1
|
Takayama I, Araki N, Tewari J, Yohda M, Matsunami H, Fukutani Y. Antagonists Enhance Cell-Surface Expression of Mammalian Odorant Receptors. Int J Mol Sci 2025; 26:1458. [PMID: 40003926 PMCID: PMC11855683 DOI: 10.3390/ijms26041458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Functional characterization of vertebrate odorant receptors (ORs), members of the G protein-coupled receptor (GPCR) family, is essential for understanding olfaction. However, the functional expression of ORs in heterologous cells is often challenging, at least partly caused by structural instability in non-olfactory cells. Antagonists have been shown to restore membrane expression of some non-olfactory GPCR mutants, likely by transient increase in structural stability upon antagonist binding. Based on this premise, we examined whether antagonists could enhance OR membrane expression in heterologous cells. Using phenyl salicylate (PES) on cells expressing the mouse OR Or11g7, we observed increased cell surface expression exceeding the effects of co-expression with the OR chaperone RTP1S. After removing the antagonist, Or11g7 retained normal agonist responsiveness. Similar enhancements in cell surface expression were observed for a human OR OR2T11 treated with its antagonists. These findings suggest that small-molecule antagonists act as pharmacological chaperones to stabilize OR conformation, enhancing surface expression in a manner similar to molecular chaperones. Our study reveals a novel role for odorant antagonists in OR biogenesis and may inform future research on olfactory training mechanisms.
Collapse
Affiliation(s)
- Ikumi Takayama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan; (I.T.); (N.A.); (M.Y.)
| | - Nako Araki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan; (I.T.); (N.A.); (M.Y.)
| | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan; (I.T.); (N.A.); (M.Y.)
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan; (I.T.); (N.A.); (M.Y.)
| |
Collapse
|
2
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
3
|
Evidence for existence of insulin-like factor 3 (INSL3) hormone-receptor system in the ovarian corpus luteum and extra-ovarian reproductive organs during pregnancy in goats. Cell Tissue Res 2021; 385:173-189. [PMID: 33590284 DOI: 10.1007/s00441-021-03410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Insulin-like factor 3 (INSL3), initially described as a male hormone, is expressed in female reproductive organs during the estrous cycle and pregnancy but its function has not yet been established. This study explores the function of INSL3 in pregnant Saanen goats by characterizing the expression dynamics of INSL3 and its receptor, relaxin family peptide receptor 2 (RXFP2) and by demonstrating specific INSL3 binding in reproductive organs, using molecular and immunological approaches and ligand-receptor interaction assays. We demonstrate that the corpus luteum (CL) acts as both a source and target of INSL3 in pregnant goats, while extra-ovarian reproductive organs serve as additional INSL3 targets. The expression of INSL3 and RXFP2 in the CL reached maximum levels in middle pregnancy, followed by a decrease in late pregnancy; in contrast, RXFP2 expression levels in extra-ovarian reproductive organs were higher in the mammary glands but lower in the uterus, cervix and placenta and did not significantly change during pregnancy. The functional RXFP2 enabling INSL3 to bind was identified as an ~ 85 kDa protein in both the CL and mammary glands and localized in large and small luteal cells in the CL and in tubuloalveolar and ductal epithelial cells in the mammary glands. Additionally, INSL3 also bound to multiple cell types expressing RXFP2 in the uterus, cervix and placenta in a hormone-specific and saturable manner. These results provide evidence that an active intra- and extra-ovarian INSL3 hormone-receptor system operates during pregnancy in goats.
Collapse
|
4
|
Tao YX. Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Mol Cell Endocrinol 2020; 511:110862. [PMID: 32389798 DOI: 10.1016/j.mce.2020.110862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly conserved versatile signaling molecules located at the plasma membrane that respond to diverse extracellular signals. They regulate almost all physiological processes in the vertebrates. About 35% of current drugs target these receptors. Mutations in these genes have been identified as causes of numerous diseases. The seven transmembrane domain structure of GPCRs implies that the folding of these transmembrane proteins is extremely complicated and difficult. Indeed, many wild type GPCRs are not folded optimally. The most common defect in genetic diseases caused by GPCR mutations is misfolding and failure to reach the plasma membrane where it functions. General molecular chaperones aid the folding of all proteins, including GPCRs, by preventing aggregation, promoting folding and disaggregating small aggregates. Some GPCRs need additional receptor-specific chaperones to assist their folding. Many of these receptor-specific chaperones interact with additional receptors and alter receptor pharmacology, expanding the understanding of these chaperone proteins.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849-5519, USA.
| |
Collapse
|
5
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
6
|
|
7
|
Doly S, Marullo S. Gatekeepers Controlling GPCR Export and Function. Trends Pharmacol Sci 2016; 36:636-644. [PMID: 26435209 DOI: 10.1016/j.tips.2015.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/15/2015] [Accepted: 06/25/2015] [Indexed: 12/17/2022]
Abstract
Regulated export of G protein-coupled receptors (GPCRs) from intracellular stores involves chaperones and escort proteins, which promote their progression to the cell surface, and gatekeepers, which retain them in intracellular compartments. Functional γ-aminobutyric acid (GABA)B receptors, the paradigm of this phenomenon, comprise GB1 and GB2 subunits forming a heterodimer. GB1 is retained in the endoplasmic reticulum (ER) in the absence of GB2. A specific ER-resident gatekeeper, prenylated Rab acceptor family 2 (PRAF2), is involved in GB1 retention and prevents its progression into the biosynthetic pathway. GB1 can be released from PRAF2 only on competitive interaction with GB2. PRAF2 is ubiquitous and belongs to a subgroup of the mammalian Ypt-interacting protein (Yip) family. Several other GPCRs are likely to be regulated by Yip proteins, which might be involved in the pathophysiology of human diseases that are associated with impaired receptor targeting to the cell surface.
Collapse
Affiliation(s)
- Stéphane Doly
- Institut Cochin, INSERM, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stefano Marullo
- Institut Cochin, INSERM, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
8
|
CRF binding protein facilitates the presence of CRF type 2α receptor on the cell surface. Proc Natl Acad Sci U S A 2016; 113:4075-80. [PMID: 27035969 DOI: 10.1073/pnas.1523745113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Corticotropin releasing factor binding protein (CRF-BP) was originally recognized as CRF sequestering protein. However, its differential subcellular localization in different brain nuclei suggests that CRF-BP may have additional functions. There is evidence that CRF-BP potentiates CRF and urocortin 1 actions through CRF type 2 receptors (CRF2R). CRF2R is a G protein-coupled receptor (GPCR) that is found mainly intracellularly as most GPCRs. The access of GPCRs to the cell surface is tightly regulated by escort proteins. We hypothesized that CRF-BP binds to CRF2R, exerting an escort protein role. We analyzed the colocalization of CRF-BP and CRF2R in cultured rat mesencephalic neurons, and the localization and interaction of heterologous expressed CRF-BP and CRF2αR in yeast, human embryonic kidney 293, and rat pheochromocytoma 12 cells. Our results showed that CRF-BP and CRF2R naturally colocalize in the neurites of cultured mesencephalic neurons. Heterologous expression of each protein showed that CRF-BP was localized mainly in secretory granules and CRF2αR in the endoplasmic reticulum. In contrast, CRF-BP and CRF2αR colocalized when both proteins are coexpressed. Here we show that CRF-BP physically interacts with the CRF2αR but not the CRF2βR isoform, increasing CRF2αR on the cell surface. Thus, CRF-BP emerges as a GPCR escort protein increasing the understanding of GPCR trafficking.
Collapse
|
9
|
Mattila SO, Tuusa JT, Petäjä-Repo UE. The Parkinson's-disease-associated receptor GPR37 undergoes metalloproteinase-mediated N-terminal cleavage and ectodomain shedding. J Cell Sci 2016; 129:1366-77. [PMID: 26869225 DOI: 10.1242/jcs.176115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
The G-protein-coupled receptor 37 ( GPR37) has been implicated in the juvenile form of Parkinson's disease, in dopamine signalling and in the survival of dopaminergic cells in animal models. The structure and function of the receptor, however, have remained enigmatic. Here, we demonstrate that although GPR37 matures and is exported from the endoplasmic reticulum in a normal manner upon heterologous expression in HEK293 and SH-SY5Y cells, its long extracellular N-terminus is subject to metalloproteinase-mediated limited proteolysis between E167 and Q168. The proteolytic processing is a rapid and efficient process that occurs constitutively. Moreover, the GPR37 ectodomain is released from cells by shedding, a phenomenon rarely described for GPCRs. Immunofluorescence microscopy further established that although full-length receptors are present in the secretory pathway until the trans-Golgi network, GPR37 is expressed at the cell surface predominantly in the N-terminally truncated form. This notion was verified by flow cytometry and cell surface biotinylation assays. These new findings on the GPR37 N-terminal limited proteolysis may help us to understand the role of this GPCR in the pathophysiology of Parkinson's disease and in neuronal function in general.
