1
|
Li H, Lee CY, Delecluse HJ. Epstein-Barr virus lytic replication and cancer. Curr Opin Virol 2025; 70:101438. [PMID: 39700641 DOI: 10.1016/j.coviro.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Epidemiological studies have provided strong evidence that Epstein-Barr virus (EBV) lytic replication is linked to cancer development. Evidence of abortive lytic replication in some tumors and infections with recombinant viruses incapable of lytic replication in animal models have reinforced this view. Furthermore, multiple lytic proteins have been shown to induce genetic instability, a well-characterized precancerous state. In particular, lytic proteins dysregulated the DNA damage response, interfered with cell cycle progression, and induced the development of structural genetic abnormalities. However, there is so far no direct evidence from in vivo or in vitro studies that lytic replication alone can induce cancer. Here, we critically review the currently available evidence that EBV lytic replication contributes to cancer development and suggest future research directions.
Collapse
Affiliation(s)
- Hao Li
- German Cancer Research Center (DKFZ) Unit D400, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany; Institut National de la Santé et de la Recherche Médicale (INSERM) mixed Unit, Heidelberg, Germany
| | - Chih-Ying Lee
- German Cancer Research Center (DKFZ) Unit D400, Heidelberg, Germany; Institut National de la Santé et de la Recherche Médicale (INSERM) mixed Unit, Heidelberg, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ) Unit D400, Heidelberg, Germany; Institut National de la Santé et de la Recherche Médicale (INSERM) mixed Unit, Heidelberg, Germany.
| |
Collapse
|
2
|
Szewczyk-Roszczenko O, Roszczenko P, Vassetzky Y, Sjakste N. Genotoxic consequences of viral infections. NPJ VIRUSES 2025; 3:5. [PMID: 40295867 PMCID: PMC11772741 DOI: 10.1038/s44298-024-00087-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/24/2024] [Indexed: 04/30/2025]
Abstract
Viral diseases continually threaten human health as evolving pathogens introduce new risks. These infections can lead to complications across organ systems, with impacts varying by virus type, infection severity, and individual immune response. This review examines the genotoxic stress caused by viral infections and its pathological consequences in humans.
Collapse
Affiliation(s)
- Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Yegor Vassetzky
- Chromatin Dynamics and Metabolism in Cancer, CNRS UMR9018 Institut Gustave Roussy, Univeristé Paris Saclay, 39, rue Camille-Desmoulins, 94805, Villejuif, France.
| | - Nikolajs Sjakste
- Department of Pharmacy, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Street 1, LV1004, Riga, Latvia.
| |
Collapse
|
3
|
Todorović N, Ambrosio MR, Amedei A. Immune Modulation by Epstein-Barr Virus Lytic Cycle: Relevance and Implication in Oncogenesis. Pathogens 2024; 13:876. [PMID: 39452747 PMCID: PMC11510492 DOI: 10.3390/pathogens13100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
EBV infects more than 90% of people globally, causing lifelong infection. The phases of the EBV life cycle encompass primary infection, latency, and subsequent reactivation or lytic phase. The primary infection usually happens without noticeable symptoms, commonly in early life stages. If it manifests after childhood, it could culminate in infectious mononucleosis. Regarding potential late consequences, EBV is associated with multiple sclerosis, rheumatoid arthritis, chronic active EBV infection, lymphomas, and carcinomas. Previous reports that the lytic phase plays a negligible or merely secondary role in the oncogenesis of EBV-related tumors are steadily losing credibility. The right mechanisms through which the lytic cycle contributes to carcinogenesis are still unclear, but it is now recognized that lytic genes are expressed to some degree in different cancer-type cells, implicating their role here. The lytic infection is a persistent aspect of virus activity, continuously stimulating the immune system. EBV shows different strategies to modulate and avoid the immune system, which is thought to be a key factor in its ability to cause cancer. So, the principal goal of our review is to explore the EBV's lytic phase contribution to oncogenesis.
Collapse
Affiliation(s)
- Nevena Todorović
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Clinic for Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
4
|
SoRelle ED, Haynes LE, Willard KA, Chang B, Ch’ng J, Christofk H, Luftig MA. Epstein-Barr virus reactivation induces divergent abortive, reprogrammed, and host shutoff states by lytic progression. PLoS Pathog 2024; 20:e1012341. [PMID: 39446925 PMCID: PMC11563402 DOI: 10.1371/journal.ppat.1012341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/14/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive and fully productive states. Single cell transcriptomics enables a high resolution view of these distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is also implicated in EBV-associated oncogenesis. Conversely, induction of lytic reactivation in latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze diverse fate trajectories during lytic reactivation in three B cell models. Consistent with prior work, we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We further found that lytic induction yields a continuum from abortive to complete reactivation. Abortive lytic cells upregulate NFκB and IRF3 pathway target genes, while cells that proceed through the full lytic cycle exhibit unexpected expression of genes associated with cellular reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown and promiscuous outcomes of lytic reactivation with broad implications for viral replication and EBV-associated oncogenesis.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Lauren E. Haynes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Katherine A. Willard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Beth Chang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - James Ch’ng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Heather Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
SoRelle ED, Haynes LE, Willard KA, Chang B, Ch’ng J, Christofk H, Luftig MA. Epstein-Barr virus reactivation induces divergent abortive, reprogrammed, and host shutoff states by lytic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598975. [PMID: 38915538 PMCID: PMC11195279 DOI: 10.1101/2024.06.14.598975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive and fully productive states. Single cell transcriptomics enables a high resolution view of these distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is also implicated in EBV-associated oncogenesis. Conversely, induction of lytic reactivation in latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze diverse fate trajectories during lytic reactivation in two B cell models. Consistent with prior work, we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We further found that lytic induction yields a continuum from abortive to complete reactivation. Abortive lytic cells upregulate NFκB and IRF3 pathway target genes, while cells that proceed through the full lytic cycle exhibit unexpected expression of genes associated with cellular reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown and promiscuous outcomes of lytic reactivation with broad implications for viral replication and EBV-associated oncogenesis.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| | - Lauren E. Haynes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| | - Katherine A. Willard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| | - Beth Chang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James Ch’ng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heather Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Center for Virology, Durham, NC 27710, USA
| |
Collapse
|
6
|
Ungerleider NA, Roberts C, O’Grady TM, Nguyen TT, Baddoo M, Wang J, Ishaq E, Concha M, Lam M, Bass J, Nguyen T, Van Otterloo N, Wickramarachchige-Dona N, Wyczechowska D, Morales M, Ma T, Dong Y, Flemington E. Viral reprogramming of host transcription initiation. Nucleic Acids Res 2024; 52:5016-5032. [PMID: 38471819 PMCID: PMC11109974 DOI: 10.1093/nar/gkae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/13/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Viruses are master remodelers of the host cell environment in support of infection and virus production. For example, viruses typically regulate cell gene expression through modulating canonical cell promoter activity. Here, we show that Epstein Barr virus (EBV) replication causes 'de novo' transcription initiation at 29674 new transcription start sites throughout the cell genome. De novo transcription initiation is facilitated in part by the unique properties of the viral pre-initiation complex (vPIC) that binds a TATT[T/A]AA, TATA box-like sequence and activates transcription with minimal support by additional transcription factors. Other de novo promoters are driven by the viral transcription factors, Zta and Rta and are influenced by directional proximity to existing canonical cell promoters, a configuration that fosters transcription through existing promoters and transcriptional interference. These studies reveal a new way that viruses interact with the host transcriptome to inhibit host gene expression and they shed light on primal features driving eukaryotic promoter function.
Collapse
Affiliation(s)
- Nathan A Ungerleider
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Claire Roberts
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Tina M O’Grady
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Trang T Nguyen
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Jia Wang
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Eman Ishaq
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Monica Concha
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Meggie Lam
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Jordan Bass
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Truong D Nguyen
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Nick Van Otterloo
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | | | - Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Tianfang Ma
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| |
Collapse
|
7
|
Studstill CJ, Mac M, Moody CA. Interplay between the DNA damage response and the life cycle of DNA tumor viruses. Tumour Virus Res 2023; 16:200272. [PMID: 37918513 PMCID: PMC10685005 DOI: 10.1016/j.tvr.2023.200272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023] Open
Abstract
Approximately 20 % of human cancers are associated with virus infection. DNA tumor viruses can induce tumor formation in host cells by disrupting the cell's DNA replication and repair mechanisms. Specifically, these viruses interfere with the host cell's DNA damage response (DDR), which is a complex network of signaling pathways that is essential for maintaining the integrity of the genome. DNA tumor viruses can disrupt these pathways by expressing oncoproteins that mimic or inhibit various DDR components, thereby promoting genomic instability and tumorigenesis. Recent studies have highlighted the molecular mechanisms by which DNA tumor viruses interact with DDR components, as well as the ways in which these interactions contribute to viral replication and tumorigenesis. Understanding the interplay between DNA tumor viruses and the DDR pathway is critical for developing effective strategies to prevent and treat virally associated cancers. In this review, we discuss the current state of knowledge regarding the mechanisms by which human papillomavirus (HPV), merkel cell polyomavirus (MCPyV), Kaposi's sarcoma-associated herpesvirus (KSHV), and Epstein-Barr virus (EBV) interfere with DDR pathways to facilitate their respective life cycles, and the consequences of such interference on genomic stability and cancer development.
