1
|
Lv J, Wu T, Xue J, Shen C, Gao W, Chen X, Guo Y, Liu M, Yu J, Huang X, Zheng B. ASB1 engages with ELOB to facilitate SQOR ubiquitination and H 2S homeostasis during spermiogenesis. Redox Biol 2025; 79:103484. [PMID: 39733518 PMCID: PMC11743861 DOI: 10.1016/j.redox.2024.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024] Open
Abstract
Male infertility, frequently driven by oxidative stress, impacts half of infertile couples globally. Despite its significance, the precise mechanisms governing this process remain elusive. In this study, we demonstrate that ASB1, the substrate recognition subunit of a ubiquitin ligase, is highly expressed in the mouse testis. Mice lacking the Asb1 gene exhibit severe fertility impairment, characterized by oligoasthenoteratozoospermia. Subsequent investigations unveiled that Asb1 knockout (Asb1-KO) mice encountered excessive oxidative stress and decreased hydrogen sulfide (H2S) levels in their testes, and severe sperm DNA damage. Notably, the compromised fertility and sperm quality in Asb1-KO mice was significantly ameliorated by administering NaHS, a H2S donor. Mechanistically, ASB1 interacts with ELOB to induce the instability of sulfide-quinone oxidoreductase (SQOR) by enhancing its K48-linked ubiquitination on residues K207 and K344, consequently triggering proteasomal degradation. This process is crucial for preserving H2S homeostasis and redox balance. Overall, our findings offer valuable insights into the role of ASB1 during spermiogenesis and propose H2S supplementation as a promising therapeutic approach for oxidative stress-related male infertility.
Collapse
Affiliation(s)
- Jinxing Lv
- Center for Reproduction, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, 215124, China.
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jiajia Xue
- Center for Reproduction, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, 215124, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xia Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
2
|
Maire K, Chamy L, Ghazali S, Carratala-Lasserre M, Zahm M, Bouisset C, Métais A, Combes-Soia L, de la Fuente-Vizuete L, Trad H, Chaubet A, Savignac M, Gonzalez de Peredo A, Subramaniam A, Joffre O, Lutz PG, Lamsoul I. Fine-tuning levels of filamins a and b as a specific mechanism sustaining Th2 lymphocyte functions. Nat Commun 2024; 15:10574. [PMID: 39639023 PMCID: PMC11621393 DOI: 10.1038/s41467-024-53768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Augmenting the portfolio of therapeutics for type 2-driven diseases is crucial to address unmet clinical needs and to design personalized treatment schemes. An attractive therapy for such diseases would consist in targeting the recruitment of T helper 2 (Th2) lymphocytes to inflammatory sites. Herein, we show the degradation of filamins (FLN) a and b by the ASB2α E3 ubiquitin ligase as a mechanism sustaining Th2 lymphocyte functions. Low levels of FLNa and FLNb confer an elongated shape to Th2 lymphocytes associated with efficient αVβ3 integrin-dependent cell migration. Genes encoding the αVβ3 integrin and ASB2α belong to the core of Th2-specific genes. Using genetically modified mice, we find that increasing the levels of FLNa and FLNb in Th2 lymphocytes reduces airway inflammation through diminished Th2 lymphocyte recruitment in inflamed lungs. Collectively, our results highlight ASB2α and its substrates FLNa and FLNb to alter Th2 lymphocyte-mediated responses.
Collapse
Affiliation(s)
- Kilian Maire
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Léa Chamy
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Samira Ghazali
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | | | - Margot Zahm
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Clément Bouisset
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Hussein Trad
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Adeline Chaubet
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Magali Savignac
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Subramaniam
- Sanofi Immunology and Inflammation Research Therapeutic Area, Cambridge, MA, USA
| | - Olivier Joffre
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Pierre G Lutz
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| | - Isabelle Lamsoul
- Infinity, University of Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| |
Collapse
|
3
|
Zhu M, Hwang J, Xu C. Meta-analysis identifies key genes and pathways implicated in Benzo[a]pyrene exposure response. CHEMOSPHERE 2024; 364:143121. [PMID: 39154768 PMCID: PMC11424241 DOI: 10.1016/j.chemosphere.2024.143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Benzo[a]pyrene (B[a]P) is a carcinogenic polycyclic aromatic hydrocarbon that poses significant risks to human health. B[a]P influences cellular processes via intricate interactions; however, a comprehensive understanding of B[a]P's effects on the transcriptome remains elusive. This study aimed to conduct a comprehensive analysis focused on identifying relevant genes and signaling pathways affected by B[a]P exposure and their impact on human gene expression. METHODS We searched the Gene Expression Omnibus database and identified four studies involving B[a]P exposure in human cells (T lymphocytes, hepatocellular carcinoma cells, and C3A cells). We utilized two approaches for differential expression analysis: the LIMMA package and linear regression. A meta-analysis was utilized to combine log fold changes (FC) and p-values from the identified studies using a random effects model. We identified significant genes at a Bonferroni-adjusted significance level of 0.05 and determined overlapping genes across datasets. Pathway enrichment analysis elucidated key cellular processes modulated by B[a]P exposure. RESULTS The meta-analysis revealed significant upregulation of CYP1B1 (log FC = 1.15, 95% CI: 0.51-1.79, P < 0.05, I2 = 82%) and ASB2 (log FC = 0.44, 95% CI: 0.20-0.67, P < 0.05, I2 = 40%) in response to B[a]P exposure. Pathway analyses identified 26 significantly regulated pathways, with the top including Aryl Hydrocarbon Receptor Signaling (P = 0.00214) and Xenobiotic Metabolism Signaling (P = 0.00550). Key genes CYP1A1, CYP1B1, and CDKN1A were implicated in multiple pathways, highlighting their roles in xenobiotic metabolism, oxidative stress response, and cell cycle regulation. CONCLUSION The results provided insights into the mechanisms of B[a]P toxicity, highlighting CYP1B1's key role in B[a]P bioactivation. The findings underscored the complexity of B[a]P's mechanisms of action and their potential implications for human health. The identified genes and pathways provided a foundation for further exploration and enhanced our understanding of the multifaceted biological activities associated with B[a]P exposure.
Collapse
Affiliation(s)
- Mingze Zhu
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK, 73104, USA
| | - Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK, 73104, USA; Department of Environmental & Occupational Health Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA; Southwest Center for Occupational and Environmental Health, University of Texas Health Science Center, Houston, TX, 77030, USA.
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
4
|
Gilbert CJ, Rabolli CP, Golubeva VA, Sattler KM, Wang M, Ketabforoush A, Arnold WD, Lepper C, Accornero F. YTHDF2 governs muscle size through a targeted modulation of proteostasis. Nat Commun 2024; 15:2176. [PMID: 38467649 PMCID: PMC10928198 DOI: 10.1038/s41467-024-46546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
The regulation of proteostasis is fundamental for maintenance of muscle mass and function. Activation of the TGF-β pathway drives wasting and premature aging by favoring the proteasomal degradation of structural muscle proteins. Yet, how this critical post-translational mechanism is kept in check to preserve muscle health remains unclear. Here, we reveal the molecular link between the post-transcriptional regulation of m6A-modified mRNA and the modulation of SMAD-dependent TGF-β signaling. We show that the m6A-binding protein YTHDF2 is essential to determining postnatal muscle size. Indeed, muscle-specific genetic deletion of YTHDF2 impairs skeletal muscle growth and abrogates the response to hypertrophic stimuli. We report that YTHDF2 controls the mRNA stability of the ubiquitin ligase ASB2 with consequences on anti-growth gene program activation through SMAD3. Our study identifies a post-transcriptional to post-translational mechanism for the coordination of gene expression in muscle.
Collapse
Affiliation(s)
- Christopher J Gilbert
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Charles P Rabolli
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Volha A Golubeva
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Meifang Wang
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - Arsh Ketabforoush
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Division of Neuromuscular Disorders, Department of Neurology, The Ohio State University, Columbus, OH, USA
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
| | - Christoph Lepper
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Qi A, Yan J, Yang Y, Tang J, Ru W, Jiang X, Lei C, Sun X, Chen H. SNP within the bovine ASB-3 gene and their association analysis with stature traits in three Chinese cattle breeds. Gene 2022; 838:146700. [PMID: 35772652 DOI: 10.1016/j.gene.2022.146700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
ASB-3 is one of the 18 members of ASB gene family. As a special negative regulation factor of TNF-R2, ASB-3 inhibits the signal transduction of JNK-TNF-R2 and JNK-STAT signaling pathway by TNF-R2 protein. In this study, the genetic polymorphisms of ASB-3 were detected in total of 637 from Qinchuan, Jinnan and Xianan cattle using the sequence of mixed DNA pool, Tetra-primer ARMS-PCR and PCR-RFLP methods. Four mutation sites were detected including the g.C41255T, g.G74754A, and g.T75438C were synonymous mutation, whereas the g.C115213T was missense mutation (Pro > Ser). The associated analysis of four polymorphic loci of ASB-3 gene respectively with growth traits in the three cattle breeds. The result showed that SNP1 site was significantly related with Qinchuan cattle height and TT was the dominant genotype; SNP2 had a significant relationship with body length of Xianan cattle and cross department height of Qinchuan cattle, AA was the dominant genotype; SNP3 was significantly related to cross height of Xianan cattle, TT was the dominant genotype; SNP4 site was significantly correlated with body height of Xianan cattle and cross height of Jinnan cattle. Genotype combinations were only significantly correlated with the hucklebone width in the adult Qinchuan cattle. The combination genotype CTAGCTCC was outperformed other combination genotypes of Qinchuan cattle. The results showed that ASB-3 could be an important candidate gene and the four SNPs in ASB-3 can be used for molecular marker-assisted selection of four beef cattle breeds.
