryotic chaperonin-containing TCP-1 (CCT) folds the cytoskeletal protein actin. The folding mechanism of this 16-subunit, 1-MDa machine is poorly characterised due to the absence of quantitative in vitro assays. We identified phosducin-like protein 2, Plp2p (=PLP2), as an ATP-elutable binding partner of yeast CCT while establishing the CCT interactome. In a novel in vitro CCT-ACT1 folding assay that is functional under physiological conditions, PLP2 is a stimulatory co-factor. In a single ATP-driven cycle, PLP2-CCT-ACT1 complexes yield 30-fold more native actin than CCT-ACT1 complexes. PLP2 interacts directly with ACT1 through the C-terminus of its thioredoxin fold and the CCT-binding subdomain 4 of actin. The in vitro CCT-ACT1-PLP2 folding cycle of the preassembled complex takes 90 s at 30 degrees C, several times slower than the canonical chaperonin GroEL. The specific interactions between PLP2, CCT and ACT1 in the yeast-component in vitro system and the pronounced stimulatory effect of PLP2 on actin folding are consistent with in vivo genetic approaches demonstrating an essential and positive role for PLP2 in cellular processes involving actin in Saccharomyces cerevisiae. In mammalian systems, however, several members of the PLP family, including human PDCL3, the orthologue of PLP2, have been shown to be inhibitory toward CCT-mediated folding of actin in vivo and in vitro. Here, using a rabbit-reticulocyte-derived in vitro translation system, we found that inhibition of beta-actin folding by PDCL3 can be relieved by exchanging its acidic C-terminal extension for that of PLP2. It seems that additional levels of regulatory control of CCT activity by this PLP have emerged in higher eukaryotes.
Collapse
Affiliation(s)
- Elizabeth A McCormack
- Protein Folding and Assembly Team, Section of Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London, UK
| | | | | | | | | |
Collapse
|
28
|
Guzmán-Hernández ML, Vázquez-Macías A, Carretero-Ortega J, Hernández-García R, García-Regalado A, Hernández-Negrete I, Reyes-Cruz G, Gutkind JS, Vázquez-Prado J. Differential inhibitor of Gbetagamma signaling to AKT and ERK derived from phosducin-like protein: effect on sphingosine 1-phosphate-induced endothelial cell migration and in vitro angiogenesis. J Biol Chem 2009; 284:18334-46. [PMID: 19403526 DOI: 10.1074/jbc.m109.008839] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Differential inhibitors of Gbetagamma-effector regions are required to dissect the biological contribution of specific Gbetagamma-initiated signaling pathways. Here, we characterize PhLP-M1-G149, a Gbetagamma-interacting construct derived from phosducin-like protein 1 (PhLP) as a differential inhibitor of Gbetagamma, which, in endothelial cells, prevented sphingosine 1-phosphate-induced phosphorylation of AKT, glycogen synthase kinase 3beta, cell migration, and tubulogenesis, while having no effect on ERK phosphorylation or hepatocyte growth factor-dependent responses. This construct attenuated the recruitment of phosphoinositide 3-kinase gamma (PI3Kgamma) to the plasma membrane and the signaling to AKT in response to Gbetagamma overexpression. In coimmunoprecipitation experiments, PhLP-M1-G149 interfered with the interaction between PI3Kgamma and Gbetagamma. Other PhLP-derived constructs interacted with Gbetagamma but were not effective inhibitors of Gbetagamma signaling to AKT or ERK. Our results indicate that PhLP-M1-G149 is a suitable tool to differentially modulate the Gbetagamma-initiated pathway linking this heterodimer to AKT, endothelial cell migration, and in vitro angiogenesis. It can be also useful to further characterize the molecular determinants of the Gbetagamma-PI3Kgamma interaction.