Collapse
Affiliation(s)
- S Orvokki Mattila
- Medical Research Center Oulu, and Cancer and Translational Medicine Research Unit, University of Oulu, Oulu FI-90014, Finland
| | - Jussi T Tuusa
- Medical Research Center Oulu, and Cancer and Translational Medicine Research Unit, University of Oulu, Oulu FI-90014, Finland
| | - Ulla E Petäjä-Repo
- Medical Research Center Oulu, and Cancer and Translational Medicine Research Unit, University of Oulu, Oulu FI-90014, Finland
| |
Collapse
|
10
|
Graves J, Markman S, Alegranti Y, Gechtler J, Johnson RI, Cagan R, Ben-Menahem D. The LH/CG receptor activates canonical signaling pathway when expressed in Drosophila. Mol Cell Endocrinol 2015; 413:145-56. [PMID: 26112185 DOI: 10.1016/j.mce.2015.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 01/12/2023]
Abstract
G-protein coupled receptors (GPCRs) and their ligands provide precise tissue regulation and are therefore often restricted to specific animal phyla. For example, the gonadotropins and their receptors are crucial for vertebrate reproduction but absent from invertebrates. In mammals, LHR mainly couples to the PKA signaling pathway, and CREB is the major transcription factor of this pathway. Here we present the results of expressing elements of the human gonadotropin system in Drosophila. Specifically, we generated transgenic Drosophila expressing the human LH/CG receptor (denoted as LHR), a constitutively active form of LHR, and an hCG analog. We demonstrate activation-dependent signaling by LHR to direct Drosophila phenotypes including lethality and specific midline defects; these phenotypes were due to LHR activation of PKA/CREB pathway activity. That the LHR can act in an invertebrate demonstrates the conservation of factors required for GPCR function among phylogenetically distant organisms. This novel gonadotropin model may assist the identification of new modulators of mammalian fertility by exploiting the powerful genetic and pharmacological tools available in Drosophila.
Collapse
Affiliation(s)
- Justin Graves
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - Svetlana Markman
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yair Alegranti
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jenia Gechtler
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ruth I Johnson
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - Ross Cagan
- Dept. of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New-York, NY, USA
| | - David Ben-Menahem
- Dept. of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
11
|
Vezzoli V, Duminuco P, Vottero A, Kleinau G, Schülein R, Minari R, Bassi I, Bernasconi S, Persani L, Bonomi M. A new variant in signal peptide of the human luteinizing hormone receptor (LHCGR) affects receptor biogenesis causing leydig cell hypoplasia. Hum Mol Genet 2015; 24:6003-12. [PMID: 26246498 DOI: 10.1093/hmg/ddv313] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/29/2015] [Indexed: 11/12/2022] Open
Abstract
The human luteinizing hormone/chorionic gonadotropin receptor (LHCGR) plays a fundamental role in male and female reproduction. In males, loss-of-function mutations in LHCGR have been associated with distinct degrees of impairment in pre- and postnatal testosterone secretion resulting in a variable phenotypic spectrum, classified as Leydig cell hypoplasia (LCH) type 1 (complete LH resistance and disorder of sex differentiation) and type 2 (partial LH resistance with impaired masculinization and fertility). Here, we report the case of an adolescent who came to the pediatric endocrinologist at the age of 12 years old for micropenis and cryptorchidism. Testis biopsy showed profound LCH and absent germinal line elements (Sertoli-only syndrome). The sequence analysis of the LHCGR gene showed the presence of a compound heterozygosity, being one variation, c.1847C>A p.S616Y, already described in association to Hypergonadotropic Hypogonadism, and the other, c.29 C>T p.L10P, a new identified variant in the putative signal peptide (SP) of LHCGR. Functional and structural studies provide first evidence that LHCGR have a functional and cleavable SP required for receptor biogenesis. Moreover, we demonstrate the pathogenic role of the novel p.L10P allelic variant, which has to be considered a loss-of-function mutation significantly contributing, in compound heterozygosity with p.S616Y, to the LCH type 2 observed in our patient.
Collapse
Affiliation(s)
- Valeria Vezzoli
- Dipartimento di Scienze Cliniche e di Comunità and Divisione di Medicina Generale ad Indirizzo Endocrino-Metabolico e Laboratorio di Ricerche Endocrino-Metaboliche, Istituto Auxologico Italiano IRCCS, Cusano Milanino, MI, Italy
| | - Paolo Duminuco
- Divisione di Medicina Generale ad Indirizzo Endocrino-Metabolico e Laboratorio di Ricerche Endocrino-Metaboliche, Istituto Auxologico Italiano IRCCS, Cusano Milanino, MI, Italy
| | - Alessandra Vottero
- Dipartimento di Medicina Clinica e Sperimentale, Università Degli Studi di Parma, Parma, Italy
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany and
| | - Ralf Schülein
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Roberta Minari
- Dipartimento di Medicina Clinica e Sperimentale, Università Degli Studi di Parma, Parma, Italy
| | - Ivan Bassi
- Dipartimento di Scienze Della Salute, Università di Milano, Milan, MI, Italy, Divisione di Medicina Generale ad Indirizzo Endocrino-Metabolico e Laboratorio di Ricerche Endocrino-Metaboliche, Istituto Auxologico Italiano IRCCS, Cusano Milanino, MI, Italy
| | - Sergio Bernasconi
- Dipartimento di Medicina Clinica e Sperimentale, Università Degli Studi di Parma, Parma, Italy
| | - Luca Persani
- Dipartimento di Scienze Cliniche e di Comunità and Divisione di Medicina Generale ad Indirizzo Endocrino-Metabolico e Laboratorio di Ricerche Endocrino-Metaboliche, Istituto Auxologico Italiano IRCCS, Cusano Milanino, MI, Italy
| | - Marco Bonomi
- Dipartimento di Scienze Cliniche e di Comunità and Divisione di Medicina Generale ad Indirizzo Endocrino-Metabolico e Laboratorio di Ricerche Endocrino-Metaboliche, Istituto Auxologico Italiano IRCCS, Cusano Milanino, MI, Italy,
| |
Collapse
|
12
|
Conn PM, Spicer TP, Scampavia L, Janovick JA. Assay strategies for identification of therapeutic leads that target protein trafficking. Trends Pharmacol Sci 2015; 36:498-505. [PMID: 26067100 DOI: 10.1016/j.tips.2015.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
Receptors, enzymes, and ion channels are traditional targets of therapeutic development. A common strategy is to target these proteins with agents that either activate or suppress their activity with ligands or substrates that occupy orthosteric sites or have allosteric interactions. An alternative approach involves regulation of protein trafficking. In principle, this approach enables 'rescue' of misfolded and misrouted mutant proteins to restore function, 'shipwrecking' of undesirable proteins by targeting them for destruction, and regulation of levels of partially expressed wild type (WT) proteins at their functional sites of action. Here, we present drug discovery strategies that identify 'pharmacoperones', which are small molecules that serve as molecular templates and cause otherwise misfolded mutant proteins to fold and route correctly.
Collapse
Affiliation(s)
- P Michael Conn
- Department of Internal Medicine, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Cell Biology/Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Timothy P Spicer
- Lead Identification Division, Translational Research Institute and Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, FL, USA
| | - Louis Scampavia
- Lead Identification Division, Translational Research Institute and Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, FL, USA
| | - Jo Ann Janovick
- Department of Internal Medicine, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Cell Biology/Biochemistry, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
13
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 PMCID: PMC4394689 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Cyclic AMP/physiology
- Humans
- International Agencies
- Ligands
- Models, Molecular
- Pharmacology/trends
- Pharmacology, Clinical/trends
- Protein Isoforms/agonists
- Protein Isoforms/chemistry
- Protein Isoforms/classification
- Protein Isoforms/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/agonists
- Receptors, Peptide/chemistry
- Receptors, Peptide/classification
- Receptors, Peptide/metabolism
- Relaxin/agonists
- Relaxin/analogs & derivatives
- Relaxin/antagonists & inhibitors
- Relaxin/metabolism
- Second Messenger Systems
- Societies, Scientific
- Terminology as Topic
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
14
|
Tao YX, Conn PM. Chaperoning G protein-coupled receptors: from cell biology to therapeutics. Endocr Rev 2014; 35:602-47. [PMID: 24661201 PMCID: PMC4105357 DOI: 10.1210/er.2013-1121] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology (Y.-X.T.), College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519; and Departments of Internal Medicine and Cell Biology (P.M.C.), Texas Tech University Health Science Center, Lubbock, Texas 79430-6252
| | | |
Collapse
|
15
|
Lackman JJ, Markkanen PMH, Hogue M, Bouvier M, Petäjä-Repo UE. N-Glycan-dependent and -independent quality control of human δ opioid receptor N-terminal variants. J Biol Chem 2014; 289:17830-42. [PMID: 24798333 DOI: 10.1074/jbc.m114.566273] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quality control (QC) in the endoplasmic reticulum (ER) scrutinizes newly synthesized proteins and directs them either to ER export or ER-associated degradation (ERAD). Here, we demonstrate that the human δ-opioid receptor (hδOR) is subjected to ERQC in both N-glycan-dependent and -independent manners. This was shown by investigating the biosynthesis and trafficking of wild-type and non-N-glycosylated F27C variants in metabolic pulse-chase assays coupled with flow cytometry and cell surface biotinylation. Both QC mechanisms distinguished the minute one-amino acid difference between the variants, targeting a large fraction of hδOR-Cys(27) to ERAD. However, the N-glycan-independent QC was unable to compensate the N-glycan-dependent pathway, and some incompletely folded non-N-glycosylated hδOR-Cys(27) reached the cell surface in conformation incompatible with ligand binding. The turnover of receptors associating with the molecular chaperone calnexin (CNX) was significantly slower for the hδOR-Cys(27), pointing to an important role of CNX in the hδOR N-glycan-dependent QC. This was further supported by the fact that inhibiting the co-translational interaction of hδOR-Cys(27) precursors with CNX led to their ERAD. Opioid receptor pharmacological chaperones released the CNX-bound receptors to ER export and, furthermore, were able to rescue the Cys(27) variant from polyubiquitination and retrotranslocation to the cytosol whether carrying N-glycans or not. Taken together, the hδOR appears to rely primarily on the CNX-mediated N-glycan-dependent QC that has the capacity to assist in folding, whereas the N-glycan-independent mechanism constitutes an alternative, although less accurate, system for directing misfolded/incompletely folded receptors to ERAD, possibly in altered cellular conditions.