Collapse
Affiliation(s)
- Ao Qi
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Jianyu Yan
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Yu Yang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Jia Tang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Wenxiu Ru
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Xiaojun Jiang
- Shaanxi Agricultural and Animal Husbandry Good Seed Farm, Fufeng, Shaanxi 722203, China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Xiuzhu Sun
- College of Grassland Agriculrure, Northwest A&F University, Shaanxi 712100, China.
| | - Hong Chen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
6
|
T cell subtype profiling measures exhaustion and predicts anti-PD-1 response. Sci Rep 2022; 12:1342. [PMID: 35079117 PMCID: PMC8789795 DOI: 10.1038/s41598-022-05474-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Anti-PD-1 therapy can provide long, durable benefit to a fraction of patients. The on-label PD-L1 test, however, does not accurately predict response. To build a better biomarker, we created a method called T Cell Subtype Profiling (TCSP) that characterizes the abundance of T cell subtypes (TCSs) in FFPE specimens using five RNA models. These TCS RNA models are created using functional methods, and robustly discriminate between naïve, activated, exhausted, effector memory, and central memory TCSs, without the reliance on non-specific, classical markers. TCSP is analytically valid and corroborates associations between TCSs and clinical outcomes. Multianalyte biomarkers based on TCS estimates predicted response to anti-PD-1 therapy in three different cancers and outperformed the indicated PD-L1 test, as well as Tumor Mutational Burden. Given the utility of TCSP, we investigated the abundance of TCSs in TCGA cancers and created a portal to enable researchers to discover other TCSP-based biomarkers.
Collapse
|
7
|
Sartori G, Napoli S, Cascione L, Chung EYL, Priebe V, Arribas AJ, Mensah AA, Dall'Angelo M, Falzarano C, Barnabei L, Forcato M, Rinaldi A, Bicciato S, Thome M, Bertoni F. ASB2 is a direct target of FLI1 that sustains NF-κB pathway activation in germinal center-derived diffuse large B-cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:357. [PMID: 34763718 PMCID: PMC8582153 DOI: 10.1186/s13046-021-02159-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) comprises at least two main biologically distinct entities: germinal center B-cell (GCB) and activated B-cell (ABC) subtype. Albeit sharing common lesions, GCB and ABC DLBCL present subtype-specific oncogenic pathway perturbations. ABC DLBCL is typically characterized by a constitutively active NF-kB. However, the latter is seen in also 30% of GCB DLBCL. Another recurrent lesion in DLBCL is an 11q24.3 gain, associated with the overexpression of two ETS transcription factors, ETS1 and FLI1. Here, we showed that FLI1 is more expressed in GCB than ABC DLBCL and we characterized its transcriptional network. Methods Gene expression data were obtained from public datasets GSE98588, phs001444.v2.p1, GSE95013 and GSE10846. ChIP-Seq for FLI1 paired with transcriptome analysis (RNA-Seq) after FLI1 silencing (siRNAs) was performed. Sequencing was carried out using the NextSeq 500 (Illumina). Detection of peaks was done using HOMER (v2.6); differential expressed genes were identified using moderated t-test (limma R-package) and functionally annotated with g:Profiler. ChIP-Seq and RNA-Seq data from GCB DLBCL cell lines after FLI1 downregulation were integrated to identify putative direct targets of FLI1. Results Analysis of clinical DLBCL specimens showed that FLI1 gene was more frequently expressed at higher levels in GCB than in ABC DLBCL and its protein levels were higher in GCB than in ABC DLBCL cell lines. Genes negatively regulated by FLI1 included tumor suppressor genes involved in negative regulation of cell cycle and hypoxia. Among positively regulated targets of FLI1, we found genes annotated for immune response, MYC targets, NF-κB and BCR signaling and NOTCH pathway genes. Of note, direct targets of FLI1 overlapped with genes regulated by ETS1, the other transcription factor gained at the 11q24.3 locus in DLBCL, suggesting a functional convergence within the ETS family. Positive targets of FLI1 included the NF-κB-associated ASB2, a putative essential gene for DLBCL cell survival. ASB2 gene downregulation was toxic in GCB DLBCL cell lines and induced NF-κB inhibition via downregulation of RelB and increased IκBα. Additionally, downregulation of FLI1, but not ASB2, caused reduction of NF-κB1 and RelA protein levels. Conclusions We conclude that FLI1 directly regulates a network of biologically crucial genes and processes in GCB DLBCL. FLI1 regulates both the classical NF-κB pathway at the transcriptional level, and the alternative NF-κB pathway, via ASB2. FLI1 and ASB2 inhibition represents a potential novel therapeutic approach for GCB DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02159-3.
Collapse
Affiliation(s)
- Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Elaine Yee Lin Chung
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Valdemar Priebe
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Alberto Jesus Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Afua Adjeiwaa Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Michela Dall'Angelo
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Computer Science, University of Verona, Verona, Italy
| | - Chiara Falzarano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Laura Barnabei
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland. .,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.
| |
Collapse
|
8
|
Park SG, Kim EK, Nam KH, Lee JG, Baek IJ, Lee BJ, Nam SY. Heart defects and embryonic lethality in Asb2 knock out mice correlate with placental defects. Cells Dev 2021; 165:203663. [PMID: 33993984 DOI: 10.1016/j.cdev.2021.203663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Asb2, ankyrin repeat, and SOCS box protein 2 form an E3 ubiquitin ligase complex. Asb2 ubiquitin ligase activity drives the degradation of filamins, which have essential functions in humans. The placenta is a temporary organ that forms during pregnancy, and normal placentation is important for survival and growth of the fetus. Recent studies have shown that approximately 25-30% of knockout (KO) mice have non-viable offspring, and 68% of knockout lines exhibit placental dysmorphologies. There are very few studies on Asb2, with insufficient research on its role in placental development. Therefore, we generated Asb2 knockout mice and undertook to investigate Asb2 expression during organogenesis, and to identify its role in early embryonic and placental development. The external morphology of KO embryos revealed abnormal phenotypes including growth retardation, pericardial effusion, pale color, and especially heart beat defect from E 9.5. Furthermore, Asb2 expression was observed in the heart from E 9.5, indicating that it is specifically expressed during early heart formation, resulting in embryonic lethality. Histological analysis of E 10.5 KO heart showed malformations such as failure of chamber formation, reduction in trabeculated myocardium length, absence of mesenchymal cells, and destruction of myocardium wall. Moreover, the histological results of Asb2-deficient placenta showed abnormal phenotypes including small labyrinth and reduced vascular complexity, indicating that failure to establish mature circulatory pattern affects the embryonic development and results in early mortality. Collectively, our results demonstrate that Asb2 knockout mice have placental defects, that subsequently result in failure to form a normal cardiac septum, and thereby result in embryo mortality in utero at around E 9.5.
Collapse
Affiliation(s)
- Seul Gi Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eun-Kyoung Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Republic of Korea
| | - Jong Geol Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Jun Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
9
|
Goodman CA, Davey JR, Hagg A, Parker BL, Gregorevic P. Dynamic Changes to the Skeletal Muscle Proteome and Ubiquitinome Induced by the E3 Ligase, ASB2β. Mol Cell Proteomics 2021; 20:100050. [PMID: 33516941 PMCID: PMC8042406 DOI: 10.1016/j.mcpro.2021.100050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Ubiquitination is a posttranslational protein modification that has been shown to have a range of effects, including regulation of protein function, interaction, localization, and degradation. We have previously shown that the muscle-specific ubiquitin E3 ligase, ASB2β, is downregulated in models of muscle growth and that overexpression ASB2β is sufficient to induce muscle atrophy. To gain insight into the effects of increased ASB2β expression on skeletal muscle mass and function, we used liquid chromatography coupled to tandem mass spectrometry to investigate ASB2β-mediated changes to the skeletal muscle proteome and ubiquitinome, via a parallel analysis of remnant diGly-modified peptides. The results show that viral vector-mediated ASB2β overexpression in murine muscles causes progressive muscle atrophy and impairment of force-producing capacity, while ASB2β knockdown induces mild muscle hypertrophy. ASB2β-induced muscle atrophy and dysfunction were associated with the early downregulation of mitochondrial and contractile protein abundance and the upregulation of proteins involved in proteasome-mediated protein degradation (including other E3 ligases), protein synthesis, and the cytoskeleton/sarcomere. The overexpression ASB2β also resulted in marked changes in protein ubiquitination; however, there was no simple relationship between changes in ubiquitination status and protein abundance. To investigate proteins that interact with ASB2β and, therefore, potential ASB2β targets, Flag-tagged wild-type ASB2β, and a mutant ASB2β lacking the C-terminal SOCS box domain (dSOCS) were immunoprecipitated from C2C12 myotubes and subjected to label-free proteomic analysis to determine the ASB2β interactome. ASB2β was found to interact with a range of cytoskeletal and nuclear proteins. When combined with the in vivo ubiquitinomic data, our studies have identified novel putative ASB2β target substrates that warrant further investigation. These findings provide novel insight into the complexity of proteome and ubiquitinome changes that occur during E3 ligase-mediated skeletal muscle atrophy and dysfunction.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Sunshine Hospital, The University of Melbourne, St Albans, Victoria, Australia
| | - Jonathan R Davey
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Adam Hagg
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin L Parker
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia.
| | - Paul Gregorevic
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
10
|
Lumpkin RJ, Ahmad AS, Blake R, Condon CJ, Komives EA. The Mechanism of NEDD8 Activation of CUL5 Ubiquitin E3 Ligases. Mol Cell Proteomics 2021; 20:100019. [PMID: 33268465 PMCID: PMC7950132 DOI: 10.1074/mcp.ra120.002414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Cullin RING E3 ligases (CRLs) ubiquitylate hundreds of important cellular substrates. Here we have assembled and purified the Ankyrin repeat and SOCS Box protein 9 CUL5 RBX2 ligase (ASB9-CRL) in vitro and show how it ubiquitylates one of its substrates, CKB. CRLs occasionally collaborate with RING between RING E3 ligases (RBRLs), and indeed, mass spectrometry analysis showed that CKB is specifically ubiquitylated by the ASB9-CRL-ARIH2-UBE2L3 complex. Addition of other E2s such as UBE2R1 or UBE2D2 contributes to polyubiquitylation but does not alter the sites of CKB ubiquitylation. Hydrogen–deuterium exchange mass spectrometry (HDX-MS) analysis revealed that CUL5 neddylation allosterically exposes its ARIH2 binding site, promoting high-affinity binding, and it also sequesters the NEDD8 E2 (UBE2F) binding site on RBX2. Once bound, ARIH2 helices near the Ariadne domain active site are exposed, presumably relieving its autoinhibition. These results allow us to propose a model of how neddylation activates ASB-CRLs to ubiquitylate their substrates. ARIH2 is required for ASB9CRL to polyubiquitylate 4/18 lysines on one creatine kinase subunit. HDX-MS reveals long-range allosteric opening of a cleft in CUL5 where the ARIH2 RBRL binds. HDX-MS reveals that neddylation of CUL5 alters the RBX2 conformation away from binding the E2∼NEDD8. HDX-MS reveals opening of the ARIH2 active site upon binding CUL5, thus releasing its autoinhibition.