Collapse
Affiliation(s)
- María Luisa Guzmán-Hernández
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Apartado Postal 14-740, DF 07000 Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dupré DJ, Robitaille M, Rebois RV, Hébert TE. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol 2009; 49:31-56. [PMID: 18834311 DOI: 10.1146/annurev-pharmtox-061008-103038] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of Gbetagamma subunits in cellular signaling has become well established in the past 20 years. Not only do they regulate effectors once thought to be the sole targets of Galpha subunits, but it has become clear that they also have a unique set of binding partners and regulate signaling pathways that are not always localized to the plasma membrane. However, this may be only the beginning of the story. Gbetagamma subunits interact with G protein-coupled receptors, Galpha subunits, and several different effector molecules during assembly and trafficking of receptor-based signaling complexes and not simply in response to ligand stimulation at sites of receptor cellular activity. Gbetagamma assembly itself seems to be tightly regulated via the action of molecular chaperones and in turn may serve a similar role in the assembly of specific signaling complexes. We propose that specific Gbetagamma subunits have a broader role in controlling the architecture, assembly, and activity of cellular signaling pathways.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
30
|
Howlett AC, Gray AJ, Hunter JM, Willardson BM. Role of molecular chaperones in G protein beta5/regulator of G protein signaling dimer assembly and G protein betagamma dimer specificity. J Biol Chem 2009; 284:16386-16399. [PMID: 19376773 DOI: 10.1074/jbc.m900800200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein betagamma subunit dimer (Gbetagamma) and the Gbeta5/regulator of G protein signaling (RGS) dimer play fundamental roles in propagating and regulating G protein pathways, respectively. How these complexes form dimers when the individual subunits are unstable is a question that has remained unaddressed for many years. In the case of Gbetagamma, recent studies have shown that phosducin-like protein 1 (PhLP1) works as a co-chaperone with the cytosolic chaperonin complex (CCT) to fold Gbeta and mediate its interaction with Ggamma. However, it is not known what fraction of the many Gbetagamma combinations is assembled this way or whether chaperones influence the specificity of Gbetagamma dimer formation. Moreover, the mechanism of Gbeta5-RGS assembly has yet to be assessed experimentally. The current study was undertaken to directly address these issues. The data show that PhLP1 plays a vital role in the assembly of Ggamma2 with all four Gbeta1-4 subunits and in the assembly of Gbeta2 with all twelve Ggamma subunits, without affecting the specificity of the Gbetagamma interactions. The results also show that Gbeta5-RGS7 assembly is dependent on CCT and PhLP1, but the apparent mechanism is different from that of Gbetagamma. PhLP1 seems to stabilize the interaction of Gbeta5 with CCT until Gbeta5 is folded, after which it is released to allow Gbeta5 to interact with RGS7. These findings point to a general role for PhLP1 in the assembly of all Gbetagamma combinations and suggest a CCT-dependent mechanism for Gbeta5-RGS7 assembly that utilizes the co-chaperone activity of PhLP1 in a unique way.
Collapse
Affiliation(s)
- Alyson C Howlett
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Amy J Gray
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Jesse M Hunter
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Barry M Willardson
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602.
| |
Collapse
|
31
|
Intracellular trafficking and assembly of specific Kir3 channel/G protein complexes. Cell Signal 2009; 21:488-501. [DOI: 10.1016/j.cellsig.2008.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/13/2008] [Accepted: 11/15/2008] [Indexed: 12/27/2022]
|
32
|
Song H, Sokolov M. Analysis of protein expression and compartmentalization in retinal neurons using serial tangential sectioning of the retina. J Proteome Res 2009; 8:346-51. [PMID: 19049346 DOI: 10.1021/pr800631d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The progress in understanding visual signal transduction in vertebrate photoreceptors, arguably the best studied G protein-mediated signal transduction cascade in modern biology, was facilitated by the unique anatomy of rod photoreceptors. Held only by thin connected cilia, rod outer segments can be readily separated from the rest of the retina simply by shaking, and then purified by gradient centrifugation. The availability of such an efficient procedure of rod outer segment purification not only previously facilitated the identification of many principal visual signaling proteins located in this cellular compartment, but it is also currently being exploited in proteomics studies. In this paper, we describe a simple and inexpensive technique that allows for the quantitative analysis of protein expression within different subcellular compartments of photoreceptors, and could also be used for studying protein expression in the secondary retinal neurons. This technique is based on the Western blot analysis of the protein content of serial sections obtained by tangential sectioning of flat-mounted frozen retinas from mouse and rat, and it could serve as a way to validate proteomic data, similar to the way the quantitative RT-PCR technique is used for validation of gene-microarray data. To demonstrate the utility of this technique, we have determined the expression profiles in normal mouse retina of several signaling, energy-producing, and chaperone proteins, which were recently identified in bovine rod photoreceptors by mass spectrometry.
