1
|
Burger N, Mittenbühler MJ, Xiao H, Shin S, Wei SM, Henze EK, Schindler S, Mehravar S, Wood DM, Petrocelli JJ, Sun Y, Sprenger HG, Latorre-Muro P, Smythers AL, Bozi LHM, Darabedian N, Zhu Y, Seo HS, Dhe-Paganon S, Che J, Chouchani ET. The human zinc-binding cysteine proteome. Cell 2025; 188:832-850.e27. [PMID: 39742810 DOI: 10.1016/j.cell.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
Zinc is an essential micronutrient that regulates a wide range of physiological processes, most often through zinc binding to protein cysteine residues. Despite being critical for modulation of protein function, the cysteine sites in the majority of the human proteome that are subject to zinc binding remain undefined. Here, we develop ZnCPT, a deep and quantitative mapping of the zinc-binding cysteine proteome. We define 6,173 zinc-binding cysteines, uncovering protein families across major domains of biology that are subject to constitutive or inducible zinc binding. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc binding and nominate malignancies sensitive to zinc-induced cytotoxicity. We discover a mechanism of zinc regulation over glutathione reductase (GSR), which drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation of protein function.
Collapse
Affiliation(s)
- Nils Burger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie J Mittenbühler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanghee Shin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shelley M Wei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Erik K Henze
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Schindler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sepideh Mehravar
- Medically Associated Science and Technology (MAST) Program, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Wood
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan J Petrocelli
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hans-Georg Sprenger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda L Smythers
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Narek Darabedian
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yingde Zhu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hyuk-Soo Seo
- Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Wadhwa V, Jamshidi C, Stachowski K, Bird AJ, Foster MP. Conformational dynamics in specialized C 2H 2 zinc finger domains enable zinc-responsive gene repression in S. pombe. Protein Sci 2025; 34:e70044. [PMID: 39865413 PMCID: PMC11761706 DOI: 10.1002/pro.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem C2H2 zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical C2H2 zinc fingers. Isothermal titration calorimetry and NMR spectroscopy reveal two distinct zinc binding events localized to the zinc fingers. NMR spectra reveal complex dynamic behavior in this zinc-responsive region spanning time scales from fast 10-12-10-10 to slow >100 s. Slow exchange due to cis-trans isomerization of the TGERP linker results in the doubling of many signals in the protein. Conformational exchange on the 10-3 s timescale throughout the first zinc finger distinguishes it from the second and is linked to a weaker affinity for zinc. These findings reveal a mechanism of zinc sensing by Loz1 and illuminate how the protein's rough free-energy landscape enables zinc sensing, DNA binding and regulated gene expression.
Collapse
Affiliation(s)
- Vibhuti Wadhwa
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Cameron Jamshidi
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Kye Stachowski
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Amanda J. Bird
- Department of Human Nutrition and Molecular GeneticsCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Mark P. Foster
- Department of Chemistry and BiochemistryCenter for RNA BiologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Viennet T, Yin M, Jayaraj A, Kim W, Sun ZYJ, Fujiwara Y, Zhang K, Seruggia D, Seo HS, Dhe-Paganon S, Orkin SH, Arthanari H. Structural insights into the DNA-binding mechanism of BCL11A: The integral role of ZnF6. Structure 2024; 32:2276-2286.e4. [PMID: 39423807 PMCID: PMC11625000 DOI: 10.1016/j.str.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α2γ2) to adult hemoglobin (HbA: α2β2) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456. Here, we report comprehensive investigation of ZnF456, leveraging X-ray crystallography and NMR to determine the structures in both the presence and absence of DNA. We delve into the dynamics and mode of interaction with DNA. Moreover, we discovered that the last zinc finger of BCL11A (ZnF6) plays a different role compared to ZnF4 and 5, providing a positive entropic contribution to DNA binding and γ-globin gene repression. Comprehending the DNA binding mechanism of BCL11A opens avenues for the strategic, structure-based design of novel therapeutics targeting sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Thibault Viennet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Maolu Yin
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Abhilash Jayaraj
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Woojin Kim
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Zhen-Yu J Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuko Fujiwara
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Zhang
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Davide Seruggia
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Stuart H Orkin
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
5
|
Burger N, Mittenbühler MJ, Xiao H, Shin S, Bozi LHM, Wei S, Sprenger HG, Sun Y, Zhu Y, Darabedian N, Petrocelli JJ, Muro PL, Che J, Chouchani ET. A comprehensive landscape of the zinc-regulated human proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574225. [PMID: 38260676 PMCID: PMC10802333 DOI: 10.1101/2024.01.04.574225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.
Collapse
|
6
|
Yang F, Smith MJ. Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling. Free Radic Biol Med 2024; 210:158-171. [PMID: 37989446 DOI: 10.1016/j.freeradbiomed.2023.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Coronary ischemia-reperfusion (IR) injury results from a blockage of blood supply to the heart followed by restoration of perfusion, leading to oxidative stress induced pathological processes. Nuclear factor erythroid 2-related factor 2 (NRF2), a master antioxidant transcription factor, plays a key role in regulating redox signaling. Over the past decades, the field of metallomics has provided novel insights into the mechanism of pro-oxidant and antioxidant pathological processes. Both redox-active (e.g. Fe and Cu) and redox-inert (e.g. Zn and Mg) metals play unique roles in establishing redox balance under IR injury. Notably, Zn protects against oxidative stress in coronary IR injury by serving as a cofactor of antioxidant enzymes such as superoxide dismutase [Cu-Zn] (SOD1) and proteins such as metallothionein (MT) and KEAP1/NRF2 mediated antioxidant defenses. An increase in labile Zn2+ inhibits proteasomal degradation and ubiquitination of NRF2 by modifying KEAP1 and glycogen synthase kinase 3β (GSK3β) conformations. Fe and Cu catalyse the formation of reactive oxygen species via the Fenton reaction and also serve as cofactors of antioxidant enzymes and can activate NRF2 antioxidant signaling. We review the evidence that Zn and redox-active metals Fe and Cu affect redox signaling in coronary cells during IR and the mechanisms by which oxidative stress influences cellular metal content. In view of the unique double-edged characteristics of metals, we aim to bridge the role of metals and NRF2 regulated redox signaling to antioxidant defenses in IR injury, with a long-term aim of informing the design and application of novel therapeutics.
