1
|
Lovejoy CA, Wessel SR, Bhowmick R, Hatoyama Y, Kanemaki MT, Zhao R, Cortez D. SRBD1 facilitates chromosome segregation by promoting topoisomerase IIα localization to mitotic chromosomes. Nat Commun 2025; 16:1675. [PMID: 39955279 PMCID: PMC11830093 DOI: 10.1038/s41467-025-56911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Accurate sister chromatid segregation requires remodeling chromosome architecture, decatenation, and attachment to the mitotic spindle. Some of these events are initiated during S-phase, but they accelerate and conclude during mitosis. Here we describe SRBD1 as a histone and nucleic acid binding protein that prevents DNA damage in interphase cells, localizes to nascent DNA during replication and the chromosome scaffold in mitosis, and is required for chromosome segregation. SRBD1 inactivation causes micronuclei, chromatin bridges, and cell death. Inactivating SRBD1 immediately prior to mitotic entry causes anaphase failure, with a reduction in topoisomerase IIα localization to mitotic chromosomes and defects in properly condensing and decatenating chromosomes. In contrast, SRBD1 is not required to complete cell division after chromosomes are condensed. Strikingly, depleting condensin II reduces the severity of the anaphase defects in SRBD1-deficient cells by restoring topoisomerase IIα localization. Thus, SRBD1 is an essential genome maintenance protein required for mitotic chromosome organization and segregation.
Collapse
Affiliation(s)
- Courtney A Lovejoy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah R Wessel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- BPGbio, Framingham, MA, USA
| | - Rahul Bhowmick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuki Hatoyama
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, Japan
- Graduate School for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka, Japan
- Graduate School for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
2
|
Nicholls RA, Morgan H, Warren AJ, Ward SE, Long F, Murshudov GN, Sutormin D, Bax BD. How Do Gepotidacin and Zoliflodacin Stabilize DNA-Cleavage Complexes with Bacterial Type IIA Topoisomerases? 2. A Single Moving Metal Mechanism. Int J Mol Sci 2024; 26:33. [PMID: 39795899 PMCID: PMC11720246 DOI: 10.3390/ijms26010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025] Open
Abstract
DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks. Gepotidacin has been observed to sit on the twofold axis of the complex, midway between the two four-base-pair separated DNA-cleavage sites and has been observed to stabilize singe-stranded DNA breaks. Here, we use information from three crystal structures of complexes of Staphlococcus aureus DNA gyrase (one with a precursor of gepotidacin and one with the progenitor of zoliflodacin) to propose a simple single moving metal-ion-catalyzed DNA-cleavage mechanism. Our model explains why the catalytic tyrosine is in the tyrosinate (negatively charged) form for DNA cleavage. Movement of a single catalytic metal-ion (Mg2+ or Mn2+) guides water-mediated protonation and cleavage of the scissile phosphate, which is then accepted by the catalytic tyrosinate. Type IIA topoisomerases need to be able to rapidly cut the DNA when it becomes positively supercoiled (in front of replication forks and transcription bubbles) and we propose that the original purpose of the small Greek Key domain, common to all type IIA topoisomerases, was to allow access of the catalytic metal to the DNA-cleavage site. Although the proposed mechanism is consistent with published data, it is not proven and other mechanisms have been proposed. Finally, how such mechanisms can be experimentally distinguished is considered.
Collapse
Affiliation(s)
- Robert A. Nicholls
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Harry Morgan
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, UK
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Anna J. Warren
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - Fei Long
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Benjamin D. Bax
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
3
|
Wu M, Beck C, Lee JH, Fulbright RM, Jeong J, Inman JT, Woodhouse MV, Berger JM, Wang MD. Human Topoisomerase IIα Promotes Chromatin Condensation Via a Phase Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618281. [PMID: 39464128 PMCID: PMC11507700 DOI: 10.1101/2024.10.15.618281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Topoisomerase II (topo II) enzymes are essential enzymes known to resolve topological entanglements during DNA processing. Curiously, while yeast expresses a single topo II, humans express two topo II isozymes, topo IIα and topo IIβ, which share a similar catalytic domain but differ in their intrinsically disordered C-terminal domains (CTDs). During mitosis, topo IIα and condensin I constitute the most abundant chromosome scaffolding proteins essential for chromosome condensation. However, how topo IIα enables this function is poorly understood. Here, we discovered a new and functionally distinct role for human topo IIα - it condenses DNA and chromatin at a low topo IIα concentration (100 pM or less) during a polymer-collapse phase transition. The removal of the topo IIα CTDs effectively abolishes its condensation ability, indicating that the condensation is mediated by the CTDs. Although topo IIβ can also perform condensation, it is about 4-fold less effective. During the condensation, topo IIα-DNA condensates form along DNA, working against a DNA tension of up to 1.5 pN, greater than that previously reported for yeast condensin. In addition, this condensation does not require ATP and thus is independent of topo IIα's catalytic activity. We also found that condensation and catalysis can concurrently proceed with minimal mutual interference. Our findings suggest topo IIα may directly participate in chromosome condensation during mitosis.
Collapse
Affiliation(s)
- Meiling Wu
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Curtis Beck
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joyce H. Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James T. Inman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | | | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Wu X, Xu G, Lu C, Shen Y. Synthesis of 2-phenylnaphthalenoid amide derivatives and their topoisomerase IIα inhibitory and antiproliferative activities. Arch Pharm (Weinheim) 2024; 357:e2400175. [PMID: 38922999 DOI: 10.1002/ardp.202400175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Topoisomerases are highly associated with cell proliferation, becoming an important target for the development of antitumor drugs. 2-Phenylnaphthalenoids (2PNs) have been identified as human DNA topoisomerase IIα (TopoIIα) inhibitors. In this study, based on the 2PN scaffold, 20 amide derivatives (J1-J10, K1-K10) were synthesized. Among them, K10 showed high TopoIIα inhibitory activity and stronger antiproliferation activity against HepG-2 and MDA-MB-231 cells (IC50 0.33 and 0.63 μM, respectively) than the positive control VP-16 (IC50 9.19 and 10.86 μM) and the lead F2 (IC50 0.64 and 1.51 μM). Meanwhile, K10 could also inhibit migration and promote apoptosis of HepG-2 and MDA-MB-231 cells. Therefore, K10 can be developed into a potent TopoIIα inhibitor as an antitumor agent. The structure-activity relationship was also discussed.
Collapse
Affiliation(s)
- Xiaoxia Wu
- Department of Natural Pharmaceutical Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Guangsen Xu
- Department of Natural Pharmaceutical Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chunhua Lu
- Department of Natural Pharmaceutical Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yuemao Shen
- Department of Natural Pharmaceutical Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
5
|
Chagaleti BK, Baby K, Peña-Corona SI, Leyva-Gómez G, S M S, Naveen NR, Jose J, Aldahish AA, Sharifi-Rad J, Calina D. Anti-cancer properties of Sansalvamide A, its derivatives, and analogs: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7337-7351. [PMID: 38739152 DOI: 10.1007/s00210-024-03129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
As peptide-based therapies gain recognition for their potential anti-cancer activity, cyclic peptides like Sansalvamide A, a marine-derived cyclic depsipeptide, have emerged as a potential anti-cancer agent due to their potent activity against various cancer types in preclinical studies. This review offers a comprehensive overview of Sansalvamide A, including its sources, structure-activity relationship, and semi-synthetic derivatives. The review also aims to outline the mechanisms through which Sansalvamide A and its analogs exert their anti-proliferative effects and to discuss the need for enhancements in pharmacokinetic profiles for better clinical utility. An extensive literature search was conducted, focusing on studies that detailed the anti-cancer activity of Sansalvamide A, its pharmacokinetics, and mechanistic pathways. Data from both in vitro and in vivo studies were collated and analyzed. Sansalvamide A and its analogs demonstrated significant anti-cancer activity across various cancer models, mediated through Hsp 90 inhibition, Topoisomerase inhibition, and G0/G1 cell cycle arrest. However, their pharmacokinetic properties were identified as a significant limitation, requiring improvement for effective clinical translation. Despite its notable anti-cancer effects, the utility of Sansalvamide A is currently limited by its pharmacokinetic characteristics. Therefore, while Sansalvamide A exhibits promise as an anti-cancer agent, there is a compelling need for further clinical and toxicological studies and optimization of its pharmacokinetic profile to fully exploit its therapeutic potential alongside modern cancer therapies.
Collapse
Affiliation(s)
- Bharat Kumar Chagaleti
- Department of Pharmaceutical Chemistry, Akshaya Institute of Pharmacy, Tumkur, Karnataka, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sindhoor S M
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru, Karnataka, 575018, India
| | - N Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Bellur, Karnataka, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangaluru, Karnataka, 575018, India.