Collapse
Affiliation(s)
- Hongman Song
- Departments of Ophthalmology and Biochemistry, West Virginia University School of Medicine and West Virginia University Eye Institute, Morgantown, West Virginia 26506
| | | |
Collapse
|
33
|
Favre N, Camps M, Arod C, Chabert C, Rommel C, Pasquali C. Chemokine receptor CCR2 undergoes transportin1-dependent nuclear translocation. Proteomics 2008; 8:4560-76. [PMID: 18846510 DOI: 10.1002/pmic.200800211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemokines (CCs) are small chemoattractant cytokines involved in a wide variety of biological and pathological processes. Released by cells in the milieu, and extracellular matrix and activating signalling cascades upon binding to specific G protein-coupled receptors (GPCRs), they trigger many cellular events. In various pathologies, CCs are directly responsible for excessive recruitment of leukocytes to inflammatory sites and recent studies using chemokine receptor (CCR) antagonists permitted these molecules to reach the market for medical use. While interaction of CCs with their receptors has been extensively documented, downstream GPCR signalling cascades triggered by CC are less well understood. Given the pivotal role of chemokine receptor 2 (CCR2) in monocyte recruitment, activation and differentiation and its implication in several autoimmune-inflammatory pathologies, we searched for potential new CCR2-interacting proteins by engineering a modified CCR2 that we used as bait. Herein, we show the direct interaction of CCR2 with transportin1 (TRN1), which we demonstrate is followed by CCR2 receptor internalization. Further characterization of this novel interaction revealed that TRN1-binding to CCR2 increased upon time in agonist treated cells and promotes its nuclear translocation in a TRN1-dependent manner. Finally, we provide evidence that following translocation, the receptor localizes at the outer edge of the nuclear envelope where it is finally released from TRN1.
Collapse
|
34
|
Sobierajska K, Fabczak H, Fabczak S. Phosducin interacts with the G-protein βγ-dimer of ciliate protozoanBlepharisma japonicumupon illumination. J Exp Biol 2007; 210:4213-23. [DOI: 10.1242/jeb.005132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYImmunological techniques and high-resolution FRET analysis were employed to investigate the in vivo colocalization and interaction of phosducin(Pdc) with the βγ-subunits of G-protein (Gβγ) in the ciliate Blepharisma japonicum. Immunological techniques revealed that illumination of cells resulted in a decrease in phosphorylation levels of Pdc and its colocalization with Gβγ. The observed light-induced Pdc dephosphorylation was also accompanied by significant enhancement of Gβγ binding by this molecule. Possible formation of the Pdc–Gβγ complex in cells exposed to light was corroborated by FRET between these proteins. Treatment of cells with okadaic acid, an inhibitor of phosphatase activity, entirely prevented Pdc dephosphorylation by light, colocalization of this phosphoprotein with Gβγ and generation of the Pdc–Gβγ complex. Cell fractionation and immunoblotting revealed that in cells exposed to light, the formation of Pdc–Gβγ complex and its translocation into the cytoplasm occur simultaneously with a change in the gel migration of Gβ. Moreover, a 33 kDa immunoanalog of 14-3-3 protein was identified and we showed that this protein is bound by phosphorylated Pdc in a cell adapted to darkness. The results of this study provide additional detailed characterization of the functional properties of the ciliate Pdc. The likely functional role of Pdc in Blepharisma is discussed.