Collapse
Affiliation(s)
- Caleb J Studstill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Cary A Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
8
|
Myers JE, Schaal DL, Nkadi EH, Ward BJH, Bienkowska-Haba M, Sapp M, Bodily JM, Scott RS. Retinoblastoma Protein Is Required for Epstein-Barr Virus Replication in Differentiated Epithelia. J Virol 2023; 97:e0103222. [PMID: 36719239 PMCID: PMC9972952 DOI: 10.1128/jvi.01032-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Coinfection of human papillomavirus (HPV) and Epstein-Barr virus (EBV) has been detected in oropharyngeal squamous cell carcinoma. Although HPV and EBV replicate in differentiated epithelial cells, we previously reported that HPV epithelial immortalization reduces EBV replication within organotypic raft culture and that the HPV16 oncoprotein E7 was sufficient to inhibit EBV replication. A well-established function of HPV E7 is the degradation of the retinoblastoma (Rb) family of pocket proteins (pRb, p107, and p130). Here, we show that pRb knockdown in differentiated epithelia and EBV-positive Burkitt lymphoma (BL) reduces EBV lytic replication following de novo infection and reactivation, respectively. In differentiated epithelia, EBV immediate early (IE) transactivators were expressed, but loss of pRb blocked expression of the early gene product, EA-D. Although no alterations were observed in markers of epithelial differentiation, DNA damage, and p16, increased markers of S-phase progression and altered p107 and p130 levels were observed in suprabasal keratinocytes after pRb knockdown. In contrast, pRb interference in Akata BX1 Burkitt lymphoma cells showed a distinct phenotype from differentiated epithelia with no significant effect on EBV IE or EA-D expression. Instead, pRb knockdown reduced the levels of the plasmablast differentiation marker PRDM1/Blimp1 and increased the abundance of c-Myc protein in reactivated Akata BL with pRb knockdown. c-Myc RNA levels also increased following the loss of pRb in epithelial rafts. These results suggest that pRb is required to suppress c-Myc for efficient EBV replication in BL cells and identifies a mechanism for how HPV immortalization, through degradation of the retinoblastoma pocket proteins, interferes with EBV replication in coinfected epithelia. IMPORTANCE Terminally differentiated epithelium is known to support EBV genome amplification and virion morphogenesis following infection. The contribution of the cell cycle in differentiated tissues to efficient EBV replication is not understood. Using organotypic epithelial raft cultures and genetic interference, we can identify factors required for EBV replication in quiescent cells. Here, we phenocopied HPV16 E7 inhibition of EBV replication through knockdown of pRb. Loss of pRb was found to reduce EBV early gene expression and viral replication. Interruption of the viral life cycle was accompanied by increased S-phase gene expression in postmitotic keratinocytes, a process also observed in E7-positive epithelia, and deregulation of other pocket proteins. Together, these findings provide evidence of a global requirement for pRb in EBV lytic replication and provide a mechanistic framework for how HPV E7 may facilitate a latent EBV infection through its mediated degradation of pRb in copositive epithelia.
Collapse
Affiliation(s)
- Julia E. Myers
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - B. J. H. Ward
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Martin Sapp
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Jason M. Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
9
|
Replication Compartments-The Great Survival Strategy for Epstein-Barr Virus Lytic Replication. Microorganisms 2022; 10:microorganisms10050896. [PMID: 35630341 PMCID: PMC9144946 DOI: 10.3390/microorganisms10050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
During Epstein–Barr virus (EBV) lytic replication, viral DNA synthesis is carried out in viral replication factories called replication compartments (RCs), which are located at discrete sites in the nucleus. Viral proteins constituting the viral replication machinery are accumulated in the RCs to amplify viral genomes. Newly synthesized viral DNA is stored in a subdomain of the RC termed the BMRF1-core, matured by host factors, and finally packed into assembled viral capsids. Late (L) genes are transcribed from DNA stored in the BMRF1-core through a process that is mainly dependent on the viral pre-initiation complex (vPIC). RC formation is a well-regulated system and strongly advantageous for EBV survival because of the following aspects: (1) RCs enable the spatial separation of newly synthesized viral DNA from the cellular chromosome for protection and maturation of viral DNA; (2) EBV-coded proteins and their interaction partners are recruited to RCs, which enhances the interactions among viral proteins, cellular proteins, and viral DNA; (3) the formation of RCs benefits continuous replication, leading to L gene transcription; and (4) DNA storage and maturation leads to efficient progeny viral production. Here, we review the state of knowledge of this important viral structure and discuss its roles in EBV survival.
Collapse
|
10
|
Lopez A, Nichols Doyle R, Sandoval C, Nisson K, Yang V, Fregoso OI. Viral Modulation of the DNA Damage Response and Innate Immunity: Two Sides of the Same Coin. J Mol Biol 2022; 434:167327. [PMID: 34695379 PMCID: PMC9119581 DOI: 10.1016/j.jmb.2021.167327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
The DDR consists of multiple pathways that sense, signal, and respond to anomalous DNA. To promote efficient replication, viruses have evolved to engage and even modulate the DDR. In this review, we will discuss a select set of diverse viruses and the range of mechanisms they evolved to interact with the DDR and some of the subsequent cellular consequences. There is a dichotomy in that the DDR can be both beneficial for viruses yet antiviral. We will also review the connection between the DDR and innate immunity. Previously believed to be disparate cellular functions, more recent research is emerging that links these processes. Furthermore, we will discuss some discrepancies in the literature that we propose can be remedied by utilizing more consistent DDR-focused assays. By doing so, we hope to obtain a much clearer understanding of how broadly these mechanisms and phenotypes are conserved among all viruses. This is crucial for human health since understanding how viruses manipulate the DDR presents an important and tractable target for antiviral therapies.
Collapse
Affiliation(s)
- Andrew Lopez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Randilea Nichols Doyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Karly Nisson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Vivian Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Lee SH, Choi SJ, Choi W, Cho S, Cho M, Kim DS, Kang BW, Kim JG, Lee YM, Cho H, Kang H. Cisplatin Resistance in Epstein-Barr-Virus-Associated Gastric Carcinoma Acquired through ATM Methylation. Cancers (Basel) 2021; 13:cancers13174252. [PMID: 34503060 PMCID: PMC8428228 DOI: 10.3390/cancers13174252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Gastric cancer (GC) is the fifth-leading type of cancer and the third –leading cause of death from cancer. Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is recently accountable for 10% of all the GC worldwide. Platinum drugs such as cisplatin and oxaliplatin are the first-line choice in GC chemotherapy. The widespread use of cisplatin leads to make tumor cells develop single or multiple drug resistance via various mechanisms. DNA hypermethylation on tumor suppressor genes is one of causes leading to drug resistances. 5-Azacytidine (5-AZA) is a chemical analogue of cytidine and inhibits DNA methyltransferase, resulting in DNA hypomethylation. Our main objective was to identify synergistic effect of two important GC drugs whose mechanisms may be in complementary cooperation. We found that cisplatin enhances its anticancer activity with 5-AZA through DNA demethylation in EBVaGC. Identifying this synergistic effect of two important GC drugs can be useful to treat EBVaGC which shows resistance to platinum-based chemotherapy. Abstract Epstein–Barr-virus-associated gastric carcinoma (EBVaGC), first reported in 1992, currently accounts for 10% of all gastric carcinoma worldwide. EBVaGC has unique DNA hypermethylation phenotypes that allow for higher proportions of DNA methylation than any other gastric cancer. CpG islands in the gene promoter region are one of the major regions in which DNA methylation controls gene transcription. Despite cisplatin-based chemotherapy being one of the standard treatment regimens for advanced gastric cancer, including EBVaGC, cisplatin alone or in combination with 5-fluorouracil has been limited by its less potent anticancer activity and the occurrence of cisplatin resistance. Accordingly, the current study evaluated the anticancer activities of a combination of cisplatin and 5-Azacytidine (5-AZA) against EBVaGC. Our findings showed that cisplatin upregulated the DNMT3A gene, whereas shRNA-targeted removal of DNMT3A mRNA contributed to cisplatin-mediated EBV lytic reactivation. Moreover, the removal of DNMT3A mRNA upregulated the ATM gene through DNA demethylation on the ATM promoter. Furthermore, CRISPR/Cas9-targeted removal of the ATM gene resulted in significantly reduced cell susceptibility and EBV lytic reactivation by a combination of cisplatin and DNMT3A inhibitor 5-AZA. Finally, 5-AZA exhibited a synergistic effect with cisplatin in anti-EBV and anti-EBVaGC activities by increasing drug susceptibility and EBV lytic reactivation. The aforementioned results suggest that cisplatin combined with DNA methylation inhibitors could be a novel therapeutic approach for EBVaGC.
Collapse
Affiliation(s)
- Sun Hee Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Su Jin Choi
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Wonhyeok Choi
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Subin Cho
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Miyeon Cho
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Byung Woog Kang
- Department of Oncology/Hematology, Cancer Research Institute, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41405, Korea; (B.W.K.); (J.G.K.)
| | - Jong Gwang Kim
- Department of Oncology/Hematology, Cancer Research Institute, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41405, Korea; (B.W.K.); (J.G.K.)
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
- Correspondence: (H.C.); (H.K.); Tel.: +82-02-901-8678 (H.C.); +82-053-950-8569 (H.K.); Fax: +82-02-901-8386 (H.C.); +82-053-950-8557 (H.K.)
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
- Correspondence: (H.C.); (H.K.); Tel.: +82-02-901-8678 (H.C.); +82-053-950-8569 (H.K.); Fax: +82-02-901-8386 (H.C.); +82-053-950-8557 (H.K.)
| |
Collapse
|
12
|
Abstract
Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.
Collapse
Affiliation(s)
- Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Josiah Hiu-Yuen Wong
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
13
|
Tatfi M, Perthame E, Hillion KH, Dillies MA, Menager H, Hermine O, Suarez F. Gene expression analysis in EBV-infected ataxia-telangiectasia cell lines by RNA-sequencing reveals protein synthesis defect and immune abnormalities. Orphanet J Rare Dis 2021; 16:288. [PMID: 34183044 PMCID: PMC8237493 DOI: 10.1186/s13023-021-01904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) targets B-cells where it establishes a latent infection. EBV can transform B-cells in vitro and is recognized as an oncogenic virus, especially in the setting of immune compromise. Indeed, immunodeficient patients may fail to control chronic EBV infection, leading to the development EBV-driven lymphoid malignancies. Ataxia telangiectasia (AT) is a primary immune deficiency caused by mutations in the ATM gene, involved in the repair of double-strand breaks. Patients with AT are at high risk of developing cancers, mostly B-cell lymphoid malignancies, most of which being EBV-related. Aside from immune deficiency secondary to AT, loss of ATM function could also hinder the control of the virus within B-cells, favoring lymphomagenesis in AT patients. RESULTS We used RNA sequencing on lymphoblastoid cell lines derived from patients with AT and healthy donors to analyze and compare both cellular and viral gene expression. We found numerous deregulated signaling pathways involving transcription, translation, oncogenesis and immune regulation. Specifically, the translational defect was confirmed in vitro, suggesting that the pathogenesis of AT may also involve a ribosomal defect. Concomitant analysis of viral gene expression did not reveal significant differential gene expression, however, analysis of EBV interactome suggests that the viral latency genes EBNA-3A, EBNA-3C and LMP1 may be disrupted in LCL from AT patients. CONCLUSION Our data support the notion that ATM deficiency deregulates cellular gene expression possibly disrupting interactions with EBV latent genes, promoting the oncogenic potential of the virus. These preliminary findings provide a new step towards the understanding of EBV regulation and of AT pathogenesis.