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 61441, Kingdom of Saudi Arabia
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| |
Collapse
|
6
|
Collins J, Basarab GS, Chibale K, Osheroff N. Interactions between Zoliflodacin and Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enzymological Basis for Cellular Targeting. ACS Infect Dis 2024; 10:3071-3082. [PMID: 39082980 PMCID: PMC11320581 DOI: 10.1021/acsinfecdis.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Gregory S. Basarab
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Holistic
Drug Discovery and Development (H3D) Centre, and South African Medical
Research Council Drug Discovery and Development Research Unit, Department
of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
7
|
Vayssières M, Marechal N, Yun L, Lopez Duran B, Murugasamy NK, Fogg JM, Zechiedrich L, Nadal M, Lamour V. Structural basis of DNA crossover capture by Escherichia coli DNA gyrase. Science 2024; 384:227-232. [PMID: 38603484 PMCID: PMC11108255 DOI: 10.1126/science.adl5899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
DNA supercoiling must be precisely regulated by topoisomerases to prevent DNA entanglement. The interaction of type IIA DNA topoisomerases with two DNA molecules, enabling the transport of one duplex through the transient double-stranded break of the other, remains elusive owing to structures derived solely from single linear duplex DNAs lacking topological constraints. Using cryo-electron microscopy, we solved the structure of Escherichia coli DNA gyrase bound to a negatively supercoiled minicircle DNA. We show how DNA gyrase captures a DNA crossover, revealing both conserved molecular grooves that accommodate the DNA helices. Together with molecular tweezer experiments, the structure shows that the DNA crossover is of positive chirality, reconciling the binding step of gyrase-mediated DNA relaxation and supercoiling in a single structure.
Collapse
Affiliation(s)
- Marlène Vayssières
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Nils Marechal
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Long Yun
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Brian Lopez Duran
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Naveen Kumar Murugasamy
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Jonathan M. Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Marc Nadal
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Life Sciences, Université Paris Cité, Paris, France
| | - Valérie Lamour
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Institut national de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104- UMR-S 1258, F-67400 Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Bandak AF, Blower TR, Nitiss KC, Shah V, Nitiss J, Berger J. Using energy to go downhill-a genoprotective role for ATPase activity in DNA topoisomerase II. Nucleic Acids Res 2024; 52:1313-1324. [PMID: 38038260 PMCID: PMC10853770 DOI: 10.1093/nar/gkad1157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Type II topoisomerases effect topological changes in DNA by cutting a single duplex, passing a second duplex through the break, and resealing the broken strand in an ATP-coupled reaction cycle. Curiously, most type II topoisomerases (topos II, IV and VI) catalyze DNA transformations that are energetically favorable, such as the removal of superhelical strain; why ATP is required for such reactions is unknown. Here, using human topoisomerase IIβ (hTOP2β) as a model, we show that the ATPase domains of the enzyme are not required for DNA strand passage, but that their loss elevates the enzyme's propensity for DNA damage. The unstructured C-terminal domains (CTDs) of hTOP2β strongly potentiate strand passage activity in ATPase-less enzymes, as do cleavage-prone mutations that confer hypersensitivity to the chemotherapeutic agent etoposide. The presence of either the CTD or the mutations lead ATPase-less enzymes to promote even greater levels of DNA cleavage in vitro, as well as in vivo. By contrast, aberrant cleavage phenotypes of these topo II variants is significantly repressed when the ATPase domains are present. Our findings are consistent with the proposal that type II topoisomerases acquired ATPase function to maintain high levels of catalytic activity while minimizing inappropriate DNA damage.
Collapse
Affiliation(s)
- Afif F Bandak
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| | - Tim R Blower
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
- Biomedical Sciences Department, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - Viraj Shah
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
- Biomedical Sciences Department, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - John L Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, 1601 Parkview Avenue, Rockford, IL 61107, USA
| | - James M Berger
- Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Brindle A, Bainbridge C, Kumar MR, Todryk S, Padget K. The Bisdioxopiperazine ICRF-193 Attenuates LPS-induced IL-1β Secretion by Macrophages. Inflammation 2024; 47:84-98. [PMID: 37656316 PMCID: PMC10798930 DOI: 10.1007/s10753-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Inhibiting pathological secretion of Interleukin-1β has shown beneficial effects in disease models and in the clinic and thus there is interest in finding inhibitors that can reduce its release from macrophages in response to their activation by foreign pathogens. We used an in vitro human macrophage model to investigate whether ICRF-193, a Topoisomerase II inhibitor could modulate IL1B mRNA expression and IL-1β secretion. These macrophage-like cells readily secrete IL-1β in response to Lipopolysaccharide (LPS). Upon exposure to a non-toxic dose of ICRF-193, IL-1β secretion was diminished by ~ 40%; however, level of transcription of IL1B was unaffected. We show that there was no Topoisomerase 2B (TOP2B) binding to several IL1B gene sites, which may explain why ICRF-193 does not alter IL1B mRNA levels. Hence, we show for the first time that ICRF-193 can reduce IL-1β secretion. Its low cost and the development of water-soluble prodrugs of ICRF-193 warrants its further investigation in the modulation of pathological secretion of this cytokine for the treatment of inflammatory disorders. (165 words).
Collapse
Affiliation(s)
- Ashleigh Brindle
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Callum Bainbridge
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Muganti R Kumar
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Stephen Todryk
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK.
| | - Kay Padget
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| |
Collapse
|
10
|
Petsalaki E, Balafouti S, Kyriazi AA, Zachos G. The abscission checkpoint senses chromatin bridges through Top2α recruitment to DNA knots. J Cell Biol 2023; 222:e202303123. [PMID: 37638884 PMCID: PMC10461104 DOI: 10.1083/jcb.202303123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
In response to chromatin bridges, the abscission checkpoint delays completion of cytokinesis to prevent chromosome breakage or tetraploidization. Here, we show that spontaneous or replication stress-induced chromatin bridges exhibit "knots" of catenated and overtwisted DNA next to the midbody. Topoisomerase IIα (Top2α) forms abortive Top2-DNA cleavage complexes (Top2ccs) on DNA knots; furthermore, impaired Top2α-DNA cleavage activity correlates with chromatin bridge breakage in cytokinesis. Proteasomal degradation of Top2ccs is required for Rad17 localization to Top2-generated double-strand DNA ends on DNA knots; in turn, Rad17 promotes local recruitment of the MRN complex and downstream ATM-Chk2-INCENP signaling to delay abscission and prevent chromatin breakage. In contrast, dicentric chromosomes that do not exhibit knotted DNA fail to activate the abscission checkpoint in human cells. These findings are the first to describe a mechanism by which the abscission checkpoint detects chromatin bridges, through generation of abortive Top2ccs on DNA knots, to preserve genome integrity.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - Sofia Balafouti
- Department of Biology, University of Crete, Heraklion, Greece
| | | | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
11
|
Lee J, Wu M, Inman JT, Singh G, Park SH, Lee JH, Fulbright RM, Hong Y, Jeong J, Berger JM, Wang MD. Chromatinization modulates topoisomerase II processivity. Nat Commun 2023; 14:6844. [PMID: 37891161 PMCID: PMC10611788 DOI: 10.1038/s41467-023-42600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Type IIA topoisomerases are essential DNA processing enzymes that must robustly and reliably relax DNA torsional stress. While cellular processes constantly create varying torsional stress, how this variation impacts type IIA topoisomerase function remains obscure. Using multiple single-molecule approaches, we examined the torsional dependence of eukaryotic topoisomerase II (topo II) activity on naked DNA and chromatin. We observed that topo II is ~50-fold more processive on buckled DNA than previously estimated. We further discovered that topo II relaxes supercoiled DNA prior to plectoneme formation, but with processivity reduced by ~100-fold. This relaxation decreases with diminishing torsion, consistent with topo II capturing transient DNA loops. Topo II retains high processivity on buckled chromatin (~10,000 turns) and becomes highly processive even on chromatin under low torsional stress (~1000 turns), consistent with chromatin's predisposition to readily form DNA crossings. This work establishes that chromatin is a major stimulant of topo II function.
Collapse
Affiliation(s)
- Jaeyoon Lee
- Physics Department & LASSP, Cornell University, Ithaca, NY, 14853, USA
| | - Meiling Wu
- Physics Department & LASSP, Cornell University, Ithaca, NY, 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA
| | - James T Inman
- Physics Department & LASSP, Cornell University, Ithaca, NY, 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Gundeep Singh
- Biophysics Program, Cornell University, Ithaca, NY, 14853, USA
| | - Seong Ha Park
- Biophysics Program, Cornell University, Ithaca, NY, 14853, USA
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | - Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michelle D Wang
- Physics Department & LASSP, Cornell University, Ithaca, NY, 14853, USA.
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Lee J, Wu M, Inman JT, Singh G, Park SH, Lee JH, Fulbright RM, Hong Y, Jeong J, Berger JM, Wang MD. Chromatinization Modulates Topoisomerase II Processivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560726. [PMID: 37873421 PMCID: PMC10592930 DOI: 10.1101/2023.10.03.560726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Type IIA topoisomerases are essential DNA processing enzymes that must robustly and reliably relax DNA torsional stress in vivo. While cellular processes constantly create different degrees of torsional stress, how this stress feeds back to control type IIA topoisomerase function remains obscure. Using a suite of single-molecule approaches, we examined the torsional impact on supercoiling relaxation of both naked DNA and chromatin by eukaryotic topoisomerase II (topo II). We observed that topo II was at least ~ 50-fold more processive on plectonemic DNA than previously estimated, capable of relaxing > 6000 turns. We further discovered that topo II could relax supercoiled DNA prior to plectoneme formation, but with a ~100-fold reduction in processivity; strikingly, the relaxation rate in this regime decreased with diminishing torsion in a manner consistent with the capture of transient DNA loops by topo II. Chromatinization preserved the high processivity of the enzyme under high torsional stress. Interestingly, topo II was still highly processive (~ 1000 turns) even under low torsional stress, consistent with the predisposition of chromatin to readily form DNA crossings. This work establishes that chromatin is a major stimulant of topo II function, capable of enhancing function even under low torsional stress.