Collapse
Affiliation(s)
- Katarzyna Sobierajska
- Department of Cell Biology, Nencki Institute of Experimental Biology,3 Pasteur Street, PL-02-093 Warsaw, Poland
| | - Hanna Fabczak
- Department of Cell Biology, Nencki Institute of Experimental Biology,3 Pasteur Street, PL-02-093 Warsaw, Poland
| | - Stanislaw Fabczak
- Department of Cell Biology, Nencki Institute of Experimental Biology,3 Pasteur Street, PL-02-093 Warsaw, Poland
| |
Collapse
|
35
|
Willardson BM, Howlett AC. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell Signal 2007; 19:2417-27. [PMID: 17658730 PMCID: PMC2095786 DOI: 10.1016/j.cellsig.2007.06.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 06/15/2007] [Indexed: 01/08/2023]
Abstract
Members of the phosducin gene family were initially proposed to act as down-regulators of G protein signaling by binding G protein betagamma dimers (Gbetagamma) and inhibiting their ability to interact with G protein alpha subunits (Galpha) and effectors. However, recent findings have over-turned this hypothesis by showing that most members of the phosducin family act as co-chaperones with the cytosolic chaperonin complex (CCT) to assist in the folding of a variety of proteins from their nascent polypeptides. In fact rather than inhibiting G protein pathways, phosducin-like protein 1 (PhLP1) has been shown to be essential for G protein signaling by catalyzing the folding and assembly of the Gbetagamma dimer. PhLP2 and PhLP3 have no role in G protein signaling, but they appear to assist in the folding of proteins essential in regulating cell cycle progression as well as actin and tubulin. Phosducin itself is the only family member that does not participate with CCT in protein folding, but it is believed to have a specific role in visual signal transduction to chaperone Gbetagamma subunits as they translocate to and from the outer and inner segments of photoreceptor cells during light-adaptation.
Collapse
Affiliation(s)
- Barry M Willardson
- Department of Chemistry and Biochemistry, C-100 BNSN, Brigham Young University Provo, Utah 84602, USA.
| | | |
Collapse
|
36
|
Sánchez-Blázquez P, Rodríguez-Muñoz M, Montero C, de la Torre-Madrid E, Garzón J. Calcium/calmodulin-dependent protein kinase II supports morphine antinociceptive tolerance by phosphorylation of glycosylated phosducin-like protein. Neuropharmacology 2007; 54:319-30. [PMID: 18006024 DOI: 10.1016/j.neuropharm.2007.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 09/10/2007] [Accepted: 10/01/2007] [Indexed: 12/13/2022]
Abstract
The long isoform of the phosducin-like protein (PhLPl) is widely expressed in the brain and it is thought to influence G-protein signalling by regulating the activity of Gbetagamma dimers. We show that in the mature nervous system, PhLPl exists as both a 38kDa non-glycosylated isoform and as glycosylated isoforms of about 45, 100 and 150kDa. Additionally, neural PhLPl is subject to serine phosphorylation, which augments upon the activation of Mu-opioid receptors (MORs), as does its association with Gbetagamma subunits and 14-3-3 proteins. While the intracerebroventricular (icv) administration of morphine to mice rapidly reduced the association of MORs with G proteins, it increased the serine phosphorylation of these receptors. Moreover, activated Ca2+/calmodulin-dependent protein kinase II (CaMKII) accumulated in the MOR environment and phosphorylated PhLPl was seen to co-precipitate with these opioid receptors. Opioid-induced phosphorylation of PhLPl was impaired by inhibiting the activity of CaMKII and, in these circumstances, the association of PhLPl with Gbetagamma dimers and 14-3-3 proteins was diminished. Furthermore, these events were coupled with the recovery of G protein regulation by the MORs, while there was a decrease in serine phosphorylation of these receptors and morphine antinociceptive tolerance diminished. It seems that CaMKII phosphorylation of PhLPl stabilizes the PhLPl.Gbetagamma complex by promoting its binding to 14-3-3 proteins. When this complex fails to bind to 14-3-3 proteins, the association of PhLPl with Gbetagamma is probably disrupted by GalphaGDP subunits and the MORs recover control on G proteins.
Collapse
|
37
|
Marrari Y, Crouthamel M, Irannejad R, Wedegaertner PB. Assembly and trafficking of heterotrimeric G proteins. Biochemistry 2007; 46:7665-77. [PMID: 17559193 PMCID: PMC2527407 DOI: 10.1021/bi700338m] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To be activated by cell surface G protein-coupled receptors, heterotrimeric G proteins must localize at the cytoplasmic surface of plasma membranes. Moreover, some G protein subunits are able to traffic reversibly from the plasma membrane to intracellular locations upon activation. This current topic will highlight new insights into how nascent G protein subunits are assembled and how they arrive at plasma membranes. In addition, recent reports have increased our knowledge of activation-induced trafficking of G proteins. Understanding G protein assembly and trafficking will lead to a greater understanding of novel ways that cells regulate G protein signaling.
