1
|
Çağlayan M. Repair pathway coordination from gap filling by polβ and subsequent nick sealing by LIG1 or LIG3α governs BER efficiency at the downstream steps. DNA Repair (Amst) 2025; 148:103826. [PMID: 40081282 PMCID: PMC12038979 DOI: 10.1016/j.dnarep.2025.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Base excision repair (BER) is the critical mechanism for preventing mutagenic and lethal consequences of single base lesions generated by endogenous factors or exposure to environmental hazards. BER pathway involves multi-step enzymatic reactions that require a tight coordination between repair proteins to transfer DNA intermediates in an orderly manner. Though often considered an accurate process, the BER can contribute to genome instability if normal coordination between gap filling by DNA polymerase (pol) β and subsequent nick sealing by DNA ligase 1 (LIG1) or DNA ligase 3α (LIG3α) breaks down at the downstream steps. Our studies demonstrated that an inaccurate DNA ligation by LIG1/LIG3α, stemming from an uncoordinated repair with polβ, leads to a range of deviations from canonical BER pathway, faulty repair events, and formation of deleterious DNA intermediates. Furthermore, X-ray repair cross-complementing protein 1 (XRCC1), as a scaffolding factor, enhances the processivity of downstream steps, and the DNA-end processing enzymes, Aprataxin (APTX), Flap-Endonuclease 1 (FEN1), and AP-Endonuclease 1 (APE1), play critical roles for cleaning of ligase failure products and proofreading of polβ errors in coordination with BER ligases. Overall, our studies contribute to understanding of how a multi-protein repair complex interplay at the final steps to maintain the repair efficiency.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Lebedeva NA, Dyrkheeva NS, Rechkunova NI, Lavrik OI. Apurinic/apyrimidinic endonuclease 1 has major impact in prevention of suicidal covalent DNA-protein crosslink with apurinic/apyrimidinic site in cellular extracts. IUBMB Life 2024; 76:987-996. [PMID: 38963041 DOI: 10.1002/iub.2890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
DNA-protein crosslinks (DPC) are common DNA lesions induced by various external and endogenous agents. One of the sources of DPC is the apurinic/apyrimidinic site (AP site) and proteins interacting with it. Some proteins possessing AP lyase activity form covalent complexes with AP site-containing DNA without borohydride reduction (suicidal crosslinks). We have shown earlier that tyrosyl-DNA phosphodiesterase 1 (TDP1) but not AP endonuclease 1 (APE1) is able to remove intact OGG1 from protein-DNA adducts, whereas APE1 is able to prevent the formation of DPC by hydrolyzing the AP site. Here we demonstrate that TDP1 can remove intact PARP2 but not XRCC1 from covalent enzyme-DNA adducts with AP-DNA formed in the absence of APE1. We also analyzed an impact of APE1 and TDP1 on the efficiency of DPC formation in APE1-/- or TDP1-/- cell extracts. Our data revealed that APE1 depletion leads to increased levels of PARP1-DNA crosslinks, whereas TDP1 deficiency has little effect on DPC formation.
Collapse
Affiliation(s)
- Natalia A Lebedeva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | | | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Lebedeva NA, Anarbaev RO, Maltseva EA, Sukhanova MV, Rechkunova NI, Lavrik OI. DNA Repair Protein XRCC1 Stimulates Activity of DNA Polymerase λ under Conditions of Microphase Separation. Int J Mol Sci 2024; 25:6927. [PMID: 39000034 PMCID: PMC11241748 DOI: 10.3390/ijms25136927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Non-membrane compartments or biomolecular condensates play an important role in the regulation of cellular processes including DNA repair. Here, an ability of XRCC1, a scaffold protein involved in DNA base excision repair (BER) and single-strand break repair, to form protein-rich microphases in the presence of DNA duplexes was discovered. We also showed that the gap-filling activity of BER-related DNA polymerase λ (Pol λ) is significantly increased by the presence of XRCC1. The stimulation of the Pol λ activity was observed only at micromolar XRCC1 concentrations, which were well above the nanomolar dissociation constant determined for the XRCC1-Pol λ complex and pointed to the presence of an auxiliary stimulatory factor in addition to protein-protein interactions. Indeed, according to dynamic light scattering measurements, the stimulation of the Pol λ activity by XRCC1 was coupled with microphase separation in a protein-DNA mixture. Fluorescence microscopy revealed colocalization of Pol λ, XRCC1, and gapped DNA within the microphases. Thus, stimulation of Pol λ activity is caused both by its interaction with XRCC1 and by specific conditions of microphase separation; this phenomenon is shown for the first time.
Collapse
Affiliation(s)
| | | | | | | | | | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (N.A.L.); (R.O.A.); (E.A.M.); (M.V.S.); (N.I.R.)
| |
Collapse
|
4
|
Almohdar D, Murcia D, Tang Q, Ortiz A, Martinez E, Parwal T, Kamble P, Çağlayan M. Impact of DNA ligase 1 and IIIα interactions with APE1 and polβ on the efficiency of base excision repair pathway at the downstream steps. J Biol Chem 2024; 300:107355. [PMID: 38718860 PMCID: PMC11176775 DOI: 10.1016/j.jbc.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
Base excision repair (BER) requires a tight coordination between the repair enzymes through protein-protein interactions and involves gap filling by DNA polymerase (pol) β and subsequent nick sealing by DNA ligase (LIG) 1 or LIGIIIα at the downstream steps. Apurinic/apyrimidinic-endonuclease 1 (APE1), by its exonuclease activity, proofreads 3' mismatches incorporated by polβ during BER. We previously reported that the interruptions in the functional interplay between polβ and the BER ligases result in faulty repair events. Yet, how the protein interactions of LIG1 and LIGIIIα could affect the repair pathway coordination during nick sealing at the final steps remains unknown. Here, we demonstrate that LIGIIIα interacts more tightly with polβ and APE1 than LIG1, and the N-terminal noncatalytic region of LIG1 as well as the catalytic core and BRCT domain of LIGIIIα mediate interactions with both proteins. Our results demonstrated less efficient nick sealing of polβ nucleotide insertion products in the absence of LIGIIIα zinc-finger domain and LIG1 N-terminal region. Furthermore, we showed a coordination between APE1 and LIG1/LIGIIIα during the removal of 3' mismatches from the nick repair intermediate on which both BER ligases can seal noncanonical ends or gap repair intermediate leading to products of single deletion mutagenesis. Overall results demonstrate the importance of functional coordination from gap filling by polβ coupled to nick sealing by LIG1/LIGIIIα in the presence of proofreading by APE1, which is mainly governed by protein-protein interactions and protein-DNA intermediate communications, to maintain repair efficiency at the downstream steps of the BER pathway.