Collapse
Affiliation(s)
- Jaeyoon Lee
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Meiling Wu
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gundeep Singh
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Seong ha Park
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Joyce H. Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle D. Wang
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Jian JY, Osheroff N. Telling Your Right Hand from Your Left: The Effects of DNA Supercoil Handedness on the Actions of Type II Topoisomerases. Int J Mol Sci 2023; 24:11199. [PMID: 37446377 PMCID: PMC10342825 DOI: 10.3390/ijms241311199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Type II topoisomerases are essential enzymes that modulate the topological state of DNA supercoiling in all living organisms. These enzymes alter DNA topology by performing double-stranded passage reactions on over- or underwound DNA substrates. This strand passage reaction generates a transient covalent enzyme-cleaved DNA structure known as the cleavage complex. Al-though the cleavage complex is a requisite catalytic intermediate, it is also intrinsically dangerous to genomic stability in biological systems. The potential threat of type II topoisomerase function can also vary based on the nature of the supercoiled DNA substrate. During essential processes such as DNA replication and transcription, cleavage complex formation can be inherently more dangerous on overwound versus underwound DNA substrates. As such, it is important to understand the profound effects that DNA topology can have on the cellular functions of type II topoisomerases. This review will provide a broad assessment of how human and bacterial type II topoisomerases recognize and act on their substrates of various topological states.
Collapse
Affiliation(s)
- Jeffrey Y. Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Jian JY, McCarty KD, Byl J, Guengerich FP, Neuman K, Osheroff N. Basis for the discrimination of supercoil handedness during DNA cleavage by human and bacterial type II topoisomerases. Nucleic Acids Res 2023; 51:3888-3902. [PMID: 36999602 PMCID: PMC10164583 DOI: 10.1093/nar/gkad190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
To perform double-stranded DNA passage, type II topoisomerases generate a covalent enzyme-cleaved DNA complex (i.e. cleavage complex). Although this complex is a requisite enzyme intermediate, it is also intrinsically dangerous to genomic stability. Consequently, cleavage complexes are the targets for several clinically relevant anticancer and antibacterial drugs. Human topoisomerase IIα and IIβ and bacterial gyrase maintain higher levels of cleavage complexes with negatively supercoiled over positively supercoiled DNA substrates. Conversely, bacterial topoisomerase IV is less able to distinguish DNA supercoil handedness. Despite the importance of supercoil geometry to the activities of type II topoisomerases, the basis for supercoil handedness recognition during DNA cleavage has not been characterized. Based on the results of benchtop and rapid-quench flow kinetics experiments, the forward rate of cleavage is the determining factor of how topoisomerase IIα/IIβ, gyrase and topoisomerase IV distinguish supercoil handedness in the absence or presence of anticancer/antibacterial drugs. In the presence of drugs, this ability can be enhanced by the formation of more stable cleavage complexes with negatively supercoiled DNA. Finally, rates of enzyme-mediated DNA ligation do not contribute to the recognition of DNA supercoil geometry during cleavage. Our results provide greater insight into how type II topoisomerases recognize their DNA substrates.
Collapse
Affiliation(s)
- Jeffrey Y Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20982, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
15
|
Le TT, Wu M, Lee JH, Bhatt N, Inman JT, Berger JM, Wang MD. Etoposide promotes DNA loop trapping and barrier formation by topoisomerase II. Nat Chem Biol 2023; 19:641-650. [PMID: 36717711 PMCID: PMC10154222 DOI: 10.1038/s41589-022-01235-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/22/2022] [Indexed: 01/31/2023]
Abstract
Etoposide is a broadly employed chemotherapeutic and eukaryotic topoisomerase II poison that stabilizes cleaved DNA intermediates to promote DNA breakage and cytotoxicity. How etoposide perturbs topoisomerase dynamics is not known. Here we investigated the action of etoposide on yeast topoisomerase II, human topoisomerase IIα and human topoisomerase IIβ using several sensitive single-molecule detection methods. Unexpectedly, we found that etoposide induces topoisomerase to trap DNA loops, compacting DNA and restructuring DNA topology. Loop trapping occurs after ATP hydrolysis but before strand ejection from the enzyme. Although etoposide decreases the innate stability of topoisomerase dimers, it increases the ability of the enzyme to act as a stable roadblock. Interestingly, the three topoisomerases show similar etoposide-mediated resistance to dimer separation and sliding along DNA but different abilities to compact DNA and chirally relax DNA supercoils. These data provide unique mechanistic insights into the functional consequences of etoposide on topoisomerase II dynamics.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - Meiling Wu
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neti Bhatt
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
16
|
Kumar S, Sherman MY. Resistance to TOP-1 Inhibitors: Good Old Drugs Still Can Surprise Us. Int J Mol Sci 2023; 24:ijms24087233. [PMID: 37108395 PMCID: PMC10138578 DOI: 10.3390/ijms24087233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Irinotecan (SN-38) is a potent and broad-spectrum anticancer drug that targets DNA topoisomerase I (Top1). It exerts its cytotoxic effects by binding to the Top1-DNA complex and preventing the re-ligation of the DNA strand, leading to the formation of lethal DNA breaks. Following the initial response to irinotecan, secondary resistance is acquired relatively rapidly, compromising its efficacy. There are several mechanisms contributing to the resistance, which affect the irinotecan metabolism or the target protein. In addition, we have demonstrated a major resistance mechanism associated with the elimination of hundreds of thousands of Top1 binding sites on DNA that can arise from the repair of prior Top1-dependent DNA cleavages. Here, we outline the major mechanisms of irinotecan resistance and highlight recent advancements in the field. We discuss the impact of resistance mechanisms on clinical outcomes and the potential strategies to overcome resistance to irinotecan. The elucidation of the underlying mechanisms of irinotecan resistance can provide valuable insights for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Michael Y Sherman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| |
Collapse
|
17
|
Madeddu F, Di Martino J, Pieroni M, Del Buono D, Bottoni P, Botta L, Castrignanò T, Saladino R. Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of New Drugs against Human Topoisomerase I Receptor. Int J Mol Sci 2022; 23:ijms232314652. [PMID: 36498979 PMCID: PMC9737192 DOI: 10.3390/ijms232314652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human Topoisomerase I (hTop1p) is a ubiquitous enzyme that relaxes supercoiled DNA through a conserved mechanism involving transient breakage, rotation, and binding. Htop1p is the molecular target of the chemotherapeutic drug camptothecin (CPT). It causes the hTop1p-DNA complex to slow down the binding process and clash with the replicative machinery during the S phase of the cell cycle, forcing cells to activate the apoptotic response. This gives hTop1p a central role in cancer therapy. Recently, two artesunic acid derivatives (compounds c6 and c7) have been proposed as promising inhibitors of hTop1p with possible antitumor activity. We used several computational approaches to obtain in silico confirmations of the experimental data and to form a comprehensive dynamic description of the ligand-receptor system. We performed molecular docking analyses to verify the ability of the two new derivatives to access the enzyme-DNA interface, and a classical molecular dynamics simulation was performed to assess the capacity of the two compounds to maintain a stable binding pose over time. Finally, we calculated the noncovalent interactions between the two new derivatives and the hTop1p receptor in order to propose a possible inhibitory mechanism like that adopted by CPT.
Collapse
Affiliation(s)
- Francesco Madeddu
- Department of Computer Science, “Sapienza” University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Jessica Di Martino
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Michele Pieroni
- Department of Computer Science, “Sapienza” University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Davide Del Buono
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Paolo Bottoni
- Department of Computer Science, “Sapienza” University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
- Correspondence:
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
18
|
Dalvie ED, Stacy JC, Neuman KC, Osheroff N. Recognition of DNA Supercoil Handedness during Catenation Catalyzed by Type II Topoisomerases. Biochemistry 2022; 61:2148-2158. [PMID: 36122251 PMCID: PMC9548324 DOI: 10.1021/acs.biochem.2c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the presence of catenanes (i.e., intermolecular tangles) in chromosomal DNA stabilizes interactions between daughter chromosomes, a lack of resolution can have serious consequences for genomic stability. In all species, from bacteria to humans, type II topoisomerases are the enzymes primarily responsible for catenating/decatenating DNA. DNA topology has a profound influence on the rate at which these enzymes alter the superhelical state of the double helix. Therefore, the effect of supercoil handedness on the ability of human topoisomerase IIα and topoisomerase IIβ and bacterial topoisomerase IV to catenate DNA was examined. Topoisomerase IIα preferentially catenated negatively supercoiled over positively supercoiled substrates. This is opposite to its preference for relaxing (i.e., removing supercoils from) DNA and may prevent the enzyme from tangling the double helix ahead of replication forks and transcription complexes. The ability of topoisomerase IIα to recognize DNA supercoil handedness during catenation resides in its C-terminal domain. In contrast to topoisomerase IIα, topoisomerase IIβ displayed little ability to distinguish DNA geometry during catenation. Topoisomerase IV from three bacterial species preferentially catenated positively supercoiled substrates. This may not be an issue, as these enzymes work primarily behind replication forks. Finally, topoisomerase IIα and topoisomerase IV maintain lower levels of covalent enzyme-cleaved DNA intermediates with catenated over monomeric DNA. This allows these enzymes to perform their cellular functions in a safer manner, as catenated daughter chromosomes may be subject to stress generated by the mitotic spindle that could lead to irreversible DNA cleavage.