Collapse
Affiliation(s)
- Ryan J Lumpkin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Alla S Ahmad
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Rachel Blake
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Christopher J Condon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
11
|
Li R, Chen C, He J, Zhang L, Zhang L, Guo Y, Zhang W, Tan K, Huang J. E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1α protein and degrading host IKKβ kinase. Virology 2019; 532:55-68. [DOI: 10.1016/j.virol.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
|
12
|
Wu W, Nie L, Zhang L, Li Y. The notch pathway promotes NF-κB activation through Asb2 in T cell acute lymphoblastic leukemia cells. Cell Mol Biol Lett 2018; 23:37. [PMID: 30116272 PMCID: PMC6085606 DOI: 10.1186/s11658-018-0102-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/27/2018] [Indexed: 01/19/2023] Open
Abstract
Background Oncogenic Notch1 is known to activate the NF-κB pathway in T cell acute lymphoblastic leukemia (T-ALL) and to up-regulate the transcription of Asb2α, a specificity factor for an E3 ubiquitin ligase complex that plays an important role in hematopoietic differentiation. Therefore, we hypothesize that Notch1 might regulate the NF-κB pathway through Asb2α. Methods The study involved down-regulation of Notch1 in T-ALL cell lines (CCRF-CEM cells and MOLT-4 cells) through treatment with gamma-secretase inhibitor (GSI) as well as the modulation of Asb2 in CCRF-CEM cells and MOLT-4 cells through transduction with lentivirus carrying Asb2 or Asb2-shRNA. Experiments using real-time PCR, western blot and co-immunoprecipitation were performed to evaluate the expression levels of related genes. Cell proliferation and apoptosis were measured while the expression of Asb2 was enhanced or inhibited. Results Here, we demonstrated for the first time that Notch1 can activate the transcription of Asb2α, which then stimulates activation of NF-κB in T-ALL cells. Asb2α exerts its effects by inducing degradation and dissociation of IκBα from NF-κB in T-ALL cells. Moreover, specific suppression of Asb2α expression can promote apoptosis and inhibit proliferation of T-ALL cells. Conclusion Notch1 modulates the NF-κB pathway through Asb2α, indicating that Asb2α inhibition is a promising option for targeted therapy against T-ALL.
Collapse
Affiliation(s)
- Wei Wu
- 1Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Li Nie
- 2Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Li Zhang
- 3Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| | - Yan Li
- 1Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060 People's Republic of China
| |
Collapse
|
13
|
Kunkler B, Salamango D, DeBruine ZJ, Ploch C, Dean S, Grossens D, Hledin MP, Marquez GA, Madden J, Schnell A, Short M, Burnatowska-Hledin MA. CUL5 is required for thalidomide-dependent inhibition of cellular proliferation. PLoS One 2018; 13:e0196760. [PMID: 29746508 PMCID: PMC5944951 DOI: 10.1371/journal.pone.0196760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Angiogenesis is essential for cancer metastasis, thus the discovery and characterization of molecules that inhibit this process is important. Thalidomide is a teratogenic drug which is known to inhibit angiogenesis and effectively inhibit cancer metastasis, yet the specific cellular targets for its effect are not well known. We discovered that CUL5 (previously identified as VACM-1), a scaffold protein in E3 ligase complexes, is involved in thalidomide-dependent inhibition of endothelial cell growth. Our results show that in human endothelial cells (HUVEC), thalidomide-dependent decrease in cell growth was associated with decreased nuclear localization of CUL5. In HUVEC transfected with anti-VACM-1 siRNA, thalidomide failed to decrease cell growth. Previously it was established that the antiproliferative effect of CUL5 is inhibited in rat endothelial cells (RAMEC) transfected with mutated CUL5 which is constitutively modified by NEDD8, a ubiquitin-like protein. In this study, the antiproliferative response to thalidomide was compromised in RAMEC expressing mutated CUL5. These results suggest that CUL5 protein is involved in the thalidomide-dependent regulation of cellular proliferation in vitro. Consequently, CUL5 may be an important part of the mechanism for thalidomide-dependent inhibition of cellular proliferation, as well as a novel biomarker for predicting a response to thalidomide for the treatment of disorders such as multiple myeloma and HIV infection.
Collapse
Affiliation(s)
- Bryan Kunkler
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Daniel Salamango
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Zachary J DeBruine
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Caitlin Ploch
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Shirley Dean
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - David Grossens
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Michael P Hledin
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Gabriel A Marquez
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Julie Madden
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Abigayle Schnell
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Michael Short
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Maria A Burnatowska-Hledin
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America.,Department of Biology, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| |
Collapse
|
14
|
Identification of ASB7 as ER stress responsive gene through a genome wide in silico screening for genes with ERSE. PLoS One 2018; 13:e0194310. [PMID: 29630609 PMCID: PMC5890977 DOI: 10.1371/journal.pone.0194310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
The endoplasmic reticulum (ER) not only performs its basic function of regulating calcium homeostasis, lipid biosynthesis, folding, modifying and transporting proteins but also plays a decisive role in regulating multiple cellular processes ranging from cell growth and differentiation to apoptosis and autophagy. Disturbances in ER homeostasis initiate the unfolded protein response (UPR) implicated in the pathogenesis of many human diseases. Drugging the UPR components for therapeutic interventions has received considerable attention. The purpose of this study is to identify genes that are previously unsuspected to be regulated under ER stress. Because ER stress-inducible gene expression is majorly regulated under ERSE elements, we screened human genome by adopting an in silico approach using ERSE elements (I, II, III) as probes and identified 337 candidate genes. Having knowledge of the importance of E3 ubiquitin ligase in the ERAD machinery; we validated our preliminary search by focusing on one of the hits i.e. ASB7 gene that encodes E3 ubiquitin ligase. In HeLa cells, we found that pharmacological induction of ER stress led to an increase in the expression of ASB7 with simultaneous activation of UPR pathways. Although knockdown of ASB7 expression leads to significant reduction in GRP78 and CHOP mRNA levels, it did not protect cells from ER stress-induced cell death. Also, an up-regulation in the expression of pro-inflammatory genes like TNF-α and IL-1β in ASB7 knockdown cells was observed under ER stress. Collectively, our findings suggest that ASB7 is regulated under ER stress and this study also identifies several other genes that could apparently be regulated under ER stress.
Collapse
|
15
|
Métais A, Lamsoul I, Melet A, Uttenweiler-Joseph S, Poincloux R, Stefanovic S, Valière A, Gonzalez de Peredo A, Stella A, Burlet-Schiltz O, Zaffran S, Lutz PG, Moog-Lutz C. Asb2α-Filamin A Axis Is Essential for Actin Cytoskeleton Remodeling During Heart Development. Circ Res 2018; 122:e34-e48. [PMID: 29374072 DOI: 10.1161/circresaha.117.312015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
Abstract
RATIONALE Heart development involves differentiation of cardiac progenitors and assembly of the contractile sarcomere apparatus of cardiomyocytes. However, little is known about the mechanisms that regulate actin cytoskeleton remodeling during cardiac cell differentiation. OBJECTIVE The Asb2α (Ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2) CRL5 (cullin 5 RING E3 ubiquitin ligase) triggers polyubiquitylation and subsequent degradation by the proteasome of FLNs (filamins). Here, we investigate the role of Asb2α in heart development and its mechanisms of action. METHODS AND RESULTS Using Asb2 knockout embryos, we show that Asb2 is an essential gene, critical to heart morphogenesis and function, although its loss does not interfere with the overall patterning of the embryonic heart tube. We show that the Asb2α E3 ubiquitin ligase controls Flna stability in immature cardiomyocytes. Importantly, Asb2α-mediated degradation of the actin-binding protein Flna marks a previously unrecognized intermediate step in cardiac cell differentiation characterized by cell shape changes and actin cytoskeleton remodeling. We further establish that in the absence of Asb2α, myofibrils are disorganized and that heartbeats are inefficient, leading to embryonic lethality in mice. CONCLUSIONS These findings identify Asb2α as an unsuspected key regulator of cardiac cell differentiation and shed light on the molecular and cellular mechanisms determining the onset of myocardial cell architecture and its link with early cardiac function. Although Flna is known to play roles in cytoskeleton organization and to be required for heart function, this study now reveals that its degradation mediated by Asb2α ensures essential functions in differentiating cardiac progenitors.
Collapse
Affiliation(s)
- Arnaud Métais
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Isabelle Lamsoul
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Armelle Melet
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Sandrine Uttenweiler-Joseph
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Renaud Poincloux
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Sonia Stefanovic
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Amélie Valière
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Anne Gonzalez de Peredo
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Alexandre Stella
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Stéphane Zaffran
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.)
| | - Pierre G Lutz
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.).
| | - Christel Moog-Lutz
- From the Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France (A. Métais, I.L., A. Melet, S.U.-J., R.P., A.V., A.G.d.P., A.S., O.B.-S., P.G.L., C.M.-L.); CNRS UMR8601, Université Paris Descartes, France (A. Melet); and Aix Marseille Univ, INSERM, MMG, France (S.S., S.Z.).
| |
Collapse
|
16
|
Davey JR, Watt KI, Parker BL, Chaudhuri R, Ryall JG, Cunningham L, Qian H, Sartorelli V, Sandri M, Chamberlain J, James DE, Gregorevic P. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass. JCI Insight 2016; 1. [PMID: 27182554 DOI: 10.1172/jci.insight.85477] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network-responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles.