Collapse
Affiliation(s)
- Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - David Murcia
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Qun Tang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Abigail Ortiz
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Ernesto Martinez
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Tanay Parwal
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Pradnya Kamble
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
5
|
Bastos IM, Rebelo S, Silva VLM. A review of poly(ADP-ribose)polymerase-1 (PARP1) role and its inhibitors bearing pyrazole or indazole core for cancer therapy. Biochem Pharmacol 2024; 221:116045. [PMID: 38336156 DOI: 10.1016/j.bcp.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Cancer is a disease with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. The hallmarks of cancer evidence the acquired cells characteristics that promote the growth of malignant tumours, including genomic instability and mutations, the ability to evade cellular death and the capacity of sustaining proliferative signalization. Poly(ADP-ribose) polymerase-1 (PARP1) is a protein that plays key roles in cellular regulation, namely in DNA damage repair and cell survival. The inhibition of PARP1 promotes cellular death in cells with homologous recombination deficiency, and therefore, the interest in PARP protein has been rising as a target for anticancer therapies. There are already some PARP1 inhibitors approved by Food and Drug Administration (FDA), such as Olaparib and Niraparib. The last compound presents in its structure an indazole core. In fact, pyrazoles and indazoles have been raising interest due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as inhibitors of PARP1 and presented promising results. Therefore, this review aims to address the importance of PARP1 in cell regulation and its role in cancer. Moreover, it intends to report a comprehensive literature review of PARP1 inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PARP1 inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Almohdar D, Gulkis M, Ortiz A, Tang Q, Sobol RW, Çağlayan M. Impact of polβ/XRCC1 Interaction Variants on the Efficiency of Nick Sealing by DNA Ligase IIIα in the Base Excision Repair Pathway. J Mol Biol 2024; 436:168410. [PMID: 38135179 PMCID: PMC11090158 DOI: 10.1016/j.jmb.2023.168410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Base excision repair (BER) requires a coordination from gap filling by DNA polymerase (pol) β to subsequent nick sealing by DNA ligase (LIG) IIIα at downstream steps of the repair pathway. X-ray cross-complementing protein 1 (XRCC1), a non-enzymatic scaffolding protein, forms repair complexes with polβ and LIGIIIα. Yet, the impact of the polβ mutations that affect XRCC1 interaction and protein stability on the repair pathway coordination during nick sealing by LIGIIIα remains unknown. Our results show that the polβ colon cancer-associated variant T304 exhibits a reduced interaction with XRCC1 and the mutations in the interaction interface of V303 loop (L301R/V303R/V306R) and at the lysine residues (K206A/K244A) that prevent ubiquitin-mediated degradation of the protein exhibit a diminished repair protein complex formation with XRCC1. Furthermore, we demonstrate no significant effect on gap and nick DNA binding affinity of wild-type polβ by these mutations. Finally, our results reveal that XRCC1 leads to an efficient channeling of nick repair products after nucleotide incorporation by polβ variants to LIGIIIα, which is compromised by the L301R/V303R/V306R and K206A/K244A mutations. Overall, our findings provide insight into how the mutations in the polβ/XRCC1 interface and the regions affecting protein stability could dictate accurate BER pathway coordination at the downstream steps involving nick sealing by LIGIIIα.
Collapse
Affiliation(s)
- Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Abigail Ortiz
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Qun Tang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
7
|
Rouleau-Turcotte É, Pascal JM. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem 2023; 299:105397. [PMID: 37898399 PMCID: PMC10722394 DOI: 10.1016/j.jbc.2023.105397] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
8
|
Huynh O, Ruis K, Montales K, Michael WM. NBS1 binds directly to TOPBP1 via disparate interactions between the NBS1 BRCT1 domain and the TOPBP1 BRCT1 and BRCT2 domains. DNA Repair (Amst) 2023; 123:103461. [PMID: 36738687 PMCID: PMC9992324 DOI: 10.1016/j.dnarep.2023.103461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The TOPBP1 and NBS1 proteins are key components of DNA repair and DNA-based signaling systems. TOPBP1 is a multi-BRCT domain containing protein that plays important roles in checkpoint signaling, DNA replication, and DNA repair. Likewise, NBS1, which is a component of the MRE11-RAD50-NBS1 (MRN) complex, functions in both checkpoint signaling and DNA repair. NBS1 also contains BRCT domains, and previous works have shown that TOPBP1 and NBS1 interact with one another. In this work we examine the interaction between TOPBP1 and NBS1 in detail. We report that NBS1 uses its BRCT1 domain to interact with TOPBP1's BRCT1 domain and, separately, with TOPBP1's BRCT2 domain. Thus, NBS1 can make two distinct contacts with TOPBP1. We report that recombinant TOPBP1 and NBS1 proteins bind one another in a purified system, showing that the interaction is direct and does not require post-translational modifications. Surprisingly, we also report that intact BRCT domains are not required for these interactions, as truncated versions of the domains are sufficient to confer binding. For TOPBP1, we find that small 24-29 amino acid sequences within BRCT1 or BRCT2 allow binding to NBS1, in a transferrable manner. These data expand our knowledge of how the crucial DNA damage response proteins TOPBP1 and NBS1 interact with one another and set the stage for functional analysis of the two disparate binding sites for NBS1 on TOPBP1.
Collapse
Affiliation(s)
- Oanh Huynh
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kenna Ruis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Katrina Montales
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - W Matthew Michael
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
9
|
Fan T, Kang H, Wu D, Zhu X, Huang L, Wu J, Zhu Y. Arabidopsis γ-H2A.X-INTERACTING PROTEIN participates in DNA damage response and safeguards chromatin stability. Nat Commun 2022; 13:7942. [PMID: 36572675 PMCID: PMC9792525 DOI: 10.1038/s41467-022-35715-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Upon the occurrence of DNA double strand breaks (DSB), the proximal histone variant H2A.X is phosphorylated as γ-H2A.X, a critical signal for consequent DSB signaling and repair pathways. Although γ-H2A.X-triggered DNA damage response (DDR) has been well-characterized in yeast and animals, the corresponding pathways in plant DDR are less well understood. Here, we show that an Arabidopsis protein γ-H2A.X-INTERACTING PROTEIN (XIP) can interact with γ-H2A.X. Its C-terminal dual-BRCT-like domain contributes to its specific interaction with γ-H2A.X. XIP-deficient seedlings display smaller meristems, inhibited growth, and higher sensitivity to DSB-inducing treatment. Loss-of-function in XIP causes transcriptome changes mimicking wild-type plants subject to replicative or genotoxic stresses. After genotoxic bleomycin treatment, more proteins with upregulated phosphorylation modifications, more DNA fragments and cell death were found in xip mutants. Moreover, XIP physically interacts with RAD51, the key recombinase in homologous recombination (HR), and somatic HR frequency is significantly reduced in xip mutants. Collectively, XIP participates in plant response to DSB and contributes to chromatin stability.
Collapse
Affiliation(s)
- Tianyi Fan
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Huijia Kang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China ,grid.8547.e0000 0001 0125 2443Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Di Wu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xinyu Zhu
- grid.12527.330000 0001 0662 3178Department of Chemical Engineering (Tanwei College), Tsinghua University, Beijing, China
| | - Lin Huang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jiabing Wu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yan Zhu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
10
|
Chung WC, Song MJ. Virus–Host Interplay Between Poly (ADP-Ribose) Polymerase 1 and Oncogenic Gammaherpesviruses. Front Microbiol 2022; 12:811671. [PMID: 35095818 PMCID: PMC8795711 DOI: 10.3389/fmicb.2021.811671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
The gammaherpesviruses, include the Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, and murine gammaherpesvirus 68. They establish latent infection in the B lymphocytes and are associated with various lymphoproliferative diseases and tumors. The poly (ADP-ribose) polymerase-1 (PARP1), also called ADP-ribosyltransferase diphtheria-toxin-like 1 (ARTD1) is a nuclear enzyme that catalyzes the transfer of the ADP-ribose moiety to its target proteins and participates in important cellular activities, such as the DNA-damage response, cell death, transcription, chromatin remodeling, and inflammation. In gammaherpesvirus infection, PARP1 acts as a key regulator of the virus life cycle: lytic replication and latency. These viruses also develop various strategies to regulate PARP1, facilitating their replication. This review summarizes the roles of PARP1 in the viral life cycle as well as the viral modulation of host PARP1 activity and discusses the implications. Understanding the interactions between the PARP1 and oncogenic gammaherpesviruses may lead to the identification of effective therapeutic targets for the associated diseases.
Collapse
|
11
|
The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair. J Biol Chem 2021; 297:101025. [PMID: 34339737 PMCID: PMC8405949 DOI: 10.1016/j.jbc.2021.101025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
The base excision repair (BER) pathway involves gap filling by DNA polymerase (pol) β and subsequent nick sealing by ligase IIIα. X-ray cross-complementing protein 1 (XRCC1), a nonenzymatic scaffold protein, assembles multiprotein complexes, although the mechanism by which XRCC1 orchestrates the final steps of coordinated BER remains incompletely defined. Here, using a combination of biochemical and biophysical approaches, we revealed that the polβ/XRCC1 complex increases the processivity of BER reactions after correct nucleotide insertion into gaps in DNA and enhances the handoff of nicked repair products to the final ligation step. Moreover, the mutagenic ligation of nicked repair intermediate following polβ 8-oxodGTP insertion is enhanced in the presence of XRCC1. Our results demonstrated a stabilizing effect of XRCC1 on the formation of polβ/dNTP/gap DNA and ligase IIIα/ATP/nick DNA catalytic ternary complexes. Real-time monitoring of protein–protein interactions and DNA-binding kinetics showed stronger binding of XRCC1 to polβ than to ligase IIIα or aprataxin, and higher affinity for nick DNA with undamaged or damaged ends than for one nucleotide gap repair intermediate. Finally, we demonstrated slight differences in stable polβ/XRCC1 complex formation, polβ and ligase IIIα protein interaction kinetics, and handoff process as a result of cancer-associated (P161L, R194W, R280H, R399Q, Y576S) and cerebellar ataxia-related (K431N) XRCC1 variants. Overall, our findings provide novel insights into the coordinating role of XRCC1 and the effect of its disease-associated variants on substrate-product channeling in multiprotein/DNA complexes for efficient BER.