Collapse
Affiliation(s)
- Jarkko J Lackman
- From the Department of Anatomy and Cell Biology and the Medical Research Center Oulu, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland and
| | - Piia M H Markkanen
- From the Department of Anatomy and Cell Biology and the Medical Research Center Oulu, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland and
| | - Mireille Hogue
- the Department of Biochemistry, Institute for Research in Immunology and Cancer and Groupe de Recherche Universitaire sur le Médicament, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Michel Bouvier
- the Department of Biochemistry, Institute for Research in Immunology and Cancer and Groupe de Recherche Universitaire sur le Médicament, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Ulla E Petäjä-Repo
- From the Department of Anatomy and Cell Biology and the Medical Research Center Oulu, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland and
| |
Collapse
|
16
|
Sauer T, Patel M, Chan CC, Tuo J. Unfolding the Therapeutic Potential of Chemical Chaperones for Age-related Macular Degeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 3:29-42. [PMID: 18528533 DOI: 10.1586/17469899.3.1.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies suggest that pathological processes involved in age-related macular degeneration (AMD) might induce endoplasmic reticulum (ER) stress. Growing evidence demonstrates the ability of chemical chaperones to decrease ER stress and ameliorate ER stress-related disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for AMD. In this review, we examine the evidence suggesting a role for ER stress in AMD. Furthermore, we discuss the use of chaperone therapy for the treatment of ER stress-associated diseases, including other neurodegenerative diseases and retinopathies. Finally, we examine strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human disease.
Collapse
Affiliation(s)
- Theodor Sauer
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
17
|
Cabrera-Wrooman A, Janovick JA, Conn PM. Species sequence differences determine the interaction of GnRH receptor with the cellular quality control system. Mol Cell Endocrinol 2013; 381:1-7. [PMID: 23891857 PMCID: PMC3795929 DOI: 10.1016/j.mce.2013.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/29/2013] [Accepted: 07/15/2013] [Indexed: 01/04/2023]
Abstract
Plasma membrane expression (PME) of the human GnRHR (hGnRHR) is regulated by a primate-specific Lys(191) which destabilizes a Cys(14)-Cys(200) bridge required by the cellular quality control system (QCS). A 4-amino, non-contiguous "motif" (Leu(112), Gln(208), Leu(300), Asp(302)) is required for this effect. The hGnRHR sequence, with or without Lys(191), decreases PME and inositol phosphate (IP) production when co-expressed with calnexin, a QCS chaperone. WT rat GnRHR, decreases PME and IP production, when co-expressed with calnexin, but to a lesser degree than hGnRH. When the human sequence contains the rat motif, IP production is closer to that of rat GnRHR. When Lys(191) is deleted from hGnRHR and co-expressed with calnexin, IP production is similar to the rat sequence. When rat GnRHR containing Lys(191) and the human motif is co-expressed with calnexin, IP production is similar to cells expressing the hGnRHR. The motif sequence appears to be a determinant of calnexin recognition.
Collapse
Affiliation(s)
- Alejandro Cabrera-Wrooman
- Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
18
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Kogure K, Nakamura K, Ikeda S, Kitahara Y, Nishimura T, Iwamune M, Minegishi T. Glucose-Regulated Protein, 78-Kilodalton Is a Modulator of Luteinizing Hormone Receptor Expression in Luteinizing Granulosa Cells in Rats1. Biol Reprod 2013; 88:8. [DOI: 10.1095/biolreprod.112.101873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
20
|
Zaarour N, Demaretz S, Defontaine N, Zhu Y, Laghmani K. Multiple evolutionarily conserved Di-leucine like motifs in the carboxyl terminus control the anterograde trafficking of NKCC2. J Biol Chem 2012; 287:42642-42653. [PMID: 23105100 PMCID: PMC3522265 DOI: 10.1074/jbc.m112.399162] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/19/2012] [Indexed: 01/19/2023] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome, a life-threatening kidney disease. Yet the mechanisms underlying the regulation of NKCC2 trafficking in renal cells are scarcely known. We previously showed that naturally occurring mutations depriving NKCC2 of its distal COOH-terminal tail and interfering with the (1081)LLV(1083) motif result in defects in the ER exit of the co-transporter. Here we show that this motif is necessary but not sufficient for anterograde trafficking of NKCC2. Indeed, we have identified two additional hydrophobic motifs, (1038)LL(1039) and (1048)LI(1049), that are required for ER exit and surface expression of the co-transporter. Double mutations of (1038)LL(1039) or (1048)LI(1049) to di-alanines disrupted glycosylation and cell surface expression of NKCC2, independently of the expression system. Pulse-chase analysis demonstrated that the absence of the terminally glycosylated form of NKCC2 was not due to reduced synthesis or increased rates of degradation of mutant co-transporters, but was instead caused by defects in maturation. Co-immunolocalization experiments revealed that (1038)AA(1039) and (1048)AA(1049) were trapped mainly in the ER as indicated by extensive co-localization with the ER marker calnexin. Remarkably, among several analyzed motifs present in the NKCC2 COOH terminus, only those required for ER exit and surface expression of NKCC2 are evolutionarily conserved in all members of the SLC12A family, a group of cation-chloride co-transporters that are targets of therapeutic drugs and mutated in several human diseases. Based upon these data, we propose abnormal anterograde trafficking as a common mechanism associated with mutations depriving NKCC2, and also all other members of the SLC12A family, of their COOH terminus.
Collapse
Affiliation(s)
- Nancy Zaarour
- From the INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France. CNRS, ERL7226, 75006 Paris, France
- the Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75006 Paris, France
| | - Sylvie Demaretz
- From the INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France. CNRS, ERL7226, 75006 Paris, France
- the Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75006 Paris, France
| | - Nadia Defontaine
- From the INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France. CNRS, ERL7226, 75006 Paris, France
- the Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75006 Paris, France
| | - Yingying Zhu
- From the INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France. CNRS, ERL7226, 75006 Paris, France
- the Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75006 Paris, France
| | - Kamel Laghmani
- From the INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France. CNRS, ERL7226, 75006 Paris, France
- the Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75006 Paris, France
| |
Collapse
|
21
|
Zaarour N, Demaretz S, Defontaine N, Zhu Y, Laghmani K. Multiple evolutionarily conserved Di-leucine like motifs in the carboxyl terminus control the anterograde trafficking of NKCC2. J Biol Chem 2012. [PMID: 23105100 DOI: 10.1074/jbc.m112.399162.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome, a life-threatening kidney disease. Yet the mechanisms underlying the regulation of NKCC2 trafficking in renal cells are scarcely known. We previously showed that naturally occurring mutations depriving NKCC2 of its distal COOH-terminal tail and interfering with the (1081)LLV(1083) motif result in defects in the ER exit of the co-transporter. Here we show that this motif is necessary but not sufficient for anterograde trafficking of NKCC2. Indeed, we have identified two additional hydrophobic motifs, (1038)LL(1039) and (1048)LI(1049), that are required for ER exit and surface expression of the co-transporter. Double mutations of (1038)LL(1039) or (1048)LI(1049) to di-alanines disrupted glycosylation and cell surface expression of NKCC2, independently of the expression system. Pulse-chase analysis demonstrated that the absence of the terminally glycosylated form of NKCC2 was not due to reduced synthesis or increased rates of degradation of mutant co-transporters, but was instead caused by defects in maturation. Co-immunolocalization experiments revealed that (1038)AA(1039) and (1048)AA(1049) were trapped mainly in the ER as indicated by extensive co-localization with the ER marker calnexin. Remarkably, among several analyzed motifs present in the NKCC2 COOH terminus, only those required for ER exit and surface expression of NKCC2 are evolutionarily conserved in all members of the SLC12A family, a group of cation-chloride co-transporters that are targets of therapeutic drugs and mutated in several human diseases. Based upon these data, we propose abnormal anterograde trafficking as a common mechanism associated with mutations depriving NKCC2, and also all other members of the SLC12A family, of their COOH terminus.