Collapse
Affiliation(s)
- Fan Yang
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| | - Matthew J Smith
- MSD R&D Innovation Centre, 120 Moorgate, London EC2M 6UR, United Kingdom.
| |
Collapse
|
7
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
8
|
Bulathge AW, Villones RLE, Herbert FC, Gassensmith JJ, Meloni G. Comparative cisplatin reactivity towards human Zn7-metallothionein-2 and MTF-1 zinc fingers: potential implications in anticancer drug resistance. Metallomics 2022; 14:mfac061. [PMID: 36026541 PMCID: PMC9477119 DOI: 10.1093/mtomcs/mfac061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Cis-diamminedichloroplatinum(II) (cisplatin) is a widely used metal-based chemotherapeutic drug for the treatment of cancers. However, intrinsic and acquired drug resistance limit the efficacy of cisplatin-based treatments. Increased production of intracellular thiol-rich molecules, in particular metallothioneins (MTs), which form stable coordination complexes with the electrophilic cisplatin, results in cisplatin sequestration leading to pre-target resistance. MT-1/-2 are overexpressed in cancer cells, and their expression is controlled by the metal response element (MRE)-binding transcription factor-1 (MTF-1), featuring six Cys2His2-type zinc fingers which, upon zinc metalation, recognize specific MRE sequences in the promoter region of MT genes triggering their expression. Cisplatin can efficiently react with protein metal binding sites featuring nucleophilic cysteine and/or histidine residues, including MTs and zinc fingers proteins, but the preferential reactivity towards specific targets with competing binding sites cannot be easily predicted. In this work, by in vitro competition reactions, we investigated the thermodynamic and kinetic preferential reactivity of cisplatin towards human Zn7MT-2, each of the six MTF-1 zinc fingers, and the entire human MTF-1 zinc finger domain. By spectroscopic, spectrometric, and electrophoretic mobility shift assays (EMSA), we demonstrated that cisplatin preferentially reacts with Zn7MT-2 to form Cys4-Pt(II) complexes, resulting in zinc release from MT-2. Zinc transfer from MT-2 to the MTF-1 triggers MTF-1 metalation, activation, and binding to target MRE sequences, as demonstrated by EMSA with DNA oligonucleotides. The cisplatin-dependent MT-mediated MTF-1 activation leading to apo-MT overexpression potentially establishes one of the molecular mechanisms underlying the development and potentiation of MT-mediated pre-target resistance.
Collapse
Affiliation(s)
- Anjala W Bulathge
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX-75080, USA
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX-75080, USA
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX-75080, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX-75080, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX-75080, USA
| |
Collapse
|
9
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
10
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
11
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
12
|
Zaman MS, Barman SK, Corley SM, Wilkins MR, Malladi CS, Wu MJ. Transcriptomic insights into the zinc homeostasis of MCF-7 breast cancer cells via next-generation RNA sequencing. Metallomics 2021; 13:6271325. [PMID: 33960390 DOI: 10.1093/mtomcs/mfab026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/18/2021] [Indexed: 11/12/2022]
Abstract
A significant gap in the knowledge of zinc homeostasis exists for breast cancer cells. In this study, we investigated the transcriptomic response of the luminal breast cancer cells (MCF-7) to the exposure of extracellular zinc using next-generation RNA sequencing. The dataset was collected for three time points (T0, T30, and T120) in the time course of zinc treatment, which revealed the dramatic increase, up to 869-fold, of the gene expression for metallothioneins (MT1B, MT1F, MT1X, and MT2A) and the zinc exporter ZnT1 (SLC30A1) at T30, continuingly through to T120. The similar dynamic expression pattern was found for the autophagy-related gene (VMP1) and numerous genes for zinc finger proteins (e.g. RNF165, ZNF365, ZBTB2, SNAI1, ZNF442, ZNF547, ZNF563, and ZNF296). These findings point to the all-hands-on-deck strategy adopted by the cancer cells for maintaining zinc homeostasis. The stress responsive genes encoding heat shock proteins (HSPA1A, HSPA1B, HSPA1L, HSPA4L, HSPA6, HSPA8, HSPH1, HSP90AA1, and HSP90AB1) and the MTF-1 biomarker genes (AKR1C2, CLU, ATF3, GDF15, HMOX1, MAP1A, MAFG, SESN2, and UBC) were also differentially up-regulated at T120, suggesting a role of heat shock proteins and the MTF-1 related stress proteins in dealing with zinc exposure. It is for the first time that the gene encoding Polo-like kinase 2 (PLK2) was found to be involved in zinc-related response. The top differentially expressed genes were validated by qRT-PCR and further extended to the basal type breast cancer cells (MDA-MB-231). It was found that the expression level of SLC30A1 in MDA-MB-231 was higher than MCF-7 in response to zinc exposure. Taken together, the findings contribute to our knowledge and understanding of zinc homeostasis in breast cancer cells.
Collapse
Affiliation(s)
- Mohammad S Zaman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Shital K Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Susan M Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Chandra S Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ming J Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
13
|
Tavera-Montañez C, Hainer SJ, Cangussu D, Gordon SJV, Xiao Y, Reyes-Gutierrez P, Imbalzano AN, Navea JG, Fazzio TG, Padilla-Benavides T. The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper. FASEB J 2019; 33:14556-14574. [PMID: 31690123 PMCID: PMC6894080 DOI: 10.1096/fj.201901606r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
Abstract
Metal-regulatory transcription factor 1 (MTF1) is a conserved metal-binding transcription factor in eukaryotes that binds to conserved DNA sequence motifs, termed metal response elements. MTF1 responds to both metal excess and deprivation, protects cells from oxidative and hypoxic stresses, and is required for embryonic development in vertebrates. To examine the role for MTF1 in cell differentiation, we use multiple experimental strategies [including gene knockdown (KD) mediated by small hairpin RNA and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), immunofluorescence, chromatin immunopreciptation sequencing, subcellular fractionation, and atomic absorbance spectroscopy] and report a previously unappreciated role for MTF1 and copper (Cu) in cell differentiation. Upon initiation of myogenesis from primary myoblasts, both MTF1 expression and nuclear localization increased. Mtf1 KD impaired differentiation, whereas addition of nontoxic concentrations of Cu+-enhanced MTF1 expression and promoted myogenesis. Furthermore, we observed that Cu+ binds stoichiometrically to a C terminus tetra-cysteine of MTF1. MTF1 bound to chromatin at the promoter regions of myogenic genes, and Cu addition stimulated this binding. Of note, MTF1 formed a complex with myogenic differentiation (MYOD)1, the master transcriptional regulator of the myogenic lineage, at myogenic promoters. These findings uncover unexpected mechanisms by which Cu and MTF1 regulate gene expression during myoblast differentiation.-Tavera-Montañez, C., Hainer, S. J., Cangussu, D., Gordon, S. J. V., Xiao, Y., Reyes-Gutierrez, P., Imbalzano, A. N., Navea, J. G., Fazzio, T. G., Padilla-Benavides, T. The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper.