Collapse
|
12
|
Spiegel JO, Van Houten B, Durrant JD. PARP1: Structural insights and pharmacological targets for inhibition. DNA Repair (Amst) 2021; 103:103125. [PMID: 33940558 PMCID: PMC8206044 DOI: 10.1016/j.dnarep.2021.103125] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1, also known as ADPRT1) is a multifunctional human ADP-ribosyltransferase. It plays a role in multiple DNA repair pathways, including the base excision repair (BER), non-homologous end joining (NHEJ), homologous recombination (HR), and Okazaki-fragment processing pathways. In response to DNA strand breaks, PARP1 covalently attaches ADP-ribose moieties to arginine, glutamate, aspartate, cysteine, lysine, and serine acceptor sites on both itself and other proteins. This signal recruits DNA repair proteins to the site of DNA damage. PARP1 binding to these sites enhances ADP-ribosylation via allosteric communication between the distant DNA binding and catalytic domains. In this review, we provide a general overview of PARP1 and emphasize novel potential approaches for pharmacological inhibition. Clinical PARP1 inhibitors bind the catalytic pocket, where they directly interfere with ADP-ribosylation. Some inhibitors may further enhance potency by "trapping" PARP1 on DNA via an allosteric mechanism, though this proposed mode of action remains controversial. PARP1 inhibitors are used clinically to treat some cancers, but resistance is common, so novel pharmacological approaches are urgently needed. One approach may be to design novel small molecules that bind at inter-domain interfaces that are essential for PARP1 allostery. To illustrate these points, this review also includes instructive videos showing PARP1 structures and mechanisms.
Collapse
Affiliation(s)
- Jacob O Spiegel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Bennett Van Houten
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
13
|
Chung WC, Lee S, Kim Y, Seo JB, Song MJ. Kaposi's sarcoma-associated herpesvirus processivity factor (PF-8) recruits cellular E3 ubiquitin ligase CHFR to promote PARP1 degradation and lytic replication. PLoS Pathog 2021; 17:e1009261. [PMID: 33508027 PMCID: PMC7872283 DOI: 10.1371/journal.ppat.1009261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/09/2021] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Kaposi’s sarcoma–associated herpesvirus (KSHV), which belongs to the gammaherpesvirus subfamily, is associated with the pathogenesis of various tumors. Nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) catalyzes the polymerization of ADP-ribose units on target proteins. In KSHV-infected cells, PARP1 inhibits replication and transcription activator (RTA), a molecular switch that initiates lytic replication, through direct interaction. Thus, for efficient replication, KSHV has to overcome the molecular barrier in the form of PARP1. Previously, we have demonstrated that KSHV downregulates the expression of PARP1 through PF-8, a viral processivity factor. PF-8 induces ubiquitin–proteasome system–mediated degradation of PARP1 via direct physical association and enhances RTA transactivation activity. Here, we showed that dimerization domains of PF-8 are crucial not only for PARP1 interaction and degradation but also for enhancement of the RTA transactivation activity. PF-8 recruited CHFR for the PARP1 degradation. A knockdown of CHFR attenuated the PF-8–induced PARP1 degradation and enhancement of the RTA transactivation activity, leading to reduced KSHV lytic replication. These findings reveal a mechanism by which KSHV PF-8 recruits a cellular E3 ligase to curtail the inhibitory effect of PARP1 on KSHV lytic replication. Kaposi’s sarcoma–associated herpesvirus (KSHV), a member of the gammaherpesvirus subfamily, is associated with the pathogenesis of various tumors. Poly(ADP-ribose) polymerase 1 (PARP1), which is involved in various cellular functions, restricts lytic replication of oncogenic gammaherpesviruses by inhibiting replication and transcription activator (RTA), a molecular switch that activates the viral lytic replication. To abrogate the inhibitory effect of PARP1, reactivated KSHV promotes PARP1 degradation via direct interaction between PARP1 and PF-8, a viral processivity factor. Dimerization domains of PF-8 were found to be critical for PARP1 interaction and degradation and for enhancing the RTA transactivation activity. Furthermore, we found that CHFR, an E3 ubiquitin ligase, is required for PF-8–induced PARP1 degradation and efficient lytic replication of KSHV. This is the first study to show the role of CHFR in viral replication or pathogenicity. This study revealed a molecular mechanism via which gammaherpesviruses overcome the PARP1-mediated inhibitory effect on viral replication: by means of PF-8, which recruits a cellular E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Woo-Chang Chung
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seungrae Lee
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yejin Kim
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong Bok Seo
- Metabolome Analysis Team, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
14
|
Kumar M, Jaiswal RK, Yadava PK, Singh RP. An assessment of poly (ADP-ribose) polymerase-1 role in normal and cancer cells. Biofactors 2020; 46:894-905. [PMID: 33098603 DOI: 10.1002/biof.1688] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) is a superfamily of 18 proteins characterized by the PARP homology domain, the catalytic domain. This catalytic domain helps in the ADP-ribosylation of various acceptor proteins using nicotinamide adenine dinucleotide (NAD+) as a donor for ADP-ribose. PARP-1 and PARP-2 carry out 80% of poly-ADP-ribosylation of cellular protein. Hence, their combined knockout results in embryonic lethality of mice. PARP-1 consists of three major domains, namely, DNA binding domain, automodification domain, and a catalytic domain. These domains further consist of subdomains and motifs, which helps PARP-1 in a diverse function. PARP-1 is mainly involved in DNA damage detection and repair, but emerging evidence suggests its role in many other functions such as DNA synthesis, replication, apoptosis, necrosis, and cancer progression. Herein, we review the current state of the PARP-1 role in DNA damage repair and other biological processes including epithelial to mesenchymal transition (EMT). We have also observed the role of PARP-1 in modulating EMT regulators like E-cadherin, Vimentin, Claudin-1, Snail, Smad-4, Twist-1, and β-catenin. Here, we have also attempted to relate the role of PARP-1 in EMT of cancer cells.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Pramod K Yadava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
Kordon MM, Szczurek A, Berniak K, Szelest O, Solarczyk K, Tworzydło M, Wachsmann-Hogiu S, Vaahtokari A, Cremer C, Pederson T, Dobrucki JW. PML-like subnuclear bodies, containing XRCC1, juxtaposed to DNA replication-based single-strand breaks. FASEB J 2019; 33:2301-2313. [PMID: 30260704 PMCID: PMC6993927 DOI: 10.1096/fj.201801379r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
DNA lesions induce recruitment and accumulation of various repair factors, resulting in formation of discrete nuclear foci. Using superresolution fluorescence microscopy as well as live cell and quantitative imaging, we demonstrate that X-ray repair cross-complementing protein 1 (XRCC1), a key factor in single-strand break and base excision repair, is recruited into nuclear bodies formed in response to replication-related single-strand breaks. Intriguingly, these bodies are assembled immediately in the vicinity of these breaks and never fully colocalize with replication foci. They are structurally organized, containing canonical promyelocytic leukemia (PML) nuclear body protein SP100 concentrated in a peripheral layer, and XRCC1 in the center. They also contain other factors, including PML, poly(ADP-ribose) polymerase 1 (PARP1), ligase IIIα, and origin recognition complex subunit 5. The breast cancer 1 and -2 C terminus domains of XRCC1 are essential for formation of these repair foci. These results reveal that XRCC1-contaning foci constitute newly recognized PML-like nuclear bodies that accrete and locally deliver essential factors for repair of single-strand DNA breaks in replication regions.-Kordon, M. M., Szczurek, A., Berniak, K., Szelest, O., Solarczyk, K., Tworzydło, M., Wachsmann-Hogiu, S., Vaahtokari, A., Cremer, C., Pederson, T., Dobrucki, J. W. PML-like subnuclear bodies, containing XRCC1, juxtaposed to DNA replication-based single-strand breaks.