Collapse
Affiliation(s)
- Esha D. Dalvie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Jordan C. Stacy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20982, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, United States; VA Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
19
|
Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur J Med Chem 2022; 236:114304. [DOI: 10.1016/j.ejmech.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
|
20
|
Alecki C, Vera M. Role of Nuclear Non-Canonical Nucleic Acid Structures in Organismal Development and Adaptation to Stress Conditions. Front Genet 2022; 13:823241. [PMID: 35281835 PMCID: PMC8906566 DOI: 10.3389/fgene.2022.823241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Over the last decades, numerous examples have involved nuclear non-coding RNAs (ncRNAs) in the regulation of gene expression. ncRNAs can interact with the genome by forming non-canonical nucleic acid structures such as R-loops or DNA:RNA triplexes. They bind chromatin and DNA modifiers and transcription factors and favor or prevent their targeting to specific DNA sequences and regulate gene expression of diverse genes. We review the function of these non-canonical nucleic acid structures in regulating gene expression of multicellular organisms during development and in response to different stress conditions and DNA damage using examples described in several organisms, from plants to humans. We also overview recent techniques developed to study where R-loops or DNA:RNA triplexes are formed in the genome and their interaction with proteins.
Collapse
Affiliation(s)
- Célia Alecki
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
22
|
Moreira F, Arenas M, Videira A, Pereira F. Evolutionary History of TOPIIA Topoisomerases in Animals. J Mol Evol 2022; 90:149-165. [PMID: 35165762 DOI: 10.1007/s00239-022-10048-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 01/15/2023]
Abstract
TOPIIA topoisomerases are required for the regulation of DNA topology by DNA cleavage and re-ligation and are important targets of antibiotic and anticancer agents. Humans possess two TOPIIA paralogue genes (TOP2A and TOP2B) with high sequence and structural similarity but distinct cellular functions. Despite their functional and clinical relevance, the evolutionary history of TOPIIA is still poorly understood. Here we show that TOPIIA is highly conserved in Metazoa. We also found that TOPIIA paralogues from jawed and jawless vertebrates had different origins related with tetraploidization events. After duplication, TOP2B evolved under a stronger purifying selection than TOP2A, perhaps promoted by the more specialized role of TOP2B in postmitotic cells. We also detected genetic signatures of positive selection in the highly variable C-terminal domain (CTD), possibly associated with adaptation to cellular interactions. By comparing TOPIIA from modern and archaic humans, we found two amino acid substitutions in the TOP2A CTD, suggesting that TOP2A may have contributed to the evolution of present-day humans, as proposed for other cell cycle-related genes. Finally, we identified six residues conferring resistance to chemotherapy differing between TOP2A and TOP2B. These six residues could be targets for the development of TOP2A-specific inhibitors that would avoid the side effects caused by inhibiting TOP2B. Altogether, our findings clarify the origin, diversification and selection pressures governing the evolution of animal TOPIIA.
Collapse
Affiliation(s)
- Filipa Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Arnaldo Videira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Pereira
- IDENTIFICA Genetic Testing, Rua Simão Bolívar 259 3º Dir Tras, 4470-214, Maia, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
23
|
Shevyrev D, Tereshchenko V, Kozlov V, Sennikov S. Phylogeny, Structure, Functions, and Role of AIRE in the Formation of T-Cell Subsets. Cells 2022; 11:194. [PMID: 35053310 PMCID: PMC8773594 DOI: 10.3390/cells11020194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
It is well known that the most important feature of adaptive immunity is the specificity that provides highly precise recognition of the self, altered-self, and non-self. Due to the high specificity of antigen recognition, the adaptive immune system participates in the maintenance of genetic homeostasis, supports multicellularity, and protects an organism from different pathogens at a qualitatively different level than innate immunity. This seemingly simple property is based on millions of years of evolution that led to the formation of diversification mechanisms of antigen-recognizing receptors and later to the emergence of a system of presentation of the self and non-self antigens. The latter could have a crucial significance because the presentation of nearly complete diversity of auto-antigens in the thymus allows for the "calibration" of the forming repertoires of T-cells for the recognition of self, altered-self, and non-self antigens that are presented on the periphery. The central role in this process belongs to promiscuous gene expression by the thymic epithelial cells that express nearly the whole spectrum of proteins encoded in the genome, meanwhile maintaining their cellular identity. This complex mechanism requires strict control that is executed by several transcription factors. One of the most important of them is AIRE. This noncanonical transcription factor not only regulates the processes of differentiation and expression of peripheral tissue-specific antigens in the thymic medullar epithelial cells but also controls intercellular interactions in the thymus. Besides, it participates in an increase in the diversity and transfer of presented antigens and thus influences the formation of repertoires of maturing thymocytes. Due to these complex effects, AIRE is also called a transcriptional regulator. In this review, we briefly described the history of AIRE discovery, its structure, functions, and role in the formation of antigen-recognizing receptor repertoires, along with other transcription factors. We focused on the phylogenetic prerequisites for the development of modern adaptive immunity and emphasized the importance of the antigen presentation system.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Research Institute for Fundamental and Clinical Immunology (RIFCI), 630099 Novosibirsk, Russia; (V.T.); (V.K.); (S.S.)
| | | | | | | |
Collapse
|
24
|
Harihar S, Mone N, Satpute SK, Chadar D, Chakravarty D, Weyhermüller T, Butcher RJ, Salunke-Gawali S. Metal complexes of a pro-vitamin K3 analog phthiocol (2-hydroxy-3-methylnaphthalene-1,4-dione): synthesis, characterization, and anticancer activity. Dalton Trans 2022; 51:17338-17353. [DOI: 10.1039/d2dt02748h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anticancer activity of geometrical isomers of phthiocol complexes are evaluated against MCF-7 and A549 cell lines.
Collapse
Affiliation(s)
- Shital Harihar
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Dattatray Chadar
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Debamitra Chakravarty
- Central Instrumentation Facility, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Thomas Weyhermüller
- MPI für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, D.C., 20059, USA
| | | |
Collapse
|
25
|
Das SK, Kuzin V, Cameron DP, Sanford S, Jha RK, Nie Z, Rosello MT, Holewinski R, Andresson T, Wisniewski J, Natsume T, Price DH, Lewis BA, Kouzine F, Levens D, Baranello L. MYC assembles and stimulates topoisomerases 1 and 2 in a "topoisome". Mol Cell 2021; 82:140-158.e12. [PMID: 34890565 DOI: 10.1016/j.molcel.2021.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 08/11/2021] [Accepted: 11/13/2021] [Indexed: 12/25/2022]
Abstract
High-intensity transcription and replication supercoil DNA to levels that can impede or halt these processes. As a potent transcription amplifier and replication accelerator, the proto-oncogene MYC must manage this interfering torsional stress. By comparing gene expression with the recruitment of topoisomerases and MYC to promoters, we surmised a direct association of MYC with topoisomerase 1 (TOP1) and TOP2 that was confirmed in vitro and in cells. Beyond recruiting topoisomerases, MYC directly stimulates their activities. We identify a MYC-nucleated "topoisome" complex that unites TOP1 and TOP2 and increases their levels and activities at promoters, gene bodies, and enhancers. Whether TOP2A or TOP2B is included in the topoisome is dictated by the presence of MYC versus MYCN, respectively. Thus, in vitro and in cells, MYC assembles tools that simplify DNA topology and promote genome function under high output conditions.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Donald P Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Suzanne Sanford
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Rajiv Kumar Jha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Zuqin Nie
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Marta Trullols Rosello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ronald Holewinski
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD 21701, USA
| | - Thorkell Andresson
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD 21701, USA
| | - Jan Wisniewski
- Confocal Microscopy and Digital Imaging Facility, National Cancer Institute, Bethesda, MD 20892, USA
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Shizuoka 411-8540, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Brian A Lewis
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Fedor Kouzine
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA.