Collapse
Affiliation(s)
- Cristina Tavera-Montañez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sarah J. Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - Daniella Cangussu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shellaina J. V. Gordon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yao Xiao
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, USA
| | - Pablo Reyes-Gutierrez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Juan G. Navea
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, USA
| | - Thomas G. Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
14
|
Six indicator genes for zinc (Zn) homeostasis in freshwater teleost yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA tissue expression and transcriptional changes to Zn exposure. Biometals 2018; 31:527-537. [DOI: 10.1007/s10534-018-0099-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022]
|
15
|
Bédard M, Roy V, Montagne M, Lavigne P. Structural Insights into c-Myc-interacting Zinc Finger Protein-1 (Miz-1) Delineate Domains Required for DNA Scanning and Sequence-specific Binding. J Biol Chem 2016; 292:3323-3340. [PMID: 28035002 DOI: 10.1074/jbc.m116.748699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
c-Myc-interacting zinc finger protein-1 (Miz-1) is a poly-Cys2His2 zinc finger (ZF) transcriptional regulator of many cell cycle genes. A Miz-1 DNA sequence consensus has recently been identified and has also unveiled Miz-1 functions in other cellular processes, underscoring its importance in the cell. Miz-1 contains 13 ZFs, but it is unknown why Miz-1 has so many ZFs and whether they recognize and bind DNA sequences in a typical fashion. Here, we used NMR to deduce the role of Miz-1 ZFs 1-4 in detecting the Miz-1 consensus sequence and preventing nonspecific DNA binding. In the construct containing the first 4 ZFs, we observed that ZFs 3 and 4 form an unusual compact and stable structure that restricts their motions. Disruption of this compact structure by an electrostatically mismatched A86K mutation profoundly affected the DNA binding properties of the WT construct. On the one hand, Miz1-4WT was found to bind the Miz-1 DNA consensus sequence weakly and through ZFs 1-3 only. On the other hand, the four ZFs in the structurally destabilized Miz1-4A86K mutant bound to the DNA consensus with a 30-fold increase in affinity (100 nm). The formation of such a thermodynamically stable but nonspecific complex is expected to slow down the rate of DNA scanning by Miz-1 during the search for its consensus sequence. Interestingly, we found that the motif stabilizing the compact structure between ZFs 3 and 4 is conserved and enriched in other long poly-ZF proteins. As discussed in detail, our findings support a general role of compact inter-ZF structures in minimizing the formation of off-target DNA complexes.
Collapse
Affiliation(s)
- Mikaël Bédard
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada
| | - Vincent Roy
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada
| | - Martin Montagne
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada
| | - Pierre Lavigne
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
16
|
Petering DH. Reactions of the Zn Proteome with Cd2+ and Other Xenobiotics: Trafficking and Toxicity. Chem Res Toxicol 2016; 30:189-202. [DOI: 10.1021/acs.chemrestox.6b00328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- David H. Petering
- Department of Chemistry and
Biochemistry, University of Wisconsin−Milwaukee, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
17
|
Kimura T, Kambe T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int J Mol Sci 2016; 17:336. [PMID: 26959009 PMCID: PMC4813198 DOI: 10.3390/ijms17030336] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
18
|
Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. J Nutr Biochem 2015; 26:1103-15. [PMID: 26342943 DOI: 10.1016/j.jnutbio.2015.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
Micronutrients include the transition metal ions zinc, copper and iron. These metals are essential for life as they serve as cofactors for many different proteins. On the other hand, they can also be toxic to cell growth when in excess. As a consequence, all organisms require mechanisms to tightly regulate the levels of these metal ions. In eukaryotes, one of the primary ways in which metal levels are regulated is through changes in expression of genes required for metal uptake, compartmentalization, storage and export. By tightly regulating the expression of these genes, each organism is able to balance metal levels despite fluctuations in the diet or extracellular environment. The goal of this review is to provide an overview of how gene expression can be controlled at a transcriptional, posttranscriptional and posttranslational level in response to metal ions in lower and higher eukaryotes. Specifically, I review what is known about how these metalloregulatory factors sense fluctuations in metal ion levels and how changes in gene expression maintain nutrient homeostasis.
Collapse
|
19
|
Dong G, Chen H, Qi M, Dou Y, Wang Q. Balance between metallothionein and metal response element binding transcription factor 1 is mediated by zinc ions (review). Mol Med Rep 2015; 11:1582-6. [PMID: 25405524 DOI: 10.3892/mmr.2014.2969] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
Metal ion homeostasis and heavy metal detoxification systems are regulated by certain genes associated with metal ion transport. Metallothionein (MT) and metal response element binding transcription factor 1 (MTF‑1) are important regulatory proteins involved in the mediation of intracellular metal ion balance. Differences in the zinc‑binding affinities of the zinc fingers of MTF‑1 and the α‑ and β‑domains of MT facilitate their regulation of Zn2+ concentration. Alterations in the intracellular concentration of Zn2+ influence the MTF‑1 zinc finger number, and MTF‑1 containing certain zinc finger numbers regulates the expression of corresponding target genes. The present review evaluates the association between zinc finger number in MTF‑1 protein, MTF‑1 target genes and the mechanism underlying MT regulation of the zinc finger number in MTF‑1.