Collapse
Affiliation(s)
- Magdalena M. Kordon
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Aleksander Szczurek
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- Superresolution Microscopy Group, Institute of Molecular Biology, Mainz, Germany
| | - Krzysztof Berniak
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Oskar Szelest
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kamil Solarczyk
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Tworzydło
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sebastian Wachsmann-Hogiu
- Department of Pathology and Laboratory Medicine, University of California at Davis, Davis, California, USA
| | - Anne Vaahtokari
- The Francis Crick Institute, Cancer Research UK, London, United Kingdom; and
| | - Christoph Cremer
- Superresolution Microscopy Group, Institute of Molecular Biology, Mainz, Germany
| | - Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jurek W. Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
16
|
Vasil'eva IA, Anarbaev RO, Moor NA, Lavrik OI. Dynamic light scattering study of base excision DNA repair proteins and their complexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:297-305. [PMID: 30321662 DOI: 10.1016/j.bbapap.2018.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/21/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023]
Abstract
Base excision repair (BER) involves many enzymes acting in a coordinated fashion at the most common types of DNA damage. The coordination is facilitated by interactions between the enzymes and accessory proteins, X-ray repair cross-complementing protein 1 (XRCC1) and poly(ADP-ribose) polymerase 1 (PARP1). Here we use dynamic light scattering (DLS) technique to determine the hydrodynamic sizes of several BER enzymes and proteins, DNA polymerase β (Polβ), apurinic/apyrimidinic endonuclease 1 (APE1), tyrosyl-DNA phosphodiesterase 1 (TDP1), XRCC1 and PARP1, present alone or in the equimolar mixtures with each other. From the DLS data combined with glutaraldehyde cross-linking experiments and previous quantitative binding data the oligomeric states of BER proteins and their complexes are estimated. All the proteins have been proposed to form homodimers upon their self-association. The most probable oligomerization state of the binary complexes formed by PARP1 with various proteins is a heterotetramer. The oligomerization state of the binary complexes formed by XRCC1 varies from heterodimer to heterotetramer, depending on the partner. The DLS technique is applied for the first time to measure the hydrodynamic sizes of PARP1 molecules covalently bound with poly(ADP-ribose) (PAR) synthesized upon the automodification reaction. PARP1 has been detected to form huge conglomerates stabilized by Mg2+ coordinated bonds with PAR polymers.
Collapse
Affiliation(s)
- Inna A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Rashid O Anarbaev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nina A Moor
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
17
|
Moor NA, Lavrik OI. Protein–Protein Interactions in DNA Base Excision Repair. BIOCHEMISTRY (MOSCOW) 2018; 83:411-422. [DOI: 10.1134/s0006297918040120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 2017; 22:1493-1522. [PMID: 28199214 DOI: 10.2741/4555] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Tony S Flynn
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160,
| |
Collapse
|
19
|
Abstract
Scaffold proteins play a central role in DNA repair by recruiting and organizing sets of enzymes required to perform multi-step repair processes. X-ray cross complementing group 1 protein (XRCC1) forms enzyme complexes optimized for single-strand break repair, but participates in other repair pathways as well. Available structural data for XRCC1 interactions is summarized and evaluated in terms of its proposed roles in DNA repair. Mutational approaches related to the abrogation of specific XRCC1 interactions are also discussed. Although substantial progress has been made in elucidating the structural basis for XRCC1 function, the molecular mechanisms of XRCC1 recruitment related to several proposed roles of the XRCC1 DNA repair complex remain undetermined.
Collapse
Affiliation(s)
- Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
20
|
Moor NA, Vasil'eva IA, Anarbaev RO, Antson AA, Lavrik OI. Quantitative characterization of protein-protein complexes involved in base excision DNA repair. Nucleic Acids Res 2015; 43:6009-22. [PMID: 26013813 PMCID: PMC4499159 DOI: 10.1093/nar/gkv569] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/18/2015] [Indexed: 01/29/2023] Open
Abstract
Base Excision Repair (BER) efficiently corrects the most common types of DNA damage in mammalian cells. Step-by-step coordination of BER is facilitated by multiple interactions between enzymes and accessory proteins involved. Here we characterize quantitatively a number of complexes formed by DNA polymerase β (Polβ), apurinic/apyrimidinic endonuclease 1 (APE1), poly(ADP-ribose) polymerase 1 (PARP1), X-ray repair cross-complementing protein 1 (XRCC1) and tyrosyl-DNA phosphodiesterase 1 (TDP1), using fluorescence- and light scattering-based techniques. Direct physical interactions between the APE1-Polβ, APE1-TDP1, APE1-PARP1 and Polβ-TDP1 pairs have been detected and characterized for the first time. The combined results provide strong evidence that the most stable complex is formed between XRCC1 and Polβ. Model DNA intermediates of BER are shown to induce significant rearrangement of the Polβ complexes with XRCC1 and PARP1, while having no detectable influence on the protein–protein binding affinities. The strength of APE1 interaction with Polβ, XRCC1 and PARP1 is revealed to be modulated by BER intermediates to different extents, depending on the type of DNA damage. The affinity of APE1 for Polβ is higher in the complex with abasic site-containing DNA than after the APE1-catalyzed incision. Our findings advance understanding of the molecular mechanisms underlying coordination and regulation of the BER process.
Collapse
Affiliation(s)
- Nina A Moor
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Inna A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Rashid O Anarbaev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alfred A Antson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
21
|
Gagné JP, Ethier C, Defoy D, Bourassa S, Langelier MF, Riccio AA, Pascal JM, Moon KM, Foster LJ, Ning Z, Figeys D, Droit A, Poirier GG. Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs. DNA Repair (Amst) 2015; 30:68-79. [PMID: 25800440 DOI: 10.1016/j.dnarep.2015.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 12/13/2022]
Abstract
An important feature of poly(ADP-ribose) polymerases (PARPs) is their ability to readily undergo automodification upon activation. Although a growing number of substrates were found to be poly(ADP-ribosyl)ated, including histones and several DNA damage response factors, PARPs themselves are still considered as the main acceptors of poly(ADP-ribose). By monitoring spectral counts of specific hydroxamic acid signatures generated after the conversion of the ADP-ribose modification onto peptides by hydroxylamine hydrolysis, we undertook a thorough mass spectrometry mapping of the glutamate and aspartate ADP-ribosylation sites onto automodified PARP-1, PARP-2 and PARP-3. Thousands of hydroxamic acid-conjugated peptides were identified with high confidence and ranked based on their spectral count. This semi-quantitative approach allowed us to locate the preferentially targeted residues in DNA-dependent PARPs. In contrast to what has been reported in the literature, automodification of PARP-1 is not predominantly targeted towards its BRCT domain. Our results show that interdomain linker regions that connect the BRCT to the WGR module and the WGR to the PRD domain undergo prominent ADP-ribosylation during PARP-1 automodification. We also found that PARP-1 efficiently automodifies the D-loop structure within its own catalytic fold. Interestingly, additional major ADP-ribosylation sites were identified in functional domains of PARP-1, including all three zinc fingers. Similar to PARP-1, specific residues located within the catalytic sites of PARP-2 and PARP-3 are major targets of automodification following their DNA-dependent activation. Together our results suggest that poly(ADP-ribosyl)ation hot spots make a dominant contribution to the overall automodification process.