Collapse
Affiliation(s)
| | - Kevin I Watt
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | - Rima Chaudhuri
- Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | - James G Ryall
- National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA; Department of Physiology, The University of Melbourne, Melbourne, Australia
| | | | - Hongwei Qian
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Vittorio Sartorelli
- National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, The University of Padova, Padova, Italy
| | - Jeffrey Chamberlain
- Department of Neurology, The University of Washington, Seattle, Washington, USA
| | - David E James
- Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, Australia; Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Department of Physiology, The University of Melbourne, Melbourne, Australia; Department of Neurology, The University of Washington, Seattle, Washington, USA; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
17
|
Cullin 5-RING E3 ubiquitin ligases, new therapeutic targets? Biochimie 2016; 122:339-47. [DOI: 10.1016/j.biochi.2015.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/01/2015] [Indexed: 11/18/2022]
|
18
|
Spinner CA, Uttenweiler-Joseph S, Metais A, Stella A, Burlet-Schiltz O, Moog-Lutz C, Lamsoul I, Lutz PG. Substrates of the ASB2α E3 ubiquitin ligase in dendritic cells. Sci Rep 2015; 5:16269. [PMID: 26537633 PMCID: PMC4633680 DOI: 10.1038/srep16269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/12/2015] [Indexed: 11/17/2022] Open
Abstract
Conventional dendritic cells (cDCs) comprise distinct populations with specialized immune functions that are mediators of innate and adaptive immune responses. Transcriptomic and proteomic approaches have been used so far to identify transcripts and proteins that are differentially expressed in these subsets to understand the respective functions of cDCs subsets. Here, we showed that the Cullin 5-RING E3 ubiquitin ligase (E3) ASB2α, by driving degradation of filamin A (FLNa) and filamin B (FLNb), is responsible for the difference in FLNa and FLNb abundance in the different spleen cDC subsets. Importantly, the ability of these cDC subsets to migrate correlates with the level of FLNa. Furthermore, our results strongly point to CD4 positive and double negative cDCs as distinct populations. Finally, we develop quantitative global proteomic approaches to identify ASB2α substrates in DCs using ASB2 conditional knockout mice. As component of the ubiquitin-proteasome system (UPS) are amenable to pharmacological manipulation, these approaches aimed to the identification of E3 substrates in physiological relevant settings could potentially lead to novel targets for therapeutic strategies.
Collapse
Affiliation(s)
- Camille A Spinner
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne BP 64182, F-31077 Toulouse, France.,Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Sandrine Uttenweiler-Joseph
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne BP 64182, F-31077 Toulouse, France.,Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Arnaud Metais
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne BP 64182, F-31077 Toulouse, France.,Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Alexandre Stella
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne BP 64182, F-31077 Toulouse, France.,Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Odile Burlet-Schiltz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne BP 64182, F-31077 Toulouse, France.,Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Christel Moog-Lutz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne BP 64182, F-31077 Toulouse, France.,Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Isabelle Lamsoul
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne BP 64182, F-31077 Toulouse, France.,Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Pierre G Lutz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne BP 64182, F-31077 Toulouse, France.,Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| |
Collapse
|
19
|
Wang X, Wang X, Wang W, Zhang J, Wang J, Wang C, Lv M, Zuo T, Liu D, Zhang H, Wu J, Yu B, Kong W, Wu H, Yu X. Both Rbx1 and Rbx2 exhibit a functional role in the HIV-1 Vif-Cullin5 E3 ligase complex in vitro. Biochem Biophys Res Commun 2015; 461:624-9. [DOI: 10.1016/j.bbrc.2015.04.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022]
|
20
|
Abstract
Three classes of E3 ubiquitin ligases, members of the Cbl, Hakai, and SOCS-Cul5-RING ligase families, stimulate the ubiquitination of phosphotyrosine-containing proteins, including receptor and nonreceptor tyrosine kinases and their phosphorylated substrates. Because ubiquitination frequently routes proteins for degradation by the lysosome or proteasome, these E3 ligases are able to potently inhibit tyrosine kinase signaling. Their loss or mutational inactivation can contribute to cancer, autoimmunity, or endocrine disorders, such as diabetes. However, these ligases also have biological functions that are independent of their ubiquitination activity. Here we review relevant literature and then focus on more-recent developments in understanding the structures, substrates, and pathways through which the phosphotyrosine-specific ubiquitin ligases regulate diverse aspects of cell biology.
Collapse
|
21
|
He L, Pei Y, Jiang Y, Li Y, Liao L, Zhu Z, Wang Y. Global gene expression patterns of grass carp following compensatory growth. BMC Genomics 2015; 16:184. [PMID: 25887225 PMCID: PMC4374334 DOI: 10.1186/s12864-015-1427-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compensatory growth is accelerated compared with normal growth and occurs when growth-limiting conditions are overcome. Most animals, especially fish, are capable of compensatory growth, but the mechanisms remain unclear. Further investigation of the mechanism of compensatory growth in fish is needed to improve feeding efficiency, reduce cost, and explore growth-related genes. RESULTS In the study, grass carp, an important farmed fish in China, were subjected to a compensatory growth experiment followed by transcriptome analysis by RNA-sequencing. Samples of fish from starved and re-feeding conditions were compared with the control. Under starved conditions, 4061 and 1988 differentially expressed genes (DEGs) were detected in muscle and liver tissue when compared the experimental group with control group, respectively. After re-feeding, 349 and 247 DEGs were identified in muscle and liver when the two groups were compared. Moreover, when samples from experimental group in starved and re-feeding conditions were compared, 4903 and 2444 DEGs were found in muscle and liver. Most of these DEGs were involved in metabolic processes, or encoded enzymes or proteins with catalytic activity or binding functions, or involved in metabolic and biosynthetic pathways. A number of the more significant DEGs were subjected to further analysis. Under fasting conditions, many up-regulated genes were associated with protein ubiquitination or degradation, whereas many down-regulated genes were involved in the metabolism of glucose and fatty acids. Under re-feeding conditions, genes participating in muscle synthesis and fatty acid metabolism were up-regulated significantly, and genes related to protein ubiquitination or degradation were down-regulated. Moreover, Several DEGs were random selected for confirmation by real-time quantitative PCR. CONCLUSIONS Global gene expression patterns of grass carp during compensatory growth were determined. To our knowledge, this is a first reported for a teleost fish. The results will enhance our understanding of the mechanism of compensatory growth in teleost fish.
Collapse
Affiliation(s)
- Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yongyan Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yao Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
22
|
Burnatowska-Hledin MA, Barney CC. New insights into the mechanism for VACM-1/cul5 expression in vascular tissue in vivo. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:79-101. [PMID: 25376490 DOI: 10.1016/b978-0-12-800177-6.00003-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vasopressin-activated calcium-mobilizing (VACM-1)/cul5 is the least conserved member of a cullin protein family involved in the formation of E3-specific ligase complexes that are responsible for delivering the ubiquitin protein to their target substrate proteins selected for ubiquitin-dependent degradation. This chapter summarizes work to date that has focused on VACM-1/cul5's tissue-specific expression in vivo and on its potential role in the control of specific cellular signaling pathways in those structures. As mammalian cells may contain hundreds of E3 ligases, identification VACM-1/cul5 as a specific subunit of the system that is expressed in the endothelium and in collecting tubules, structures known for their control of cellular permeability, may have significant implications when designing studies to elucidate the mechanism of water conservation. For example, VACM-1/cul5 expression is affected by water deprivation in some tissues and there is a potential relationship between neddylated VACM-1/cul5 and aquaporins.
Collapse
Affiliation(s)
- Maria A Burnatowska-Hledin
- Department of Biology, Hope College, Holland, MI, USA; Department of Chemistry, Hope College, Holland, MI, USA
| | | |
Collapse
|
23
|
Andresen CA, Smedegaard S, Sylvestersen KB, Svensson C, Iglesias-Gato D, Cazzamali G, Nielsen TK, Nielsen ML, Flores-Morales A. Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem 2013; 289:2043-54. [PMID: 24337577 DOI: 10.1074/jbc.m113.534602] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ankyrin and SOCS (suppressor of cytokine signaling) box (ASB) family of proteins function as the substrate recognition subunit in a subset of Elongin-Cullin-SOCS (ECS) E3 ubiquitin ligases. Despite counting 18 members in humans, the identity of the physiological targets of the Asb proteins remains largely unexplored. To increase our understanding of the function of ASB proteins, we conducted a family-wide SILAC (stable isotope labeling by amino acids in cell culture)-based protein/protein interaction analysis. This investigation led to the identification of novel as well as known ASB-associated proteins like Cullin 5 and Elongins B/C. We observed that several proteins can be bound by more than one Asb protein. The additional exploration of this phenomenon demonstrated that ASB-Cullin 5 complexes can oligomerize and provides evidence that Cullin 5 forms heterodimeric complexes with the Cullin 4a-DDB1 complex. We also demonstrated that ASB11 is a novel endoplasmic reticulum-associated ubiquitin ligase with the ability to interact and promote the ubiquitination of Ribophorin 1, an integral protein of the oligosaccharyltransferase (OST) glycosylation complex. Moreover, expression of ASB11 can increase Ribophorin 1 protein turnover in vivo. In summary, we provide a comprehensive protein/protein interaction data resource that can aid the biological and functional characterization of ASB ubiquitin ligases.
Collapse
|
24
|
Razinia Z, Baldassarre M, Cantelli G, Calderwood DA. ASB2α, an E3 ubiquitin ligase specificity subunit, regulates cell spreading and triggers proteasomal degradation of filamins by targeting the filamin calponin homology 1 domain. J Biol Chem 2013; 288:32093-105. [PMID: 24052262 DOI: 10.1074/jbc.m113.496604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Filamins are actin-binding and cross-linking proteins that organize the actin cytoskeleton and anchor transmembrane proteins to the cytoskeleton and scaffold signaling pathways. During hematopoietic cell differentiation, transient expression of ASB2α, the specificity subunit of an E3-ubiquitin ligase complex, triggers acute proteasomal degradation of filamins. This led to the proposal that ASB2α regulates hematopoietic cell differentiation by modulating cell adhesion, spreading, and actin remodeling through targeted degradation of filamins. Here, we show that the calponin homology domain 1 (CH1), within the filamin A (FLNa) actin-binding domain, is the minimal fragment sufficient for ASB2α-mediated degradation. Combining an in-depth flow cytometry analysis with mutagenesis of lysine residues within CH1, we find that arginine substitution at each of a cluster of three lysines (Lys-42, Lys-43, and Lys-135) renders FLNa resistant to ASB2α-mediated degradation without altering ASB2α binding. These lysines lie within previously predicted actin-binding sites, and the ASB2α-resistant filamin mutant is defective in targeting to F-actin-rich structures in cells. However, by swapping CH1 with that of α-actinin1, which is resistant to ASB2α-mediated degradation, we generated an ASB2α-resistant chimeric FLNa with normal subcellular localization. Notably, this chimera fully rescues the impaired cell spreading induced by ASB2α expression. Our data therefore reveal ubiquitin acceptor sites in FLNa and establish that ASB2α-mediated effects on cell spreading are due to loss of filamins.