Collapse
Affiliation(s)
- Moussab Tatfi
- INSERM U1163/CNRS ERL8254 - Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Institut Imagine, Paris, France
| | - Emeline Perthame
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Kenzo-Hugo Hillion
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Marie-Agnès Dillies
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Hervé Menager
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Olivier Hermine
- INSERM U1163/CNRS ERL8254 - Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Institut Imagine, Paris, France
- Department of Adult Hematology, AP-HP. Centre, Necker - Enfants Malades Hospital, Université de Paris, Paris, France
- Université de Paris, Paris, France
| | - Felipe Suarez
- INSERM U1163/CNRS ERL8254 - Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Institut Imagine, Paris, France.
- Department of Adult Hematology, AP-HP. Centre, Necker - Enfants Malades Hospital, Université de Paris, Paris, France.
- Université de Paris, Paris, France.
| |
Collapse
|
14
|
Benedetti F, Curreli S, Gallo RC, Zella D. Tampering of Viruses and Bacteria with Host DNA Repair: Implications for Cellular Transformation. Cancers (Basel) 2021; 13:E241. [PMID: 33440726 PMCID: PMC7826954 DOI: 10.3390/cancers13020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
A reduced ability to properly repair DNA is linked to a variety of human diseases, which in almost all cases is associated with an increased probability of the development of cellular transformation and cancer. DNA damage, that ultimately can lead to mutations and genomic instability, is due to many factors, such as oxidative stress, metabolic disorders, viral and microbial pathogens, excess cellular proliferation and chemical factors. In this review, we examine the evidence connecting DNA damage and the mechanisms that viruses and bacteria have evolved to hamper the pathways dedicated to maintaining the integrity of genetic information, thus affecting the ability of their hosts to repair the damage(s). Uncovering new links between these important aspects of cancer biology might lead to the development of new targeted therapies in DNA-repair deficient cancers and improving the efficacy of existing therapies. Here we provide a comprehensive summary detailing the major mechanisms that viruses and bacteria associated with cancer employ to interfere with mechanisms of DNA repair. Comparing these mechanisms could ultimately help provide a common framework to better understand how certain microorganisms are involved in cellular transformation.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Sabrina Curreli
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
15
|
Baugh R, Khalique H, Seymour LW. Convergent Evolution by Cancer and Viruses in Evading the NKG2D Immune Response. Cancers (Basel) 2020; 12:E3827. [PMID: 33352921 PMCID: PMC7766243 DOI: 10.3390/cancers12123827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The natural killer group 2 member D (NKG2D) receptor and its family of NKG2D ligands (NKG2DLs) are key components in the innate immune system, triggering NK, γδ and CD8+ T cell-mediated immune responses. While surface NKG2DL are rarely found on healthy cells, expression is significantly increased in response to various types of cellular stress, viral infection, and tumour cell transformation. In order to evade immune-mediated cytotoxicity, both pathogenic viruses and cancer cells have evolved various mechanisms of subverting immune defences and preventing NKG2DL expression. Comparisons of the mechanisms employed following virus infection or malignant transformation reveal a pattern of converging evolution at many of the key regulatory steps involved in NKG2DL expression and subsequent immune responses. Exploring ways to target these shared steps in virus- and cancer-mediated immune evasion may provide new mechanistic insights and therapeutic opportunities, for example, using oncolytic virotherapy to re-engage the innate immune system towards cancer cells.
Collapse
Affiliation(s)
| | | | - Leonard W. Seymour
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (R.B.); (H.K.)
| |
Collapse
|
16
|
Masucci MG. Viral Ubiquitin and Ubiquitin-Like Deconjugases-Swiss Army Knives for Infection. Biomolecules 2020; 10:E1137. [PMID: 32752270 PMCID: PMC7464072 DOI: 10.3390/biom10081137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modifications of cellular proteins by covalent conjugation of ubiquitin and ubiquitin-like polypeptides regulate numerous cellular processes that are captured by viruses to promote infection, replication, and spreading. The importance of these protein modifications for the viral life cycle is underscored by the discovery that many viruses encode deconjugases that reverse their functions. The structural and functional characterization of these viral enzymes and the identification of their viral and cellular substrates is providing valuable insights into the biology of viral infections and the host's antiviral defense. Given the growing body of evidence demonstrating their key contribution to pathogenesis, the viral deconjugases are now recognized as attractive targets for the design of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Maria Grazia Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
17
|
Glover K, Coombs KM. ZIKV Infection Induces DNA Damage Response and Alters the Proteome of Gastrointestinal Cells. Viruses 2020; 12:v12070771. [PMID: 32708879 PMCID: PMC7412063 DOI: 10.3390/v12070771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The zika virus (ZIKV) is a neurotropic virus that causes congenital abnormalities in babies when they are infected in utero. Some studies have reported these congenital abnormalities result from ZIKV attacking neural progenitor cells within the brain which differentiate into neurons, oligodendrocytes, and astrocytes. Each of these glial cells play important roles during development of the fetal brain. In addition to ZIKV-induced congenital abnormalities, infected patients experience gastrointestinal complications. There are presently no reports investigating the role of this virus at the proteomic level in gastrointestinal associated cells, so we conducted an in vitro proteomic study of ZIKV-induced changes in Caco-2, a colon-derived human cell line which is known to be permissive to ZIKV infection. We used SomaScan, a new aptamer-based proteomic tool to identify host proteins that are dysregulated during ZIKV infection at 12, 24, and 48 h post-infection. Bioinformatic analyses predicted that dysregulation of differentially-regulated host proteins results in various gastrointestinal diseases. Validation of the clinical relevance of these promising protein targets will add to the existing knowledge of ZIKV biology. These potential proteins may be useful targets towards the development of therapeutic interventions.
Collapse
Affiliation(s)
- Kathleen Glover
- Department of Medical Microbiology and Infectious Diseases, Manitoba Centre for Proteomics & Systems Biology, Room 799, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Manitoba Centre for Proteomics & Systems Biology, Room 799, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3976
| |
Collapse
|
18
|
Sarkar R, Patra U, Lo M, Mukherjee A, Biswas A, Chawla-Sarkar M. Rotavirus activates a noncanonical ATM-Chk2 branch of DNA damage response during infection to positively regulate viroplasm dynamics. Cell Microbiol 2020; 22:e13149. [PMID: 31845505 DOI: 10.1111/cmi.13149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
Surveillance for maintaining genomic pristineness, a protective safeguard of great onco-preventive significance, has been dedicated in eukaryotic cells to a highly conserved and synchronised signalling cascade called DNA damage response (DDR). Not surprisingly, foreign genetic elements like those of viruses are often potential targets of DDR. Viruses have evolved novel ways to subvert this genome vigilance by twisting canonical DDR to a skewed, noncanonical response through selective hijacking of some DDR components while antagonising the others. Though reported for many DNA and a few RNA viruses, potential implications of DDR have not been addressed yet in case of infection with rotavirus (RV), a double-stranded RNA virus. In the present study, we aimed at the modulation of ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) branch of DDR in response to RV infection in vitro. We found activation of the transducer kinase ATM and its downstream effector Chk2 in RV-SA11-infected cells, the activation response being maximal at 6-hr post infection. Moreover, ATM activation was found to be dependent on induction of the upstream sensor Mre11-Rad50-Nbs1 (MRN) complex. Interestingly, RV-SA11-mediated maximal induction of ATM-Chk2 pathway was revealed to be neither preceded by occurrence of nuclear DNA damage nor transduced to formation of damage-induced canonical nuclear foci. Subsequent investigations affirmed sequestration of MRN components as well as ATM-Chk2 proteins away from nucleus into cytosolic RV replication factories (viroplasms). Chemical intervention targeting ATM and Chk2 significantly inhibited fusion and maturation of viroplasms leading to attenuated viral propagation. Cumulatively, the current study describes RV-mediated activation of a noncanonical ATM-Chk2 branch of DDR skewed in favour of facilitated viroplasm fusion and productive viral perpetuation.
Collapse
Affiliation(s)
- Rakesh Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mahadeb Lo
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Asim Biswas
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
19
|
[Dynamic changes of cellular environment during Epstein-Barr virus productive replication]. Uirusu 2020; 70:83-90. [PMID: 33967117 DOI: 10.2222/jsv.70.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Productive (lytic) replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. Viruses utilize them and selectively cancel the 'noisy' downstream signaling pathways, leading to maintain high S-phase CDK activities required for viral replication. To achieve this fine tuning of cellular environment, herpesviruses encode many (>70) genes in their genome, which are expressed in a strictly regulated temporal cascade (immediate-early, early, and late). Here, I introduce and discuss how Epstein-Barr virus, an oncogenic herpesvirus, hijacks the cellular environment and adapt it for the progeny production.