Collapse
Affiliation(s)
| | | | | | - Philip B. Wedegaertner
- *address correspondence to: Philip B. Wedegaertner, Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10 St., 839 BLSB, Philadelphia, PA 19107, Tel: 215-503-3137, Fax: 215-923-2117, e-mail:
| |
Collapse
|
38
|
Dupré DJ, Robitaille M, Richer M, Ethier N, Mamarbachi AM, Hébert TE. Dopamine Receptor-interacting Protein 78 Acts as a Molecular Chaperone for Gγ Subunits before Assembly with Gβ. J Biol Chem 2007; 282:13703-15. [PMID: 17363375 DOI: 10.1074/jbc.m608846200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterotrimeric G proteins play a central role in intracellular communication mediated by extracellular signals, and both Galpha and Gbetagamma subunits regulate effectors downstream of activated receptors. The particular constituents of the G protein heterotrimer affect both specificity and efficiency of signal transduction. However, little is known about mechanistic aspects of G protein assembly in the cell that would certainly contribute to formation of heterotrimers of specific composition. It was recently shown that phosducin-like protein (PhLP) modulated both Gbetagamma expression and subsequent signaling by chaperoning nascent Gbeta and facilitating heterodimer formation with Ggamma subunits (Lukov, G. L., Hu, T., McLaughlin, J. N., Hamm, H. E., and Willardson, B. M. (2005) EMBO J. 24, 1965-1975; Humrich, J., Bermel, C., Bunemann, M., Harmark, L., Frost, R., Quitterer, U., and Lohse, M. J. (2005) J. Biol. Chem. 280, 20042-20050). Here we demonstrate using a variety of techniques that DRiP78, an endoplasmic reticulum resident protein known to regulate the trafficking of several seven transmembrane receptors, interacts specifically with the Ggamma subunit but not Gbeta or Galpha subunits. Furthermore, we demonstrate that DRiP78 and the Gbeta subunit can compete for the Ggamma subunit. DRiP78 also protects Ggamma from degradation until a stable partner such as Gbeta is provided. Furthermore, DRiP78 interaction may represent a mechanism for assembly of specific Gbetagamma heterodimers, as selectivity was observed among Ggamma isoforms for interaction with DRiP78 depending on the presence of particular Gbeta subunits. Interestingly, we could detect an interaction between DRiP78 and PhLP, suggesting a role of DRiP78 in the assembly of Gbetagamma by linking Ggamma to PhLP.Gbeta complexes. Our results, therefore, suggest a role of DRiP78 as a chaperone in the assembly of Gbetagamma subunits of the G protein.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Dupré DJ, Hébert TE. Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cell Signal 2006; 18:1549-59. [PMID: 16677801 DOI: 10.1016/j.cellsig.2006.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/21/2006] [Indexed: 12/16/2022]
Abstract
Recent studies have shown that 7-transmembrane receptors (7TM-Rs), their associated signalling molecules and scaffolding proteins are often constitutively associated under basal conditions. These studies highlight that receptor ontogeny and trafficking are likely to play key roles in the determination of both signalling specificity and efficacy. This review highlights information about how 7TM-Rs and their associated signalling molecules are trafficked to the cell surface as well as other intracellular destinations.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology and Therapeutics, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| | | |
Collapse
|
40
|
Partridge JG, Puhl HL, Ikeda SR. Phosducin and phosducin-like protein attenuate G-protein-coupled receptor-mediated inhibition of voltage-gated calcium channels in rat sympathetic neurons. Mol Pharmacol 2006; 70:90-100. [PMID: 16608918 DOI: 10.1124/mol.105.021394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosducin (PDC) has been shown in structural and biochemical experiments to bind the Gbetagamma subunit of heterotrimeric G-proteins. A proposed function of PDC and phosducin-like protein (PDCL) is the sequestration of "free" Gbetagamma from the plasma membrane, thereby terminating signaling by Gbetagamma. The functional impact of heterologously expressed PDC and PDCL on N-type calcium channel (CaV2.2) modulation was examined in sympathetic neurons, isolated from rat superior cervical ganglia, using whole-cell voltage clamp. Expression of PDC and PDCL attenuated voltage-dependent inhibition of N-type calcium channels, a Gbetagamma-dependent process, in a time-dependent fashion. Calcium current inhibition after short-term exposure to norepinephrine was minimally altered by PDC or PDCL expression. However, in the continued presence of norepinephrine, PDC or PDCL relieved calcium channel inhibition compared with control neurons. We observed similar results after activation of heterologously expressed metabotropic glutamate receptors with 100 microM L-glutamate. Neurons expressing PDC or PDCL maintained suppression of inhibition after re-exposure to agonist. Unlike other Gbetagamma sequestering proteins that abolish the short-term inhibition of Ca2+ channels, PDC and PDCL require prolonged agonist exposure before effects on modulation are realized.