Collapse
Affiliation(s)
- Jean-Philippe Gagné
- Centre de recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Chantal Ethier
- Centre de recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Daniel Defoy
- Plateforme Protéomique du Centre de Recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Sylvie Bourassa
- Plateforme Protéomique du Centre de Recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Marie-France Langelier
- Department of Biochemistry & Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Amanda A Riccio
- Department of Biochemistry & Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - John M Pascal
- Department of Biochemistry & Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Centre for High-Throughput Biology, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Centre for High-Throughput Biology, Vancouver, British Columbia, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Arnaud Droit
- Plateforme Protéomique du Centre de Recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | - Guy G Poirier
- Centre de recherche du CHU de Québec - Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada.
| |
Collapse
|
22
|
Dutta A, Yang C, Sengupta S, Mitra S, Hegde ML. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell Mol Life Sci 2015; 72:1679-98. [PMID: 25575562 DOI: 10.1007/s00018-014-1820-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory proteins guiding distinct BER sub-pathways.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
23
|
Cilli D, Mirasole C, Pennisi R, Pallotta V, D'Alessandro A, Antoccia A, Zolla L, Ascenzi P, di Masi A. Identification of the interactors of human nibrin (NBN) and of its 26 kDa and 70 kDa fragments arising from the NBN 657del5 founder mutation. PLoS One 2014; 9:e114651. [PMID: 25485873 PMCID: PMC4259352 DOI: 10.1371/journal.pone.0114651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/12/2014] [Indexed: 01/17/2023] Open
Abstract
Nibrin (also named NBN or NBS1) is a component of the MRE11/RAD50/NBN complex, which is involved in early steps of DNA double strand breaks sensing and repair. Mutations within the NBN gene are responsible for the Nijmegen breakage syndrome (NBS). The 90% of NBS patients are homozygous for the 657del5 mutation, which determines the synthesis of two truncated proteins of 26 kDa (p26) and 70 kDa (p70). Here, HEK293 cells have been exploited to transiently express either the full-length NBN protein or the p26 or p70 fragments, followed by affinity chromatography enrichment of the eluates. The application of an unsupervised proteomics approach, based upon SDS-PAGE separation and shotgun digestion of protein bands followed by MS/MS protein identification, indicates the occurrence of previously unreported protein interacting partners of the full-length NBN protein and the p26 fragment containing the FHA/BRCT1 domains, especially after cell irradiation. In particular, results obtained shed light on new possible roles of NBN and of the p26 fragment in ROS scavenging, in the DNA damage response, and in protein folding and degradation. In particular, here we show that p26 interacts with PARP1 after irradiation, and this interaction exerts an inhibitory effect on PARP1 activity as measured by NAD+ levels. Furthermore, the p26-PARP1 interaction seems to be responsible for the persistence of ROS, and in turn of DSBs, at 24 h from IR. Since some of the newly identified interactors of the p26 and p70 fragments have not been found to interact with the full-length NBN, these interactions may somehow contribute to the key biological phenomena underpinning NBS.
Collapse
Affiliation(s)
| | - Cristiana Mirasole
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Rosa Pennisi
- Department of Science, Roma Tre University, Rome, Italy
| | - Valeria Pallotta
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Angelo D'Alessandro
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Antonio Antoccia
- Department of Science, Roma Tre University, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Paolo Ascenzi
- Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Rome, Italy
| | - Alessandra di Masi
- Department of Science, Roma Tre University, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy
- * E-mail:
| |
Collapse
|
24
|
Hanssen-Bauer A, Solvang-Garten K, Akbari M, Otterlei M. X-ray repair cross complementing protein 1 in base excision repair. Int J Mol Sci 2012; 13:17210-29. [PMID: 23247283 PMCID: PMC3546746 DOI: 10.3390/ijms131217210] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large multiprotein DNA repair complexes as well as facilitate the recruitment of DNA repair proteins to sites of DNA damage. Moreover, XRCC1 is present in constitutive DNA repair complexes, some of which associate with the replication machinery. Because of the critical role of XRCC1 in DNA repair, its common variants Arg194Trp, Arg280His and Arg399Gln have been extensively studied. However, the prevalence of these variants varies strongly in different populations, and their functional influence on DNA repair and disease remains elusive. Here we present the current knowledge about the role of XRCC1 and its variants in BER and human disease/cancer.
Collapse
Affiliation(s)
- Audun Hanssen-Bauer
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; E-Mails: (A.H.-B.); (K.S.-G.)
| | - Karin Solvang-Garten
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; E-Mails: (A.H.-B.); (K.S.-G.)
| | - Mansour Akbari
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 N, Denmark; E-Mail:
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; E-Mails: (A.H.-B.); (K.S.-G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +47-72573075; Fax: +47-72576400
| |
Collapse
|
25
|
Hassler M, Ladurner AG. Towards a structural understanding of PARP1 activation and related signalling ADP-ribosyl-transferases. Curr Opin Struct Biol 2012; 22:721-9. [DOI: 10.1016/j.sbi.2012.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/30/2012] [Indexed: 11/29/2022]
|
26
|
Simonelli V, Mazzei F, D'Errico M, Dogliotti E. Reprint of: gene susceptibility to oxidative damage: from single nucleotide polymorphisms to function. Mutat Res 2012; 736:104-16. [PMID: 22732424 DOI: 10.1016/j.mrfmmm.2012.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 09/27/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022]
Abstract
Oxidative damage to DNA can cause mutations, and mutations can lead to cancer. DNA repair of oxidative damage should therefore play a pivotal role in defending humans against cancer. This is exemplified by the increased risk of colorectal cancer of patients with germ-line mutations of the oxidative damage DNA glycosylase MUTYH. In contrast to germ-line mutations in DNA repair genes, which cause a strong deficiency in DNA repair activity in all cell types, the role of single nucleotide polymorphisms (SNPs) in sporadic cancer is unclear also because deficiencies in DNA repair, if any, are expected to be much milder. Further slowing down progress are the paucity of accurate and reproducible functional assays and poor epidemiological design of many studies. This review will focus on the most common and widely studied SNPs of oxidative DNA damage repair proteins trying to bridge the information available on biochemical and structural features of the repair proteins with the functional effects of these variants and their potential impact on the pathogenesis of disease.
Collapse
Affiliation(s)
- Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
27
|
Gagné JP, Rouleau M, Poirier GG. Structural biology. PARP-1 activation--bringing the pieces together. Science 2012; 336:678-9. [PMID: 22582250 DOI: 10.1126/science.1221870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jean-Philippe Gagné
- CHUQ Research Center-CHUL, Cancer Research Unit, Laval University, Québec, Canada
| | | | | |
Collapse
|
28
|
Simonelli V, Mazzei F, D'Errico M, Dogliotti E. Gene susceptibility to oxidative damage: from single nucleotide polymorphisms to function. Mutat Res 2012; 731:1-13. [PMID: 22155132 DOI: 10.1016/j.mrfmmm.2011.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 09/27/2011] [Accepted: 10/27/2011] [Indexed: 05/31/2023]
Abstract
Oxidative damage to DNA can cause mutations, and mutations can lead to cancer. DNA repair of oxidative damage should therefore play a pivotal role in defending humans against cancer. This is exemplified by the increased risk of colorectal cancer of patients with germ-line mutations of the oxidative damage DNA glycosylase MUTYH. In contrast to germ-line mutations in DNA repair genes, which cause a strong deficiency in DNA repair activity in all cell types, the role of single nucleotide polymorphisms (SNPs) in sporadic cancer is unclear also because deficiencies in DNA repair, if any, are expected to be much milder. Further slowing down progress are the paucity of accurate and reproducible functional assays and poor epidemiological design of many studies. This review will focus on the most common and widely studied SNPs of oxidative DNA damage repair proteins trying to bridge the information available on biochemical and structural features of the repair proteins with the functional effects of these variants and their potential impact on the pathogenesis of disease.
Collapse
Affiliation(s)
- Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
29
|
The region of XRCC1 which harbours the three most common nonsynonymous polymorphic variants, is essential for the scaffolding function of XRCC1. DNA Repair (Amst) 2012; 11:357-66. [PMID: 22281126 DOI: 10.1016/j.dnarep.2012.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 11/21/2022]
Abstract
XRCC1 functions as a non-enzymatic, scaffold protein in single strand break repair (SSBR) and base excision repair (BER). Here, we examine different regions of XRCC1 for their contribution to the scaffolding functions of the protein. We found that the central BRCT1 domain is essential for recruitment of XRCC1 to sites of DNA damage and DNA replication. Also, we found that ectopic expression of the region from residue 166-436 partially rescued the methyl methanesulfonate (MMS) hypersensitivity of XRCC1-deficient EM9 cells, suggesting a key role for this region in mediating DNA repair. The three most common amino acid variants of XRCC1, Arg194Trp, Arg280His and Arg399Gln, are located within the region comprising the NLS and BRCT1 domains, and these variants may be associated with increased incidence of specific types of cancer. While we could not detect differences in the intra-nuclear localization or the ability to support recruitment of POLβ or PNKP to micro-irradiated sites for these variants relative to the conservative protein, we did observe lower foci intensity after micro-irradiation and a reduced stability of the foci with the Arg280His and Arg399Gln variants, respectively. Furthermore, when challenged with MMS or hydrogen peroxide, we detected small but consistent differences in the repair profiles of cells expressing these two variants in comparison to the conservative protein.