Collapse
|
20
|
Kleinberger T. Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death. FEBS Lett 2019; 594:1891-1917. [DOI: 10.1002/1873-3468.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Tamar Kleinberger
- Department of Molecular Microbiology the Rappaport Faculty of Medicine Technion –Israel Institute of Technology Haifa Israel
| |
Collapse
|
21
|
Li X, Kozlov SV, El-Guindy A, Bhaduri-McIntosh S. Retrograde Regulation by the Viral Protein Kinase Epigenetically Sustains the Epstein-Barr Virus Latency-to-Lytic Switch To Augment Virus Production. J Virol 2019; 93:e00572-19. [PMID: 31189703 PMCID: PMC6694827 DOI: 10.1128/jvi.00572-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Abstract
Herpesviruses are ubiquitous, and infection by some, like Epstein-Barr virus (EBV), is nearly universal. To persist, EBV must periodically switch from a latent to a replicative/lytic phase. This productive phase is responsible for most herpesvirus-associated diseases. EBV encodes a latency-to-lytic switch protein which, upon activation, sets off a vectorially constrained cascade of gene expression that results in production of infectious virus. While triggering expression of the switch protein ZEBRA is essential to lytic cycle entry, sustaining its expression is equally important to avoid premature termination of the lytic cascade. We report that the viral protein kinase (vPK), encoded by a gene that is kinetically downstream of the lytic switch, sustains expression of ZEBRA, amplifies the lytic cascade, increasing virus production, and, importantly, prevents the abortive lytic cycle. We find that vPK, through a noncanonical site phosphorylation, activates the cellular phosphatidylinositol 3-kinase-related kinase ATM to cause phosphorylation of the heterochromatin enforcer KAP1/TRIM28 even in the absence of EBV genomes or other EBV proteins. Phosphorylation of KAP1 renders it unable to restrain ZEBRA, thereby further derepressing and sustaining its expression to culminate in virus production. This partnership with a host kinase and a transcriptional corepressor enables retrograde regulation by vPK of ZEBRA, an observation that is counter to the unidirectional regulation of gene expression reminiscent of most DNA viruses.IMPORTANCE Herpesviruses infect nearly all humans and persist quiescently for the life of the host. These viruses intermittently activate into the lytic phase to produce infectious virus, thereby causing disease. To ensure that lytic activation is not prematurely terminated, expression of the virally encoded lytic switch protein needs to be sustained. In studying Epstein-Barr virus, one of the most prevalent human herpesviruses that also causes cancer, we have discovered that a viral kinase activated by the viral lytic switch protein partners with a cellular kinase to deactivate a silencer of the lytic switch protein, thereby providing a positive feedback loop to ensure successful completion of the viral productive phase. Our findings highlight key nodes of interaction between the host and virus that could be exploited to treat lytic phase-associated diseases by terminating the lytic phase or kill cancer cells harboring herpesviruses by accelerating the completion of the lytic cascade.
Collapse
Affiliation(s)
- Xiaofan Li
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Sergei V Kozlov
- Radiation Biology and Oncology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Ayman El-Guindy
- Division of Infectious Diseases, Department of Pediatrics, Yale University, New Haven, Connecticut, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Eichelberg MR, Welch R, Guidry JT, Ali A, Ohashi M, Makielski KR, McChesney K, Van Sciver N, Lambert PF, Keleș S, Kenney SC, Scott RS, Johannsen E. Epstein-Barr Virus Infection Promotes Epithelial Cell Growth by Attenuating Differentiation-Dependent Exit from the Cell Cycle. mBio 2019; 10:e01332-19. [PMID: 31431547 PMCID: PMC6703421 DOI: 10.1128/mbio.01332-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that is associated with lymphomas as well as nasopharyngeal and gastric carcinomas. Although carcinomas account for almost 90% of EBV-associated cancers, progress in examining EBV's role in their pathogenesis has been limited by difficulty in establishing latent infection in nontransformed epithelial cells. Recently, EBV infection of human telomerase reverse transcriptase (hTERT)-immortalized normal oral keratinocytes (NOKs) has emerged as a model that recapitulates aspects of EBV infection in vivo, such as differentiation-associated viral replication. Using uninfected NOKs and NOKs infected with the Akata strain of EBV (NOKs-Akata), we examined changes in gene expression due to EBV infection and differentiation. Latent EBV infection produced very few significant gene expression changes in undifferentiated NOKs but significantly reduced the extent of differentiation-induced gene expression changes. Gene set enrichment analysis revealed that differentiation-induced downregulation of the cell cycle and metabolism pathways was markedly attenuated in NOKs-Akata relative to that in uninfected NOKs. We also observed that pathways induced by differentiation were less upregulated in NOKs-Akata. We observed decreased differentiation markers and increased suprabasal MCM7 expression in NOKs-Akata versus NOKs when both were grown in raft cultures, consistent with our transcriptome sequencing (RNA-seq) results. These effects were also observed in NOKs infected with a replication-defective EBV mutant (AkataΔRZ), implicating mechanisms other than lytic-gene-induced host shutoff. Our results help to define the mechanisms by which EBV infection alters keratinocyte differentiation and provide a basis for understanding the role of EBV in epithelial cancers.IMPORTANCE Latent infection by Epstein-Barr virus (EBV) is an early event in the development of EBV-associated carcinomas. In oral epithelial tissues, EBV establishes a lytic infection of differentiated epithelial cells to facilitate the spread of the virus to new hosts. Because of limitations in existing model systems, the effects of latent EBV infection on undifferentiated and differentiating epithelial cells are poorly understood. Here, we characterize latent infection of an hTERT-immortalized oral epithelial cell line (NOKs). We find that although EBV expresses a latency pattern similar to that seen in EBV-associated carcinomas, infection of undifferentiated NOKs results in differential expression of a small number of host genes. In differentiating NOKs, however, EBV has a more substantial effect, reducing the extent of differentiation and delaying the exit from the cell cycle. This effect may synergize with preexisting cellular abnormalities to prevent exit from the cell cycle, representing a critical step in the development of cancer.
Collapse
Affiliation(s)
- Mark R Eichelberg
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Rene Welch
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - J Tod Guidry
- Department of Microbiology and Immunology, LSUHSC-S, Shreveport, Louisiana, USA
| | - Ahmed Ali
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Makoto Ohashi
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Kathleen R Makielski
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Kyle McChesney
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Nicholas Van Sciver
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Paul F Lambert
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Sündüz Keleș
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, USA
| | - Shannon C Kenney
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Rona S Scott
- Department of Microbiology and Immunology, LSUHSC-S, Shreveport, Louisiana, USA
| | - Eric Johannsen
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Abstract
Infections by DNA viruses including, Epstein–Barr virus (EBV), typically induce cellular DNA damage responses (DDR), in particular double-stranded break signaling. To avoid apoptosis associated with constitutive DDR signaling, downstream steps of this pathway must be inactivated. EBV has developed multiple ways of disabling the DDR using several different viral proteins expressed at various stages of EBV infection. Here the interplay between EBV and host DDRs is discussed at each stage of EBV infection, along with the EBV proteins and miRNAs that are known to interfere with DDR signaling. The newly discovered APOBEC editing of EBV DNA and protection from this mutation is also discussed.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
S-Like-Phase Cyclin-Dependent Kinases Stabilize the Epstein-Barr Virus BDLF4 Protein To Temporally Control Late Gene Transcription. J Virol 2019; 93:JVI.01707-18. [PMID: 30700607 DOI: 10.1128/jvi.01707-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Temporally controlled gene expression is necessary for the propagation of herpesviruses. To achieve this, herpesviruses encode several transcriptional regulators. In Epstein-Barr virus, BcRF1 associates with five viral proteins (BDLF4, BGLF3, BFRF2, BVLF1, and BDLF3.5) to form the viral late (L) gene regulatory complex, which is called the viral preinitiation complex (vPIC), on TATT-containing promoters. However, regulation of the vPIC has been largely unexplored. In this study, we performed two screens using a kinase inhibitor library and identified a series of cyclin-dependent kinase (CDK) inhibitors that downregulated the expression of L genes without any impact on viral DNA replication through destabilization of the BDLF4 protein. Knockdown of CDK2 by short hairpin RNA (shRNA) and proteasome inhibitor treatment showed that phosphorylation of the BDLF4 protein prevented ubiquitin-mediated degradation. Moreover, we demonstrated that cyclin A- and E-associated CDK2 complexes phosphorylated BDLF4 in vitro, and we identified several serine/threonine phosphorylation sites in BDLF4. Phosphoinactive and phosphomimic mutants revealed that phosphorylation at threonine 91 plays a role in stabilizing BDLF4. Therefore, our findings indicate that S-like-phase CDKs mediate the regulation of L gene expression through stabilization of the BDLF4 protein, which makes the temporal L gene expression system more robust.IMPORTANCE Late (L) genes represent more than one-third of the herpesvirus genome, suggesting that many of these genes are indispensable for the life cycle of the virus. With the exception of BCRF1, BDLF2, and BDLF3, Epstein-Barr virus L genes are transcribed by viral regulators, which are known as the viral preinitiation complex (vPIC) and the host RNA polymerase II complex. Because the vPIC is conserved in beta- and gammaherpesviruses, studying the control of viral L gene expression by the vPIC contributes to the development of drugs that specifically inhibit these processes in beta- and gammaherpesvirus infections/diseases. In this study, we demonstrated that CDK inhibitors induced destabilization of the vPIC component BDLF4, leading to a reduction in L gene expression and subsequent progeny production. Our findings suggest that CDK inhibitors may be a therapeutic option against beta- and gammaherpesviruses in combination with existing inhibitors of herpesvirus lytic replication, such as ganciclovir.
Collapse
|
25
|
Tatfi M, Hermine O, Suarez F. Epstein-Barr Virus (EBV)-Related Lymphoproliferative Disorders in Ataxia Telangiectasia: Does ATM Regulate EBV Life Cycle? Front Immunol 2019; 9:3060. [PMID: 30662441 PMCID: PMC6329310 DOI: 10.3389/fimmu.2018.03060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is an ubiquitous herpesvirus with a tropism for epithelial cells (where lytic replication occurs) and B-cells (where latency is maintained). EBV persists throughout life and chronic infection is asymptomatic in most individuals. However, immunocompromised patients may be unable to control EBV infection and are at increased risk of EBV-related malignancies, such as diffuse large B-cell lymphomas or Hodgkin's lymphomas. Ataxia telangiectasia (AT) is a primary immunodeficiency caused by mutations in the ATM gene and associated with an increased incidence of cancers, particularly EBV-associated lymphomas. However, the immune deficiency present in AT patients is often too modest to explain the increased incidence of EBV-related malignancies. The ATM defect in these patients could therefore impair the normal regulation of EBV latency in B-cells, thus promoting lymphomagenesis. This suggests that ATM plays a role in the normal regulation of EBV latency. ATM is a serine/threonine kinase involved in multiple cell functions such as DNA damage repair, cell cycle regulation, oxidative stress, and gene expression. ATM is implicated in the lytic cycle of EBV, where EBV uses the activation of DNA damage repair pathway to promote its own replication. ATM regulates the latent cycle of the EBV-related herpesvirus KSHV and MHV68. However, the contribution of ATM in the control of the latent cycle of EBV is not yet known. A better understanding of the regulation of EBV latency could be harnessed in the conception of novel therapeutic strategies in AT and more generally in all ATM deficient EBV-related malignancies.