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
26
|
Cebrián J, Martínez V, Hernández P, Krimer DB, Fernández-Nestosa MJ, Schvartzman JB. Two-Dimensional Gel Electrophoresis to Study the Activity of Type IIA Topoisomerases on Plasmid Replication Intermediates. BIOLOGY 2021; 10:biology10111195. [PMID: 34827187 PMCID: PMC8615216 DOI: 10.3390/biology10111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary During replication, DNA molecules undergo topological changes that affect supercoiling, catenation and knotting. To better understand this process and the role of topoisomerases, the enzymes that control DNA topology in in vivo, two-dimensional agarose gel electrophoresis were used to investigate the efficiency of three type II DNA topoisomerases, the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α, on partially replicated bacterial plasmids containing replication forks stalled at specific sites. The results obtained revealed that despite the fact these DNA topoisomerases may have evolved to accomplish specific tasks, they share abilities. To our knowledge, this is the first time two-dimensional agarose gel electrophoresis have been used to examine the ability of these topoisomerases to relax supercoiling in the un-replicated region and unlink pre-catenanes in the replicated one of partially replicated molecules in vitro. The methodology described here can be used to study the role of different topoisomerases in partially replicated molecules. Abstract DNA topoisomerases are the enzymes that regulate DNA topology in all living cells. Since the discovery and purification of ω (omega), when the first were topoisomerase identified, the function of many topoisomerases has been examined. However, their ability to relax supercoiling and unlink the pre-catenanes of partially replicated molecules has received little attention. Here, we used two-dimensional agarose gel electrophoresis to test the function of three type II DNA topoisomerases in vitro: the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α. We examined the proficiency of these topoisomerases on a partially replicated bacterial plasmid: pBR-TerE@AatII, with an unidirectional replicating fork, stalled when approximately half of the plasmid had been replicated in vivo. DNA was isolated from two strains of Escherichia coli: DH5αF’ and parE10. These experiments allowed us to assess, for the first time, the efficiency of the topoisomerases examined to resolve supercoiling and pre-catenanes in partially replicated molecules and fully replicated catenanes formed in vivo. The results obtained revealed the preferential functions and also some redundancy in the abilities of these DNA topoisomerases in vitro.
Collapse
Affiliation(s)
- Jorge Cebrián
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - Victor Martínez
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - Dora B. Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - María-José Fernández-Nestosa
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
- Correspondence:
| | - Jorge B. Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| |
Collapse
|
27
|
Wiegard A, Kuzin V, Cameron DP, Grosser J, Ceribelli M, Mehmood R, Ballarino R, Valant F, Grochowski R, Karabogdan I, Crosetto N, Lindqvist A, Bizard AH, Kouzine F, Natsume T, Baranello L. Topoisomerase 1 activity during mitotic transcription favors the transition from mitosis to G1. Mol Cell 2021; 81:5007-5024.e9. [PMID: 34767771 DOI: 10.1016/j.molcel.2021.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/26/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
As cells enter mitosis, chromatin compacts to facilitate chromosome segregation yet remains transcribed. Transcription supercoils DNA to levels that can impede further progression of RNA polymerase II (RNAPII) unless it is removed by DNA topoisomerase 1 (TOP1). Using ChIP-seq on mitotic cells, we found that TOP1 is required for RNAPII translocation along genes. The stimulation of TOP1 activity by RNAPII during elongation allowed RNAPII clearance from genes in prometaphase and enabled chromosomal segregation. Disruption of the TOP1-RNAPII interaction impaired RNAPII spiking at promoters and triggered defects in the post-mitotic transcription program. This program includes factors necessary for cell growth, and cells with impaired TOP1-RNAPII interaction are more sensitive to inhibitors of mTOR signaling. We conclude that TOP1 is necessary for assisting transcription during mitosis with consequences for growth and gene expression long after mitosis is completed. In this sense, TOP1 ensures that cellular memory is preserved in subsequent generations.
Collapse
Affiliation(s)
- Anika Wiegard
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Donald P Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jan Grosser
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Michele Ceribelli
- Division of Pre-Clinical Innovation, NCATS, National Institutes of Health, Rockville, MD 20850, USA
| | - Rashid Mehmood
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Software Engineering, University of Kotli, AJ&K, 45320 Kotli Azad Kashmir, Pakistan
| | - Roberto Ballarino
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Francesco Valant
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Radosław Grochowski
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | | | - Nicola Crosetto
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anna Helene Bizard
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Fedor Kouzine
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Shizuoka 411-8540, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
28
|
Kozurkova M. Acridine derivatives as inhibitors/poisons of topoisomerase II. J Appl Toxicol 2021; 42:544-552. [PMID: 34514603 DOI: 10.1002/jat.4238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022]
Abstract
The potential of acridines (amsacrine) as a topoisomerase II inhibitor or poison was first discovered in 1984, and since then, a considerable number of acridine derivatives have been tested as topoisomerase inhibitors/poisons, containing different substituents on the acridine chromophore. This review will discuss a series of studies published over the course of the last decade, which have investigated various novel acridine derivatives against topoisomerase II activity.
Collapse
Affiliation(s)
- Maria Kozurkova
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Kosice, Slovak Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
29
|
DNA-Topology Simplification by Topoisomerases. Molecules 2021; 26:molecules26113375. [PMID: 34204901 PMCID: PMC8199745 DOI: 10.3390/molecules26113375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
The topological properties of DNA molecules, supercoiling, knotting, and catenation, are intimately connected with essential biological processes, such as gene expression, replication, recombination, and chromosome segregation. Non-trivial DNA topologies present challenges to the molecular machines that process and maintain genomic information, for example, by creating unwanted DNA entanglements. At the same time, topological distortion can facilitate DNA-sequence recognition through localized duplex unwinding and longer-range loop-mediated interactions between the DNA sequences. Topoisomerases are a special class of essential enzymes that homeostatically manage DNA topology through the passage of DNA strands. The activities of these enzymes are generally investigated using circular DNA as a model system, in which case it is possible to directly assay the formation and relaxation of DNA supercoils and the formation/resolution of knots and catenanes. Some topoisomerases use ATP as an energy cofactor, whereas others act in an ATP-independent manner. The free energy of ATP hydrolysis can be used to drive negative and positive supercoiling or to specifically relax DNA topologies to levels below those that are expected at thermodynamic equilibrium. The latter activity, which is known as topology simplification, is thus far exclusively associated with type-II topoisomerases and it can be understood through insight into the detailed non-equilibrium behavior of type-II enzymes. We use a non-equilibrium topological-network approach, which stands in contrast to the equilibrium models that are conventionally used in the DNA-topology field, to gain insights into the rates that govern individual transitions between topological states. We anticipate that our quantitative approach will stimulate experimental work and the theoretical/computational modeling of topoisomerases and similar enzyme systems.
Collapse
|
30
|
Vann KR, Oviatt AA, Osheroff N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry 2021; 60:1630-1641. [PMID: 34008964 PMCID: PMC8209676 DOI: 10.1021/acs.biochem.1c00240] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.
Collapse
Affiliation(s)
- Kendra R Vann
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A Oviatt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
31
|
Vanden Broeck A, Lotz C, Drillien R, Haas L, Bedez C, Lamour V. Structural basis for allosteric regulation of Human Topoisomerase IIα. Nat Commun 2021; 12:2962. [PMID: 34016969 PMCID: PMC8137924 DOI: 10.1038/s41467-021-23136-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/15/2021] [Indexed: 12/01/2022] Open
Abstract
The human type IIA topoisomerases (Top2) are essential enzymes that regulate DNA topology and chromosome organization. The Topo IIα isoform is a prime target for antineoplastic compounds used in cancer therapy that form ternary cleavage complexes with the DNA. Despite extensive studies, structural information on this large dimeric assembly is limited to the catalytic domains, hindering the exploration of allosteric mechanism governing the enzyme activities and the contribution of its non-conserved C-terminal domain (CTD). Herein we present cryo-EM structures of the entire human Topo IIα nucleoprotein complex in different conformations solved at subnanometer resolutions (3.6-7.4 Å). Our data unveils the molecular determinants that fine tune the allosteric connections between the ATPase domain and the DNA binding/cleavage domain. Strikingly, the reconstruction of the DNA-binding/cleavage domain uncovers a linker leading to the CTD, which plays a critical role in modulating the enzyme's activities and opens perspective for the analysis of post-translational modifications.
Collapse
Affiliation(s)
- Arnaud Vanden Broeck
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Christophe Lotz
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Robert Drillien
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Léa Haas
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Claire Bedez
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Department of Integrated Structural Biology, IGBMC, Illkirch, France
| | - Valérie Lamour
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
- Department of Integrated Structural Biology, IGBMC, Illkirch, France.
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
32
|
Shintomi K, Hirano T. Guiding functions of the C-terminal domain of topoisomerase IIα advance mitotic chromosome assembly. Nat Commun 2021; 12:2917. [PMID: 34006877 PMCID: PMC8131626 DOI: 10.1038/s41467-021-23205-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Topoisomerase II (topo II) is one of the six proteins essential for mitotic chromatid reconstitution in vitro. It is not fully understood, however, mechanistically how this enzyme regulates this process. In an attempt to further refine the reconstitution assay, we have found that chromosomal binding of Xenopus laevis topo IIα is sensitive to buffer conditions and depends on its C-terminal domain (CTD). Enzymological assays using circular DNA substrates supports the idea that topo IIα first resolves inter-chromatid entanglements to drive individualization and then generates intra-chromatid entanglements to promote thickening. Importantly, only the latter process requires the CTD. By using frog egg extracts, we also show that the CTD contributes to proper formation of nucleosome-depleted chromatids by competing with a linker histone for non-nucleosomal DNA. Our results demonstrate that topo IIα utilizes its CTD to deliver the enzymatic core to crowded environments created during mitotic chromatid assembly, thereby fine-tuning this process. Topoisomerase IIα (topo IIα) is critical for mitotic chromatid assembly. Here the authors report a refinement of the mitotic chromatid reconstitution assay and provide novel insights into the C-terminal domain (CTD) of topo IIα.