Collapse
Affiliation(s)
- Gang Dong
- Department of Oral Medicine, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| | - Hong Chen
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| | - Meiyu Qi
- Cattle Research Department, Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Ye Dou
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| | - Qinglu Wang
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| |
Collapse
|
20
|
Choi S, Bird AJ. Zinc'ing sensibly: controlling zinc homeostasis at the transcriptional level. Metallomics 2014; 6:1198-215. [PMID: 24722954 DOI: 10.1039/c4mt00064a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Zinc-responsive transcription factors are found in all kingdoms of life and include the transcriptional activators ZntR, SczA, Zap1, bZip19, bZip23, and MTF-1, and transcriptional repressors Zur, AdcR, Loz1, and SmtB. These factors have two defining features; their activity is regulated by zinc and they all play a central role in zinc homeostasis by controlling the expression of genes that directly affect zinc levels or its availability. This review summarizes what is known about the mechanisms by which each of these factors sense changes in intracellular zinc levels and how they control zinc homeostasis through target gene regulation. Other factors that influence zinc ion sensing are also discussed.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
21
|
Bernard D, Bédard M, Bilodeau J, Lavigne P. Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:103-116. [PMID: 23975355 DOI: 10.1007/s10858-013-9770-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 06/02/2023]
Abstract
Myc-interacting zinc finger protein-1 (Miz-1) is a BTB/POZ transcription factor that activates the transcription of cytostatic genes, such as p15(INK4B) or p21(CIP1). The C-terminus of Miz-1 contains 13 consensus C2H2 zinc finger domains (ZF). ZFs 1-4 have been shown to interact with SMAD3/4, while the remaining ZFs are expected to bind the promoters of target genes. We have noted unusual features in ZF 5 and the linker between ZFs 5 and 6. Indeed, a glutamate is found instead of the conserved basic residue two positions before the second zinc-coordinating histidine on the ZF 5 helix, and the linker sequence is DTDKE in place of the classical TGEKP sequence. In a canonical ββα fold, such unusual primary structure elements should cause severe electrostatic repulsions. In this context, we have characterized the structure and the dynamics of a Miz-1 construct comprising ZFs 5-8 (Miz 5-8) by solution-state NMR. Whilst ZFs 5, 7 and 8 were shown to adopt the classical ββα fold for C2H2 ZFs, the number of long-range NOEs was insufficient to define a classical fold for ZF 6. We show by using (15)N-relaxation dispersion experiments that this lack of NOEs is due to the presence of extensive motions on the μs-ms timescale. Since this negatively charged region would have to be located near the phosphodiester backbone in a DNA complex, we propose that in addition to promoting conformational searches, it could serve as a hinge region to keep ZFs 1-4 away from DNA.
Collapse
Affiliation(s)
- David Bernard
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | | | | | | |
Collapse
|
22
|
Lin CY, Liu YC, Lin MC, Thi Nguyen T, Tam MF, Chein CY, Lin MT, Lin LY. Expression and characterization of SUMO-conjugated metal-responsive transcription factor 1: SIM-dependent cross-interaction and distinct DNA binding activity. J Biochem 2013; 153:361-9. [PMID: 23347955 DOI: 10.1093/jb/mvt002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metal-responsive transcription factor 1 (MTF-1) regulates a variety of genes involving in metal homeostasis and oxidative stress. We have shown that MTF-1 can be conjugated by small ubiquitin-like modifier (SUMO) and forms complexes with cellular factor(s) in a SUMO-interacting motif (SIM)-dependent manner. To investigate whether the interaction of MTF-1 and its SUMO conjugate occurs, we expressed and isolated MTF-1 and sumoylated MTF-1 (S-MTF-1) for functional studies. Various conditions were examined to optimize the expressions of MTF-1 and S-MTF-1. Results from affinity column chromatography demonstrated that the unmodified MTF-1 consistently co-eluted with the S-MTF-1. Mutations at the SIM did not reduce the level of MTF-1 sumoylation but the sumoylated product can then be purified to homogeneity. The presence of MTF-1 cross-interaction was further supported by in vitro pull-down assays. The ability of the purified proteins in binding metal-responsive element (MRE) was assessed with electrophoretic mobility shift assay. Noticeably, MTF-1 required the presence of cell extracts to render the binding activity. However, S-MTF-1 binds MRE in void of other cellular factors. The same characteristic was found for MTF-1 with SUMO fusion at the carboxyl terminus. These results indicate that the presence of SUMO moiety allows the protein to interact directly with MRE.
Collapse
Affiliation(s)
- Chang-Yi Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Garcia BL, Summers BJ, Ramyar KX, Tzekou A, Lin Z, Ricklin D, Lambris JD, Laity JH, Geisbrecht BV. A structurally dynamic N-terminal helix is a key functional determinant in staphylococcal complement inhibitor (SCIN) proteins. J Biol Chem 2013; 288:2870-81. [PMID: 23233676 PMCID: PMC3554951 DOI: 10.1074/jbc.m112.426858] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Complement is a network of interacting circulatory and cell surface proteins that recognizes, marks, and facilitates clearance of microbial invaders. To evade complement attack, the pathogenic organism Staphylococcus aureus expresses a number of secreted proteins that interfere with activation and regulation of the complement cascade. Staphylococcal complement inhibitors (SCINs) are one important class of these immunomodulators and consist of three active members (SCIN-A/-B/-C). SCINs inhibit a critical enzymatic complex, the alternative pathway C3 convertase, by targeting a functional "hot spot" on the central opsonin of complement, C3b. Although N-terminal truncation mutants of SCINs retain complement inhibitory properties, they are significantly weaker binders of C3b. To provide a structural basis for this observation, we undertook a series of crystallographic and NMR dynamics studies on full-length SCINs. This work reveals that N-terminal SCIN domains are characterized by a conformationally dynamic helical motif. C3b binding and functional experiments further demonstrate that this sequence-divergent N-terminal region of SCINs is both functionally important and context-dependent. Finally, surface plasmon resonance data provide evidence for the formation of inhibitor·enzyme·substrate complexes ((SCIN·C3bBb)·C3). Similar to the (SCIN·C3bBb)(2) pseudodimeric complexes, ((SCIN·C3bBb)·C3) interferes with the interaction of complement receptors and C3b. This activity provides an additional mechanism by which SCIN couples convertase inhibition to direct blocking of phagocytosis. Together, these data suggest that tethering multi-host protein complexes by small modular bacterial inhibitors may be a global strategy of immune evasion used by S. aureus. The work presented here provides detailed structure-activity relationships and improves our understanding of how S. aureus circumvents human innate immunity.