Collapse
Affiliation(s)
| | | | - Felipe Suarez
- INSERM U1163/CNRS ERL8254 - Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, IMAGINE Institute, Paris, France
| |
Collapse
|
26
|
Engin AB, Engin A. DNA damage checkpoint response to aflatoxin B1. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 65:90-96. [PMID: 30594067 DOI: 10.1016/j.etap.2018.12.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 05/28/2023]
Abstract
Although most countries regulate the aflatoxin levels in food by legislations, high amounts of aflatoxin B1 (AFB1)-DNA adducts can still be detected in normal and tumorous tissue obtained from cancer patients. AFB1 cannot directly interact with DNA unless it is biotransformed to AFB1-8, 9-epoxide via cytochrome p450 enzymes. This metabolite spontaneously and irreversibly attaches to guanine residues to generate highly mutagenic DNA adducts. AFB1-induced mutation of ATM kinase results in the deterioration of the cell cycle checkpoint activation at the G2/M checkpoint site. Genomic instability and increased cancer risk due to A-T mutation is the result of diminished repair of DNA double strand breaks. The major point mutation caused by AFB1 is G-to-T transversion that is related with the high frequency of p53 mutation. Majority of AFB1 associated hepatocellular cancer cases carry TP53 mutant DNA, which is an indicator of AFB1 exposure, as well as hepatocellular cancer risk.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
27
|
Zheng X, Wang J, Wei L, Peng Q, Gao Y, Fu Y, Lu Y, Qin Z, Zhang X, Lu J, Ou C, Li Z, Zhang X, Liu P, Xiong W, Li G, Yan Q, Ma J. Epstein-Barr Virus MicroRNA miR-BART5-3p Inhibits p53 Expression. J Virol 2018; 92:e01022-18. [PMID: 30209170 PMCID: PMC6232473 DOI: 10.1128/jvi.01022-18] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human virus found to encode many microRNAs. It is etiologically linked to nasopharyngeal carcinoma and EBV-associated gastric carcinoma. During the latent infection period, there are only a few EBV proteins expressed, whereas EBV microRNAs, such as the BamHI-A region rightward transcript (BART) microRNAs, are highly expressed. However, how these BART miRNAs precisely regulate the tumor growth in nasopharyngeal carcinoma and gastric carcinoma remains obscure. Here, we report that upregulation of EBV-miR-BART5-3p promotes the growth of nasopharyngeal carcinoma and gastric carcinoma cells. BART5-3p directly targets the tumor suppressor gene TP53 on its 3'-untranslated region (3'-UTR) and consequently downregulates CDKN1A, BAX, and FAS expression, leading to acceleration of the cell cycle progress and inhibition of cell apoptosis. BART5-3p contributes to the resistance to chemotherapeutic drugs and ionizing irradiation-induced p53 increase. Moreover, BART5-3p also facilitates degradation of p53 proteins. BART5-3p is the first EBV-microRNA to be identified as inhibiting p53 expression and function, which suggests a novel mechanism underlying the strategies employed by EBV to maintain latent infection and promote the development of EBV-associated carcinomas.IMPORTANCE EBV encodes 44 mature microRNAs, which have been proven to promote EBV-associated diseases by targeting host genes and self-viral genes. In EBV-associated carcinomas, the expression of viral protein is limited but the expression of BART microRNAs is extremely high, suggesting that they could be major factors in the contribution of EBV-associated tumorigenesis. p53 is a critical tumor suppressor. Unlike in most human solid tumors, TP53 mutations are rare in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues, suggesting a possibility that some EBV-encoded products suppress the functions of p53. This study provides the first evidence that a BART microRNA can suppress p53 expression by directly targeting its 3'-UTR. This study implies that EBV can use its BART microRNAs to modulate the expression of p53, thus maintaining its latency and contributing to tumorigenesis.
Collapse
Affiliation(s)
- Xiang Zheng
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, School of Medicine, University of South China, Hengyang, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jia Wang
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Lingyu Wei
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiu Peng
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Yingxue Gao
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Yuxin Fu
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Yuanjun Lu
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Zailong Qin
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Xuemei Zhang
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Jianhong Lu
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Chunlin Ou
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Zhengshuo Li
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyue Zhang
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Peishan Liu
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Qun Yan
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
| | - Jian Ma
- Xiangya Hospital, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Abstract
Viral DNA genomes have limited coding capacity and therefore harness cellular factors to facilitate replication of their genomes and generate progeny virions. Studies of viruses and how they interact with cellular processes have historically provided seminal insights into basic biology and disease mechanisms. The replicative life cycles of many DNA viruses have been shown to engage components of the host DNA damage and repair machinery. Viruses have evolved numerous strategies to navigate the cellular DNA damage response. By hijacking and manipulating cellular replication and repair processes, DNA viruses can selectively harness or abrogate distinct components of the cellular machinery to complete their life cycles. Here, we highlight consequences for viral replication and host genome integrity during the dynamic interactions between virus and host.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104;
| | - Amélie Fradet-Turcotte
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Québec G1V 0A6, Canada; .,CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Québec G1R 2J6, Canada
| |
Collapse
|
29
|
A Screen for Epstein-Barr Virus Proteins That Inhibit the DNA Damage Response Reveals a Novel Histone Binding Protein. J Virol 2018; 92:JVI.00262-18. [PMID: 29743367 DOI: 10.1128/jvi.00262-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
To replicate and persist in human cells, linear double-stranded DNA (dsDNA) viruses, such as Epstein-Barr virus (EBV), must overcome the host DNA damage response (DDR) that is triggered by the viral genomes. Since this response is necessary to maintain cellular genome integrity, its inhibition by EBV is likely an important factor in the development of cancers associated with EBV infection, including gastric carcinoma. Here we present the first extensive screen of EBV proteins that inhibit dsDNA break signaling. We identify the BKRF4 tegument protein as a DDR inhibitor that interferes with histone ubiquitylation at dsDNA breaks and recruitment of the RNF168 histone ubiquitin ligase. We further show that BKRF4 binds directly to histones through an acidic domain that targets BKRF4 to cellular chromatin and is sufficient to inhibit dsDNA break signaling. BKRF4 transcripts were detected in EBV-positive gastric carcinoma cells (AGS-EBV), and these increased in lytic infection. Silencing of BKRF4 in both latent and lytic AGS-EBV cells (but not in EBV-negative AGS cells) resulted in increased dsDNA break signaling, confirming a role for BKRF4 in DDR inhibition in the context of EBV infection and suggesting that BKRF4 is expressed in latent cells. BKRF4 was also found to be consistently expressed in EBV-positive gastric tumors in the absence of a full lytic infection. The results suggest that BKRF4 plays a role in inhibiting the cellular DDR in latent and lytic EBV infection and that the resulting accumulation of DNA damage might contribute to development of gastric carcinoma.IMPORTANCE Epstein-Barr virus (EBV) infects most people worldwide and is causatively associated with several types of cancer, including ∼10% of gastric carcinomas. EBV encodes ∼80 proteins, many of which are believed to manipulate cellular regulatory pathways but are poorly characterized. The DNA damage response (DDR) is one such pathway that is critical for maintaining genome integrity and preventing cancer-associated mutations. In this study, a screen for EBV proteins that inhibit the DDR identified BKRF4 as a DDR inhibitor that binds histones and blocks their ubiquitylation at the DNA damage sites. We also present evidence that BKRF4 is expressed in both latent and lytic forms of EBV infection, where it downregulates the DDR, as well as in EBV-positive gastric tumors. The results suggest that BKRF4 could contribute to the development of gastric carcinoma through its ability to inhibit the DDR.
Collapse
|
30
|
Giunco S, Petrara MR, Zangrossi M, Celeghin A, De Rossi A. Extra-telomeric functions of telomerase in the pathogenesis of Epstein-Barr virus-driven B-cell malignancies and potential therapeutic implications. Infect Agent Cancer 2018; 13:14. [PMID: 29643934 PMCID: PMC5892012 DOI: 10.1186/s13027-018-0186-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus causally linked to a broad spectrum of both lymphoid and epithelial malignancies. In order to maintain its persistence in host cells and promote tumorigenesis, EBV must restrict its lytic cycle, which would ultimately lead to cell death, selectively express latent viral proteins, and establish an unlimited proliferative potential. The latter step depends on the maintenance of telomere length provided by telomerase. The viral oncoprotein LMP-1 activates TERT, the catalytic component of telomerase. In addition to its canonical role in stabilizing telomeres, TERT may promote EBV-driven tumorigenesis through extra-telomeric functions. TERT contributes toward preserving EBV latency; in fact, through the NOTCH2/BATF pathway, TERT negatively affects the expression of BZLF1, the master regulator of the EBV lytic cycle. In contrast, TERT inhibition triggers a complete EBV lytic cycle, leading to the death of EBV-infected cells. Interestingly, short-term TERT inhibition causes cell cycle arrest and apoptosis, partly by inducing telomere-independent activation of the ATM/ATR/TP53 pathway. Importantly, TERT inhibition also sensitizes EBV-positive tumor cells to antiviral therapy and enhances the pro-apoptotic effects of chemotherapeutic agents. We provide here an overview on how the extra-telomeric functions of TERT contribute to EBV-driven tumorigenesis. We also discuss the potential therapeutic approach of TERT inhibition in EBV-driven malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- 1Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy
| | - Maria Raffaella Petrara
- 2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Manuela Zangrossi
- 2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Andrea Celeghin
- 2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| | - Anita De Rossi
- 1Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy.,2Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Padova, Italy
| |
Collapse
|
31
|
Pancholi NJ, Price AM, Weitzman MD. Take your PIKK: tumour viruses and DNA damage response pathways. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0269. [PMID: 28893936 DOI: 10.1098/rstb.2016.0269] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Viruses regulate cellular processes to facilitate viral replication. Manipulation of nuclear proteins and pathways by nuclear replicating viruses often causes cellular genome instability that contributes to transformation. The cellular DNA damage response (DDR) safeguards the host to maintain genome integrity, but DNA tumour viruses can manipulate the DDR to promote viral propagation. In this review, we describe the interactions of DNA tumour viruses with the phosphatidylinositol 3-kinase-like protein kinase (PIKK) pathways, which are central regulatory arms of the DDR. We review how signalling through the ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3 related (ATR), and DNA-dependent protein kinases (DNA-PK) influences viral life cycles, and how their manipulation by viral proteins may contribute to tumour formation.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Neha J Pancholi
- Division of Cancer Pathobiology and Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Cell and Molecular Biology Graduate Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander M Price
- Division of Cancer Pathobiology and Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew D Weitzman
- Division of Cancer Pathobiology and Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA .,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Yin H, Jiang M, Peng X, Cui H, Zhou Y, He M, Zuo Z, Ouyang P, Fan J, Fang J. The molecular mechanism of G2M cell cycle arrest induced by AFB1 in the jejunum. Oncotarget 2018; 7:35592-35606. [PMID: 27232757 PMCID: PMC5094947 DOI: 10.18632/oncotarget.9594] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) has potent hepatotoxic, carcinogenic, genotoxic, immunotoxic and other adverse effects in human and animals. The aim of this study was to investigate the molecular mechanism of G2/M cell cycle arrest induced by AFB1 in the jejunum of broilers. Broilers, as experimental animals, were fed 0.6 mg/kg AFB1 diet for 3 weeks. Our results showed that AFB1 reduced the jejunal villus height, villus height/crypt ratio and caused G2/M cell cycle arrest. The G2/M cell cycle was accompanied by the increase of ataxia telangiectasia mutated (ATM), p53, Chk2, p21 protein and mRNA expression, and the decrease of Mdm2, cdc25C, cdc2, cyclin B and proliferating cell nuclear antigen protein and mRNA expression. In conclusion, AFB1 blocked G2/M cell cycle by ATM pathway in the jejunum of broilers.