Collapse
Affiliation(s)
- Nancy Zaarour
- INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France
| | | | | | | | | |
Collapse
|
22
|
Janovick JA, Pogozheva ID, Mosberg HI, Cornea A, Conn PM. Rescue of misrouted GnRHR mutants reveals its constitutive activity. Mol Endocrinol 2012; 26:1179-88. [PMID: 22595961 DOI: 10.1210/me.2012-1089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
G protein-coupled receptors (GPCR) play central roles in almost all physiological functions, and mutations in GPCR are responsible for over 30 hereditary diseases associated with loss or gain of receptor function. Gain of function mutants are frequently described as having constitutive activity (CA), that is, they activate effectors in the absence of agonist occupancy. Although many GPCR have mutants with CA, the GnRH receptor (GnRHR) was not, until 2010, associated with any CA mutants. The explanation for the failure to observe CA appears to be that the quality control system of the cell recognizes CA mutants of GnRHR as misfolded and retains them in the endoplasmic reticulum. In the present study, we identified several human (h)GnRHR mutants with substitutions in transmembrane helix 6 (F(272)K, F(272)Q, Y(284)F, C(279)A, and C(279)S) that demonstrate varying levels of CA after being rescued by pharmacoperones from different chemical classes and/or deletion of residue K(191), a modification that increases trafficking to the plasma membrane. The movement of the mutants from the endoplasmic reticulum (unrescued) to the plasma membrane (after rescue) is supported by confocal microscopy. Judging from the receptor-stimulated inositol phosphate production, mutants F(272)K and F(272)Q, after rescue, display the largest level of CA, an amount that is comparable with agonist-stimulated activation. Because mutations in other GPCR are, like the hGnRHR, scrutinized by the quality control system, this general approach may reveal CA in receptor mutants from other systems. A computer model of the hGnRHR and these mutants was used to evaluate the conformation associated with CA.
Collapse
Affiliation(s)
- Jo Ann Janovick
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448, USA
| | | | | | | | | |
Collapse
|
23
|
Leskelä TT, Lackman JJ, Vierimaa MM, Kobayashi H, Bouvier M, Petäjä-Repo UE. Cys-27 variant of human δ-opioid receptor modulates maturation and cell surface delivery of Phe-27 variant via heteromerization. J Biol Chem 2011; 287:5008-20. [PMID: 22184124 DOI: 10.1074/jbc.m111.305656] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The important role of G protein-coupled receptor homo/heteromerization in receptor folding, maturation, trafficking, and cell surface expression has become increasingly evident. Here we investigated whether the human δ-opioid receptor (hδOR) Cys-27 variant that shows inherent compromised maturation has an effect on the behavior of the more common Phe-27 variant in the early secretory pathway. We demonstrate that hδOR-Cys-27 acts in a dominant negative manner and impairs cell surface delivery of the co-expressed hδOR-Phe-27 and impairs conversion of precursors to the mature form. This was demonstrated by metabolic labeling, Western blotting, flow cytometry, and confocal microscopy in HEK293 and human SH-SY5Y neuroblastoma cells using differentially epitope-tagged variants. The hδOR-Phe-27 precursors that were redirected to the endoplasmic reticulum-associated degradation were, however, rescued by a pharmacological chaperone, the opioid antagonist naltrexone. Co-immunoprecipitation of metabolically labeled variants revealed that both endoplasmic reticulum-localized precursors and mature receptors exist as homo/heteromers. The existence of homo/heteromers was confirmed in living cells by bioluminescence resonance energy transfer measurements, showing that the variants have a similar propensity to form homo/heteromers. By forming both homomers and heteromers, the hδOR-Cys-27 variant may thus regulate the levels of receptors at the cell surface, possibly leading to altered responsiveness to opioid ligands in individuals carrying the Cys-27 variant.
Collapse
Affiliation(s)
- Tarja T Leskelä
- Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
G protein-coupled receptors (GPCRs), which includes the gonadotropin releasing hormone (GnRH) receptor (GnRHR), comprises the largest family of validated drug targets-more than half of all approved drugs derive their benefits by selective targeting of GPCRs. Most drugs in this class are either agonists or antagonists of GPCRs and high throughput screens (HTSs) have typically been designed and performed with a view toward identification of such compounds as lead drug candidates. This manuscript presents the case that valuable drugs which effect the trafficking of GPCRs may have been overlooked because pharmacoperones have been selected from existing screens that identify agonists and antagonists. A "gain of activity assay" is proposed; this assay relies on the expression of a mutant of the GnRHR that is known to be rescuable by pharmacoperone drugs, and which is restored to activity in their presence. Accordingly, "hits" are identified by the appearance of activity. The gene for the mutant is under control of tetracycline and may be prevented from being expressed. This is a valuable feature since it allows false positives to be identified. Such drugs will show apparent activity whether or not the mutant is expressed. This assay will enable identification of these drugs from chemical libraries and does not rely on their activity as agonists or antagonists.
Collapse
Affiliation(s)
- P. Michael Conn
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
- Department of Physiology and Pharmacology, Oregon Health and Science UniversityBeaverton, OR, USA
- Department of Cell Biology and Development, Oregon Health and Science UniversityBeaverton, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science UniversityBeaverton, OR, USA
- *Correspondence: P. Michael Conn, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. e-mail:
| | - Jo Ann Janovick
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
| |
Collapse
|
25
|
Phe27Cys polymorphism of the human delta opioid receptor predisposes cells to compromised calcium signaling. Mol Cell Biochem 2011; 351:173-81. [PMID: 21234650 DOI: 10.1007/s11010-011-0725-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
A quarter of the human population with European background carries at least one allele of the OPRD1 gene that encodes the delta opioid receptor with cysteine at the amino acid position 27 (hδOR(Cys27)) instead of the evolutionary conserved phenylalanine (hδOR(Phe27)). The two variants have indistinguishable pharmacological properties but, importantly, hδOR(Cys27) differs from hδOR(Phe27) in having low maturation efficiency, lower stability at the cell surface and pronounced intracellular location. Both variants were previously shown to interact with the Sarco(endo)plasmic reticulum Ca²+ ATPase (SERCA) 2b in the early phase of their biosynthesis. We analyzed by pulse-chase assays, whether cellular signaling can affect hδOR(Cys27) maturation. Neither activation of the receptor by a δOR-specific agonist Leu-enkephalin, induction of intracellular calcium (Ca²+) release by ATP nor the direct stimulation of SERCA 2b by protein kinase C activation affected receptor maturation in HEK-293 cells. No signaling-mediated regulation of receptor maturation could therefore be demonstrated. Instead, we found by using single cell Ca²+ measurements that over-expression of hδOR(Cys27), but not hδOR(Phe27), compromised ATP-induced intracellular Ca²+-signaling. Furthermore, hδOR(Cys27) precursors showed slower dissociation from SERCA2b and hδOR(Cys27) expression caused down-regulation of the homocysteine-inducible endoplasmic reticulum-resident ubiquitin domain-like member 1 protein (HERP). We suggest that aging individuals with at least one hδOR(Cys27) encoding allele might have lowered threshold for Ca²+ dysregulation in neurons expressing hδOR.
Collapse
|
26
|
Conn PM, Ulloa-Aguirre A. Pharmacological chaperones for misfolded gonadotropin-releasing hormone receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:109-41. [PMID: 21907908 DOI: 10.1016/b978-0-12-385952-5.00008-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Structural alterations provoked by mutations or genetic variations in the gene sequence of G protein-coupled receptors (GPCRs) may lead to abnormal function of the receptor molecule. Frequently, this leads to disease. While some mutations lead to changes in domains involved in agonist binding, receptor activation, or coupling to effectors, others may cause misfolding and lead to retention/degradation of the protein molecule by the quality control system of the cell. Several strategies, including genetic, chemical, and pharmacological approaches, have been shown to rescue function of trafficking-defective misfolded GPCRs. Among these, pharmacological strategies offer the most promising therapeutic tool to promote proper trafficking of misfolded proteins to the plasma membrane (PM). Pharmacological chaperones or "pharmacoperones" are small compounds that permeate the PM, enter cells, and bind selectively to misfolded proteins and correct folding allowing routing of the target protein to the PM, where the receptor may bind and respond to agonist stimulation. In this review, we describe new therapeutic opportunities based on mislocalization of otherwise functional human gonadotropin-releasing hormone receptors. This particular receptor is highly sensitive to single changes in chemical charge, and its intracellular traffic is delicately balanced between expression at the PM or retention/degradation in the endoplasmic reticulum; it is, therefore, a particularly instructive model to understand both the protein routing and the molecular mechanisms, whereby pharmacoperones rescue misfolded intermediates or conformationally defective receptors.