Collapse
|
30
|
Sun W, Wang L, Jiang H, Chen D, Murchie AI. Targeting mitochondrial transcription in fission yeast with ETB, an inhibitor of HSP60, the chaperone that binds to the mitochondrial transcription factor Mtf1. Genes Cells 2012; 17:122-31. [DOI: 10.1111/j.1365-2443.2011.01578.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Loeffler PA, Cuneo MJ, Mueller GA, DeRose EF, Gabel SA, London RE. Structural studies of the PARP-1 BRCT domain. BMC STRUCTURAL BIOLOGY 2011; 11:37. [PMID: 21967661 PMCID: PMC3195086 DOI: 10.1186/1472-6807-11-37] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 10/03/2011] [Indexed: 01/19/2023]
Abstract
Background Poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins localized to foci of DNA damage. Upon activation by encountering nicked DNA, the PARP-1 mediated trans-poly(ADP-ribosyl)ation of DNA binding proteins occurs, facilitating access and accumulation of DNA repair factors. PARP-1 also auto-(ADP-ribosyl)ates its central BRCT-containing domain forming part of an interaction site for the DNA repair scaffolding protein X-ray cross complementing group 1 protein (XRCC1). The co-localization of XRCC1, as well as bound DNA repair factors, to sites of DNA damage is important for cell survival and genomic integrity. Results Here we present the solution structure and biophysical characterization of the BRCT domain of rat PARP-1. The PARP-1 BRCT domain has the globular α/β fold characteristic of BRCT domains and has a thermal melting transition of 43.0°C. In contrast to a previous characterization of this domain, we demonstrate that it is monomeric in solution using both gel-filtration chromatography and small-angle X-ray scattering. Additionally, we report that the first BRCT domain of XRCC1 does not interact significantly with the PARP-1 BRCT domain in the absence of ADP-ribosylation. Moreover, none of the interactions with other longer PARP-1 constructs which previously had been demonstrated in a pull-down assay of mammalian cell extracts were detected. Conclusions The PARP-1 BRCT domain has the conserved BRCT fold that is known to be an important protein:protein interaction module in DNA repair and cell signalling pathways. Data indicating no significant protein:protein interactions between PARP-1 and XRCC1 likely results from the absence of poly(ADP-ribose) in one or both binding partners, and further implicates a poly(ADP-ribose)-dependent mechanism for localization of XRCC1 to sites of DNA damage.
Collapse
Affiliation(s)
- Paul A Loeffler
- Department of Chemistry, Sam Houston State University, Huntsville, Texas 77340, USA
| | | | | | | | | | | |
Collapse
|
32
|
Hanssen-Bauer A, Solvang-Garten K, Sundheim O, Peña-Diaz J, Andersen S, Slupphaug G, Krokan HE, Wilson DM, Akbari M, Otterlei M. XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:623-635. [PMID: 21786338 PMCID: PMC3229989 DOI: 10.1002/em.20663] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/02/2011] [Accepted: 05/25/2011] [Indexed: 05/31/2023]
Abstract
XRCC1 is a scaffold protein capable of interacting with several DNA repair proteins. Here we provide evidence for the presence of XRCC1 in different complexes of sizes from 200 to 1500 kDa, and we show that immunoprecipitates using XRCC1 as bait are capable of complete repair of AP sites via both short patch (SP) and long patch (LP) base excision repair (BER). We show that POLβ and PNK colocalize with XRCC1 in replication foci and that POLβ and PNK, but not PCNA, colocalize with constitutively present XRCC1-foci as well as damage-induced foci when low doses of a DNA-damaging agent are applied. We demonstrate that the laser dose used for introducing DNA damage determines the repertoire of DNA repair proteins recruited. Furthermore, we demonstrate that recruitment of POLβ and PNK to regions irradiated with low laser dose requires XRCC1 and that inhibition of PARylation by PARP-inhibitors only slightly reduces the recruitment of XRCC1, PNK, or POLβ to sites of DNA damage. Recruitment of PCNA and FEN-1 requires higher doses of irradiation and is enhanced by XRCC1, as well as by accumulation of PARP-1 at the site of DNA damage. These data improve our understanding of recruitment of BER proteins to sites of DNA damage and provide evidence for a role of XRCC1 in the organization of BER into multiprotein complexes of different sizes.
Collapse
Affiliation(s)
- Audun Hanssen-Bauer
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Karin Solvang-Garten
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Ottar Sundheim
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Javier Peña-Diaz
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Sonja Andersen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on AgingNIH, Baltimore, Maryland, USA
| | - Mansour Akbari
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and TechnologyTrondheim, Norway
| |
Collapse
|
33
|
Abstract
BRCA1 C-terminal (BRCT) domains are integral signaling modules in the DNA damage response (DDR). Aside from their established roles as phospho-peptide binding modules, BRCT domains have been implicated in phosphorylation-independent protein interactions, DNA binding and poly(ADP-ribose) (PAR) binding. These numerous functions can be attributed to the diversity in BRCT domain structure and architecture, where domains can exist as isolated single domains or assemble into higher order homo- or hetero- domain complexes. In this review, we incorporate recent structural and biochemical studies to demonstrate how structural features allow single and tandem BRCT domains to attain a high degree of functional diversity.
Collapse
|
34
|
Cuneo MJ, Gabel SA, Krahn JM, Ricker MA, London RE. The structural basis for partitioning of the XRCC1/DNA ligase III-α BRCT-mediated dimer complexes. Nucleic Acids Res 2011; 39:7816-27. [PMID: 21652643 PMCID: PMC3177190 DOI: 10.1093/nar/gkr419] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-α. For efficient ligation, ligase III-α is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-α BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex.
Collapse
Affiliation(s)
- Matthew J Cuneo
- National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA
| | | | | | | | | |
Collapse
|
35
|
Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epithelial cells and in mice. Infect Immun 2010; 79:75-87. [PMID: 20956573 DOI: 10.1128/iai.00815-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although DNA repair proteins in bacteria are critical for pathogens' genome stability and for subverting the host defense, the role of host DNA repair proteins in response to bacterial infection is poorly defined. Here, we demonstrate, for the first time, that infection with the Gram-negative bacterium Pseudomonas aeruginosa significantly altered the expression and enzymatic activity of 8-oxoguanine DNA glycosylase (OGG1) in lung epithelial cells. Downregulation of OGG1 by a small interfering RNA strategy resulted in severe DNA damage and cell death. In addition, acetylation of OGG1 is required for host responses to bacterial genotoxicity, as mutations of OGG1 acetylation sites increased Cockayne syndrome group B (CSB) protein expression. These results also indicate that CSB may be involved in DNA repair activity during infection. Furthermore, OGG1 knockout mice exhibited increased lung injury after infection with P. aeruginosa, as demonstrated by higher myeloperoxidase activity and lipid peroxidation. Together, our studies indicate that P. aeruginosa infection induces significant DNA damage in host cells and that DNA repair proteins play a critical role in the host response to P. aeruginosa infection, serving as promising targets for the treatment of this condition and perhaps more broadly Gram-negative bacterial infections.