Collapse
Affiliation(s)
- Heng Yin
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China
| | - Min Jiang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yi Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Min He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Junde Fan
- College of Biological and Agro-Forestry Engineering, Tongren University, Tongren, Guizhou, PR China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
33
|
Induction of DNA Damages upon Marek's Disease Virus Infection: Implication in Viral Replication and Pathogenesis. J Virol 2017; 91:JVI.01658-17. [PMID: 28978699 DOI: 10.1128/jvi.01658-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that infects chickens and causes a deadly neoplastic disease. We previously demonstrated that MDV infection arrests cells in S phase and that the tegument protein VP22 plays a major role in this process. In addition, expression of VP22 induces double-strand breaks (DSBs) in the cellular DNA, suggesting that DNA damage and the associated cellular response might be favorable for the MDV life cycle. Here, we addressed the role of DNA damage in MDV replication and pathogenesis. We demonstrated that MDV induces DSBs during lytic infection in vitro and in the peripheral blood mononuclear cells of infected animals. Intriguingly, we did not observe DNA damage in latently infected MDV-induced lymphoblastoid cells, while MDV reactivation resulted in the onset of DNA lesions, suggesting that DNA damage and/or the resulting DNA damage response might be required for efficient MDV replication and reactivation. In addition, reactivation was significantly enhanced by the induction of DNA damage using a number of chemicals. Finally, we used recombinant viruses to show that VP22 is required for the induction of DNA damage in vivo and that this likely contributes to viral oncogenesis.IMPORTANCE Marek's disease virus is an oncogenic alphaherpesvirus that causes fatal T-cell lymphomas in chickens. MDV causes substantial losses in the poultry industry and is also used in small-animal models for virus-induced tumor formation. DNA damage not only is implicated in tumor development but also aids in the life cycle of several viruses; however, its role in MDV replication, latency, and reactivation remains elusive. Here, we demonstrate that MDV induces DNA lesions during lytic replication in vitro and in vivo DNA damage was not observed in latently infected cells; however, it was reinitiated during reactivation. Reactivation was significantly enhanced by the induction of DNA damage. Recombinant viruses that lacked the ability to induce DNA damage were defective in their ability to induce tumors, suggesting that DNA damage might also contribute to cellular transformation processes leading to MDV lymphomagenesis.
Collapse
|
34
|
Hau PM, Tsao SW. Epstein-Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle. Viruses 2017; 9:v9110341. [PMID: 29144413 PMCID: PMC5707548 DOI: 10.3390/v9110341] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a ubiquitous virus that infects most of the human population. EBV infection is associated with multiple human cancers, including Burkitt’s lymphoma, Hodgkin’s lymphoma, a subset of gastric carcinomas, and almost all undifferentiated non-keratinizing nasopharyngeal carcinoma. Intensive research has shown that EBV triggers a DNA damage response (DDR) during primary infection and lytic reactivation. The EBV-encoded viral proteins have been implicated in deregulating the DDR signaling pathways. The consequences of DDR inactivation lead to genomic instability and promote cellular transformation. This review summarizes the current understanding of the relationship between EBV infection and the DDR transducers, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase), and discusses how EBV manipulates the DDR signaling pathways to complete the replication process of viral DNA during lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Sai Wah Tsao
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
Hollingworth R, Horniblow RD, Forrest C, Stewart GS, Grand RJ. Localization of Double-Strand Break Repair Proteins to Viral Replication Compartments following Lytic Reactivation of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2017; 91:e00930-17. [PMID: 28855246 PMCID: PMC5660498 DOI: 10.1128/jvi.00930-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Double-strand breaks (DSBs) in DNA are recognized by the Ku70/80 heterodimer and the MRE11-RAD50-NBS1 (MRN) complex and result in activation of the DNA-PK and ATM kinases, which play key roles in regulating the cellular DNA damage response (DDR). DNA tumor viruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) are known to interact extensively with the DDR during the course of their replicative cycles. Here we show that during lytic amplification of KSHV DNA, the Ku70/80 heterodimer and the MRN complex consistently colocalize with viral genomes in replication compartments (RCs), whereas other DSB repair proteins form foci outside RCs. Depletion of MRE11 and abrogation of its exonuclease activity negatively impact viral replication, while in contrast, knockdown of Ku80 and inhibition of the DNA-PK enzyme, which are involved in nonhomologous end joining (NHEJ) repair, enhance amplification of viral DNA. Although the recruitment of DSB-sensing proteins to KSHV RCs is a consistent occurrence across multiple cell types, activation of the ATM-CHK2 pathway during viral replication is a cell line-specific event, indicating that recognition of viral DNA by the DDR does not necessarily result in activation of downstream signaling pathways. We have also observed that newly replicated viral DNA is not associated with cellular histones. Since the presence and modification of these DNA-packaging proteins provide a scaffold for docking of multiple DNA repair factors, the absence of histone deposition may allow the virus to evade localization of DSB repair proteins that would otherwise have a detrimental effect on viral replication.IMPORTANCE Tumor viruses are known to interact with machinery responsible for detection and repair of double-strand breaks (DSBs) in DNA, although detail concerning how Kaposi's sarcoma-associated herpesvirus (KSHV) modulates these cellular pathways during its lytic replication phase was previously lacking. By undertaking a comprehensive assessment of the localization of DSB repair proteins during KSHV replication, we have determined that a DNA damage response (DDR) is directed to viral genomes but is distinct from the response to cellular DNA damage. We also demonstrate that although recruitment of the MRE11-RAD50-NBS1 (MRN) DSB-sensing complex to viral genomes and activation of the ATM kinase can promote KSHV replication, proteins involved in nonhomologous end joining (NHEJ) repair restrict amplification of viral DNA. Overall, this study extends our understanding of the virus-host interactions that occur during lytic replication of KSHV and provides a deeper insight into how the DDR is manipulated during viral infection.
Collapse
Affiliation(s)
- Robert Hollingworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Richard D Horniblow
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Calum Forrest
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Roger J Grand
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
36
|
Dyson OF, Pagano JS, Whitehurst CB. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1. J Virol 2017; 91:JVI.00600-17. [PMID: 28724765 PMCID: PMC5599766 DOI: 10.1128/jvi.00600-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication.IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production.
Collapse
Affiliation(s)
- Ossie F Dyson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph S Pagano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher B Whitehurst
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Sui X, Zhang C, Zhou J, Cao S, Xu C, Tang F, Zhi X, Chen B, Wang S, Yin L. Resveratrol inhibits Extranodal NK/T cell lymphoma through activation of DNA damage response pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:133. [PMID: 28950914 PMCID: PMC5615630 DOI: 10.1186/s13046-017-0601-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
Background Extranodal NK/T cell lymphoma (NKTCL) is a highly aggressive non-Hodgkin lymphoma with poor prognosis. Resveratrol (RSV, 3,5,4′-trihydroxystilbene), a natural nontoxic phenolic compound found in the skin of grapes and some other spermatophytes, performs multiple bioactivities, such as antioxidant activity, anti-aging activity, reduction of cardiovascular disease risk and anticarcinogenic effect. Here we report the anti-tumor effect of RSV in NKTCL cell lines SNT-8, SNK-10 and SNT-16. Results RSV inhibited NKTCL cell proliferation in a dose- and time-dependent manner and arrested cell cycle at S phase. It induced NKTCL cells apoptosis through mitochondrial pathway, shown as down-regulation of MCl-1 and survivin, up-regulation of Bax and Bad, and activation of caspase-9 and caspase-3. In addition, we found that RSV suppressed the phosphorylation level of AKT and Stat3, and activated DNA damage response (DDR) pathway directly or through up-regulation of Zta of Epstein-Barr virus (EBV). Furthermore, using KU55933 as the inhibitor of pATM, we verified that DDR played an important role in RSV inducing NKTCL apoptosis. RSV also showed synergistic effect on activating DDR pathway in combination with etoposide or ionizing radiation, which resulted in cell proliferation inhibition and apoptosis. Conclusions Our results provide in vitro evidence that RSV produces anti-tumor effect by activating DDR pathway in an ATM/Chk2/p53 dependent manner. So we suggest that RSV may be worthy for further study as an anti-tumor drug for NKTCL treatment. Electronic supplementary material The online version of this article (10.1186/s13046-017-0601-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianxian Sui
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Canjing Zhang
- The Institution of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianan Zhou
- Department of Hematology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengxuan Cao
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Tang
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences, Fudan University, 131 Dongan Rd, Shanghai, 200032, China
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songmei Wang
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences, Fudan University, 131 Dongan Rd, Shanghai, 200032, China.
| | - Lianhua Yin
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China. .,Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences, Fudan University, 131 Dongan Rd, Shanghai, 200032, China.
| |
Collapse
|
38
|
DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3179421. [PMID: 28740569 PMCID: PMC5504953 DOI: 10.1155/2017/3179421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/01/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV), hepatitis B virus (HBV), and Epstein-Barr virus (EBV). Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.