Collapse
|
25
|
Zakaria R, Lamsoul I, Uttenweiler-Joseph S, Erard M, Monsarrat B, Burlet-Schiltz O, Moog-Lutz C, Lutz PG. Phosphorylation of serine 323 of ASB2α is pivotal for the targeting of filamin A to degradation. Cell Signal 2013; 25:2823-30. [PMID: 24044920 DOI: 10.1016/j.cellsig.2013.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
ASB proteins are the specificity subunits of cullin5-RING E3 ubiquitin ligases (CRL5) that play roles in ubiquitin-mediated protein degradation. However, how their activity is regulated remains poorly understood. Here, we unravel a novel mechanism of regulation of a CRL5 through phosphorylation of its specificity subunit ASB2α. Indeed, using mass spectrometry, we showed for the first time that ASB2α is phosphorylated and that phosphorylation of serine-323 (Ser-323) of ASB2α is crucial for the targeting of the actin-binding protein filamin A (FLNa) to degradation. Mutation of ASB2α Ser-323 to Ala had no effect on intrinsic E3 ubiquitin ligase activity of ASB2α but abolished the ability of ASB2α to induce degradation of FLNa. In contrast, the ASB2α Ser-323 to Asp phosphomimetic mutant induced acute degradation of FLNa. Moreover, inhibition of the extracellular signal-regulated kinases 1 and 2 (Erk1/2) activity reduced ASB2α-mediated FLNa degradation. We further showed that the subcellular localization of ASB2α to actin-rich structures is dependent on ASB2α Ser-323 phosphorylation and propose that the interaction with FLNa depends on the electrostatic potential redistribution induced by the Ser-323 phosphate group. Taken together, these data unravel an important mechanism by which ASB2α-mediated FLNa degradation can be regulated.
Collapse
Affiliation(s)
- Rim Zakaria
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne BP 64182, F-31077 Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Thomas J, Matak-Vinkovic D, Van Molle I, Ciulli A. Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases. Biochemistry 2013; 52:5236-46. [PMID: 23837592 PMCID: PMC3756526 DOI: 10.1021/bi400758h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/09/2013] [Indexed: 01/17/2023]
Abstract
Proteins of the ankyrin-repeat and SOCS-box (ASB) family act as the substrate-recognition subunits of ECS-type (ElonginBC-Cullin-SOCS-box) Cullin RING E3 ubiquitin ligase (CRL) complexes that catalyze the specific polyubiquitination of cellular proteins to target them for degradation by the proteasome. Therefore, ASB multimeric complexes are involved in numerous cell processes and pathways; however, their interactions, assembly, and biological roles remain poorly understood. To enhance our understanding of ASB CRL systems, we investigated the structure, affinity, and assembly of the quaternary multisubunit complex formed by ASB9, Elongin B, Elongin C (EloBC), and Cullin 5. Here, we describe the application of several biophysical techniques including differential scanning fluorimetry, isothermal titration calorimetry (ITC), nanoelectrospray ionization, and ion-mobility mass spectrometry (IM-MS) to provide structural and thermodynamic information for a quaternary ASB CRL complex. We find that ASB9 is unstable alone but forms a stable ternary complex with EloBC that binds with high affinity to the Cullin 5 N-terminal domain (Cul5NTD) but not to Cul2NTD. The structure of the monomeric ASB9-EloBC-Cul5NTD quaternary complex is revealed by molecular modeling and is consistent with IM-MS and temperature-dependent ITC data. This is the first experimental study to validate structural information for the assembly of the quaternary N-terminal region of an ASB CRL complex. The results suggest that ASB E3 ligase complexes function and assemble in an analogous manner to that of other CRL systems and provide a platform for further molecular investigation of this important protein family. The data reported here will also be of use for the future development of chemical probes to examine the biological function and modulation of other ECS-type CRL systems.
Collapse
Affiliation(s)
- Jemima
C. Thomas
- Department
of Chemistry, University of
Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Dijana Matak-Vinkovic
- Department
of Chemistry, University of
Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Inge Van Molle
- Department
of Chemistry, University of
Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | | |
Collapse
|
27
|
Muniz JRC, Guo K, Kershaw NJ, Ayinampudi V, von Delft F, Babon JJ, Bullock AN. Molecular architecture of the ankyrin SOCS box family of Cul5-dependent E3 ubiquitin ligases. J Mol Biol 2013; 425:3166-77. [PMID: 23806657 PMCID: PMC3779351 DOI: 10.1016/j.jmb.2013.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 01/30/2023]
Abstract
Multi-subunit Cullin-RING E3 ligases often use repeat domain proteins as substrate-specific adaptors. Structures of these macromolecular assemblies are determined for the F-box-containing leucine-rich repeat and WD40 repeat families, but not for the suppressor of cytokine signaling (SOCS)-box-containing ankyrin repeat proteins (ASB1-18), which assemble with Elongins B and C and Cul5. We determined the crystal structures of the ternary complex of ASB9-Elongin B/C as well as the interacting N-terminal domain of Cul5 and used structural comparisons to establish a model for the complete Cul5-based E3 ligase. The structures reveal a distinct architecture of the ASB9 complex that positions the ankyrin domain coaxial to the SOCS box-Elongin B/C complex and perpendicular to other repeat protein complexes. This alternative architecture appears favorable to present the ankyrin domain substrate-binding site to the E2-ubiquitin, while also providing spacing suitable for bulky ASB9 substrates, such as the creatine kinases. The presented Cul5 structure also differs from previous models and deviates from other Cullins via a rigid-body rotation between Cullin repeats. This work highlights the adaptability of repeat domain proteins as scaffolds in substrate recognition and lays the foundation for future structure-function studies of this important E3 family.
Collapse
Affiliation(s)
- João R C Muniz
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The actin-binding protein filamins (FLNs) are major organizers of the actin cytoskeleton. They control the elasticity and stiffness of the actin network and provide connections with the extracellular microenvironment by anchoring transmembrane receptors to the actin filaments. Although numerous studies have revealed the importance of FLN levels, relatively little is known about the regulation of its stability in physiological relevant settings. Here, we show that the ASB2α cullin 5-ring E3 ubiquitin ligase is highly expressed in immature dendritic cells (DCs) and is down-regulated after DC maturation. We further demonstrate that FLNs are substrates of ASB2α in immature DCs and therefore are not stably expressed in these cells, whereas they exhibit high levels of expression in mature DCs. Using ASB2 conditional knockout mice, we show that ASB2α is a critical regulator of cell spreading and podosome rosette formation in immature DCs. Furthermore, we show that ASB2(-/-) immature DCs exhibit reduced matrix-degrading function leading to defective migration. Altogether, our results point to ASB2α and FLNs as newcomers in DC biology.
Collapse
|
29
|
Lamsoul I, Erard M, van der Ven PFM, Lutz PG. Filamins but not Janus kinases are substrates of the ASB2α cullin-ring E3 ubiquitin ligase in hematopoietic cells. PLoS One 2012; 7:e43798. [PMID: 22916308 PMCID: PMC3423375 DOI: 10.1371/journal.pone.0043798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/26/2012] [Indexed: 11/19/2022] Open
Abstract
The ASB2α protein is the specificity subunit of an E3 ubiquitin ligase complex involved in hematopoietic differentiation and is proposed to exert its effects by regulating the turnover of specific proteins. Three ASB2α substrates have been described so far: the actin-binding protein filamins, the Mixed Lineage Leukemia protein, and the Janus kinases 2 and 3. To determine the degradation of which substrate drives ASB2α biological effects is crucial for the understanding of ASB2α functions in hematopoiesis. Here, we show that neither endogenous nor exogenously expressed ASB2α induces degradation of JAK proteins in hematopoietic cells. Furthermore, we performed molecular modeling to generate the first structural model of an E3 ubiquitin ligase complex of an ASB protein bound to one of its substrates.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne BP64182, F-31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Monique Erard
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne BP64182, F-31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Peter F. M. van der Ven
- Department of Molecular Cell Biology, Institute of Cell Biology, University of Bonn, Bonn, Germany
| | - Pierre G. Lutz
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne BP64182, F-31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
- * E-mail:
| |
Collapse
|
30
|
Abstract
Filamins are essential, evolutionarily conserved, modular, multidomain, actin-binding proteins that organize the actin cytoskeleton and maintain extracellular matrix connections by anchoring actin filaments to transmembrane receptors. By cross-linking and anchoring actin filaments, filamins stabilize the plasma membrane, provide cellular cortical rigidity, and contribute to the mechanical stability of the plasma membrane and the cell cortex. In addition to binding actin, filamins interact with more than 90 other binding partners including intracellular signaling molecules, receptors, ion channels, transcription factors, and cytoskeletal and adhesion proteins. Thus, filamins scaffold a wide range of signaling pathways and are implicated in the regulation of a diverse array of cellular functions including motility, maintenance of cell shape, and differentiation. Here, we review emerging structural and functional evidence that filamins are mechanosensors and/or mechanotransducers playing essential roles in helping cells detect and respond to physical forces in their local environment.
Collapse
Affiliation(s)
- Ziba Razinia
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
31
|
Linossi EM, Nicholson SE. The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life 2012; 64:316-23. [PMID: 22362562 DOI: 10.1002/iub.1011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/25/2012] [Indexed: 01/29/2023]
Abstract
The suppressor of cytokine signalling (SOCS) box was first identified in the SH2-containing SOCS box family (cytokine-inducible SH2-containing protein, SOCS1-7) and is a 40-amino acid motif, which functions to recruit an E3 ubiquitin ligase complex consisting of the adapter proteins elongins B and C, Rbx2 and the scaffold protein Cullin5. The SOCS box is found in a diverse array of intracellular signalling molecules, many of which contain different protein interaction domains such as SPRY and WD40 domains, leucine and ankyrin repeats or other functional domains such as GTPases. In general, the SOCS box-containing proteins are thought to act as substrate-recognition modules to mediate the polyubiquitination and subsequent degradation of substrate proteins by the 26S proteasome.