Collapse
Affiliation(s)
- Brandon L Garcia
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bédard M, Maltais L, Beaulieu ME, Bilodeau J, Bernard D, Lavigne P. NMR structure note: solution structure of human Miz-1 zinc fingers 8 to 10. JOURNAL OF BIOMOLECULAR NMR 2012; 54:317-323. [PMID: 22986688 DOI: 10.1007/s10858-012-9670-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/02/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Mikaël Bédard
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Campus de la santé, Sherbrooke, QC, J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Sims HI, Chirn GW, Marr MT. Single nucleotide in the MTF-1 binding site can determine metal-specific transcription activation. Proc Natl Acad Sci U S A 2012; 109:16516-21. [PMID: 23012419 PMCID: PMC3478646 DOI: 10.1073/pnas.1207737109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells respond to changes in environment by shifting their gene expression profile to deal with the new conditions. The cellular response to changes in metal homeostasis is an important example of this. Transition metals such as iron, zinc, and copper are essential micronutrients but other metals such as cadmium are simply toxic. The cell must maintain metal concentrations in a window that supports efficient metabolic function but must also protect against the damaging effects of high concentrations of these metals. One way a cell regulates metal homeostasis is to control genes involved in metal mobilization and storage. Much of this regulation occurs at the level of transcription and the protein most responsible for this is the conserved metal responsive transcription factor 1 (MTF-1). Interestingly, the nature of the changes in the gene expression profile depends on the type of exposure. The cell somehow senses the kind of the metal challenge and responds appropriately. We have been using the Drosophila system to try to understand the mechanism of this metal discrimination. Using genome-wide mapping of MTF-1 binding under different metal stresses we find that, surprisingly, MTF-1 chooses different DNA binding sites depending on the specific nature of the metal insult. We also find that the type of binding site chosen is an important component of the capability to induce the metal-specific transcription activation.
Collapse
Affiliation(s)
- Hillel I. Sims
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Gung-Wei Chirn
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Michael T. Marr
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
26
|
Günther V, Lindert U, Schaffner W. The taste of heavy metals: gene regulation by MTF-1. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1416-25. [PMID: 22289350 DOI: 10.1016/j.bbamcr.2012.01.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 11/22/2022]
Abstract
The metal-responsive transcription factor-1 (MTF-1, also termed MRE-binding transcription factor-1 or metal regulatory transcription factor-1) is a pluripotent transcriptional regulator involved in cellular adaptation to various stress conditions, primarily exposure to heavy metals but also to hypoxia or oxidative stress. MTF-1 is evolutionarily conserved from insects to humans and is the main activator of metallothionein genes, which encode small cysteine-rich proteins that can scavenge toxic heavy metals and free radicals. MTF-1 has been suggested to act as an intracellular metal sensor but evidence for direct metal sensing was scarce. Here we review recent advances in our understanding of MTF-1 regulation with a focus on the mechanism underlying heavy metal responsiveness and transcriptional activation mediated by mammalian or Drosophila MTF-1. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Viola Günther
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
27
|
Kimura T, Yoshida K, Yamamoto C, Suzuki M, Uno T, Isobe M, Naka H, Yasuike S, Satoh M, Kaji T, Uchiyama M. Bis(L-cysteinato)zincate(lI) as a coordination compound that induces metallothionein gene transcription without inducing cell-stress-related gene transcription. J Inorg Biochem 2012; 117:140-6. [PMID: 23085594 DOI: 10.1016/j.jinorgbio.2012.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/25/2012] [Accepted: 07/31/2012] [Indexed: 11/16/2022]
Abstract
Zinc is an essential micronutrient, deficiency of which results in growth retardation, immunodeficiency, and neurological diseases such as dysgeusia. Several zinc coordination compounds are used for zinc supplementation; however, supplemented zinc ions have no specificity and interact with various groups of molecules. Here, we found that, from a library of 30 zinc coordination compounds, bis(L-cysteinato)zincate(II), designated Z01, functioned as a metallothionein (MT) inducer. Z01 induced MT expression mediated by the transcription factor MTF-1, without inducing cell-stress-related heme oxygenase-1 gene expression at specific concentration. The zinc ion was necessary for the MT induction. (65)Zn incorporation following treatment with (65)Zn-labeled Z01 suggested that Z01 did not act as zinc ionophore despite its hydrophilicity. Electrophoretic mobility shift assays revealed that Z01 facilitates MTF-1-MRE complex formation, and, by inference, transfer of zinc from Z01 to MTF-1. Phosphorylated ERK levels were increased by ZnSO(4) treatment but not by Z01. Although our data do not definitely prove that Z01 is an MTF-1-specific activator, our observations suggest that zinc coordination compounds can regulate zinc distribution and act as zinc donors for specific molecules.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Günther V, Davis AM, Georgiev O, Schaffner W. A conserved cysteine cluster, essential for transcriptional activity, mediates homodimerization of human metal-responsive transcription factor-1 (MTF-1). BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:476-83. [PMID: 22057392 DOI: 10.1016/j.bbamcr.2011.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 11/22/2022]
Abstract
Metal-responsive transcription factor-1 (MTF-1) is a zinc finger protein that activates transcription in response to heavy metals such as Zn(II), Cd(II) and Cu(I) and is also involved in the response to hypoxia and oxidative stress. MTF-1 recognizes a specific DNA sequence motif termed the metal response element (MRE), located in the promoter/enhancer region of its target genes. The functional domains of MTF-1 include, besides the DNA-binding and activation domains and signals for subcellular localization (NLS and NES), a cysteine cluster 632CQCQCAC638 located near the C-terminus. Here we show that this cysteine cluster mediates homodimerization of human MTF-1, and that dimer formation in vivo is important for basal and especially metal-induced transcriptional activity. Neither nuclear translocation nor DNA binding is impaired in a mutant protein in which these cysteines are replaced by alanines. Although zinc supplementation induces MTF-1 dependent transcription it does not per se enhance dimerization, implying that actual zinc sensing is mediated by another domain. By contrast copper, which on its own activates MTF-1 only weakly in the cell lines tested, stabilizes the dimer by inducing intermolecular disulfide bond formation and synergizes with zinc to boost MTF-1 dependent transcription.
Collapse
Affiliation(s)
- Viola Günther
- Institute of Molecular Life Sciences, Universität Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
29
|
Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. J Biol Inorg Chem 2011; 16:1087-101. [PMID: 21822976 DOI: 10.1007/s00775-011-0823-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/20/2011] [Indexed: 12/16/2022]
Abstract
The present paper centers on mammalian metallothionein 1 and 2 in relationship to cell and tissue injury beginning with its reaction with Cd²⁺ and then considering its role in the toxicology and chemotherapy of both metals and non-metal electrophiles and oxidants. Intertwined is a consideration of MTs role in tumor cell Zn²⁺ metabolism. The paper updates and expands on our recent review by Petering et al. (Met Ions Life Sci 5:353-398, 2009).