Collapse
|
39
|
Laukoter S, Rauschka H, Tröscher AR, Köck U, Saji E, Jellinger K, Lassmann H, Bauer J. Differences in T cell cytotoxicity and cell death mechanisms between progressive multifocal leukoencephalopathy, herpes simplex virus encephalitis and cytomegalovirus encephalitis. Acta Neuropathol 2017; 133:613-627. [PMID: 27817117 PMCID: PMC5348553 DOI: 10.1007/s00401-016-1642-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 12/29/2022]
Abstract
During the appearance of human immunodeficiency virus infection in the 1980 and the 1990s, progressive multifocal leukoencephalopathy (PML), a viral encephalitis induced by the JC virus, was the leading opportunistic brain infection. As a result of the use of modern immunomodulatory compounds such as Natalizumab and Rituximab, the number of patients with PML is once again increasing. Despite the presence of PML over decades, little is known regarding the mechanisms leading to death of infected cells and the role the immune system plays in this process. Here we compared the presence of inflammatory T cells and the targeting of infected cells by cytotoxic T cells in PML, herpes simplex virus encephalitis (HSVE) and cytomegalovirus encephalitis (CMVE). In addition, we analyzed cell death mechanisms in infected cells in these encephalitides. Our results show that large numbers of inflammatory cytotoxic T cells are present in PML lesions. Whereas in HSVE and CMVE, single or multiple appositions of CD8+ or granzyme-B+ T cells to infected cells are found, in PML such appositions are significantly less apparent. Analysis of apoptotic pathways by markers such as activated caspase-3, caspase-6, poly(ADP-ribose) polymerase-1 (PARP-1) and apoptosis-inducing factor (AIF) showed upregulation of caspase-3 and loss of caspase-6 from mitochondria in CMVE and HSVE infected cells. Infected oligodendrocytes in PML did not upregulate activated caspase-3 but instead showed translocation of PARP-1 from nucleus to cytoplasm and AIF from mitochondria to nucleus. These findings suggest that in HSVE and CMVE, cells die by caspase-mediated apoptosis induced by cytotoxic T cells. In PML, on the other hand, infected cells are not eliminated by the immune system but seem to die by virus-induced PARP and AIF translocation in a type of cell death defined as parthanatos.
Collapse
|
40
|
Li X, Burton EM, Bhaduri-McIntosh S. Chloroquine triggers Epstein-Barr virus replication through phosphorylation of KAP1/TRIM28 in Burkitt lymphoma cells. PLoS Pathog 2017; 13:e1006249. [PMID: 28249048 PMCID: PMC5348047 DOI: 10.1371/journal.ppat.1006249] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/13/2017] [Accepted: 02/17/2017] [Indexed: 01/09/2023] Open
Abstract
Trials to reintroduce chloroquine into regions of Africa where P. falciparum has regained susceptibility to chloroquine are underway. However, there are long-standing concerns about whether chloroquine increases lytic-replication of Epstein-Barr virus (EBV), thereby contributing to the development of endemic Burkitt lymphoma. We report that chloroquine indeed drives EBV replication by linking the DNA repair machinery to chromatin remodeling-mediated transcriptional repression. Specifically, chloroquine utilizes ataxia telangiectasia mutated (ATM) to phosphorylate the universal transcriptional corepressor Krüppel-associated Box-associated protein 1/tripartite motif-containing protein 28 (KAP1/TRIM28) at serine 824 -a mechanism that typically facilitates repair of double-strand breaks in heterochromatin, to instead activate EBV. Notably, activation of ATM occurs in the absence of detectable DNA damage. These findings i) clarify chloroquine's effect on EBV replication, ii) should energize field investigations into the connection between chloroquine and endemic Burkitt lymphoma and iii) provide a unique context in which ATM modifies KAP1 to regulate persistence of a herpesvirus in humans.
Collapse
Affiliation(s)
- Xiaofan Li
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, NY, United States of America
| | - Eric M. Burton
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States of America
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, NY, United States of America
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
41
|
Poorebrahim M, Salarian A, Najafi S, Abazari MF, Aleagha MN, Dadras MN, Jazayeri SM, Ataei A, Poortahmasebi V. Regulatory network analysis of Epstein-Barr virus identifies functional modules and hub genes involved in infectious mononucleosis. Arch Virol 2017; 162:1299-1309. [PMID: 28155194 DOI: 10.1007/s00705-017-3242-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis (IM) and establishes lifetime infection associated with a variety of cancers and autoimmune diseases. The aim of this study was to develop an integrative gene regulatory network (GRN) approach and overlying gene expression data to identify the representative subnetworks for IM and EBV latent infection (LI). After identifying differentially expressed genes (DEGs) in both IM and LI gene expression profiles, functional annotations were applied using gene ontology (GO) and BiNGO tools, and construction of GRNs, topological analysis and identification of modules were carried out using several plugins of Cytoscape. In parallel, a human-EBV GRN was generated using the Hu-Vir database for further analyses. Our analysis revealed that the majority of DEGs in both IM and LI were involved in cell-cycle and DNA repair processes. However, these genes showed a significant negative correlation in the IM and LI states. Furthermore, cyclin-dependent kinase 2 (CDK2) - a hub gene with the highest centrality score - appeared to be the key player in cell cycle regulation in IM disease. The most significant functional modules in the IM and LI states were involved in the regulation of the cell cycle and apoptosis, respectively. Human-EBV network analysis revealed several direct targets of EBV proteins during IM disease. Our study provides an important first report on the response to IM/LI EBV infection in humans. An important aspect of our data was the upregulation of genes associated with cell cycle progression and proliferation.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Salarian
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Najafi
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Foad Abazari
- Department of Genetics, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Maryam Nouri Aleagha
- Department of Genetics, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mohammad Nasr Dadras
- Center for Disease Control, Ministry of Health and Medical Education (MOHME), Tehran, Iran
| | - Seyed Mohammad Jazayeri
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, PO Box 15155-6446, Tehran, Iran
| | - Atousa Ataei
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Vahdat Poortahmasebi
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, PO Box 15155-6446, Tehran, Iran.
| |
Collapse
|
42
|
Krause CJ, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget 2016; 7:10414-32. [PMID: 26871287 PMCID: PMC4891129 DOI: 10.18632/oncotarget.7248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded chemokine receptor vGPCR acts as an oncogene in Kaposi's sarcomagenesis. Until now, the molecular mechanisms by which the vGPCR contributes to tumor development remain incompletely understood. Here, we show that the KSHV-vGPCR contributes to tumor progression through microRNA (miR)-34a-mediated induction of genomic instability. Large-scale analyses on the DNA, gene and protein level of cell lines derived from a mouse model of vGPCR-driven tumorigenesis revealed that a vGPCR–induced upregulation of miR-34a resulted in a broad suppression of genome maintenance genes. A knockdown of either the vGPCR or miR-34a largely restored the expression of these genes and confirmed miR-34a as a downstream effector of the KSHV-vGPCR that compromises genome maintenance mechanisms. This novel, protumorigenic role of miR-34a questions the use of miR-34a mimetics in cancer therapy as they could impair genome stability.
Collapse
Affiliation(s)
- Claudia J Krause
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Oliver Popp
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nanthakumar Thirunarayanan
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Martin Lipp
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gerd Müller
- Molecular Tumor Genetics and Immunogenetics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
43
|
Auburn H, Zuckerman M, Smith M. Analysis of Epstein-Barr virus and cellular gene expression during the early phases of Epstein-Barr virus lytic induction. J Med Microbiol 2016; 65:1243-1252. [PMID: 27625030 DOI: 10.1099/jmm.0.000352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In order to develop novel host/pathogen real-time PCR assays for routine diagnostic use, early gene expression patterns from both Epstein-Barr virus (EBV) and Raji cells were examined after inducing the lytic life cycle using 12-O-tetradecanoyl-13-phorbol ester and sodium butyrate. Real-time PCR identified several highly induced (>90-fold) EBV lytic genes over a 48 h time course during the lytic induction phase. Latent genes were induced at low levels during this phase. The cellular response to lytic viral replication is poorly understood. Whole human genome microarray analysis identified 113 cellular genes regulated twofold or more by EBV, including 63 upregulated and 46 downregulated genes, over a 24 h time course post-induction. The most upregulated gene was CHI3L1, a chitinase-3-like 1 protein (18.1-fold; P<0.0084), and the most downregulated gene was TYMS, a thymidylate synthetase (-7.6-fold). Gene Ontology enrichment analysis using MetaCore software revealed cell cycle (core), cell cycle (role of anaphase-promoting complex) in cell cycle regulation) and lymphatic diseases as the most significantly represented biological network processes, canonical pathways and disease biomarkers, respectively. Chemotaxis, DNA damage and inflammation (IL-4 signalling) together with lymphoproliferative disorders and non-Hodgkin's lymphoma were significantly represented biological processes and disease biomarkers.
Collapse
Affiliation(s)
- Helen Auburn
- Department of Virology, South London Specialist Virology Centre, King's College NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Mark Zuckerman
- Department of Virology, South London Specialist Virology Centre, King's College NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Melvyn Smith
- Department of Virology, South London Specialist Virology Centre, King's College NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
44
|
Cai W, Yang H. The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions. Cell Div 2016; 11:7. [PMID: 27222660 PMCID: PMC4878042 DOI: 10.1186/s13008-016-0020-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Cullin-RING E3 ubiquitin ligase complexes play a central role in targeting cellular proteins for ubiquitination-dependent protein turnover through 26S proteasome. Cullin-2 is a member of the Cullin family, and it serves as a scaffold protein for Elongin B and C, Rbx1 and various substrate recognition receptors to form E3 ubiquitin ligases. Main body of the abstract First, the composition, structure and the regulation of Cullin-2 based E3 ubiquitin ligases were introduced. Then the targets, the biological functions of complexes that use VHL, Lrr-1, Fem1b, Prame, Zyg-11, BAF250, Rack1 as substrate targeting subunits were described, and their involvement in diseases was discussed. A small molecule inhibitor of Cullins as a potential anti-cancer drug was introduced. Furthermore, proteins with VHL box that might bind to Cullin-2 were described. Finally, how different viral proteins form E3 ubiquitin ligase complexes with Cullin-2 to counter host viral defense were explained. Conclusions Cullin-2 based E3 ubiquitin ligases, using many different substrate recognition receptors, recognize a number of substrates and regulate their protein stability. These complexes play critical roles in biological processes and diseases such as cancer, germline differentiation and viral defense. Through the better understanding of their biology, we can devise and develop new therapeutic strategies to treat cancers, inherited diseases and viral infections.