Collapse
Affiliation(s)
- Edmond M Linossi
- Inflammation Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria
| | | |
Collapse
|
32
|
Abstract
Mixed lineage leukemia (MLL) is a key epigenetic regulator of normal hematopoietic development and chromosomal translocations involving MLL are one of the most common genetic alterations in human leukemia. Here we show that ASB2, a component of the ECS(ASB) E3 ubiquitin ligase complex, mediates MLL degradation through interaction with the PHD/Bromodomain region of MLL. Forced expression of ASB2 degrades MLL and reduces MLL transactivation activity. In contrast, the MLL-AF9 fusion protein does not interact with ASB2 and is resistant to ASB2 mediated degradation. Increased expression of ASB2 during hematopoietic differentiation is associated with decreased levels of MLL protein and down-regulation of MLL target genes. Knockdown of ASB2 leads to increased expression of HOXA9 and delayed cell differentiation. Our data support a model whereby ASB2 contributes to hematopoietic differentiation, in part, through MLL degradation and HOX gene down-regulation. Moreover, deletion of the PHD/Bromo region renders MLL fusion proteins resistant to ASB2-mediated degradation and may contribute to leukemogenesis.
Collapse
|
33
|
Cummins TD, Mendenhall MD, Lowry MN, Korte EA, Barati MT, Khundmiri SJ, Salyer SA, Klein JB, Powell DW. Elongin C is a mediator of Notch4 activity in human renal tubule cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1748-57. [PMID: 22001063 DOI: 10.1016/j.bbapap.2011.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/12/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Notch proteins (Notch 1-4) are a family of trans-membrane cell surface receptors that are converted into transcriptional regulators when activated by interactions with cell surface ligands on adjacent cells. Ligand-binding stimulates proteolytic cleavage of the trans-membrane domain, releasing an active intracellular domain (ICD) that translocates to the nucleus and impacts transcription. In transit, the ICD may interact with regulatory proteins that modulate the expression and transcriptional activity. We have found that Notch4(ICD) expression is enhanced in the tubule cells of fibrotic kidneys from diabetic mice and humans and identified Notch4(ICD) interacting proteins that could be pertinent to normal and pathological functions. Using proteomic techniques, several components of the Elongin C complex were identified as candidate Notch4(ICD) interactors. Elongin C complexes can function as ubiquitin ligases capable of regulating proteasomal degradation of specific protein substrates. Our studies indicate that ectopic Elongin C expression stimulates Notch4(ICD) degradation and inhibits its transcriptional activity in human kidney tubule HK11 cells. Blocking Elongin C mediated degradation by MG132 indicates the potential for ubiquitin-mediated Elongin C regulation of Notch4(ICD). Functional interaction of Notch4(ICD) and Elongin C provides novel insight into regulation of Notch signaling in epithelial cell biology and disease.
Collapse
Affiliation(s)
- Timothy D Cummins
- Departments of Biochemistry and Molecular Biology, University of Kentucky, KY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vesterlund M, Zadjali F, Persson T, Nielsen ML, Kessler BM, Norstedt G, Flores-Morales A. The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels. PLoS One 2011; 6:e25358. [PMID: 21980433 PMCID: PMC3183054 DOI: 10.1371/journal.pone.0025358] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/01/2011] [Indexed: 01/03/2023] Open
Abstract
Growth Hormone is essential for the regulation of growth and the homeostatic control of intermediary metabolism. GH actions are mediated by the Growth Hormone Receptor; a member of the cytokine receptor super family that signals chiefly through the JAK2/STAT5 pathway. Target tissue responsiveness to GH is under regulatory control to avoid excessive and off-target effects upon GHR activation. The suppressor of cytokine signalling 2 (SOCS) is a key regulator of GHR sensitivity. This is clearly shown in mice where the SOCS2 gene has been inactivated, which show 30–40% increase in body length, a phenotype that is dependent on endogenous GH secretion. SOCS2 is a GH-stimulated, STAT5b-regulated gene that acts in a negative feedback loop to downregulate GHR signalling. Since the biochemical basis for these actions is poorly understood, we studied the molecular function of SOCS2. We demonstrated that SOCS2 is part of a multimeric complex with intrinsic ubiquitin ligase activity. Mutational analysis shows that the interaction with Elongin B/C controls SOCS2 protein turnover and affects its molecular activity. Increased GHR levels were observed in livers from SOCS2−/− mice and in the absence of SOCS2 in in vitro experiments. We showed that SOCS2 regulates cellular GHR levels through direct ubiquitination and in a proteasomally dependent manner. We also confirmed the importance of the SOCS-box for the proper function of SOCS2. Finally, we identified two phosphotyrosine residues in the GHR to be responsible for the interaction with SOCS2, but only Y487 to account for the effects of SOCS2. The demonstration that SOCS2 is an ubiquitin ligase for the GHR unveils the molecular basis for its physiological actions.
Collapse
Affiliation(s)
- Mattias Vesterlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Fahad Zadjali
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Torbjörn Persson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Michael Lund Nielsen
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen. Copenhagen, Denmark
| | | | - Gunnar Norstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Amilcar Flores-Morales
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen. Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
35
|
Lee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:1778-87. [PMID: 21768398 DOI: 10.4049/jimmunol.1003919] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Progesterone, a key female sex hormone with pleiotropic functions in maintenance of pregnancy, has profound effects on regulation of immune responses. We report in this work a novel function of progesterone in regulation of naive cord blood (CB) fetal T cell differentiation into key T regulatory cell (Treg) subsets. Progesterone drives allogeneic activation-induced differentiation of CB naive, but not adult peripheral blood, T cells into immune-suppressive Tregs, many of which express FoxP3. Compared with those induced in the absence of progesterone, the FoxP3(+) T cells induced in the presence of progesterone highly expressed memory T cell markers. In this regard, the Treg compartment in progesterone-rich CB is enriched with memory-type FoxP3(+) T cells. Moreover, CB APCs were more efficient than their peripheral blood counterparts in inducing FoxP3(+) T cells. Another related function of progesterone that we discovered was to suppress the differentiation of CB CD4(+) T cells into inflammation-associated Th17 cells. Progesterone enhanced activation of STAT5 in response to IL-2, whereas it decreased STAT3 activation in response to IL-6, which is in line with the selective activity of progesterone in generation of Tregs versus Th17 cells. Additionally, progesterone has a suppressive function on the expression of the IL-6 receptor by T cells. The results identified a novel role of progesterone in regulation of fetal T cell differentiation for promotion of immune tolerance.
Collapse
Affiliation(s)
- Jee H Lee
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
36
|
Razinia Z, Baldassarre M, Bouaouina M, Lamsoul I, Lutz PG, Calderwood DA. The E3 ubiquitin ligase specificity subunit ASB2α targets filamins for proteasomal degradation by interacting with the filamin actin-binding domain. J Cell Sci 2011; 124:2631-41. [PMID: 21750192 DOI: 10.1242/jcs.084343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Filamins are an important family of actin-binding and crosslinking proteins that mediate remodeling of the actin cytoskeleton and maintain extracellular matrix connections by anchoring transmembrane proteins to actin filaments and linking them to intracellular signaling cascades. We recently found that filamins are targeted for proteasomal degradation by the E3 ubiquitin ligase specificity subunit ASBα and that acute degradation of filamins through this ubiquitin-proteasome pathway correlates with cell differentiation. Specifically, in myeloid leukemia cells retinoic-acid-induced expression of ASB2α triggers filamin degradation and recapitulates early events crucial for cell differentiation. ASB2α is thought to link substrates to the ubiquitin transferase machinery; however, the mechanism by which ASB2α interacts with filamin to induce degradation remained unknown. Here, we use cell-based and biochemical assays to show that the subcellular localization of ASB2α to actin-rich structures is dependent on filamin and that the actin-binding domain (ABD) of filamin mediates the interaction with ASB2α. Furthermore, we show that the ABD is necessary and sufficient for ASB2α-mediated filamin degradation. We propose that ASB2α exerts its effect by binding the ABD and mediating its polyubiquitylation, so targeting filamins for degradation. These studies provide the molecular basis for ASB2α-mediated filamin degradation and unravel an important mechanism by which filamin levels can be acutely regulated.
Collapse
Affiliation(s)
- Ziba Razinia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lamsoul I, Burande CF, Razinia Z, Houles TC, Menoret D, Baldassarre M, Erard M, Moog-Lutz C, Calderwood DA, Lutz PG. Functional and structural insights into ASB2alpha, a novel regulator of integrin-dependent adhesion of hematopoietic cells. J Biol Chem 2011; 286:30571-30581. [PMID: 21737450 DOI: 10.1074/jbc.m111.220921] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
By providing contacts between hematopoietic cells and the bone marrow microenvironment, integrins are implicated in cell adhesion and thereby in control of cell fate of normal and leukemia cells. The ASB2 gene, initially identified as a retinoic acid responsive gene and a target of the promyelocytic leukemia retinoic acid receptor α oncoprotein in acute promyelocytic leukemia cells, encodes two isoforms, a hematopoietic-type (ASB2α) and a muscle-type (ASB2β) that are involved in hematopoietic and myogenic differentiation, respectively. ASB2α is the specificity subunit of an E3 ubiquitin ligase complex that targets filamins to proteasomal degradation. To examine the relationship of the ASB2α structure to E3 ubiquitin ligase function, functional assays and molecular modeling were performed. We show that ASB2α, through filamin A degradation, enhances adhesion of hematopoietic cells to fibronectin, the main ligand of β1 integrins. Furthermore, we demonstrate that a short N-terminal region specific to ASB2α, together with ankyrin repeats 1 to 10, is necessary for association of ASB2α with filamin A. Importantly, the ASB2α N-terminal region comprises a 9-residue segment with predicted structural homology to the filamin-binding motifs of migfilin and β integrins. Together, these data provide new insights into the molecular mechanisms of ASB2α binding to filamin.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Clara F Burande
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Ziba Razinia
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Thibault C Houles
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Delphine Menoret
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Massimiliano Baldassarre
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Monique Erard
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - Christel Moog-Lutz
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France
| | - David A Calderwood
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Pierre G Lutz
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, 31077 Toulouse, France.
| |
Collapse
|
38
|
Nie L, Zhao Y, Wu W, Yang YZ, Wang HC, Sun XH. Notch-induced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes. Cell Res 2010; 21:754-69. [PMID: 21119685 DOI: 10.1038/cr.2010.165] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Notch signaling controls multiple developmental processes, thus demanding versatile functions. We have previously shown that this may be partly achieved by accelerating ubiquitin-mediated degradation of important regulators of differentiation. However, the underlying mechanism was unknown. We now find that Notch signaling transcriptionally activates the gene encoding ankyrin-repeat SOCS box-containing protein 2 (Asb2). Asb2 promotes the ubiquitination of Notch targets such as E2A and Janus kinase (Jak) 2, and a dominant-negative (DN) mutant of Asb2 blocks Notch-induced degradation of these proteins. Asb2 likely binds Jak2 directly but associates with E2A through Skp2. We next provide evidence to suggest that Asb2 bridges the formation of non-canonical cullin-based complexes through interaction with not only ElonginB/C and Cullin (Cul) 5, but also the F-box-containing protein, Skp2, which is known to associate with Skp1 and Cul1. Consistently, ablating the function of Cul1 or Cul5 using DN mutants or siRNAs protected both E2A and Jak2 from Asb2-mediated or Notch-induced degradation. By shifting monomeric E3 ligase complexes to dimeric forms through activation of Asb2 transcription, Notch could effectively control the turnover of a variety of substrates and it exerts diverse effects on cell proliferation and differentiation.