Collapse
|
36
|
Russo D, Fronza G, Ottaggio L, Monti P, Perfumo C, Inga A, Iyer P, Gold B, Menichini P. XRCC1 deficiency influences the cytotoxicity and the genomic instability induced by Me-lex, a specific inducer of N3-methyladenine. DNA Repair (Amst) 2010; 9:728-36. [PMID: 20471330 DOI: 10.1016/j.dnarep.2010.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/19/2010] [Accepted: 03/26/2010] [Indexed: 12/15/2022]
Abstract
Me-lex is a sequence-specific alkylating agent synthesized to preferentially (>90%) generate N3-methyladenine (3-mA) in the minor groove of double-strand DNA, in A-T rich regions. In this paper we investigated the effect of XRCC1 deficiency in the processing of 3-mA adducts generated by Me-lex, through the molecular analysis of the Hprt mutations and the evaluation of cytogenetic end points such as sister chromatid exchanges (SCEs), micronuclei (MN) and nucleus fragmentation. EM-C11 cells, deficient in XRCC1 activity, showed a 2.5-fold higher sensitivity to the toxicity of Me-lex compared to the DNA repair proficient parental CHO-9 cells, but were not hyper mutable. The spontaneous mutation spectrum at the Hprt locus generated in EM-C11 cells revealed a high percentage of genomic deletions. After Me-lex treatment, the percentage of genomic deletions did not increase, but a class of mutations which appeared to target regulatory regions of the gene significantly increased (p=0.0277), suggesting that non-coding Hprt genomic sequences represent a strong target for the rare mutations induced by Me-lex. The number of SCEs per chromosome increased 3-fold above background in 50mucapital EM, Cyrillic Me-lex treated CHO-9 cells, while at higher Me-lex concentrations a sharp increase in the percentage of MN and fragmented nuclei was observed. In EM-C11 cells the background level of SCEs (0.939+/-0.182) was approximately 10-fold higher than in CHO-9 (0.129+/-0.027) and higher levels of multinucleated cells and MN were also found. In EM-C11, even low doses of Me-lex (25microM) led to a significant increase in genomic damage. These results indicate that XRCC1 deficiency can lead to genomic instability even in the absence of an exogenous genotoxic insult and low levels of Me-lex-induced lesions, i.e., 3-mA and/or a BER intermediate, can exacerbate this instability.
Collapse
Affiliation(s)
- Debora Russo
- Department of Epidemiology and Prevention, National Cancer Research Institute, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase beta binding affinity. Proc Natl Acad Sci U S A 2010; 107:6805-10. [PMID: 20351257 DOI: 10.1073/pnas.0914077107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Formation of a complex between the XRCC1 N-terminal domain (NTD) and DNA polymerase beta (Pol beta) is central to base excision repair of damaged DNA. Two crystal forms of XRCC1-NTD complexed with Pol beta have been solved, revealing that the XRCC1-NTD is able to adopt a redox-dependent alternate fold, characterized by a disulfide bond, and substantial variations of secondary structure, folding topology, and electrostatic surface. Although most of these structural changes occur distal to the interface, the oxidized XRCC1-NTD forms additional interactions with Pol beta, enhancing affinity by an order of magnitude. Transient disulfide bond formation is increasingly recognized as an important molecular regulatory mechanism. The results presented here suggest a paradigm in DNA repair in which the redox state of a scaffolding protein plays an active role in organizing the repair complex.
Collapse
|
38
|
DNA polymerase mu interacts with a meiosis-specific RecA homolog Lim15 during meiosis in Coprinus cinereus. Biochem Biophys Res Commun 2009; 390:32-7. [PMID: 19766592 DOI: 10.1016/j.bbrc.2009.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 11/20/2022]
Abstract
Meiosis is a fundamental process in eukaryotes. Homologous chromosomes are paired and recombined during meiotic prophase I, which results in variation among the gametes. However, the mechanism of recombination between the maternal and paternal chromosome is unknown. In this study, we report on the identification of interaction between Coprinus cinereus DNA polymerase mu (CcPol mu) and CcLim15/Dmc1, a meiosis-specific RecA-like protein, during meiosis. Interaction between these two proteins was confirmed using a GST-pull down assay. A two-hybrid assay revealed that the N-terminus of CcPol mu, which includes the BRCT domain, is responsible for binding the C-terminus of CcLim15. Furthermore, co-immunoprecipitation experiments indicate that these two proteins also interact in the crude extract of the meiotic cell. A significant proportion of CcPol mu and CcLim15 is shown to co-localize in nuclei from the leptotene/zygotene stage to the early pachytene stage during meiotic prophase I. Moreover, CcLim15 enhances polymerase activity of CcPol mu early in the reaction. These results suggest that CcPol mu might be recruited by CcLim15 and elongate the D-loop structure during homologous recombination in meiosis.
Collapse
|
39
|
Buelow B, Uzunparmak B, Paddock M, Scharenberg AM. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation. PLoS One 2009; 4:e6339. [PMID: 19641624 PMCID: PMC2713433 DOI: 10.1371/journal.pone.0006339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 06/16/2009] [Indexed: 11/18/2022] Open
Abstract
Poly adenosine diphosphate-ribose polymerase-1 (PARP-1) is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N) stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR), and formation of the soluble 2(nd) messenger monomeric adenosine diphosphate-ribose (mADPR). Previous studies have delineated specific roles for several of PARP-1's structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1's BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd) messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.
Collapse
Affiliation(s)
- Ben Buelow
- Departments of Pediatrics and Immunology, University of Washington, Seattle, Washington, United States of America
- Division of Immunology, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Burak Uzunparmak
- Division of Immunology, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Marcia Paddock
- Departments of Pediatrics and Immunology, University of Washington, Seattle, Washington, United States of America
- Division of Immunology, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Andrew M. Scharenberg
- Departments of Pediatrics and Immunology, University of Washington, Seattle, Washington, United States of America
- Division of Immunology, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
40
|
Mourgues S, Lomax ME, O’Neill P. Base excision repair processing of abasic site/single-strand break lesions within clustered damage sites associated with XRCC1 deficiency. Nucleic Acids Res 2007; 35:7676-87. [PMID: 17982170 PMCID: PMC2190709 DOI: 10.1093/nar/gkm947] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/15/2007] [Accepted: 10/15/2007] [Indexed: 12/22/2022] Open
Abstract
Ionizing radiation induces clustered DNA damage, which presents a challenge to the cellular repair machinery. The repair efficiency of a single-strand break (SSB) is approximately 4x less than that for repair of an abasic (AP) site when in a bistranded cluster containing 8-oxoG. To explore whether this difference in repair efficiency involves XRCC1 or other BER proteins, synthetic oligonucleotides containing either an AP site or HAP1-induced SSB (HAP1-SSB) 1 or 5 bp 5' or 3' to 8-oxoG on the opposite strand were synthesized and the repair investigated using either nuclear extracts from hamster cells proficient (AA8) or deficient (EM7) in XRCC1 or purified BER proteins. XRCC1 is important for efficient processing of an AP site in clustered damage containing 8-oxoG but does not affect the already low repair efficiency of a SSB. Ligase I partly compensates for the absence of the XRCC1/ligaseIII during short-patch BER of an AP site when in a cluster but only weakly if at all for a HAP1-SSB. The major difference between the repair of an AP site and a HAP1-SSB when in a 8-oxoG containing cluster is the greater efficiency of short-patch BER with the AP site compared with that for a HAP1-SSB.
Collapse
Affiliation(s)
| | | | - Peter O’Neill
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Didcot, Oxfordshire OX11 ORD, UK
| |
Collapse
|
41
|
DeRose EF, Clarkson MW, Gilmore SA, Galban CJ, Tripathy A, Havener JM, Mueller GA, Ramsden DA, London RE, Lee AL. Solution structure of polymerase mu's BRCT Domain reveals an element essential for its role in nonhomologous end joining. Biochemistry 2007; 46:12100-10. [PMID: 17915942 PMCID: PMC2653216 DOI: 10.1021/bi7007728] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The solution structure and dynamics of the BRCT domain from human DNA polymerase mu, implicated in repair of chromosome breaks by nonhomologous end joining (NHEJ), has been determined using NMR methods. BRCT domains are typically involved in protein-protein interactions between factors required for the cellular response to DNA damage. The pol mu BRCT domain is atypical in that, unlike other reported BRCT structures, the pol mu BRCT is neither part of a tandem grouping, nor does it appear to form stable homodimers. Although the sequence of the pol mu BRCT domain has some unique characteristics, particularly the presence of >10% proline residues, it forms the characteristic alphabetaalpha sandwich, in which three alpha helices are arrayed around a central four-stranded beta-sheet. The structure of helix alpha1 is characterized by two solvent-exposed hydrophobic residues, F46 and L50, suggesting that this element may play a role in mediating interactions of pol mu with other proteins. Consistent with this argument, mutation of these residues, as well as the proximal, conserved residue R43, specifically blocked the ability of pol mu to efficiently work together with NHEJ factors Ku and XRCC4-ligase IV to join noncomplementary ends together in vitro. The structural, dynamic, and biochemical evidence reported here identifies a functional surface in the pol mu BRCT domain critical for promoting assembly and activity of the NHEJ machinery. Further, the similarity between the interaction regions of the BRCT domains of pol mu and TdT support the conclusion that they participate in NHEJ as alternate polymerases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrew L. Lee
- * Address correspondence to Dr. Andrew L. Lee, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, Beard Hall - CB#7360, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; tel: (919) 966-7821; fax: (919) 843-5150; e-mail:
| |
Collapse
|
42
|
Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 2007; 6:695-711. [PMID: 17337257 PMCID: PMC1995033 DOI: 10.1016/j.dnarep.2007.01.009] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 12/29/2022]
Abstract
Base excision repair (BER) proteins act upon a significantly broad spectrum of DNA lesions that result from endogenous and exogenous sources. Multiple sub-pathways of BER (short-path or long-patch) and newly designated DNA repair pathways (e.g., SSBR and NIR) that utilize BER proteins complicate any comprehensive understanding of BER and its role in genome maintenance, chemotherapeutic response, neuro-degeneration, cancer or aging. Herein, we propose a unified model of BER, comprised of three functional processes: Lesion Recognition/Strand Scission, Gap Tailoring and DNA Synthesis/Ligation, each represented by one or more multi-protein complexes and coordinated via the XRCC1/DNA Ligase III and PARP1 scaffold proteins. BER therefore may be represented by a series of repair complexes that assemble at the site of the DNA lesion and mediates repair in a coordinated fashion involving protein-protein interactions that dictate subsequent steps or sub-pathway choice. Complex formation is influenced by post-translational protein modifications that arise from the cellular state or the DNA damage response, providing an increase in specificity and efficiency to the BER pathway. In this review, we have summarized the reported BER protein-protein interactions and protein post-translational modifications and discuss the impact on DNA repair capacity and complex formation.