Collapse
Affiliation(s)
- John G Partridge
- Laboratory of Molecular Physiology, NIH/NIAAA/DICBR, 5625 Fishers Lane, Room TS11A, MSC 9411, Bethesda, MD 20892-9411, USA
| | | | | |
Collapse
|
41
|
Lacoste C, Barthaux V, Iborra C, Seagar M, Erard-Garcia M. MAU-8 is a Phosducin-like Protein required for G protein signaling in C. elegans. Dev Biol 2006; 294:181-91. [PMID: 16580661 DOI: 10.1016/j.ydbio.2006.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/01/2006] [Accepted: 02/22/2006] [Indexed: 11/28/2022]
Abstract
The mau-8(qm57) mutation inhibits the function of GPB-2, a heterotrimeric G protein beta subunit, and profoundly affects behavior through the Galphaq/Galphao signaling network in C. elegans. mau-8 encodes a nematode Phosducin-like Protein (PhLP), and the qm57 mutation leads to the loss of a predicted phosphorylation site in the C-terminal domain of PhLP that binds the Gbetagamma surface implicated in membrane interactions. In developing embryos, MAU-8/PhLP localizes to the cortical region, concentrates at the centrosomes of mitotic cells and remains associated with the germline blastomere. In adult animals, MAU-8/PhLP is ubiquitously expressed in somatic tissues and germline cells. MAU-8/PhLP interacts with the PAR-5/14.3.3 protein and with the Gbeta subunit GPB-1. In mau-8 mutants, the disruption of MAU-8/PhLP stabilizes the association of GPB-1 with the microtubules of centrosomes. Our results indicate that MAU-8/PhLP modulates G protein signaling, stability and subcellular location to regulate various physiological functions, and they suggest that MAU-8 might not be limited to the Galphaq/Galphao network.
Collapse
Affiliation(s)
- Caroline Lacoste
- INSERM UMR 641, Université de la Méditerranée, Faculté de Médecine Secteur Nord, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
42
|
Kubota S, Kubota H, Nagata K. Cytosolic chaperonin protects folding intermediates of Gbeta from aggregation by recognizing hydrophobic beta-strands. Proc Natl Acad Sci U S A 2006; 103:8360-5. [PMID: 16717193 PMCID: PMC1482499 DOI: 10.1073/pnas.0600195103] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytosolic chaperonin containing t-complex polypeptide 1 (CCT)/TRiC is a group II chaperonin that assists in the folding of newly synthesized proteins. It is a eukaryotic homologue of the bacterial group I chaperonin GroEL. In contrast to the well studied functions of GroEL, the substrate recognition mechanism of CCT/TRiC is poorly understood. Here, we established a system for analyzing CCT/TRiC functions by using a reconstituted protein synthesis by using recombinant elements system and show that CCT/TRiC strongly recognizes WD40 proteins particularly at hydrophobic beta-strands. Using the G protein beta subunit (Gbeta), a WD40 protein that is very rich in beta-sheets, as a model substrate, we found that CCT/TRiC prevents aggregation and assists in folding of Gbeta, whereas GroEL does not. Gbeta has a seven-bladed beta-propeller structure; each blade is formed from a WD40 repeat sequence encoding four beta-strands. Detailed mutational analysis of Gbeta indicated that CCT/TRiC, but not GroEL, preferentially recognizes hydrophobic residues aligned on surfaces of beta-strands in the second WD40 repeat of Gbeta. These findings indicate that one of the CCT/TRiC-specific targets is hydrophobic beta-strands, which are highly prone to aggregation.