Collapse
Affiliation(s)
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
33
|
Sutormin DA, Galivondzhyan AK, Polkhovskiy AV, Kamalyan SO, Severinov KV, Dubiley SA. Diversity and Functions of Type II Topoisomerases. Acta Naturae 2021; 13:59-75. [PMID: 33959387 PMCID: PMC8084294 DOI: 10.32607/actanaturae.11058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The DNA double helix provides a simple and elegant way to store and copy genetic information. However, the processes requiring the DNA helix strands separation, such as transcription and replication, induce a topological side-effect - supercoiling of the molecule. Topoisomerases comprise a specific group of enzymes that disentangle the topological challenges associated with DNA supercoiling. They relax DNA supercoils and resolve catenanes and knots. Here, we review the catalytic cycles, evolution, diversity, and functional roles of type II topoisomerases in organisms from all domains of life, as well as viruses and other mobile genetic elements.
Collapse
Affiliation(s)
- D. A. Sutormin
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - A. K. Galivondzhyan
- Lomonosov Moscow State University, Moscow, 119991 Russia
- Institute of Molecular Genetics RAS, Moscow, 123182 Russia
| | - A. V. Polkhovskiy
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - S. O. Kamalyan
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - K. V. Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
- Waksman Institute for Microbiology, Piscataway, New Jersey, 08854 USA
| | - S. A. Dubiley
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
34
|
Heintzman DR, Campos LV, Byl JAW, Osheroff N, Dewar JM. Topoisomerase II Is Crucial for Fork Convergence during Vertebrate Replication Termination. Cell Rep 2020; 29:422-436.e5. [PMID: 31597101 PMCID: PMC6919565 DOI: 10.1016/j.celrep.2019.08.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/27/2019] [Accepted: 08/28/2019] [Indexed: 11/28/2022] Open
Abstract
Termination of DNA replication occurs when two replication forks converge upon the same stretch of DNA. Resolution of topological stress by topoisomerases is crucial for fork convergence in bacteria and viruses, but it is unclear whether similar mechanisms operate during vertebrate termination. Using Xenopus egg extracts, we show that topoisomerase II (Top2) resolves topological stress to prevent converging forks from stalling during termination. Under these conditions, stalling arises due to an inability to unwind the final stretch of DNA ahead of each fork. By promoting fork convergence, Top2 facilitates all downstream events of termination. Converging forks ultimately overcome stalling independently of Top2, indicating that additional mechanisms support fork convergence. Top2 acts throughout replication to prevent the accumulation of topological stress that would otherwise stall converging forks. Thus, termination poses evolutionarily conserved topological problems that can be mitigated by careful execution of the earlier stages of replication.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lillian V Campos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Medicine (Hematology, Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
35
|
Chromatin Architectural Factors as Safeguards against Excessive Supercoiling during DNA Replication. Int J Mol Sci 2020; 21:ijms21124504. [PMID: 32599919 PMCID: PMC7349988 DOI: 10.3390/ijms21124504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Key DNA transactions, such as genome replication and transcription, rely on the speedy translocation of specialized protein complexes along a double-stranded, right-handed helical template. Physical tethering of these molecular machines during translocation, in conjunction with their internal architectural features, generates DNA topological strain in the form of template supercoiling. It is known that the build-up of transient excessive supercoiling poses severe threats to genome function and stability and that highly specialized enzymes—the topoisomerases (TOP)—have evolved to mitigate these threats. Furthermore, due to their intracellular abundance and fast supercoil relaxation rates, it is generally assumed that these enzymes are sufficient in coping with genome-wide bursts of excessive supercoiling. However, the recent discoveries of chromatin architectural factors that play important accessory functions have cast reasonable doubts on this concept. Here, we reviewed the background of these new findings and described emerging models of how these accessory factors contribute to supercoil homeostasis. We focused on DNA replication and the generation of positive (+) supercoiling in front of replisomes, where two accessory factors—GapR and HMGA2—from pro- and eukaryotic cells, respectively, appear to play important roles as sinks for excessive (+) supercoiling by employing a combination of supercoil constrainment and activation of topoisomerases. Looking forward, we expect that additional factors will be identified in the future as part of an expanding cellular repertoire to cope with bursts of topological strain. Furthermore, identifying antagonists that target these accessory factors and work synergistically with clinically relevant topoisomerase inhibitors could become an interesting novel strategy, leading to improved treatment outcomes.
Collapse
|
36
|
The African Swine Fever Virus (ASFV) Topoisomerase II as a Target for Viral Prevention and Control. Vaccines (Basel) 2020; 8:vaccines8020312. [PMID: 32560397 PMCID: PMC7350233 DOI: 10.3390/vaccines8020312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
African swine fever (ASF) is, once more, spreading throughout the world. After its recent reintroduction in Georgia, it quickly reached many neighboring countries in Eastern Europe. It was also detected in Asia, infecting China, the world's biggest pig producer, and spreading to many of the surrounding countries. Without any vaccine or effective treatment currently available, new strategies for the control of the disease are mandatory. Its etiological agent, the African swine fever virus (ASFV), has been shown to code for a type II DNA topoisomerase. These are enzymes capable of modulating the topology of DNA molecules, known to be essential in unicellular and multicellular organisms, and constitute targets in antibacterial and anti-cancer treatments. In this review, we summarize most of what is known about this viral enzyme, pP1192R, and discuss about its possible role(s) during infection. Given the essential role of type II topoisomerases in cells, the data so far suggest that pP1192R is likely to be equally essential for the virus and thus a promising target for the elaboration of a replication-defective virus, which could provide the basis for an effective vaccine. Furthermore, the use of inhibitors could be considered to control the spread of the infection during outbreaks and therefore limit the spreading of the disease.
Collapse
|
37
|
Ui A, Chiba N, Yasui A. Relationship among DNA double-strand break (DSB), DSB repair, and transcription prevents genome instability and cancer. Cancer Sci 2020; 111:1443-1451. [PMID: 32232911 PMCID: PMC7226179 DOI: 10.1111/cas.14404] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/28/2022] Open
Abstract
DNA double‐strand break (DSB) is a serious type of DNA damage and is known to trigger multiple responses within cells. In these responses, novel relationships among DSB, DSB repair, and transcription machineries are created. First, transcription is repressed if DSB occurs near or at the transcription site, termed DSB‐induced transcriptional repression, which contributes to DSB repair with the aid of DNA damage‐signaling pathways, ATM‐ or DNA‐PKcs‐signaling pathways. DSB‐induced transcriptional repression is also regulated by transcriptional factors TLP1, NELF, and ENL, as well as chromatin remodeling and organizing factors ZMYND8, CDYL1, PBAF, and cohesin. Second, transcription and RNA promote DSB repair for genome integrity. Transcription factors such as LEDGF, SETD2, and transcriptionally active histone modification, H3K36, facilitate homologous recombination to overcome DSB. At transcriptional active sites, DNA:RNA hybrids, termed R‐loops, which are formed by DSB, are processed by RAD52 and XPG leading to an activation of the homologous recombination pathway. Even in a transcriptionally inactive non‐genic sites, noncoding RNAs that are produced by RNA polymerase II, DICER, and DROSHA, help to recruit DSB repair proteins at the DSB sites. Third, transcriptional activation itself, however, can induce DSB. Transcriptional activation often generates specific DNA structures such as R‐loops and topoisomerase‐induced DSBs, which cause genotoxic stress and may lead to genome instability and consequently to cancer. Thus, transcription and DSB repair machineries interact and cooperate to prevent genome instability and cancer.
Collapse
Affiliation(s)
- Ayako Ui
- Genome Regulation and Molecular Pharmacogenomics, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachijoji, Japan.,Department of Molecular Oncology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.,Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
38
|
Yang X, Li Z, Polyakova T, Dejneka A, Zablotskii V, Zhang X. Effect of static magnetic field on DNA synthesis: The interplay between DNA chirality and magnetic field left-right asymmetry. FASEB Bioadv 2020; 2:254-263. [PMID: 32259051 PMCID: PMC7133733 DOI: 10.1096/fba.2019-00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 05/26/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Interactions between magnetic fields (MFs) and living cells may stimulate a large variety of cellular responses to a MF, while the underlying intracellular mechanisms still remain a great puzzle. On a fundamental level, the MF - cell interaction is affected by the two broken symmetries: (a) left-right (LR) asymmetry of the MF and (b) chirality of DNA molecules carrying electric charges and subjected to the Lorentz force when moving in a MF. Here we report on the chirality-driven effect of static magnetic fields (SMFs) on DNA synthesis. This newly discovered effect reveals how the interplay between two fundamental features of symmetry in living and inanimate nature-DNA chirality and the inherent features of MFs to distinguish the left and right-manifests itself in different DNA synthesis rates in the upward and downward SMFs, consequently resulting in unequal cell proliferation for the two directions of the field. The interplay between DNA chirality and MF LR asymmetry will provide fundamental knowledge for many MF-induced biological phenotypes.