Collapse
Affiliation(s)
- P Michael Conn
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | |
Collapse
|
27
|
Moriyama K, Sitkovsky MV. Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J Biol Chem 2010; 285:39271-39288. [PMID: 20926384 PMCID: PMC2998132 DOI: 10.1074/jbc.m109.098293] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 10/05/2010] [Indexed: 11/06/2022] Open
Abstract
The A2A and A2B adenosine receptors (A2AR and A2BR) are implicated in many physiological processes. However, the mechanisms of their intracellular maturation and trafficking are poorly understood. In comparative studies of A2AR versus A2BR expression in transfected cells, we noticed that the levels of cell surface expression of A2BR were significantly lower than those of A2AR. A large portion of the A2BR was degraded by the proteasome. Studies of cell surface expression of A2BR chimeric molecules in transfectants suggested that A2BR does not have the dominant forward transport signal for export from the endoplasmic reticulum to the cell surface. A2BR surface expression was increased in A2BR chimeras where the A2BR carboxyl terminus (CT) was replaced or fused with the A2AR CT. Co-transfection of A2AR with A2BR enhanced surface expression of A2BR though the F(X)(6)LL motif in the A2AR CT. The requirements of A2AR expression for better A2BR cell surface expression was not only established in transfectants but also confirmed by observations of much lower levels of A2BR-induced intracellular cAMP accumulation in response to A2BR-activating ligand in splenocytes from A2AR(-/-) mice than in wild type mice. The results of mechanistic studies suggested that poor A2BR expression at the cell surface might be accounted for mainly by the lack of a dominant forward transport signal from the endoplasmic reticulum to the plasma membrane; it is likely that A2BR forms a hetero-oligomer complex for better function.
Collapse
Affiliation(s)
- Kengo Moriyama
- From the New England Inflammation and Tissue Protection Institute, Departments of Pharmaceutical Science and Biology, Northeastern University, Boston, Massachusetts 02115
| | - Michail V. Sitkovsky
- From the New England Inflammation and Tissue Protection Institute, Departments of Pharmaceutical Science and Biology, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
28
|
Re M, Pampillo M, Savard M, Dubuc C, McArdle CA, Millar RP, Conn PM, Gobeil F, Bhattacharya M, Babwah AV. The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane. PLoS One 2010; 5:e11489. [PMID: 20628612 PMCID: PMC2900216 DOI: 10.1371/journal.pone.0011489] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/11/2010] [Indexed: 12/02/2022] Open
Abstract
The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor.
Collapse
Affiliation(s)
- Michelle Re
- The Children's Health Research Institute, London, Canada
- Lawson Health Research Institute, London, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - Macarena Pampillo
- The Children's Health Research Institute, London, Canada
- Lawson Health Research Institute, London, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Canada
| | - Martin Savard
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Canada
| | - Céléna Dubuc
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Canada
| | - Craig A. McArdle
- Laboratories for Integrated Neuroscience and Endocrinology, Department of Clinical Sciences at South Bristol, University of Bristol, Bristol, United Kingdom
| | - Robert P. Millar
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - P. Michael Conn
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Fernand Gobeil
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Canada
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - Andy V. Babwah
- The Children's Health Research Institute, London, Canada
- Lawson Health Research Institute, London, Canada
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| |
Collapse
|
29
|
Hakalahti AE, Vierimaa MM, Lilja MK, Kumpula EP, Tuusa JT, Petäjä-Repo UE. Human beta1-adrenergic receptor is subject to constitutive and regulated N-terminal cleavage. J Biol Chem 2010; 285:28850-61. [PMID: 20587416 DOI: 10.1074/jbc.m110.149989] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The beta(1)-adrenergic receptor (beta(1)AR) is the predominant betaAR in the heart, mediating the catecholamine-stimulated increase in cardiac rate and force of contraction. Regulation of this important G protein-coupled receptor is nevertheless poorly understood. We describe here the biosynthetic profile of the human beta(1)AR and reveal novel features relevant to its regulation using an inducible heterologous expression system in HEK293(i) cells. Metabolic pulse-chase labeling and cell surface biotinylation assays showed that the synthesized receptors are efficiently and rapidly transported to the cell surface. The N terminus of the mature receptor is extensively modified by sialylated mucin-type O-glycosylation in addition to one N-glycan attached to Asn(15). Furthermore, the N terminus was found to be subject to limited proteolysis, resulting in two membrane-bound C-terminal fragments. N-terminal sequencing of the fragments identified two cleavage sites between Arg(31) and Leu(32) and Pro(52) and Leu(53), which were confirmed by cleavage site and truncation mutants. Metalloproteinase inhibitors were able to inhibit the cleavage, suggesting that it is mediated by a matrix metalloproteinase or a disintegrin and metalloproteinase (ADAM) family member. Most importantly, the N-terminal cleavage was found to occur not only in vitro but also in vivo. Receptor activation mediated by the betaAR agonist isoproterenol enhanced the cleavage in a concentration- and time-dependent manner, and it was also enhanced by direct stimulation of protein kinase C and adenylyl cyclase. Mutation of the Arg(31)-Leu(32) cleavage site stabilized the mature receptor. We hypothesize that the N-terminal cleavage represents a novel regulatory mechanism of cell surface beta(1)ARs.
Collapse
Affiliation(s)
- Anna E Hakalahti
- Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| | | | | | | | | | | |
Collapse
|
30
|
Tuusa JT, Leskelä TT, Petäjä-Repo UE. Human delta opioid receptor biogenesis is regulated via interactions with SERCA2b and calnexin. FEBS J 2010; 277:2815-29. [PMID: 20528919 DOI: 10.1111/j.1742-4658.2010.07699.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sarco(endo)plasmic reticulum calcium ATPase (SERCA)2b maintains the cellular Ca(2+) homeostasis by transferring Ca(2+) from the cytosol to the lumen of the endoplasmic reticulum (ER). Recently, SERCA2b has also been shown to be involved in the biosynthesis of secreted and membrane proteins via direct protein-protein interactions, involving components of the ER folding and quality-control machinery, as well as newly synthesized G protein-coupled receptors. Here we demonstrate that the human delta opioid receptor (hdeltaOR) exists in a ternary complex with SERCA2b and the ER molecular chaperone calnexin. The interaction between SERCA2b and hdeltaOR in vivo did not require calnexin as it was independent of the C-terminal calnexin-interacting domain of SERCA2b. However, the receptor was able to mediate co-immunoprecipitation of calnexin with the C-terminally truncated SERCA2b. The association of SERCA2b with hdeltaOR was regulated in vitro by Ca(2+) and ATP in a manner that was opposite to the calnexin-hdeltaOR interaction. Importantly, co-expression of the catalytically inactive SERCA2b(D351A) or calnexin binding-compromised SERCA2bDeltaC mutants with the receptor decreased the expression of mature receptors in a manner that did not directly relate to changes in the ER Ca(2+) concentration. We conclude that dynamic interactions among SERCA2b, calnexin and the hdeltaOR precursor orchestrate receptor biogenesis and are regulated by Ca(2+) and ATP. We further hypothesize that the primary role of SERCA2b in this process is to act as a Ca(2+) sensor in the vicinity of active translocons, integrating protein folding with local fluctuations of ER Ca(2+) levels.
Collapse
Affiliation(s)
- Jussi T Tuusa
- Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | | | | |
Collapse
|
31
|
Cavanaugh A, McKenna J, Stepanchick A, Breitwieser GE. Calcium-sensing receptor biosynthesis includes a cotranslational conformational checkpoint and endoplasmic reticulum retention. J Biol Chem 2010; 285:19854-64. [PMID: 20421307 DOI: 10.1074/jbc.m110.124792] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic labeling with [(35)S]cysteine was used to characterize early events in CaSR biosynthesis. [(35)S]CaSR is relatively stable (half-life approximately 8 h), but maturation to the final glycosylated form is slow and incomplete. Incorporation of [(35)S]cysteine is linear over 60 min, and the rate of [(35)S]CaSR biosynthesis is significantly increased by the membrane-permeant allosteric agonist NPS R-568, which acts as a cotranslational pharmacochaperone. The [(35)S]CaSR biosynthetic rate also varies as a function of conformational bias induced by loss- or gain-of-function mutations. In contrast, [(35)S]CaSR maturation to the plasma membrane was not significantly altered by exposure to the pharmacochaperone NPS R-568, the allosteric agonist neomycin, or the orthosteric agonist Ca(2+) (0.5 or 5 mm), suggesting that CaSR does not control its own release from the endoplasmic reticulum. A CaSR chimera containing the mGluR1alpha carboxyl terminus matures completely (half-time of approximately 8 h) and without a lag period, as does the truncation mutant CaSRDelta868 (half-time of approximately 16 h). CaSRDelta898 exhibits maturation comparable with full-length CaSR, suggesting that the CaSR carboxyl terminus between residues Thr(868) and Arg(898) limits maturation. Overall, these results suggest that CaSR is subject to cotranslational quality control, which includes a pharmacochaperone-sensitive conformational checkpoint. The CaSR carboxyl terminus is the chief determinant of intracellular retention of a significant fraction of total CaSR. Intracellular CaSR may reflect a rapidly mobilizable "storage form" of CaSR and/or may subserve distinct intracellular signaling roles that are sensitive to signaling-dependent changes in endoplasmic reticulum Ca(2+) and/or glutathione.