Collapse
Affiliation(s)
- Susumu Kubota
- Department of Molecular and Cellular Biology and Core Research for Evolutional Science and Technology/Japan Science and Technology Agency, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.
| | | | | |
Collapse
|
43
|
Lukov GL, Baker CM, Ludtke PJ, Hu T, Carter MD, Hackett RA, Thulin CD, Willardson BM. Mechanism of assembly of G protein betagamma subunits by protein kinase CK2-phosphorylated phosducin-like protein and the cytosolic chaperonin complex. J Biol Chem 2006; 281:22261-22274. [PMID: 16717095 DOI: 10.1074/jbc.m601590200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosducin-like protein (PhLP) is a widely expressed binding partner of the G protein betagamma subunit complex (Gbetagamma) that has been recently shown to catalyze the formation of the Gbetagamma dimer from its nascent polypeptides. Phosphorylation of PhLP at one or more of three consecutive serines (Ser-18, Ser-19, and Ser-20) is necessary for Gbetagamma dimer formation and is believed to be mediated by the protein kinase CK2. Moreover, several lines of evidence suggest that the cytosolic chaperonin complex (CCT) may work in concert with PhLP in the Gbetagamma-assembly process. The results reported here delineate a mechanism for Gbetagamma assembly in which a stable ternary complex is formed between PhLP, the nascent Gbeta subunit, and CCT that does not include Ggamma. PhLP phosphorylation permits the release of a PhLP x Gbeta intermediate from CCT, allowing Ggamma to associate with Gbeta in this intermediate complex. Subsequent interaction of Gbetagamma with membranes releases PhLP for another round of assembly.
Collapse
Affiliation(s)
- Georgi L Lukov
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Christine M Baker
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Paul J Ludtke
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Ting Hu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Michael D Carter
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Ryan A Hackett
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Craig D Thulin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602.
| |
Collapse
|
44
|
Wells CA, Dingus J, Hildebrandt JD. Role of the chaperonin CCT/TRiC complex in G protein betagamma-dimer assembly. J Biol Chem 2006; 281:20221-32. [PMID: 16702223 DOI: 10.1074/jbc.m602409200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gbetagamma dimer formation occurs early in the assembly of heterotrimeric G proteins. On nondenaturing (native) gels, in vitro translated, (35)S-labeled Ggamma subunits traveled primarily according to their pI and apparently were not associated with other proteins. In contrast, in vitro translated, (35)S-labeled Gbeta subunits traveled at a high apparent molecular mass (approximately 700 kDa) and co-migrated with the chaperonin CCT complex (also called TRiC). Different FLAG-Gbeta isoforms coprecipitated CCT/TRiC to a variable extent, and this correlated with the ability of the different Gbeta subunits to efficiently form dimers with Ggamma. When translated Ggamma was added to translated Gbeta, a new band of low apparent molecular mass (approximately 50 kDa) was observed, which was labeled by either (35)S-labeled Gbeta or Ggamma, indicating that it is a dimer. Formation of the Gbetagamma dimer was ATP-dependent and inhibited by either adenosine 5'-O-(thiotriphosphate) or aluminum fluoride in the presence of Mg(2+). This inhibition led to increased association of Gbeta with CCT/TRiC. Although Ggamma did not bind CCT/TRiC, addition of Ggamma to previously synthesized Gbeta caused its release from the CCT/TRiC complex. We conclude that the chaperonin CCT/TRiC complex binds to and folds Gbeta subunits and that CCT/TRiC mediates Gbetagamma dimer formation by an ATP-dependent reaction.
Collapse
Affiliation(s)
- Christopher A Wells
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
45
|
Klenk C, Humrich J, Quitterer U, Lohse MJ. SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem 2006; 281:8357-64. [PMID: 16421094 DOI: 10.1074/jbc.m513703200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosducin regulates Gbetagamma-stimulated signaling by binding to Gbetagamma subunits of heterotrimeric G-proteins. Control of phosducin activity by phosphorylation is well established. However, little is known about other mechanisms that may control phosducin activity. Here we report that phosducin is regulated at the posttranslational level by modification with the small ubiquitin-related modifier, SUMO. We demonstrate modification with SUMO for phosducin in vitro expressed in cells and for native phosducin purified from retina and the heart. A consensus motif for SUMOylation was identified in phosducin at amino acid positions 32-35. Mutation of the conserved lysine 33 to arginine in this motif abolished SUMOylation of phosducin, indicating that SUMO is attached to lysine 33 of phosducin. In transfected cells the steady-state levels of the K33R mutant protein were much lower compared with wild-type phosducin. The investigation of the stability of wild-type phosducin and of phosducinK33R showed a decreased protein stability of the SUMOylation-deficient mutant. The decreased protein stability correlated with increased ubiquitinylation of the SUMOylation-deficient mutant. These findings indicate that SUMOylation protects phosducin from proteasomal degradation. SUMOylation of phosducin decreased its ability to bind Gbetagamma. PhlP, a closely related member of the phosducin family, was not a target for SUMOylation, but its SUMOylation can be achieved by a single amino acid insertion in the conserved N terminus of PhlP. Together, these findings show that phosducin is a previously unrecognized target of SUMO modification and that SUMOylation controls phosducin stability in cells as well as its functional properties.