Collapse
Affiliation(s)
- Lei Nie
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bower NI, Johnston IA. Discovery and characterization of nutritionally regulated genes associated with muscle growth in Atlantic salmon. Physiol Genomics 2010; 42A:114-30. [PMID: 20663983 DOI: 10.1152/physiolgenomics.00065.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A genomics approach was used to identify nutritionally regulated genes involved in growth of fast skeletal muscle in Atlantic salmon (Salmo salar L.). Forward and reverse subtractive cDNA libraries were prepared comparing fish with zero growth rates to fish growing rapidly. We produced 7,420 ESTs and assembled them into nonredundant clusters prior to annotation. Contigs representing 40 potentially unrecognized nutritionally responsive candidate genes were identified. Twenty-three of the subtractive library candidates were also differentially regulated by nutritional state in an independent fasting-refeeding experiment and their expression placed in the context of 26 genes with established roles in muscle growth regulation. The expression of these genes was also determined during the maturation of a primary myocyte culture, identifying 13 candidates from the subtractive cDNA libraries with putative roles in the myogenic program. During early stages of refeeding DNAJA4, HSPA1B, HSP90A, and CHAC1 expression increased, indicating activation of unfolded protein response pathways. Four genes were considered inhibitory to myogenesis based on their in vivo and in vitro expression profiles (CEBPD, ASB2, HSP30, novel transcript GE623928). Other genes showed increased expression with feeding and highest in vitro expression during the proliferative phase of the culture (FOXD1, DRG1) or as cells differentiated (SMYD1, RTN1, MID1IP1, HSP90A, novel transcript GE617747). The genes identified were associated with chromatin modification (SMYD1, RTN1), microtubule stabilization (MID1IP1), cell cycle regulation (FOXD1, CEBPD, DRG1), and negative regulation of signaling (ASB2) and may play a role in the stimulation of myogenesis during the transition from a catabolic to anabolic state in skeletal muscle.
Collapse
Affiliation(s)
- Neil I Bower
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom.
| | | |
Collapse
|
40
|
Kwon S, Kim D, Rhee JW, Park JA, Kim DW, Kim DS, Lee Y, Kwon HJ. ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function. BMC Biol 2010; 8:23. [PMID: 20302626 PMCID: PMC2852384 DOI: 10.1186/1741-7007-8-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9). RESULTS We found that a variant of ASB9 that lacks the SOCS box (ASB9DeltaSOCS) was naturally detected in human cell lines but not in peripheral blood mononuclear cells or normal hepatocytes. We also identified ubiquitous mitochondrial creatine kinase (uMtCK) as a new target of ASB9 in human embryonic kidney 293 (HEK293) cells. The ankyrin repeat domains of ASB9 can associate with the substrate binding site of uMtCK in a SOCS box-independent manner. The overexpression of ASB9, but not ASB9DeltaSOCS, induces ubiquitination of uMtCK. ASB9 and ASB9DeltaSOCS can interact and colocalise with uMtCK in the mitochondria. However, only expression of ASB9 induced abnormal mitochondrial structure and a decrease of mitochondrial membrane potential. Furthermore, the creatine kinase activities and cell growth were significantly reduced by ASB9 but not by ASB9DeltaSOCS. CONCLUSIONS ASB9 interacts with the creatine kinase system and negatively regulates cell growth. The differential expression and function of ASB9 and ASB9DeltaSOCS may be a key factor in the growth of human cell lines and primary cells.
Collapse
Affiliation(s)
- Sanghoon Kwon
- Department of Microbiology, College of Medicine, Hallym University, Gangwon-do, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Friedel CC, Dölken L, Ruzsics Z, Koszinowski UH, Zimmer R. Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res 2009; 37:e115. [PMID: 19561200 PMCID: PMC2761256 DOI: 10.1093/nar/gkp542] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA levels in a cell are regulated by the relative rates of RNA synthesis and decay. We recently developed a new approach for measuring both RNA synthesis and decay in a single experimental setting by biosynthetic labeling of newly transcribed RNA. Here, we show that this provides measurements of RNA half-lives from microarray data with a so far unreached accuracy. Based on such measurements of RNA half-lives for human B-cells and mouse fibroblasts, we identified conserved regulatory principles for a large number of biological processes. We show that different regulatory patterns between functionally similar proteins are characterized by differences in the half-life of the corresponding transcripts and can be identified by measuring RNA half-life. We identify more than 100 protein families which show such differential regulatory patterns in both species. Additionally, we provide strong evidence that the activity of protein complexes consisting of subunits with overall long transcript half-lives can be regulated by transcriptional regulation of individual key subunits with short-lived transcripts. Based on this observation, we predict more than 100 key regulatory subunits for human complexes of which 28% could be confirmed in mice (P < 10−9). Therefore, this atlas of transcript half-lives provides new fundamental insights into many cellular processes.
Collapse
Affiliation(s)
- Caroline C. Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333 and Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich 80337, Germany
- *To whom correspondence should be addressed. Tel: +49-89-2180-4056; Fax: +49-89-2180-4054; Correspondence may also be addressed to Dr Lars Dölken. Tel: +49-89-5160-5290; Fax: +49-89-5160-5292;
| | - Lars Dölken
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333 and Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich 80337, Germany
- *To whom correspondence should be addressed. Tel: +49-89-2180-4056; Fax: +49-89-2180-4054; Correspondence may also be addressed to Dr Lars Dölken. Tel: +49-89-5160-5290; Fax: +49-89-5160-5292;
| | - Zsolt Ruzsics
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333 and Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Ulrich H. Koszinowski
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333 and Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich 80333 and Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| |
Collapse
|
42
|
Cragnolini JJ, García-Medel N, de Castro JAL. Endogenous processing and presentation of T-cell epitopes from Chlamydia trachomatis with relevance in HLA-B27-associated reactive arthritis. Mol Cell Proteomics 2009; 8:1850-9. [PMID: 19443418 DOI: 10.1074/mcp.m900107-mcp200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlamydia trachomatis triggers reactive arthritis, a spondyloarthropathy linked to the human major histocompatibility complex molecule HLA-B27, through an unknown mechanism that might involve molecular mimicry between chlamydial and self-derived HLA-B27 ligands. Chlamydia-specific CD8(+) T-cells are found in reactive arthritis patients, but the immunogenic epitopes are unknown. A previous screening of the chlamydial genome for putative HLA-B27 ligands predicted multiple peptides that were recognized in vitro by CD8(+) T-lymphocytes from patients. Here stable transfectants expressing bacterial fusion proteins in human cells were generated to investigate the endogenous processing and presentation by HLA-B27 of two such epitopes through comparative immunoproteomics of HLA-B27-bound peptide repertoires. A predicted T-cell epitope, from the CT610 gene product, was presented by HLA-B27. This is, to our knowledge, the first endogenously processed epitope involved in HLA-B27-restricted responses against C. trachomatis in reactive arthritis. A second predicted epitope, from the CT634 gene product, was not detected. Instead a non-predicted nonamer from the same protein was identified. Both bacterial peptides showed very high homology with human sequences containing the HLA-B27 binding motif. Thus, expression and intracellular processing of chlamydial proteins into human cells allowed us to identify two bacterial HLA-B27 ligands, including the first endogenous T-cell epitope from C. trachomatis involved in spondyloarthropathy. That human proteins contain sequences mimicking chlamydial T-cell epitopes suggests a basis for an autoimmune component of Chlamydia-induced HLA-B27-associated disease.
Collapse
Affiliation(s)
- Juan J Cragnolini
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Universidad Autónoma, 28049 Madrid, Spain
| | | | | |
Collapse
|
43
|
Burande CF, Heuzé ML, Lamsoul I, Monsarrat B, Uttenweiler-Joseph S, Lutz PG. A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation. Mol Cell Proteomics 2009; 8:1719-27. [PMID: 19376791 DOI: 10.1074/mcp.m800410-mcp200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system is a central mechanism for controlled proteolysis that regulates numerous cellular processes in eukaryotes. As such, defects in this system can contribute to disease pathogenesis. In this pathway, E3 ubiquitin ligases provide platforms for binding specific substrates, thereby coordinating their ubiquitylation and subsequent degradation by the proteasome. Despite the identification of many E3 ubiquitin ligases, the identities of their specific substrates are still largely unresolved. The ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2 (ASB2) gene that we initially identified as a retinoic acid-response gene in acute promyelocytic leukemia cells encodes the specificity subunit of an E3 ubiquitin ligase complex that is involved in hematopoietic cell differentiation. We have recently identified filamin A and filamin B as the first ASB2 targets and shown that ASB2 triggers ubiquitylation and proteasome-mediated degradation of these proteins. Here a global quantitative proteomics strategy is provided to identify substrates of E3 ubiquitin ligases targeted to proteasomal degradation. Indeed we used label-free methods for quantifying proteins identified by shotgun proteomics in extracts of cells expressing wild-type ASB2 or an E3 ubiquitin ligase-defective mutant of ASB2 under the control of an inducible promoter. Measurements of spectral count and mass spectrometric signal intensity demonstrated a drastic decrease of filamin A and filamin B in myeloid leukemia cells expressing wild-type ASB2 compared with cells expressing an E3 ubiquitin ligase-defective mutant of ASB2. Altogether we provide an original strategy that enables identification of E3 ubiquitin ligase substrates that have to be degraded.