Collapse
Affiliation(s)
- Xingxing Yang
- High Magnetic Field LaboratoryKey Laboratory of High Magnetic Field and Ion Beam Physical BiologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- Science Island Branch of Graduate SchoolUniversity of Science and Technology of ChinaHefeiChina
| | - Zhiyuan Li
- High Magnetic Field LaboratoryKey Laboratory of High Magnetic Field and Ion Beam Physical BiologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| | - Xin Zhang
- High Magnetic Field LaboratoryKey Laboratory of High Magnetic Field and Ion Beam Physical BiologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- Science Island Branch of Graduate SchoolUniversity of Science and Technology of ChinaHefeiChina
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| |
Collapse
|
39
|
Mapping DNA Topoisomerase Binding and Cleavage Genome Wide Using Next-Generation Sequencing Techniques. Genes (Basel) 2020; 11:genes11010092. [PMID: 31941152 PMCID: PMC7017377 DOI: 10.3390/genes11010092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023] Open
Abstract
Next-generation sequencing (NGS) platforms have been adapted to generate genome-wide maps and sequence context of binding and cleavage of DNA topoisomerases (topos). Continuous refinements of these techniques have resulted in the acquisition of data with unprecedented depth and resolution, which has shed new light on in vivo topo behavior. Topos regulate DNA topology through the formation of reversible single- or double-stranded DNA breaks. Topo activity is critical for DNA metabolism in general, and in particular to support transcription and replication. However, the binding and activity of topos over the genome in vivo was difficult to study until the advent of NGS. Over and above traditional chromatin immunoprecipitation (ChIP)-seq approaches that probe protein binding, the unique formation of covalent protein–DNA linkages associated with DNA cleavage by topos affords the ability to probe cleavage and, by extension, activity over the genome. NGS platforms have facilitated genome-wide studies mapping the behavior of topos in vivo, how the behavior varies among species and how inhibitors affect cleavage. Many NGS approaches achieve nucleotide resolution of topo binding and cleavage sites, imparting an extent of information not previously attainable. We review the development of NGS approaches to probe topo interactions over the genome in vivo and highlight general conclusions and quandaries that have arisen from this rapidly advancing field of topoisomerase research.
Collapse
|
40
|
Gibson EG, Oviatt AA, Osheroff N. Two-Dimensional Gel Electrophoresis to Resolve DNA Topoisomers. Methods Mol Biol 2020; 2119:15-24. [PMID: 31989511 PMCID: PMC7012906 DOI: 10.1007/978-1-0716-0323-9_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Agarose gel electrophoresis is one of the most straightforward techniques that can be used to differentiate between topoisomers of closed circular DNA molecules. Generally, the products of reactions that monitor the interconversion of DNA between negatively supercoiled and relaxed DNA or positively supercoiled and relaxed DNA can be resolved by one-dimensional gel electrophoresis. However, in more complex reactions that contain both positively and negatively supercoiled DNA, one-dimensional resolution is insufficient. In these cases, a second dimension of gel electrophoresis is necessary. This chapter describes the technique of two-dimensional agarose gel electrophoresis and how it can be used to resolve a spectrum of DNA topoisomers.
Collapse
Affiliation(s)
- Elizabeth G. Gibson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Alexandria A. Oviatt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States,,Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, United States,,VA Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
41
|
Cell Cycle-Dependent Control and Roles of DNA Topoisomerase II. Genes (Basel) 2019; 10:genes10110859. [PMID: 31671531 PMCID: PMC6896119 DOI: 10.3390/genes10110859] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes in all branches of life that can alter DNA superhelicity and unlink double-stranded DNA segments during processes such as replication and transcription. In cells, type II topoisomerases are particularly useful for their ability to disentangle newly-replicated sister chromosomes. Growing lines of evidence indicate that eukaryotic topoisomerase II (topo II) activity is monitored and regulated throughout the cell cycle. Here, we discuss the various roles of topo II throughout the cell cycle, as well as mechanisms that have been found to govern and/or respond to topo II function and dysfunction. Knowledge of how topo II activity is controlled during cell cycle progression is important for understanding how its misregulation can contribute to genetic instability and how modulatory pathways may be exploited to advance chemotherapeutic development.
Collapse
|
42
|
Atkin ND, Raimer HM, Wang YH. Broken by the Cut: A Journey into the Role of Topoisomerase II in DNA Fragility. Genes (Basel) 2019; 10:E791. [PMID: 31614754 PMCID: PMC6826763 DOI: 10.3390/genes10100791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
DNA topoisomerase II (TOP2) plays a critical role in many processes such as replication and transcription, where it resolves DNA structures and relieves torsional stress. Recent evidence demonstrated the association of TOP2 with topologically associated domains (TAD) boundaries and CCCTC-binding factor (CTCF) binding sites. At these sites, TOP2 promotes interactions between enhancers and gene promoters, and relieves torsional stress that accumulates at these physical barriers. Interestingly, in executing its enzymatic function, TOP2 contributes to DNA fragility through re-ligation failure, which results in persistent DNA breaks when unrepaired or illegitimately repaired. Here, we discuss the biological processes for which TOP2 is required and the steps at which it can introduce DNA breaks. We describe the repair processes that follow removal of TOP2 adducts and the resultant broken DNA ends, and present how these processes can contribute to disease-associated mutations. Furthermore, we examine the involvement of TOP2-induced breaks in the formation of oncogenic translocations of leukemia and papillary thyroid cancer, as well as the role of TOP2 and proteins which repair TOP2 adducts in other diseases. The participation of TOP2 in generating persistent DNA breaks and leading to diseases such as cancer, could have an impact on disease treatment and prevention.
Collapse
Affiliation(s)
- Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
43
|
Kadayat TM, Park S, Shrestha A, Jo H, Hwang SY, Katila P, Shrestha R, Nepal MR, Noh K, Kim SK, Koh WS, Kim KS, Jeon YH, Jeong TC, Kwon Y, Lee ES. Discovery and Biological Evaluations of Halogenated 2,4-Diphenyl Indeno[1,2- b]pyridinol Derivatives as Potent Topoisomerase IIα-Targeted Chemotherapeutic Agents for Breast Cancer. J Med Chem 2019; 62:8194-8234. [PMID: 31398033 DOI: 10.1021/acs.jmedchem.9b00970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the aim of developing new effective topoisomerase IIα-targeted anticancer agents, we synthesized a series of hydroxy- and halogenated 2,4-diphenyl indeno[1,2-b]pyridinols using a microwave-assisted single step synthetic method and investigated structure-activity relationships. The majority of compounds with chlorophenyl group at 2-position and phenol group at the 4-position of indeno[1,2-b]pyridinols exhibited potent antiproliferative activity and topoisomerase IIα-selective inhibition. Of the 172 compounds tested, 89 showed highly potent and selective topoisomerase IIα inhibition and antiproliferative activity in the nanomolar range against human T47D breast (2.6 nM) cancer cell lines. In addition, mechanistic studies revealed compound 89 is a nonintercalative topoisomerase II poison, and in vitro studies showed it had promising cytotoxic effects in diverse breast cancer cell lines and was particularly effective at inducing apoptosis in T47D cells. Furthermore, in vivo administration of compound 89 had significant antitumor effects in orthotopic mouse model of breast cancer.
Collapse
Affiliation(s)
- Tara Man Kadayat
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
- New Drug Development Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Aarajana Shrestha
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Pramila Katila
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Ritina Shrestha
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Mahesh Raj Nepal
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Keumhan Noh
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Woo-Suk Koh
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Kil Soo Kim
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
- College of Veterinary Medicine , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| |
Collapse
|
44
|
Ahmed SM, Dröge P. Oncofetal HMGA2 attenuates genotoxic damage induced by topoisomerase II target compounds through the regulation of local DNA topology. Mol Oncol 2019; 13:2062-2078. [PMID: 31271486 PMCID: PMC6763970 DOI: 10.1002/1878-0261.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/26/2022] Open
Abstract
Rapidly dividing cells maintain chromatin supercoiling homeostasis via two specialized classes of enzymes, DNA topoisomerase type 1 and 2 (TOP1/2). Several important anticancer drugs perturb this homeostasis by targeting TOP1/2, thereby generating genotoxic DNA damage. Our recent studies indicated that the oncofetal chromatin structuring high‐mobility group AT‐hook 2 (HMGA2) protein plays an important role as a DNA replication fork chaperone in coping with DNA topological ramifications that occur during replication stress, both genomewide and at fragile sites such as subtelomeres. Intriguingly, a recent large‐scale clinical study identified HMGA2 expression as a sole predicting marker for relapse and poor clinical outcomes in 350 acute myeloid leukemia (AML) patients receiving combinatorial treatments that targeted TOP2 and replicative DNA synthesis. Here, we demonstrate that HMGA2 significantly enhanced the DNA supercoil relaxation activity of the drug target TOP2A and that this activator function is mechanistically linked to HMGA2's known ability to constrain DNA supercoils within highly compacted ternary complexes. Furthermore, we show that HMGA2 significantly reduced genotoxic DNA damage in each tested cancer cell model during treatment with the TOP2A poison etoposide or the catalytic TOP2A inhibitor merbarone. Taken together with the recent clinical data obtained with AML patients targeted with TOP2 poisons, our study suggests a novel mechanism of cancer chemoresistance toward combination therapies administering TOP2 poisons or inhibitors. We therefore strongly argue for the future implementation of trials of HMGA2 expression profiling to stratify patients before finalizing clinical treatment regimes.