Collapse
Affiliation(s)
- Christoph Klenk
- Institute of Pharmacology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | | | | | | |
Collapse
|
46
|
Knol JC, Engel R, Blaauw M, Visser AJWG, van Haastert PJM. The phosducin-like protein PhLP1 is essential for G{beta}{gamma} dimer formation in Dictyostelium discoideum. Mol Cell Biol 2005; 25:8393-400. [PMID: 16135826 PMCID: PMC1234308 DOI: 10.1128/mcb.25.18.8393-8400.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosducin proteins are known to inhibit G protein-mediated signaling by sequestering Gbetagamma subunits. However, Dictyostelium discoideum cells lacking the phosducin-like protein PhLP1 display defective rather than enhanced G protein signaling. Here we show that green fluorescent protein (GFP)-tagged Gbeta (GFP-Gbeta) and GFP-Ggamma subunits exhibit drastically reduced steady-state levels and are absent from the plasma membrane in phlp1(-) cells. Triton X-114 partitioning suggests that lipid attachment to GFP-Ggamma occurs in wild-type cells but not in phlp1(-) and gbeta(-) cells. Moreover, Gbetagamma dimers could not be detected in vitro in coimmunoprecipitation assays with phlp1(-) cell lysates. Accordingly, in vivo diffusion measurements using fluorescence correlation spectroscopy showed that while GFP-Ggamma proteins are present in a complex in wild-type cells, they are free in phlp1(-) and gbeta(-) cells. Collectively, our data strongly suggest the absence of Gbetagamma dimer formation in Dictyostelium cells lacking PhLP1. We propose that PhLP1 serves as a cochaperone assisting the assembly of Gbeta and Ggamma into a functional Gbetagamma complex. Thus, phosducin family proteins may fulfill hitherto unsuspected biosynthetic functions.
Collapse
Affiliation(s)
- Jaco C Knol
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Lukov GL, Hu T, McLaughlin JN, Hamm HE, Willardson BM. Phosducin-like protein acts as a molecular chaperone for G protein betagamma dimer assembly. EMBO J 2005; 24:1965-75. [PMID: 15889144 PMCID: PMC1142607 DOI: 10.1038/sj.emboj.7600673] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 04/11/2005] [Indexed: 12/13/2022] Open
Abstract
Phosducin-like protein (PhLP) is a widely expressed binding partner of the G protein betagamma subunit dimer (Gbetagamma). However, its physiological role is poorly understood. To investigate PhLP function, its cellular expression was blocked using RNA interference, resulting in inhibition of Gbetagamma expression and G protein signaling. This inhibition was caused by an inability of nascent Gbetagamma to form dimers. Phosphorylation of PhLP at serines 18-20 by protein kinase CK2 was required for Gbetagamma formation, while a high-affinity interaction of PhLP with the cytosolic chaperonin complex appeared unnecessary. PhLP bound nascent Gbeta in the absence of Ggamma, and S18-20 phosphorylation was required for Ggamma to associate with the PhLP-Gbeta complex. Once Ggamma bound, PhLP was released. These results suggest a mechanism for Gbetagamma assembly in which PhLP stabilizes the nascent Gbeta polypeptide until Ggamma can associate, resulting in membrane binding of Gbetagamma and release of PhLP to catalyze another round of assembly.
Collapse
Affiliation(s)
- Georgi L Lukov
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ting Hu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joseph N McLaughlin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
- Department of Chemistry and Biochemistry, Brigham Young University, C210 BNSN, Provo, UT 84602, USA. Tel.: +1 801 422 2785; Fax: +1 801 422 0153; E-mail:
| |
Collapse
|