Collapse
Affiliation(s)
- Alice Cavanaugh
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, USA
| | | | | | | |
Collapse
|
32
|
Conn PM, Ulloa-Aguirre A. Trafficking of G-protein-coupled receptors to the plasma membrane: insights for pharmacoperone drugs. Trends Endocrinol Metab 2010; 21:190-7. [PMID: 20005736 PMCID: PMC2831145 DOI: 10.1016/j.tem.2009.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are among the most common potential targets for pharmacological design. Synthesized in the endoplasmic reticulum, they interact with endogenous chaperones that assist in folding (or can retain incorrectly folded proteins) and are transferred to the plasma membrane where they exert their physiological functions. We summarize trafficking of the gonadotropin-releasing hormone receptor (GnRHR) to the plasma membrane. The trafficking of GnRHR is among the best characterized due in part to its small size and the consequent ease of making mutant proteins. Human mutations that cause disease through the misrouting of GPCRs including GnRHR are also reviewed. Special emphasis is placed on therapeutic opportunities presented by pharmacological chaperone drugs, or pharmacoperones, that allow misrouted mutants to be routed correctly and restored to function.
Collapse
Affiliation(s)
- P Michael Conn
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | |
Collapse
|
33
|
Angelotti T, Daunt D, Shcherbakova OG, Kobilka B, Hurt CM. Regulation of G-protein coupled receptor traffic by an evolutionary conserved hydrophobic signal. Traffic 2010; 11:560-78. [PMID: 20059747 DOI: 10.1111/j.1600-0854.2010.01033.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Plasma membrane (PM) expression of G-protein coupled receptors (GPCRs) is required for activation by extracellular ligands; however, mechanisms that regulate PM expression of GPCRs are poorly understood. For some GPCRs, such as alpha2c-adrenergic receptors (alpha(2c)-ARs), heterologous expression in non-native cells results in limited PM expression and extensive endoplasmic reticulum (ER) retention. Recently, ER export/retentions signals have been proposed to regulate cellular trafficking of several GPCRs. By utilizing a chimeric alpha(2a)/alpha(2c)-AR strategy, we identified an evolutionary conserved hydrophobic sequence (ALAAALAAAAA) in the extracellular amino terminal region that is responsible in part for alpha(2c)-AR subtype-specific trafficking. To our knowledge, this is the first luminal ER retention signal reported for a GPCR. Removal or disruption of the ER retention signal dramatically increased PM expression and decreased ER retention. Conversely, transplantation of this hydrophobic sequence into alpha(2a)-ARs reduced their PM expression and increased ER retention. This evolutionary conserved hydrophobic trafficking signal within alpha(2c)-ARs serves as a regulator of GPCR trafficking.
Collapse
Affiliation(s)
- Tim Angelotti
- Department of Anesthesia, Stanford University School of Medicine, 300 Pasteur Drive, Grant Building S286, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
34
|
Martikkala E, Lehmusto M, Lilja M, Rozwandowicz-Jansen A, Lunden J, Tomohiro T, Hänninen P, Petäjä-Repo U, Härmä H. Cell-based β2-adrenergic receptor–ligand binding assay using synthesized europium-labeled ligands and time-resolved fluorescence. Anal Biochem 2009; 392:103-9. [DOI: 10.1016/j.ab.2009.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 05/06/2009] [Accepted: 05/09/2009] [Indexed: 11/25/2022]
|
35
|
Conn PM, Janovick JA. Drug development and the cellular quality control system. Trends Pharmacol Sci 2009; 30:228-33. [DOI: 10.1016/j.tips.2009.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 01/01/2023]
|
36
|
Conn PM, Janovick JA. Trafficking and quality control of the gonadotropin releasing hormone receptor in health and disease. Mol Cell Endocrinol 2009; 299:137-45. [PMID: 19059461 PMCID: PMC2655134 DOI: 10.1016/j.mce.2008.10.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 01/09/2023]
Abstract
In order to serve as enzymes, receptors and ion channels, proteins require structural precision. This is monitored by a cellular quality control system (QCS) that rejects misfolded proteins and thereby protects the cell against aberrant activity. Misfolding can result in protein molecules that retain intrinsic function, yet become misrouted within the cell; these cease to perform normally and result in disease. A therapeutic opportunity exists to correct misrouting and rescue mutants using "pharmacoperones" (small molecular folding templates, often peptidomimetics, which promote correct folding and rescue) thereby restoring function and potentially curing the underlying disease. Because of its small size, the GnRH (gonadotropin-releasing hormone) receptor (GnRHR) is an excellent model for GPCR (G protein-coupled receptor) and has allowed elucidation of the precise biochemical mechanism of pharmacoperone action necessary for rational design of new therapeutic agents. This review summarizes what has been learned about the structural requirements of the GnRHR that govern its interaction with the QCS and now presents the potential for the rational design of pharmacoperones. Because of the role of protein processing, this approach is likely to be applicable to other GCPCs and other proteins in general.
Collapse
Affiliation(s)
- P Michael Conn
- Oregon National Primate Research Center and Departments of Physiology and Pharmacology and Cell Biology and Development, Oregon Health & Science University, United States.
| | | |
Collapse
|
37
|
Janovick JA, Patny A, Mosley R, Goulet MT, Altman MD, Rush TS, Cornea A, Conn PM. Molecular mechanism of action of pharmacoperone rescue of misrouted GPCR mutants: the GnRH receptor. Mol Endocrinol 2009; 23:157-68. [PMID: 19095769 PMCID: PMC2646616 DOI: 10.1210/me.2008-0384] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/08/2008] [Indexed: 12/22/2022] Open
Abstract
The human GnRH receptor (hGnRHR), a G protein-coupled receptor, is a useful model for studying pharmacological chaperones (pharmacoperones), drugs that rescue misfolded and misrouted protein mutants and restore them to function. This technique forms the basis of a therapeutic approach of rescuing mutants associated with human disease and restoring them to function. The present study relies on computational modeling, followed by site-directed mutagenesis, assessment of ligand binding, effector activation, and confocal microscopy. Our results show that two different chemical classes of pharmacoperones act to stabilize hGnRHR mutants by bridging residues D(98) and K(121). This ligand-mediated bridge serves as a surrogate for a naturally occurring and highly conserved salt bridge (E(90)-K(121)) that stabilizes the relation between transmembranes 2 and 3, which is required for passage of the receptor through the cellular quality control system and to the plasma membrane. Our model was used to reveal important pharmacophoric features, and then identify a novel chemical ligand, which was able to rescue a D(98) mutant of the hGnRHR that could not be rescued as effectively by previously known pharmacoperones.
Collapse
Affiliation(s)
- Jo Ann Janovick
- Oregon National Primate Research Center/Oregon Health Sciences University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Janovick JA, Maya-Núñez G, Ulloa-Aguirre A, Huhtaniemi IT, Dias JA, Verbost P, Conn PM. Increased plasma membrane expression of human follicle-stimulating hormone receptor by a small molecule thienopyr(im)idine. Mol Cell Endocrinol 2009; 298:84-8. [PMID: 18848862 PMCID: PMC2630403 DOI: 10.1016/j.mce.2008.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/05/2008] [Accepted: 09/10/2008] [Indexed: 12/12/2022]
Abstract
A thienopyr(im)idine (Org41841) activates the luteinizing hormone (LH) receptor but does not compete with the natural ligand binding site and does not show agonistic action on the follicle-stimulating hormone receptor (hFSHR) at sub-millimolar concentrations. When this drug is preincubated at sub-micromolar concentrations with host cells expressing the hFSHR, and then washed out, binding analysis and assessment of receptor-effector coupling show that it increases plasma membrane expression of the hFSHR. Real-time PCR shows that this effect did not result from increased hFSHR mRNA accumulation. It is possible that Org41841 behaves as a pharmacoperone, a drug which increases the percentage of newly synthesized receptor routing to the membrane. Like pharmacoperones for other receptors, this drug was able to rescue a particular mutant hFSHR (A(189)V) associated with misrouting and endoplasmic reticulum retention, although other mutants could not be rescued. This is potentially the first member of the pharmacoperone drug class which binds at a site that is distinctive from the ligand binding site.