Collapse
Affiliation(s)
- Syed Moiz Ahmed
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
45
|
Zechiedrich L, Fogg JM. BIOPHYSICS MEETS GENE THERAPY: HOW EXPLORING SUPERCOILING-DEPENDENT STRUCTURAL CHANGES IN DNA LED TO THE DEVELOPMENT OF MINIVECTOR DNA. TECHNOLOGY AND INNOVATION 2019; 20:427-439. [PMID: 33815681 DOI: 10.21300/20.4.2019.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Supercoiling affects every aspect of DNA function (replication, transcription, repair, recombination, etc.), yet the vast majority of studies on DNA and crystal structures of the molecule utilize short linear duplex DNA, which cannot be supercoiled. To study how supercoiling drives DNA biology, we developed and patented methods to make milligram quantities of tiny supercoiled circles of DNA called minicircles. We used a collaborative and multidisciplinary approach, including computational simulations (both atomistic and coarse-grained), biochemical experimentation, and biophysical methods to study these minicircles. By determining the three-dimensional conformations of individual supercoiled DNA minicircles, we revealed the structural diversity of supercoiled DNA and its highly dynamic nature. We uncovered profound structural changes, including sequence-specific base-flipping (where the DNA base flips out into the solvent), bending, and denaturing in negatively supercoiled minicircles. Counterintuitively, exposed DNA bases emerged in the positively supercoiled minicircles, which may result from inside-out DNA (Pauling-like, or "P-DNA"). These structural changes strongly influence how enzymes interact with or act on DNA. We hypothesized that, because of their small size and lack of bacterial sequences, these small supercoiled DNA circles may be efficient at delivering DNA into cells for gene therapy applications. "Minivectors," as we named them for this application, have proven to have therapeutic potential. We discovered that minivectors efficiently transfect a wide range of cell types, including many clinically important cell lines that are refractory to transfection with conventional plasmid vectors. Minivectors can be aerosolized for delivery to lungs and transfect human cells in culture to express RNA or genes. Importantly, minivectors demonstrate no obvious vector-associated toxicity. Minivectors can be repeatedly delivered and are long-lasting without integrating into the genome. Requests from colleagues around the world for minicircle and minivector DNA revealed a demand for our invention. We successfully obtained start-up funding for Twister Biotech, Inc. to help fulfill this demand, providing DNA for those who needed it, with a long-term goal of developing human therapeutics. In summary, what started as a tool for studying DNA structure has taken us in new and unanticipated directions.
Collapse
Affiliation(s)
- Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
46
|
Gibson EG, Bax B, Chan PF, Osheroff N. Mechanistic and Structural Basis for the Actions of the Antibacterial Gepotidacin against Staphylococcus aureus Gyrase. ACS Infect Dis 2019; 5:570-581. [PMID: 30757898 DOI: 10.1021/acsinfecdis.8b00315] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gepotidacin is a first-in-class triazaacenaphthylene novel bacterial topoisomerase inhibitor (NBTI). The compound has successfully completed phase II trials for the treatment of acute bacterial skin/skin structure infections and for the treatment of uncomplicated urogenital gonorrhea. It also displays robust in vitro activity against a range of wild-type and fluoroquinolone-resistant bacteria. Due to the clinical promise of gepotidacin, a detailed understanding of its interactions with its antibacterial targets is essential. Thus, we characterized the mechanism of action of gepotidacin against Staphylococcus aureus gyrase. Gepotidacin was a potent inhibitor of gyrase-catalyzed DNA supercoiling (IC50 ≈ 0.047 μM) and relaxation of positively supercoiled substrates (IC50 ≈ 0.6 μM). Unlike fluoroquinolones, which induce primarily double-stranded DNA breaks, gepotidacin induced high levels of gyrase-mediated single-stranded breaks. No double-stranded breaks were observed even at high gepotidacin concentration, long cleavage times, or in the presence of ATP. Moreover, gepotidacin suppressed the formation of double-stranded breaks. Gepotidacin formed gyrase-DNA cleavage complexes that were stable for >4 h. In vitro competition suggests that gyrase binding by gepotidacin and fluoroquinolones are mutually exclusive. Finally, we determined crystal structures of gepotidacin with the S. aureus gyrase core fusion truncate with nicked (2.31 Å resolution) or intact (uncleaved) DNA (2.37 Å resolution). In both cases, a single gepotidacin molecule was bound midway between the two scissile DNA bonds and in a pocket between the two GyrA subunits. A comparison of the two structures demonstrates conformational flexibility within the central linker of gepotidacin, which may contribute to the activity of the compound.
Collapse
Affiliation(s)
| | - Ben Bax
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Pan F. Chan
- Infectious Diseases Discovery, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Neil Osheroff
- VA Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, Tennessee 37212, United States
| |
Collapse
|
47
|
Ertan-Bolelli T, Bolelli K. Discovery of New DNA Topoisomerase II Inhibitors using Structure Based Virtual Screening Method. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.466457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
48
|
Shrestha A, Park S, Shin S, Man Kadayat T, Bist G, Katila P, Kwon Y, Lee ES. Design, synthesis, biological evaluation, structure-activity relationship study, and mode of action of 2-phenol-4,6-dichlorophenyl-pyridines. Bioorg Chem 2018; 79:1-18. [DOI: 10.1016/j.bioorg.2018.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/21/2018] [Accepted: 03/31/2018] [Indexed: 01/03/2023]
|
49
|
Gibson EG, Blower TR, Cacho M, Bax B, Berger JM, Osheroff N. Mechanism of Action of Mycobacterium tuberculosis Gyrase Inhibitors: A Novel Class of Gyrase Poisons. ACS Infect Dis 2018; 4:1211-1222. [PMID: 29746087 DOI: 10.1021/acsinfecdis.8b00035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tuberculosis is one of the leading causes of morbidity worldwide, and the incidences of drug resistance and intolerance are prevalent. Thus, there is a desperate need for the development of new antitubercular drugs. Mycobacterium tuberculosis gyrase inhibitors (MGIs) are napthyridone/aminopiperidine-based drugs that display activity against M. tuberculosis cells and tuberculosis in mouse models [Blanco, D., et al. (2015) Antimicrob. Agents Chemother. 59, 1868-1875]. Genetic and mutagenesis studies suggest that gyrase, which is the target for fluoroquinolone antibacterials, is also the target for MGIs. However, little is known regarding the interaction of these drugs with the bacterial type II enzyme. Therefore, we examined the effects of two MGIs, GSK000 and GSK325, on M. tuberculosis gyrase. MGIs greatly enhanced DNA cleavage mediated by the bacterial enzyme. In contrast to fluoroquinolones (which induce primarily double-stranded breaks), MGIs induced only single-stranded DNA breaks under a variety of conditions. MGIs work by stabilizing covalent gyrase-cleaved DNA complexes and appear to suppress the ability of the enzyme to induce double-stranded breaks. The drugs displayed little activity against type II topoisomerases from several other bacterial species, suggesting that these drugs display specificity for M. tuberculosis gyrase. Furthermore, MGIs maintained activity against M. tuberuclosis gyrase enzymes that contained the three most common fluoroquinolone resistance mutations seen in the clinic and displayed no activity against human topoisomerase IIα. These findings suggest that MGIs have potential as antitubercular drugs, especially in the case of fluoroquinolone-resistant disease.
Collapse
Affiliation(s)
| | - Tim R. Blower
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, United States
| | - Monica Cacho
- Department of Diseases of the Developing World, GlaxoSmithKline, Parque Tecnológico de Madrid, Calle de Severo Ochoa, 2, 28760 Tres Cantos, Madrid, Spain
| | - Ben Bax
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, United States
| | - Neil Osheroff
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
50
|
Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate. Nat Commun 2018; 9:3085. [PMID: 30082834 PMCID: PMC6078968 DOI: 10.1038/s41467-018-05406-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022] Open
Abstract
Type IIA topoisomerases (Top2s) manipulate the handedness of DNA crossovers by introducing a transient and protein-linked double-strand break in one DNA duplex, termed the DNA-gate, whose opening allows another DNA segment to be transported through to change the DNA topology. Despite the central importance of this gate-opening event to Top2 function, the DNA-gate in all reported structures of Top2-DNA complexes is in the closed state. Here we present the crystal structure of a human Top2 DNA-gate in an open conformation, which not only reveals structural characteristics of its DNA-conducting path, but also uncovers unexpected yet functionally significant conformational changes associated with gate-opening. This structure further implicates Top2’s preference for a left-handed DNA braid and allows the construction of a model representing the initial entry of another DNA duplex into the DNA-gate. Steered molecular dynamics calculations suggests the Top2-catalyzed DNA passage may be achieved by a rocker-switch-type movement of the DNA-gate. Type II DNA topoisomerases (Top2s) direct the passage of one DNA duplex through another, which is important for resolving DNA entanglements. Here the authors combine X-ray crystallography and MD simulations and present the structure of the human Top2 DNA-gate in an open conformation and discuss mechanistic implications.
Collapse
|