Collapse
Affiliation(s)
- Weijia Cai
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Haifeng Yang
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
45
|
The Adenovirus E4orf4 Protein Provides a Novel Mechanism for Inhibition of the DNA Damage Response. PLoS Pathog 2016; 12:e1005420. [PMID: 26867009 PMCID: PMC4750969 DOI: 10.1371/journal.ppat.1005420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition by E4orf4 contributes both to the efficiency of adenovirus replication and to the ability of E4orf4 to kill cancer cells.
Collapse
|
46
|
Botting C, Lu X, Triezenberg SJ. H2AX phosphorylation and DNA damage kinase activity are dispensable for herpes simplex virus replication. Virol J 2016; 13:15. [PMID: 26817608 PMCID: PMC4728825 DOI: 10.1186/s12985-016-0470-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/19/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Herpes simplex virus type 1 (HSV-1) can establish both lytic and latent infections in humans. The phosphorylation of histone H2AX, a common marker of DNA damage, during lytic infection by HSV-1 is well established. However, the role(s) of H2AX phosphorylation in lytic infection remain unclear. METHODS Following infection of human foreskin fibroblasts by HSV-1 or HSV-2, we assayed the phosphorylation of H2AX in the presence of inhibitors of transcription, translation, or viral DNA replication, or in the presence of inhibitors of ATM and ATR kinases (KU-55933 and VE-821, respectively). We also assayed viral replication in fibroblasts in the presence of the kinase inhibitors or siRNAs specific for ATM and ATR, as well as in cell lines deficient for either ATR or ATM. RESULTS The expression of viral immediate-early and early proteins (including the viral DNA polymerase), but not viral DNA replication or late protein expression, were required for H2AX phosphorylation following HSV-1 infection. Inhibition of ATM kinase activity prevented HSV-stimulated H2AX phosphorylation but had only a minor effect on DNA replication and virus yield in HFF cells. These results differ from previous reports of a dramatic reduction in viral yield following chemical inhibition of ATM in oral keratinocytes or following infection of ATM(-/-) cells. Inhibition of the closely related kinase ATR (whether by chemical inhibitor or siRNA disruption) had no effect on H2AX phosphorylation and reduced viral DNA replication only moderately. During infection by HSV-2, H2AX phosphorylation was similarly dispensable but was dependent on both ATM activity and viral DNA replication. CONCLUSION H2AX phosphorylation represents a cell type-specific and virus type-specific host response to HSV infection with little impact on viral infection.
Collapse
Affiliation(s)
- Carolyn Botting
- Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| | - Xu Lu
- Department of Biology, University of Findlay, 1000 N Main St, Findlay, OH, 45840, USA.
| | - Steven J Triezenberg
- Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
47
|
Identification of Novel Small Organic Compounds with Diverse Structures for the Induction of Epstein-Barr Virus (EBV) Lytic Cycle in EBV-Positive Epithelial Malignancies. PLoS One 2015; 10:e0145994. [PMID: 26717578 PMCID: PMC4696655 DOI: 10.1371/journal.pone.0145994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/19/2015] [Indexed: 11/20/2022] Open
Abstract
Phorbol esters, which are protein kinase C (PKC) activators, and histone deacetylase (HDAC) inhibitors, which cause enhanced acetylation of cellular proteins, are the main classes of chemical inducers of Epstein-Barr virus (EBV) lytic cycle in latently EBV-infected cells acting through the PKC pathway. Chemical inducers which induce EBV lytic cycle through alternative cellular pathways may aid in defining the mechanisms leading to lytic cycle reactivation and improve cells' responsiveness towards lytic induction. We performed a phenotypic screening on a chemical library of 50,240 novel small organic compounds to identify novel class(es) of strong inducer(s) of EBV lytic cycle in gastric carcinoma (GC) and nasopharyngeal carcinoma (NPC) cells. Five hit compounds were selected after three successive rounds of increasingly stringent screening. All five compounds are structurally diverse from each other and distinct from phorbol esters or HDAC inhibitors. They neither cause hyperacetylation of histone proteins nor significant PKC activation at their working concentrations, suggesting that their biological mode of action are distinct from that of the known chemical inducers. Two of the five compounds with rapid lytic-inducing action were further studied for their mechanisms of induction of EBV lytic cycle. Unlike HDAC inhibitors, lytic induction by both compounds was not inhibited by rottlerin, a specific inhibitor of PKCδ. Interestingly, both compounds could cooperate with HDAC inhibitors to enhance EBV lytic cycle induction in EBV-positive epithelial cancer cells, paving way for the development of strategies to increase cells' responsiveness towards lytic reactivation. One of the two compounds bears structural resemblance to iron chelators and the other strongly activates the MAPK pathways. These structurally diverse novel organic compounds may represent potential new classes of chemicals that can be used to investigate any alternative mechanism(s) leading to EBV lytic cycle reactivation from latency.
Collapse
|
48
|
Infection of a Single Cell Line with Distinct Strains of Human Cytomegalovirus Can Result in Large Variations in Virion Production and Facilitate Efficient Screening of Virus Protein Function. J Virol 2015; 90:2523-35. [PMID: 26676783 DOI: 10.1128/jvi.01762-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Previously, we reported that the absence of the ataxia telangiectasia mutated (ATM) kinase, a critical DNA damage response (DDR) signaling component for double-strand breaks, caused no change in HCMV Towne virion production. Later, others reported decreased AD169 viral titers in the absence of ATM. To address this discrepancy, human foreskin fibroblasts (HFF) and three ATM(-) lines (GM02530, GM05823, and GM03395) were infected with both Towne and AD169. Two additional ATM(-) lines (GM02052 and GM03487) were infected with Towne. Remarkably, both previous studies' results were confirmed. However, the increased number of cell lines and infections with both lab-adapted strains confirmed that ATM was not necessary to produce wild-type-level titers in fibroblasts. Instead, interactions between individual virus strains and the cellular microenvironment of the individual ATM(-) line determined efficiency of virion production. Surprisingly, these two commonly used lab-adapted strains produced drastically different titers in one ATM(-) cell line, GM05823. The differences in titer suggested a rapid method for identifying genes involved in differential virion production. In silico comparison of the Towne and AD169 genomes determined a list of 28 probable candidates responsible for the difference. Using serial iterations of an experiment involving virion entry and input genome nuclear trafficking with a panel of related strains, we reduced this list to four (UL129, UL145, UL147, and UL148). As a proof of principle, reintroduction of UL148 largely rescued genome trafficking. Therefore, use of a battery of related strains offers an efficient method to narrow lists of candidate genes affecting various virus life cycle checkpoints. IMPORTANCE Human cytomegalovirus (HCMV) infection of multiple cell lines lacking ataxia telangiectasia mutated (ATM) protein produced wild-type levels of infectious virus. Interactions between virus strains and the microenvironment of individual ATM(-) lines determined the efficiency of virion production. Infection of one ATM(-) cell line, GM05823, produced large titer differentials dependent on the strain used, Towne or AD169. This discrepancy resolved a disagreement in the literature of a requirement for ATM expression and HCMV reproduction. The titer differentials in GM08523 cells were due, in part, to a decreased capacity of AD169 virions to enter the cell and traffic genomes to the nucleus. In silico comparison of the Towne, AD169, and related variant strains' genomes was coupled with serial iterations of a virus entry experiment, narrowing 28 candidate proteins responsible for the phenotype down to 4. Reintroduction of UL148 significantly rescued genome trafficking. Differential behavior of virus strains can be exploited to elucidate gene function.
Collapse
|
49
|
Murine Gammaherpesvirus 68 LANA and SOX Homologs Counteract ATM-Driven p53 Activity during Lytic Viral Replication. J Virol 2015; 90:2571-85. [PMID: 26676792 DOI: 10.1128/jvi.02867-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Tumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function. IMPORTANCE Gammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine gammaherpesvirus 68 induces the activation of tumor suppressor p53. p53 activation was dependent on the DNA damage response kinase ataxia telangiectasia mutated. Although active early after infection, p53 became dominantly inhibited as the infection cycle progressed. Viral inhibition of p53 was mediated by the murine gammaherpesvirus 68 homologs of muSOX and mLANA. The inhibition of the p53 pathway enabled infected cells to evade p53-mediated cell death responses. These data demonstrate that a gammaherpesvirus encodes multiple proteins to limit p53-mediated responses to productive viral infection, which likely benefits acute viral replication and the establishment of chronic infection.
Collapse
|
50
|
Guo H, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B, Chen K, Deng J. Dietary NiCl₂ causes G₂/M cell cycle arrest in the broiler's kidney. Oncotarget 2015; 6:35964-77. [PMID: 26440151 PMCID: PMC4742154 DOI: 10.18632/oncotarget.5934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Here we showed that dietary NiCl2 in excess of 300 mg/kg caused the G2/M cell cycle arrest and the reduction of cell proportion at S phase. The G2/M cell cycle arrest was accompanied by up-regulation of phosphorylated ataxia telangiectasia mutated (p-ATM), p53, p-Chk1, p-Chk2, p21 protein expression and ATM, p53, p21, Chk1, Chk2 mRNA expression, and down-regulation of p-cdc25C, cdc2, cyclinB and proliferating cell nuclear antigen (PCNA) protein expression and the cdc25, cdc2, cyclinB, PCNA mRNA expression.
Collapse
Affiliation(s)
- Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | - Xun Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | - Bangyuan Wu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Kejie Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| | - Jie Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Ya'an, China
| |
Collapse
|