Collapse
Affiliation(s)
- Karen H. Almeida
- Department of Physical Sciences, Rhode Island College, 600 Mt. Pleasant Ave., Providence RI 02908-1991
| | - Robert W. Sobol
- Department of Pharmacology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863
| |
Collapse
|
43
|
Nazarkina ZK, Khodyreva SN, Marsin S, Lavrik OI, Radicella JP. XRCC1 interactions with base excision repair DNA intermediates. DNA Repair (Amst) 2006; 6:254-64. [PMID: 17118717 DOI: 10.1016/j.dnarep.2006.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/09/2006] [Accepted: 10/12/2006] [Indexed: 01/21/2023]
Abstract
Abasic (AP) sites in DNA arise either spontaneously, or through glycosylase-catalyzed excision of damaged bases. Their removal by the base excision repair (BER) pathway avoids their mutagenic and cytotoxic consequences. XRCC1 coordinates and facilitates single-strand break (SSB) repair and BER in mammalian cells. We report that XRCC1, through its NTD and BRCT1 domains, has affinity for several DNA intermediates in BER. As shown by its capacity to form a covalent complex via Schiff base, XRCC1 binds AP sites. APE1 suppresses binding of XRCC1 to unincised AP sites however, affinity was higher when the DNA carried an AP-lyase- or APE1-incised AP site. The AP site binding capacity of XRCC1 is enhanced by the presence of strand interruptions in the opposite strand. Binding of XRCC1 to BER DNA intermediates could play an important role to warrant the accurate repair of damaged bases, AP sites or SSBs, in particular in the context of clustered DNA damage.
Collapse
Affiliation(s)
- Zhanna K Nazarkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospect Lavrentieva 8, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
44
|
Mortusewicz O, Rothbauer U, Cardoso MC, Leonhardt H. Differential recruitment of DNA Ligase I and III to DNA repair sites. Nucleic Acids Res 2006; 34:3523-32. [PMID: 16855289 PMCID: PMC1524911 DOI: 10.1093/nar/gkl492] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/22/2006] [Accepted: 06/27/2006] [Indexed: 12/30/2022] Open
Abstract
DNA ligation is an essential step in DNA replication, repair and recombination. Mammalian cells contain three DNA Ligases that are not interchangeable although they use the same catalytic reaction mechanism. To compare the recruitment of the three eukaryotic DNA Ligases to repair sites in vivo we introduced DNA lesions in human cells by laser microirradiation. Time lapse microscopy of fluorescently tagged proteins showed that DNA Ligase III accumulated at microirradiated sites before DNA Ligase I, whereas we could detect only a faint accumulation of DNA Ligase IV. Recruitment of DNA Ligase I and III to repair sites was cell cycle independent. Mutational analysis and binding studies revealed that DNA Ligase I was recruited to DNA repair sites by interaction with PCNA while DNA Ligase III was recruited via its BRCT domain mediated interaction with XRCC1. Selective recruitment of specialized DNA Ligases may have evolved to accommodate the particular requirements of different repair pathways and may thus enhance efficiency of DNA repair.
Collapse
Affiliation(s)
- Oliver Mortusewicz
- Department of Biology II, Ludwig Maximilians University Munich82152 Planegg-Martinsried, Germany
- Max Delbrück Center for Molecular Medicine13125 Berlin, Germany
| | - Ulrich Rothbauer
- Department of Biology II, Ludwig Maximilians University Munich82152 Planegg-Martinsried, Germany
- Max Delbrück Center for Molecular Medicine13125 Berlin, Germany
| | | | - Heinrich Leonhardt
- To whom correspondence should be addressed. Tel: +49 89 2180 74232; Fax: +49 89 2180 74236; E-mail:
| |
Collapse
|
45
|
Abstract
DNA damage plays a major role in mutagenesis, carcinogenesis and aging. A gene that is emerging as an essential element in the repair of both damaged bases and single-strand breaks (SSB) is XRCC1. XRCC1 has been shown to have a large number of single-nucleotide polymorphisms (SNPs), several of which are being increasingly studied in cancer epidemiology investigations, in part because of their relative high frequency in the population. Although association trends with specific cancer types have occasionally been shown in a variety of ethnic backgrounds, there are often conflicting reports that weaken any substantial conclusions. The functional significance of these SNPs is still largely unknown. XRCC1 is an excellent prototype to provide a forum for determining how epidemiological cancer association studies with DNA repair gene polymorphisms can be validated or refuted. The focus is on the utilization of in silico data and biochemical studies in cell lines and existing mouse models to help provide a framework for the development of new mutant mouse lines that mimic human polymorphisms. These mouse lines will provide the next generation of mammalian tools for carcinogen exposure studies relevant to human cancer and variations in XRCC1, and provide the basis for investigating groups of genes and polymorphisms in an animal model.
Collapse
Affiliation(s)
- W C Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
46
|
Lévy N, Martz A, Bresson A, Spenlehauer C, de Murcia G, Ménissier-de Murcia J. XRCC1 is phosphorylated by DNA-dependent protein kinase in response to DNA damage. Nucleic Acids Res 2006; 34:32-41. [PMID: 16397295 PMCID: PMC1325201 DOI: 10.1093/nar/gkj409] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The two BRCT domains (BRCT1 and BRCT2) of XRCC1 mediate a network of protein–protein interactions with several key factors of the DNA single-strand breaks (SSBs) and base damage repair pathways. BRCT1 is required for the immediate poly(ADP–ribose)-dependent recruitment of XRCC1 to DNA breaks and is essential for survival after DNA damage. To better understand the biological role of XRCC1 in the processing of DNA ends, a search for the BRCT1 domain-associated proteins was performed by mass spectrometry of GST-BRCT1 pulled-down proteins from HeLa cell extracts. Here, we report that the double-strand break (DSB) repair heterotrimeric complex DNA-PK interacts with the BRCT1 domain of XRCC1 and phosphorylates this domain at serine 371 after ionizing irradiation. This caused XRCC1 dimer dissociation. The XRCC1 R399Q variant allele did not affect this phosphorylation. We also show that XRCC1 strongly stimulates the phosphorylation of p53-Ser15 by DNA-PK. The pseudo phosphorylated S371D mutant was a much weaker stimulator of DNA-PK activity whereas the non-phosphorylable mutant S371L endowed with a DNA-PK stimulating capacity failed to fully rescue the DSB repair defect of XRCC1-deficient EM9 rodent cells. The functional association between XRCC1 and DNA-PK in response to IR provides the first evidence for their involvement in a common DSB repair pathway.
Collapse
|
47
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|