Collapse
Affiliation(s)
| | - Guadalupe Maya-Núñez
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - Alfredo Ulloa-Aguirre
- Oregon National Primate Research Center, Beaverton, OR, USA
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | - Ilpo T. Huhtaniemi
- Department of Reproductive Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 NN, UK
| | - James A. Dias
- Wadsworth Center, New York State Department of Health, David Axelrod Institute, 120 New Scotland Avenue, Albany, N.Y. 12208
| | - Pieter Verbost
- Dept. of Pharmacology, Schering-Plough Corporation, P.O. Box 20, 5340 BH Oss, The Netherlands
| | - P. Michael Conn
- Oregon National Primate Research Center, Beaverton, OR, USA
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia “Luis Castelazo Ayala”, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
- Departments of Physiology and Pharmacology, and Cell and Developmental Biology, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
39
|
Noci I, Pillozzi S, Lastraioli E, Dabizzi S, Giachi M, Borrani E, Wimalasena J, Taddei GL, Scarselli G, Arcangeli A. hLH/hCG-receptor expression correlates with in vitro invasiveness in human primary endometrial cancer. Gynecol Oncol 2008; 111:496-501. [DOI: 10.1016/j.ygyno.2008.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
|
40
|
Leskelä TT, Markkanen PMH, Alahuhta IA, Tuusa JT, Petäjä-Repo UE. Phe27Cys Polymorphism Alters the Maturation and Subcellular Localization of the Human δ Opioid Receptor. Traffic 2008; 10:116-29. [DOI: 10.1111/j.1600-0854.2008.00846.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Lin CCJ, Clouser C, Peegel H, Menon B, Menon KMJ. The extracellular domain of luteinizing hormone receptor dictates its efficiency of maturation. Biochem Biophys Res Commun 2008; 377:307-11. [PMID: 18848524 DOI: 10.1016/j.bbrc.2008.09.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
The processing of luteinizing hormone receptor (LHR) shows marked differences in different species. While the human LHR is predominantly expressed as the mature, 90kDa species, rat LHR exists mostly in the 70kDa precursor form. Since the extracellular domain of the LHR is unusually large in comparison with other G protein-coupled receptors, the present studies examined the role of extracellular domain in its processing. FLAG-tagged chimeric LH receptors were constructed by substituting the extracellular domain of the human receptor in rat LHR (hrr) and the extracellular domain of the rat receptor in human LHR (rhh). The intracellular processing, ligand binding and recycling of the chimeric receptors were compared with that of the wild type receptors in 293T cells. The results showed that the human and rat LHR were expressed predominantly as 90 and 70kDa species, respectively, as expected. The introduction of the rat extracellular domain into the human LHR (rhh) decreased the abundance of the mature form with an increase in the precursor form. Conversely, substitution of the extracellular domain of the rat LHR by the extracellular domain of the human LHR (hrr) led to an increase in the mature form with a corresponding decrease in the precursor form. Changes were also observed in the ligand binding and recycling of the wild type and chimeric receptors. These results suggest that the extracellular domain of the LHR is one of the determinants that confer its ability for proper maturation and cell surface expression.
Collapse
Affiliation(s)
- Cindy Chan Juan Lin
- Departments of Biological Chemistry and Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109-0617, USA
| | | | | | | | | |
Collapse
|
42
|
An escort for GPCRs: implications for regulation of receptor density at the cell surface. Trends Pharmacol Sci 2008; 29:528-35. [DOI: 10.1016/j.tips.2008.07.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 12/23/2022]
|
43
|
Markkanen PMH, Petäjä-Repo UE. N-glycan-mediated quality control in the endoplasmic reticulum is required for the expression of correctly folded delta-opioid receptors at the cell surface. J Biol Chem 2008; 283:29086-98. [PMID: 18703511 DOI: 10.1074/jbc.m801880200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A great majority of G protein-coupled receptors are modified by N-glycosylation, but the functional significance of this modification for receptor folding and intracellular transport has remained elusive. Here we studied these phenomena by mutating the two N-terminal N-glycosylation sites (Asn(18) and Asn(33)) of the human delta-opioid receptor, and expressing the mutants from the same chromosomal integration site in stably transfected inducible HEK293 cells. Both N-glycosylation sites were used, and their abolishment decreased the steady-state level of receptors at the cell surface. However, pulse-chase labeling, cell surface biotinylation, and immunofluorescence microscopy revealed that this was not because of intracellular accumulation. Instead, the non-N-glycosylated receptors were exported from the endoplasmic reticulum with enhanced kinetics. The results also revealed differences in the significance of the individual N-glycans, as the one attached to Asn(33) was found to be more important for endoplasmic reticulum retention of the receptor. The non-N-glycosylated receptors did not show gross functional impairment, but flow cytometry revealed that a fraction of them was incapable of ligand binding at the cell surface. In addition, the receptors that were devoid of N-glycans showed accelerated turnover and internalization and were targeted for lysosomal degradation. The results accentuate the importance of protein conformation-based screening before export from the endoplasmic reticulum, and demonstrate how the system is compromised when N-glycosylation is disrupted. We conclude that N-glycosylation of the delta-opioid receptor is needed to maintain the expression of fully functional and stable receptor molecules at the cell surface.
Collapse
Affiliation(s)
- Piia M H Markkanen
- Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, FI-90014, Oulu, Finland
| | | |
Collapse
|
44
|
Thomas P. Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Front Neuroendocrinol 2008; 29:292-312. [PMID: 18343488 PMCID: PMC2600886 DOI: 10.1016/j.yfrne.2008.01.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Rapid, progestin actions initiated at the cell surface that are often nongenomic have been described in a variety of reproductive tissues, but until recently the identities of the membrane receptors mediating these nonclassical progestins actions remained unclear. Evidence has been obtained in the last 4-5 years for the involvement of two types of novel membrane proteins unrelated to nuclear steroid receptors, progesterone membrane receptors (mPRs) and progesterone receptor membrane component 1 (PGMRC1), in progestin signaling in several vertebrate reproductive tissues and in the brain. The mPRs, (M(W) approximately 40 kDa) initially discovered in fish ovaries, comprise at least three subtypes, alpha, beta and gamma and belong to the seven-transmembrane progesterone adiponectin Q receptor (PAQR) family. Both recombinant and wildtype mPRs display high affinity (K(d) approximately 5 nM), limited capacity, displaceable and specific progesterone binding. The mPRs are directly coupled to G proteins and typically activate pertussis-sensitive inhibitory G proteins (G(i)), to down-regulate adenylyl cyclase activity. Recent studies suggest the alpha subtype (mPRalpha) has important physiological functions in variety of reproductive tissues. The mPRalpha is an intermediary in progestin induction of oocyte maturation and stimulation of sperm hypermotility in fish. In mammals, the mPRalphas have been implicated in progesterone regulation of uterine function in humans and GnRH secretion in rodents. The single-transmembrane protein PGMRC1 (M(W) 26-28 kDa) was first purified from porcine livers and its cDNA was subsequently cloned from porcine smooth muscle cells and a variety of other tissues by different investigators. PGMRC1 and the closely-related PGMRC2 belong to the membrane-associated progesterone receptor (MAPR) family. The PGMRC1 protein displays moderately high binding affinity for progesterone which is 2- to 10-fold greater than that for testosterone and glucocorticoids, and also can bind to other molecules such as heme, cholesterol metabolites and proteins. The signal transduction pathways induced by binding of progesterone to PGMRC1 have not been described to date, although motifs for tyrosine kinase, kinase binding, SH2 and SH3 have been predicted from the amino acid sequence. Evidence has been obtained that PGMRC1 mediates the antiapoptotic affects of progesterone in rat granulosa cells. The PGMRC1 protein may also be an intermediary in the progesterone induction of the acrosome reaction in mammalian sperm. Despite these recent advances, many aspects of progestin signaling through these two families of novel membrane proteins remain unresolved. Biochemical characterization of the receptors has been hampered by rapid degradation of the partially purified proteins. A major technical challenge has been to express sufficient amounts of the recombinant receptors on the plasma membranes in eukaryotic systems to permit investigations of their progestin binding and signal transduction characteristics. Additional basic information on the molecular and cellular mechanisms by which mPRs and PGMRC1 interact with progestins, signal transductions pathways and other proteins will be required to establish a comprehensive model of nontraditional progestin actions mediated through these novel proteins.
Collapse
Affiliation(s)
- Peter Thomas
- University of Texas at Austin, Marine Science, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
45
|
Langer I, Leroy K, Gaspard N, Brion JP, Robberecht P. Cell surface targeting of VPAC1 receptors: evidence for implication of a quality control system and the proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1663-72. [PMID: 18435935 DOI: 10.1016/j.bbamcr.2008.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 11/15/2022]
Abstract
Like for most transmembrane proteins, translation of G protein-coupled receptors (GPCRs) mRNA takes place at the endoplasmic reticulum (ER) where they are synthesized, folded and assembled. The molecular mechanisms involved in the transport process of GPCRs from ER to the plasma membrane are poorly investigated. Here we studied the mechanisms involved in glycosylation-dependent cell surface expression and quality control of the receptor for Vasoactive Intestinal Polypeptide (VIP) VPAC1, a member of the B family of GPCRs. Using biochemical and pharmacological techniques and fluorescence microscopy, we have shown that only a fraction of newly synthesized VPAC1 attains properly conformation that allows their cell surface targeting. Misfolded or immature VPAC1 are taken in charge by co- and post-translational quality control that involves: 1) calnexin-dependent folding strictly through a glycan-dependent mechanism, 2) BiP-dependant folding, 3) translocation to the cytoplasm and proteasome-dependent degradation of improper proteins, and 4) post-ER quality control check points. Our data suggest that VPAC1 expression/trafficking pathways are under the control of complex and precise molecular mechanisms to ensure that only proper VPAC1 reaches the cell surface.