Collapse
Affiliation(s)
- Clara F Burande
- Institut de Pharmacologie et de Biologie Structurale (IPBS) CNRS 205 Route de Narbonne and IPBS, Université Paul Sabatier Université de Toulouse, Toulouse France
| | | | | | | | | | | |
Collapse
|
44
|
Bello NF, Lamsoul I, Heuzé ML, Métais A, Moreaux G, Calderwood DA, Duprez D, Moog-Lutz C, Lutz PG. The E3 ubiquitin ligase specificity subunit ASB2beta is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation. Cell Death Differ 2009; 16:921-32. [PMID: 19300455 DOI: 10.1038/cdd.2009.27] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ubiquitin-mediated protein degradation is the main mechanism for controlled proteolysis, which is crucial for muscle development and maintenance. The ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2 gene (ASB2) encodes the specificity subunit of an E3 ubiquitin ligase complex involved in differentiation of hematopoietic cells. Here, we provide the first evidence that a novel ASB2 isoform, ASB2beta, is important for muscle differentiation. ASB2beta is expressed in muscle cells during embryogenesis and in adult tissues. ASB2beta is part of an active E3 ubiquitin ligase complex and targets the actin-binding protein filamin B (FLNb) for proteasomal degradation. Thus, ASB2beta regulates FLNb functions by controlling its degradation. Knockdown of endogenous ASB2beta by shRNAs during induced differentiation of C2C12 cells delayed FLNb degradation as well as myoblast fusion and expression of muscle contractile proteins. Finally, knockdown of FLNb in ASB2beta knockdown cells restores myogenic differentiation. Altogether, our results suggest that ASB2beta is involved in muscle differentiation through the targeting of FLNb to destruction by the proteasome.
Collapse
Affiliation(s)
- N F Bello
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hung KF, Lai KC, Liu TY, Liu CJ, Lee TC, Lo JF. Asb6 upregulation by Areca nut extracts is associated with betel quid-induced oral carcinogenesis. Oral Oncol 2009; 45:543-8. [PMID: 19251471 DOI: 10.1016/j.oraloncology.2008.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 01/14/2023]
Abstract
Betel quit (BQ) chewing is a popular habit, especially in southern and southeastern Asia. Areca nut extracts (ANE), the major components of BQ, have been documented to induce reactive oxygen species, and consequently to cause genetic damage. ANE usage is tightly linked to oral cancer; however, the details of the molecular mechanism that results in carcinogenesis remain unclear. Previously, we successfully established HaCaT cells surviving from the long-term exposure of sublethal doses of ANE (Lai KC, Lee TC. Genetic damage in cultured human keratinocytes stressed by long-term exposure to areca nut extracts. Mutat Res 2006;599:66-75). Here, we identified the upregulation of Asb6, a coupling protein to the APS adapter protein, which is involved in insulin signaling for glucose transportation, of normal keratinocytes and oral cancer cells under ANE treatment. Immunohistochemical analyses of Asb6 on oral squamous cell carcinoma (OSCC) tissues (n=57) demonstrated the positive correlation between Asb6 upregulation (cancerous tissues versus adjacent normal tissues) and clinicopathological features. We showed that the combination of ANE-enhanced Asb6 expression in vitro and Asb6 upregulation in OSCC patients leads to poor survival status. In conclusion, our results suggest that upregulated Asb6 could act as a prognostic marker for oral cancer.
Collapse
Affiliation(s)
- Kai-Feng Hung
- Institute of Oral Biology, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Pei-Tou, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
46
|
Huang AC, Hu L, Kauffman SA, Zhang W, Shmulevich I. Using cell fate attractors to uncover transcriptional regulation of HL60 neutrophil differentiation. BMC SYSTEMS BIOLOGY 2009; 3:20. [PMID: 19222862 PMCID: PMC2652435 DOI: 10.1186/1752-0509-3-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 02/18/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND The process of cellular differentiation is governed by complex dynamical biomolecular networks consisting of a multitude of genes and their products acting in concert to determine a particular cell fate. Thus, a systems level view is necessary for understanding how a cell coordinates this process and for developing effective therapeutic strategies to treat diseases, such as cancer, in which differentiation plays a significant role. Theoretical considerations and recent experimental evidence support the view that cell fates are high dimensional attractor states of the underlying molecular networks. The temporal behavior of the network states progressing toward different cell fate attractors has the potential to elucidate the underlying molecular mechanisms governing differentiation. RESULTS Using the HL60 multipotent promyelocytic leukemia cell line, we performed experiments that ultimately led to two different cell fate attractors by two treatments of varying dosage and duration of the differentiation agent all-trans-retinoic acid (ATRA). The dosage and duration combinations of the two treatments were chosen by means of flow cytometric measurements of CD11b, a well-known early differentiation marker, such that they generated two intermediate populations that were poised at the apparently same stage of differentiation. However, the population of one treatment proceeded toward the terminally differentiated neutrophil attractor while that of the other treatment reverted back toward the undifferentiated promyelocytic attractor. We monitored the gene expression changes in the two populations after their respective treatments over a period of five days and identified a set of genes that diverged in their expression, a subset of which promotes neutrophil differentiation while the other represses cell cycle progression. By employing promoter based transcription factor binding site analysis, we found enrichment in the set of divergent genes, of transcription factors functionally linked to tumor progression, cell cycle, and development. CONCLUSION Since many of the transcription factors identified by this approach are also known to be implicated in hematopoietic differentiation and leukemia, this study points to the utility of incorporating a dynamical systems level view into a computational analysis framework for elucidating transcriptional mechanisms regulating differentiation.
Collapse
|
47
|
Baxter SS, Carlson LA, Mayer AMS, Hall ML, Fay MJ. Granulocytic differentiation of HL-60 promyelocytic leukemia cells is associated with increased expression of Cul5. In Vitro Cell Dev Biol Anim 2009; 45:264-74. [PMID: 19118439 DOI: 10.1007/s11626-008-9163-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 12/03/2008] [Indexed: 12/25/2022]
Abstract
The human HL-60 promyelocytic leukemia cell line has been widely used as a model for studying granulocytic differentiation. All-trans retinoic acid (ATRA) treatment of HL-60 cells promotes granulocytic differentiation and is effective as differentiation therapy for patients with acute promyelocytic leukemia. The identification of genes that are transcriptionally regulated by ATRA has provided insight into granulocytic differentiation and differentiation therapy. The Asb-2 (ankyrin repeat SOCS box 2) gene has previously been identified as a transcriptional target in ATRA-treated HL-60 cells. The ASB-2 protein forms an E3 ubiquitin ligase complex with the proteins, Cul5, regulator of cullin 2 (ROC2), and elongin B and C. The purpose of this study was to determine if there is increased expression of Cul5 during granulocytic differentiation of HL-60 cells. To induce granulocytic differentiation, HL-60 cells were treated for 5 d with ATRA and differentiation was confirmed by examining superoxide anion production, nuclear morphology, and changes in the expression of CD11b, CD13, and CD15. Quantitative real-time RT-PCR was used to measure Cul5 mRNA expression and also the expression of other components of the E3 ubiquitin ligase (ASB-2, ROC2, elongin B and C). Granulocytic differentiation of HL-60 cells was associated with a 1.6-, 1.7-, and 23-fold statistically significant (P <or= 0.05) increase in mRNA expression for Cul5, ROC2, and ASB-2, respectively. No significant change was found in elongin B and C mRNA expression. Using Western blot analysis, the expression of Cul5 protein was increased 6.5-fold with granulocytic differentiation of the HL-60 cells. Increased expression of multiple components of the Cul5-containing E3 ubiquitin ligase complex with ATRA treatment of HL-60 cells indicates that this complex may play an important role in granulocytic differentiation.
Collapse
Affiliation(s)
- Shaneen S Baxter
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The ordered series of proliferation and differentiation from hematopoietic progenitor cells is disrupted in leukemia, resulting in arrest of differentiation at immature proliferative stages. Characterizing the molecular basis of hematopoietic differentiation is therefore important for understanding and treating disease. Retinoic acid induces expression of ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2 (ASB2) in acute promyelocytic leukemia cells, and ASB2 expression inhibits growth and promotes commitment, recapitulating an early step critical for differentiation. ASB2 is the specificity subunit of an E3 ubiquitin ligase complex and is proposed to exert its effects by regulating the turnover of specific proteins; however, no ASB2 substrates had been identified. Here, we report that ASB2 targets the actin-binding proteins filamin A and B for proteasomal degradation. Knockdown of endogenous ASB2 in leukemia cells delays retinoic acid-induced differentiation and filamin degradation; conversely, ASB2 expression in leukemia cells induces filamin degradation. ASB2 expression inhibits cell spreading, and this effect is recapitulated by knocking down both filamin A and filamin B. Thus, we suggest that ASB2 may regulate hematopoietic cell differentiation by modulating cell spreading and actin remodeling through targeting of filamins for degradation.
Collapse
|
49
|
Heuzé ML, Lamsoul I, Moog-Lutz C, Lutz PG. Ubiquitin-mediated proteasomal degradation in normal and malignant hematopoiesis. Blood Cells Mol Dis 2008; 40:200-10. [DOI: 10.1016/j.bcmd.2007.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 01/10/2023]
|
50
|
Wolff L, Ackerman SJ, Nucifora G. Meeting report: Seventh International Workshop on Molecular Aspects of Myeloid Stem Cell Development and Leukemia, Annapolis, MD, May 13-16, 2007. Exp Hematol 2008; 36:523-32. [PMID: 18295966 DOI: 10.1016/j.exphem.2007.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/13/2007] [Accepted: 12/21/2007] [Indexed: 11/27/2022]
Affiliation(s)
- Linda Wolff
- National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|