Collapse
|
30
|
Laity JH, Feng LS. Preparation and zinc-binding properties of multi-fingered zinc-sensing domains. Methods Mol Biol 2010; 649:411-35. [PMID: 20680850 DOI: 10.1007/978-1-60761-753-2_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cys(2)His(2) zinc finger proteins (ZFPs) adopt a highly conserved betabetaalpha-fold, which is stabilized by tetrahedral coordination of a central zinc ion by two cysteine and two histidine residues. Although the function of most zinc fingers is sequence-specific DNA binding, other roles such as zinc sensing have been identified. Here, methods are described to produce micromole quantities of zinc-sensing zinc finger domains from the Zap1 (two zinc fingers) and MTF-1 (six zinc fingers) transcription factors. Procedures are outlined to isolate recombinant zinc finger proteins from a bacterial expression system that generates both soluble intracellular (Zap1) and insoluble inclusion body (MTF-1) forms. Isolated proteins are reduced and subsequently HPLC purified at low pH and lyophilized, which generates proteins that are ideal for zinc-binding studies or metal substitution studies and stable during long-term storage. NMR and calorimetric methods are described to measure relative and individual zinc ion affinities in multi-fingered proteins, which is an essential step in unraveling the zinc-sensing mechanism of MTF-1 and Zap1.
Collapse
Affiliation(s)
- John H Laity
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | | |
Collapse
|
31
|
Kimura T. Molecular Mechanisms of Zinc-mediated Induction and Chromium(VI)-mediated Inhibition of Mouse Metallothionein-I Gene Transcription. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
32
|
He X, Ma Q. Induction of metallothionein I by arsenic via metal-activated transcription factor 1: critical role of C-terminal cysteine residues in arsenic sensing. J Biol Chem 2009; 284:12609-21. [PMID: 19276070 PMCID: PMC2675990 DOI: 10.1074/jbc.m901204200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/09/2009] [Indexed: 11/06/2022] Open
Abstract
Metal-activated transcription factor 1 (MTF1) mediates the induction of metallothioneins I and II by zinc and stress signals. The mechanism of MTF1 activation has not been well understood. We analyzed the interaction between arsenic (As(3+)) and MTF1 for Mt1 induction. As(3+) potently induces Mt1 mRNA expression in mouse hepa1c1c7 cells. Induction is dependent upon functional MTF1 as induction is lost in Mtf1 knockout cells but is restored upon reconstitution with Mtf1; moreover, As(3+) induces the binding of MTF1 to the metal response elements of endogenous Mt1. Induction is not affected by modulating zinc concentrations but is markedly enhanced by cycloheximide. Phenylarsine oxide (PAO), which covalently binds to vicinal protein cysteine thiol groups, induces Mt1 with a magnitude of higher potency than that of As(3+). PAO affinity beads effectively pulls down the carboxyl half of MTF1 (MTF1(321-675)) by binding to a cluster of five cysteine residues near the terminus. Preincubation with As(3+), Cd(2+), Co(2+), Ni(2+), Ag(+), Hg(2+), and Bi(3+) blocks pulldown of MTF1(321-675) by PAO beads in vitro and in vivo, indicating that binding of the metal inducers to the same C-terminal cysteine cluster as PAO occurs. Deletion of the C-terminal cysteine cluster or mutation of the cysteine residues abolishes or markedly reduces the transcription activation activity of MTF1 and the ability of MTF1 to restore Mt1 induction in Mtf1 knockout cells. The findings demonstrate a critical role of the C-terminal cysteine cluster of MTF1 in arsenic sensing and gene transcription via arsenic-cysteine thiol interaction.
Collapse
MESH Headings
- Animals
- Arsenic/pharmacology
- Blotting, Northern
- Cells, Cultured
- Chromatin Immunoprecipitation
- Cysteine/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Immunoblotting
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Luciferases/metabolism
- Metallothionein/biosynthesis
- Mice
- Mice, Knockout
- NF-E2-Related Factor 2/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Response Elements/genetics
- Sulfhydryl Compounds/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
- Zinc/pharmacology
- beta-Galactosidase/metabolism
- Transcription Factor MTF-1
Collapse
Affiliation(s)
- Xiaoqing He
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA
| | | |
Collapse
|
33
|
Petering DH, Krezoski S, Tabatabai NM. Metallothionein Toxicology: Metal Ion Trafficking and Cellular Protection. METALLOTHIONEINS AND RELATED CHELATORS 2009. [DOI: 10.1039/9781847559531-00353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The literature is replete with reports about the involvement of metallothionein in host defense against injurious chemical, biological, and physical agents. Yet, metallothionein's functional roles are still being debated. This review addresses the issues that have left the physiological significance of metallothionein in doubt and moves on to assess the MT's importance in cell toxicology. It is evident that the protein is broadly involved in protecting cells from injury due to toxic metal ions, oxidants, and electrophiles. Attention is focused on MT's structural and chemical properties that confer this widespread role in cell protection. Particular emphasis is placed on the implications of finding that metal ion unsaturated metallothionein is commonly present in many cells and tissues and the question, how does selectivity of reaction with metallothionein take place in the cellular environment that includes large numbers of competing metal binding sites and high concentrations of protein and glutathione sulfhydryl groups?