Collapse
Affiliation(s)
- Ingrid Langer
- Laboratory of Biological Chemistry and Nutrition, School of Medicine, Université Libre de Bruxelles, 808 route de Lennik CP611, B-1070 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Schwieger I, Lautz K, Krause E, Rosenthal W, Wiesner B, Hermosilla R. Derlin-1 and p97/valosin-containing protein mediate the endoplasmic reticulum-associated degradation of human V2 vasopressin receptors. Mol Pharmacol 2008; 73:697-708. [PMID: 18048502 DOI: 10.1124/mol.107.040931] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The endoplasmic reticulum-associated degradation (ERAD), the main quality control pathway of the cell, is crucial for the elimination of unfolded or misfolded proteins. Several diseases are associated with the retention of misfolded proteins in the early secretory pathway. Among them is X-linked nephrogenic diabetes insipidus, caused by mutations in the gene encoding the V2 vasopressin receptor (V2R). We studied the degradation pathways of three intracellularly retained V2R mutants with different misfolded domains in human embryonic kidney 293 cells. At steady state, the wild-type V2R and the complex-glycosylated mutant G201D were partially located in lysosomes, whereas core-glycosylated mutants L62P and V226E were excluded from this compartment. In pulse-chase experiments, proteasomal inhibition stabilized the nonglycosylated and core-glycosylated forms of all studied receptors. In addition, all mutants and the wild-type receptor were found to be polyubiquitinylated. Nonglycosylated and core-glycosylated receptor forms were located in cytosolic and membrane fractions, respectively, confirming the deglycosylation and retrotranslocation of ERAD substrates to the cytosol. Distinct Derlin-1-dependent and -independent ERAD pathways have been proposed for proteins with different misfolded domains (cytosolic, extracellular, and membrane) in yeast. Here, we show for the first time that V2R mutants with different misfolded domains are able to coprecipitate the ERAD components p97/valosin-containing protein, Derlin-1 and the 26S proteasome regulatory subunit 7. Our results demonstrate the presence of a Derlin-1-mediated ERAD pathway degrading wild-type and disease-causing V2R mutants with different misfolded domains in a mammalian system.
Collapse
Affiliation(s)
- Isabel Schwieger
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Campus Buch, Robert-Rössle Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Conn PM, Ulloa-Aguirre A, Ito J, Janovick JA. G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol Rev 2007; 59:225-50. [PMID: 17878512 DOI: 10.1124/pr.59.3.2] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors (GPCR) comprise the largest family of drug targets. This is not surprising as many signaling systems rely on this class of receptor to convert external and internal stimuli to intracellular responses. As is the case with other membrane proteins, GPCRs are subjected to a stringent quality control mechanism at the endoplasmic reticulum, which ensures that only correctly folded proteins enter the secretory pathway. Because of this quality control system, point mutations resulting in protein sequence variations may result in the production of misfolded and disease-causing proteins that are unable to reach their functional destinations in the cell. There is now a wealth of information demonstrating the functional rescue of misfolded mutant receptors by small nonpeptide molecules originally designed to serve as receptor antagonists; these small molecules ("pharmacoperones") serve as molecular templates, promoting correct folding and allowing the mutants to pass the scrutiny of the cellular quality control system and be expressed at the cell surface membrane. Two of these systems are especially well characterized: the gonadotropin-releasing hormone and the vasopressin type 2 receptors, which play important roles in regulating reproduction and water homeostasis, respectively. Mutations in these receptors can lead to well defined diseases that are recognized as being caused by receptor misfolding that may potentially be amenable to treatment with pharmacoperones. This review is focused on protein misfolding and misrouting related to various disease states, with special emphasis on these two receptors, which have proved to be of value for development of drugs potentially useful in regulating GPCR trafficking in healthy and disease states.
Collapse
Affiliation(s)
- P Michael Conn
- Divisions of Neuroscience and Reproductive Biology, ONPRC/OHSU, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
48
|
Pidoux G, Gerbaud P, Tsatsaris V, Marpeau O, Ferreira F, Meduri G, Guibourdenche J, Badet J, Evain-Brion D, Frendo JL. Biochemical characterization and modulation of LH/CG-receptor during human trophoblast differentiation. J Cell Physiol 2007; 212:26-35. [PMID: 17458905 DOI: 10.1002/jcp.20995] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Due to the key role of the human chorionic gonadotropin hormone (hCG) in placental development, the aim of this study was to characterize the human trophoblastic luteinizing hormone/chorionic gonadotropin receptor (LH/CG-R) and to investigate its expression using the in vitro model of human cytotrophoblast differentiation into syncytiotrophoblast. We confirmed by in situ immunochemistry and in cultured cells, that LH/CG-R is expressed in both villous cytotrophoblasts and syncytiotrophoblasts. However, LH/CG-R expression decreased during trophoblast fusion and differentiation, while the expression of hCG and hPL (specific markers of syncytiotrophoblast formation) increased. A decrease in LH/CG-R mRNA during trophoblast differentiation was observed by means of semi-quantitative RT-PCR with two sets of primers. A corresponding decrease ( approximately 60%) in LH/CG-R protein content was shown by Western-blot and immunoprecipitation experiments. The amount of the mature form of LH/CG-R, detected as a 90-kDa band specifically binding (125)I-hCG, was lower in syncytiotrophoblasts than in cytotrophoblasts. This was confirmed by Scatchard analysis of binding data on cultured cells. Maximum binding at the cell surface decreased from 3,511 to about 929 molecules/seeded cells with a kDa of 0.4-0.5 nM. Moreover, on stimulation by recombinant hCG, the syncytiotrophoblast produced less cyclic AMP than cytotrophoblasts, indicating that LH/CG-R expression is regulated during human villous trophoblast differentiation.
Collapse
|
49
|
Leskelä TT, Markkanen PMH, Pietilä EM, Tuusa JT, Petäjä-Repo UE. Opioid receptor pharmacological chaperones act by binding and stabilizing newly synthesized receptors in the endoplasmic reticulum. J Biol Chem 2007; 282:23171-83. [PMID: 17550902 DOI: 10.1074/jbc.m610896200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence has indicated that membrane-permeable G protein-coupled receptor ligands can enhance cell surface targeting of their cognate wild-type and mutant receptors. This pharmacological chaperoning was thought to result from ligand-mediated stabilization of immature receptors in the endoplasmic reticulum (ER). In the present study, we directly tested this hypothesis using wild-type and mutant forms of the human delta-opioid receptor as models. ER-localized receptors were isolated by expressing the receptors in HEK293 cells under tightly controlled tetracycline induction and blocking their ER export with brefeldin A. The ER-retained delta-opioid receptor precursors were able to bind [(3)H]diprenorphine with high affinity, and treatment of cells with an opioid antagonist naltrexone led to a 2-fold increase in the number of binding sites. After removing the transport block, the antagonist-mediated increase in the number of receptors was detectable at the cell surface by flow cytometry and cell surface biotinylation assay. Importantly, opioid ligands, both antagonists and agonists, were found to stabilize the ER-retained receptor precursors in an in vitro heat inactivation assay and the treatment enhanced dissociation of receptor precursors from the molecular chaperone calnexin. Thus, we conclude that pharmacological chaperones facilitate plasma membrane targeting of delta-opioid receptors by binding and stabilizing receptor precursors, thereby promoting their release from the stringent ER quality control.
Collapse
Affiliation(s)
- Tarja T Leskelä
- Biocenter Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
50
|
Lopez-Gimenez JF, Canals M, Pediani JD, Milligan G. The alpha1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol 2007; 71:1015-29. [PMID: 17220353 DOI: 10.1124/mol.106.033035] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Approaches to identify G protein-coupled receptor oligomers rather than dimers have been lacking. Using concatamers of fluorescent proteins, we established conditions to monitor sequential three-color fluorescence resonance energy transfer (3-FRET) and used these to detect oligomeric complexes of the alpha(1b)-adrenoceptor in single living cells. Mutation of putative key hydrophobic residues in transmembrane domains I and IV resulted in substantial reduction of sequential 3-FRET and was associated with lack of protein maturation, prevention of plasma membrane delivery, and elimination of signaling function. Although these mutations prevented cell surface delivery, bimolecular fluorescence complementation studies indicated that they did not ablate protein-protein interactions and confirmed endoplasmic reticulum/Golgi retention of the transmembrane domain I plus transmembrane domain IV mutated receptor. The transmembrane domain I plus transmembrane domain IV mutated receptor was a "dominant-negative" in blocking cell surface delivery of the wild-type receptor. Mutations only in transmembrane domain I did not result in a reduction in 3-FRET, whereas restricting mutation to transmembrane domain IV did result in reduced 3-FRET. Mutations in either transmembrane domain I or transmembrane domain IV, however, were sufficient to eliminate cell surface delivery. Terminal N-glycosylation is insufficient to determine cell surface delivery because both transmembrane domain I and transmembrane domain IV mutants matured as effectively as the wild-type receptor. These data indicate that the alpha(1b)-adrenoceptor is able to form oligomeric rather than only simple dimeric complexes and that disruption of effective oligomerization by introducing mutations into transmembrane domain IV has profound consequences for cell surface delivery and function.
Collapse
MESH Headings
- Cell Line
- Cell Membrane/metabolism
- Dimerization
- Fluorescence Resonance Energy Transfer
- Glycosylation
- Humans
- Mutagenesis, Site-Directed
- Protein Transport
- Receptors, Adrenergic, alpha-1/chemistry
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Cell Surface
- Transfection
Collapse
Affiliation(s)
- Juan F Lopez-Gimenez
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | | | | |
Collapse
|