Collapse
Affiliation(s)
- David H. Petering
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee Milwaukee WI 53201 USA
| | - Susan Krezoski
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee Milwaukee WI 53201 USA
| | - Niloofar M. Tabatabai
- Division of Endocrinology, Metabolism and Clinical Nutrition and Kidney Disease Center Medical College of Wisconsin Milwaukee WI 53226 USA
| |
Collapse
|
34
|
Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 2009; 22:149-57. [DOI: 10.1007/s10534-008-9186-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/07/2008] [Indexed: 11/27/2022]
|
35
|
Kimura T, Itoh N, Andrews GK. Mechanisms of Heavy Metal Sensing by Metal Response Element-binding Transcription Factor-1. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.484] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Norio Itoh
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Glen K. Andrews
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center
| |
Collapse
|
36
|
Li Y, Kimura T, Huyck RW, Laity JH, Andrews GK. Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and Sp1. Mol Cell Biol 2008; 28:4275-84. [PMID: 18458062 PMCID: PMC2447150 DOI: 10.1128/mcb.00369-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/01/2008] [Accepted: 04/24/2008] [Indexed: 11/20/2022] Open
Abstract
Herein, the mechanisms of transactivation of gene expression by mouse metal response element-binding transcription factor 1 (MTF-1) were investigated. Evidence obtained from coimmunoprecipitation assays revealed that exposure of the cells to zinc resulted in the rapid formation of a multiprotein complex containing MTF-1, the histone acetyltransferase p300/CBP, and the transcription factor Sp1. Down-regulation of endogenous p300 expression by small interfering RNA transfection significantly decreased zinc-dependent metallothionein I (MT-I) gene transcription without altering induction of zinc transporter 1 (ZnT1). MTF-1 independently facilitated the recruitment of Sp1 and p300 to the protein complex in response to zinc. Mutagenesis demonstrated that the acidic domain, one of three transactivation domains of MTF-1, is required for recruitment of p300 but not Sp1 as well as for zinc-dependent activation of MT-I gene transcription. Furthermore, mutation of leucine residues (L-->A) within a nuclear exclusion signal in the MTF-1 acidic domain impaired recruitment of p300 and zinc-dependent activation of the MT-I gene. Nuclear magnetic resonance characterization of an isolated protein fragment corresponding to the MTF-1 acidic region demonstrated that this region is largely unstructured in the presence and absence of excess stoichiometric amounts of zinc. This suggests that the mechanism by which MTF-1 recruits p300 to this complex involves extrinsic-zinc-dependent steps. These studies reveal a novel zinc-responsive mechanism requiring an acidic region of MTF-1 that functions as a nuclear exclusion signal as well as participating in formation of a coactivator complex essential for transactivation of MT-I gene expression.
Collapse
Affiliation(s)
- Yong Li
- Department of Biochemistry and Molecular Biology, Mail Stop 3030, University of Kansas Medical Center, 39th and Rainbow Blvd., Kansas City, KS 66160-7421, USA
| | | | | | | | | |
Collapse
|
37
|
Murphy BJ, Kimura T, Sato BG, Shi Y, Andrews GK. Metallothionein induction by hypoxia involves cooperative interactions between metal-responsive transcription factor-1 and hypoxia-inducible transcription factor-1alpha. Mol Cancer Res 2008; 6:483-90. [PMID: 18337454 DOI: 10.1158/1541-7786.mcr-07-0341] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mammalian metallothionein (MT) genes are transcriptionally activated by the essential metal zinc as well as by environmental stresses, including toxic metal overload and redox fluctuations. In addition to playing a key role in zinc homeostasis, MT proteins can protect against metal- and oxidant-induced cellular damage, and may participate in other fundamental physiologic and pathologic processes such as cell survival, proliferation, and neoplasia. Previously, our group reported a requirement for metal-responsive transcription factor-1 (MTF-1) in hypoxia-induced transcription of mouse MT-I and human MT-IIA genes. Here, we provide evidence that the protumorigenic hypoxia-inducible transcription factor-1alpha (HIF-1alpha) is essential for induction of MT-1 by hypoxia, but not zinc. Chromatin immunoprecipitation assays revealed that MTF-1 and HIF-1alpha are both recruited to the mouse MT-I promoter in response to hypoxia, but not zinc. In the absence of HIF-1alpha, MTF-1 is recruited to the MT-I promoter but fails to activate MT-I gene expression in response to hypoxia. Thus, HIF-1alpha seems to function as a coactivator of MT-I gene transcription by interacting with MTF-1 during hypoxia. Coimmunoprecipitation studies suggest interaction between MTF-1 and HIF-1alpha, either directly or as mediated by other factors. It is proposed that association of these important transcription factors in a multiprotein complex represents a common strategy to control unique sets of hypoxia-inducible genes in both normal and diseased tissue.
Collapse
Affiliation(s)
- Brian J Murphy
- Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| | | | | | | | | |
Collapse
|
38
|
Ivanova E, Ball M, Lu H. Zinc binding of Tim10: Evidence for existence of an unstructured binding intermediate for a zinc finger protein. Proteins 2008; 71:467-75. [DOI: 10.1002/prot.21713] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Laity JH, Andrews GK. Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch Biochem Biophys 2007; 463:201-10. [PMID: 17462582 DOI: 10.1016/j.abb.2007.03.019] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/16/2007] [Accepted: 03/16/2007] [Indexed: 11/17/2022]
Abstract
The regulation of divalent zinc has been observed in a wide range of organisms. Since this metal is an essential nutrient, but also toxic in excess, zinc homeostasis is crucial for normal cellular functioning. The metal-responsive-element-binding transcription factor-1 (MTF-1) is a key regulator of zinc in higher eukaryotes ranging from insects to mammals. MTF-1 controls the expression of metallothioneins (MTs) and a number of other genes directly involved in the intracellular sequestration and transport of zinc. Although the diverse functions of MTF-1 extend well beyond zinc homeostasis to include stress-responses to heavy metal toxicity, oxidative stress, and selected chemical agents, in this review we focus on the recent advances in understanding the mechanisms whereby MTF-1 regulates MT gene expression to protect the cell from fluctuations in environmental zinc. Particular emphasis is devoted to recent studies involving the Cys2His2 zinc finger DNA-binding domain of MTF-1, which is an important contributor to the zinc-sensing and metal-dependent transcriptional activation functions of this protein.
Collapse
Affiliation(s)
- John H Laity
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA.
| | | |
Collapse
|
40
|
Abstract
Zinc/cysteine coordination environments in proteins are redox-active. Oxidation of the sulfur ligands mobilizes zinc, while reduction of the oxidized ligands enhances zinc binding, providing redox control over the availability of zinc ions. Some zinc proteins are redox sensors, in which zinc release is coupled to conformational changes that control varied functions such as enzymatic activity, binding interactions, and molecular chaperone activity. Whereas the released zinc ion in redox sensors has no known function, the redox signal is transduced to specific and sensitive zinc signals in redox transducers. Released zinc can bind to sites on other proteins and modulate signal transduction, generation of metabolic energy, mitochondrial function, and gene expression. The paradigm of such redox transducers is the zinc protein metallothionein, which, together with its apoprotein, thionein, functions at a central node in cellular signaling by redistributing cellular zinc, presiding over the availability of zinc, and interconverting redox and zinc signals. In this regard, the transduction of nitric oxide (NO) signals into zinc signals by metallothionein has received particular attention. It appears that redox-inert zinc has been chosen to control some aspects of cellular thiol/disulfide redox metabolism. Tight control of zinc is essential for redox homeostasis because both increases and decreases of cellular zinc elicit oxidative stress. Depending on its availability, zinc can be cytoprotective as a pro-antioxidant or cytotoxic as a pro-oxidant. Any condition with acute or chronic oxidative stress is expected to perturb zinc homeostasis.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, 77555, USA.
| |
Collapse
|
41
|
Li Y, Kimura T, Laity JH, Andrews GK. The zinc-sensing mechanism of mouse MTF-1 involves linker peptides between the zinc fingers. Mol Cell Biol 2006; 26:5580-7. [PMID: 16847313 PMCID: PMC1592782 DOI: 10.1128/mcb.00471-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/06/2006] [Accepted: 05/20/2006] [Indexed: 11/20/2022] Open
Abstract
Mouse metal response element-binding transcription factor-1 (MTF-1) regulates the transcription of genes in response to a variety of stimuli, including exposure to zinc or cadmium, hypoxia, and oxidative stress. Each of these stresses may increase labile cellular zinc, leading to nuclear translocation, DNA binding, and transcriptional activation of metallothionein genes (MT genes) by MTF-1. Several lines of evidence suggest that the highly conserved six-zinc finger DNA-binding domain of MTF-1 also functions as a zinc-sensing domain. In this study, we investigated the potential role of the peptide linkers connecting the four N-terminal zinc fingers of MTF-1 in their zinc-sensing function. Each of these three linkers is unique, completely conserved among all known vertebrate MTF-1 orthologs, and different from the canonical Cys2His2 zinc finger TGEKP linker sequence. Replacing the RGEYT linker between zinc fingers 1 and 2 with TGEKP abolished the zinc-sensing function of MTF-1, resulting in constitutive DNA binding, nuclear translocation, and transcriptional activation of the MT-I gene. In contrast, swapping the TKEKP linker between fingers 2 and 3 with TGEKP had little effect on the metal-sensing functions of MTF-1, whereas swapping the canonical linker for the shorter TGKT linker between fingers 3 and 4 rendered MTF-1 less sensitive to zinc-dependent activation both in vivo and in vitro. These observations suggest a mechanism by which physiological concentrations of accessible cellular zinc affect MTF-1 activity. Zinc may modulate highly specific, linker-mediated zinc finger interactions in MTF-1, thus affecting its zinc- and DNA-binding activities, resulting in translocation to the nucleus and binding to the MT-I gene promoter.
Collapse
Affiliation(s)
- Yong Li
- Department of Biochemistry and Molecular Biology, Mail Stop 3030, University of Kansas Medical Center, 39th and Rainbow Blvd., Kansas City, KS 66160-7421, USA
| | | | | | | |
Collapse
|
42
|
Hontz JS, Villar-Lecumberri MT, Potter BM, Yoder MD, Dreyfus LA, Laity JH. Differences in crystal and solution structures of the cytolethal distending toxin B subunit: Relevance to nuclear translocation and functional activation. J Biol Chem 2006; 281:25365-72. [PMID: 16809347 DOI: 10.1074/jbc.m603727200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytolethal distending toxin (CDT) induces cell cycle arrest and apoptosis in eukaryotic cells, which are mediated by the DNA-damaging CdtB subunit. Here we report the first x-ray structure of an isolated CdtB subunit (Escherichia coli-II CdtB, EcCdtB). In conjunction with previous structural and biochemical observations, active site structural comparisons between free and holotoxin-assembled CdtBs suggested that CDT intoxication is contingent upon holotoxin disassembly. Solution NMR structural and 15N relaxation studies of free EcCdtB revealed disorder in the interface with the CdtA and CdtC subunits (residues Gly233-Asp242). Residues Leu186-Thr209 of EcCdtB, which encompasses tandem arginine residues essential for nuclear translocation and intoxication, were also disordered in solution. In stark contrast, nearly identical well defined alpha-helix and beta-strand secondary structures were observed in this region of the free and holotoxin CdtB crystallographic models, suggesting that distinct changes in structural ordering characterize subunit disassembly and nuclear localization factor binding functions.
Collapse
Affiliation(s)
- Jill S Hontz
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | | | | | | | | | |
Collapse
|
43
|
Wang Z, Feng LS, Matskevich V, Venkataraman K, Parasuram P, Laity JH. Solution Structure of a Zap1 Zinc-responsive Domain Provides Insights into Metalloregulatory Transcriptional Repression in Saccharomyces cerevisiae. J Mol Biol 2006; 357:1167-83. [PMID: 16483601 DOI: 10.1016/j.jmb.2006.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 12/21/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
The Zap1 transcription factor controls expression of genes that regulate zinc homeostasis in Saccharomyces cerevisiae. The solution structure of two zinc fingers (zf1-2(CA3)) derived from a zinc-responsive domain of Zap1 (zf1-2) has been determined. Under zinc-limiting conditions, zinc finger 2 (zf2) from this domain has been shown to be a constitutive transcriptional activator. Moreover, repression of zf2 function in zinc-replete cells required zinc coordination to both canonical finger 1 (zf1) and zf2 metal sites, suggesting zf1-zf2 cooperativity underlies Zap1 metalloregulation. A structural basis for this cooperativity is identified here. Favorable inter-helical contacts in zf1-2(CA3) extend the individual finger hydrophobic cores through the zf1-zf2 interface. Tryptophan residues at position 5 in each finger provide numerous non-helical inter-finger contacts reminiscent of those observed in GLI1 zinc fingers 1 and 2. The molecular mechanism for zf1-dependent repression of zf2 transcriptional activation is explored further using NMR and CD titration studies. While zf1 independently forms a betabetaalpha solution structure, the majority of zf2 ensemble solution states do not adopt the canonical betabetaalpha zinc finger fold without zf1-zf2 interactions. Cooperative effects on Zn(II) affinities stemming from these finger-finger interactions are observed also in calorimetric studies, in which the 160(+/-20)nM (zf1) and 250(+/-40)nM (zf2) K(d) values for each individual finger increased substantially in the context of the zf1-2 protein (apparent K(dzf1-2WT)=4.6(+/-1.2)nM). On the basis of the above observations, we propose a mechanism for Zap1 transcriptional regulation in which zf1-zf2 interactions stabilize the betabetaalpha folded "repressed state" of the zf2 activation domain in the presence of cellular Zn(II) excess. Moreover, in contrast to earlier reports of <<1 labile zinc ion/Escherichia coli cell, the zf1-zf2 zinc affinities determined calorimetrically are consistent with Zn(II) levels >>1 labile zinc ion/eukaryotic cell.
Collapse
Affiliation(s)
- Zhonghua Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA
| | | | | | | | | | | |
Collapse
|