1
|
Roscigno G, Jacobs S, Toledo B, Borea R, Russo G, Pepe F, Serrano MJ, Calabrò V, Troncone G, Giovannoni R, Giovannetti E, Malapelle U. The potential application of stroma modulation in targeting tumor cells: focus on pancreatic cancer and breast cancer models. Semin Cancer Biol 2025:S1044-579X(25)00060-4. [PMID: 40373890 DOI: 10.1016/j.semcancer.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer development and spreading being considered as "the dark side of the tumor". Within this term tumor cells, immune components, supporting cells, extracellular matrix and a myriad of bioactive molecules that synergistically promote tumor development and therapeutic resistance, are included. Recent findings revealed the profound impacts of TME on cancer development, serving as physical support, critical mediator and biodynamic matrix in cancer evolution, immune modulation, and treatment outcomes. TME targeting strategies built on vasculature, immune checkpoints, and immuno-cell therapies, have paved the way for revolutionary clinical interventions. On this basis, the relevance of pre-clinical and clinical investigations has rapidly become fundamental for implementing novel therapeutical strategies breaking cell-cell and cell -mediators' interactions between TME components and tumor cells. This review summarizes the key players in the breast and pancreatic TME, elucidating the intricate interactions among cancer cells and their essential role for cancer progression and therapeutic resistance. Different tumors such breast and pancreatic cancer have both different and similar stroma features, that might affect therapeutic strategies. Therefore, this review aims to comprehensively evaluate recent findings for refining breast and pancreatic cancer therapies and improve patient prognoses by exploiting the TME's complexity in the next future.
Collapse
Affiliation(s)
- Giuseppina Roscigno
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Sacha Jacobs
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| | - Belen Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén E-23071, Spain.
| | - Roberto Borea
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pepe
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Maria Jose Serrano
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain.
| | - Viola Calabrò
- Department of Biology, Complesso Universitario Monte Sant'Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Roberto Giovannoni
- Department of Biology, Genetic Unit, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy.
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
2
|
Heiss J, Treacher N, Lamichhane A, Magar AR, Tavana H. Extracellular Fibronectin and Hyaluronic Acid Effects on Tumorigenic Functions of Triple-Negative Breast Cancer Cells. J Biomed Mater Res A 2025; 113:e37906. [PMID: 40192931 DOI: 10.1002/jbm.a.37906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 05/17/2025]
Abstract
The extracellular matrix (ECM) in solid tumors provides structural support and signaling cues to cancer cells. Altered ECM in tumors promotes local invasion of cancer cells, a key step toward metastasis. Engineered tumor models that are used to study cancer invasion often focus on the effects of an individual ECM molecule on specific functions of cancer cells. However, how different components of ECM in a complex tumor model may co-regulate cancer invasion and the underlying signaling pathways is understudied. We developed a 3D tumor model of triple-negative breast cancer (TNBC) to study the effects of fibronectin and hyaluronic acid, alone or in combination, on TNBC cell invasion of collagen-based hydrogels. Our focus on these molecules was due to their significance in breast tumors, disease progression, and association with worse outcomes in patients. Results showed that fibronectin and hyaluronic acid significantly increase collagen invasion of TNBC cells and oncogenic signaling but not in combination, potentially due to differences in the microstructure of the hydrogels. Fibronectin and hyaluronic acid in composite hydrogels also promoted drug resistance and cancer stemness. This study demonstrated the utility of a 3D tumor model for functional and mechanistic studies to define complex effects of ECM in solid cancers.
Collapse
Affiliation(s)
- Jacob Heiss
- Department of Biomedical Engineering, University of Akron, Akron, Ohio, USA
| | - Nina Treacher
- Department of Biomedical Engineering, University of Akron, Akron, Ohio, USA
| | - Astha Lamichhane
- Department of Biomedical Engineering, University of Akron, Akron, Ohio, USA
| | - Anju Rana Magar
- Department of Biomedical Engineering, University of Akron, Akron, Ohio, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, University of Akron, Akron, Ohio, USA
| |
Collapse
|
3
|
Wu Y, Zhao S, Wang J, Chen Y, Li H, Li JP, Kan Y, Zhang T. Methods for determining the structure and physicochemical properties of hyaluronic acid and its derivatives: A review. Int J Biol Macromol 2024; 282:137603. [PMID: 39542327 DOI: 10.1016/j.ijbiomac.2024.137603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Hyaluronic acid (HA) is a linear high molecular weight polymer ubiquitously distributed in humans and animals. The D-glucuronic acid and N-acetyl-D-glucosamine repeating disaccharide backbone along with variable secondary and tertiary structures endows HA with unique rheological characteristics as well as diverse biological functions such as maintaining tissue homeostasis and mediating cell functions. Due to its excellent biocompatibility, biodegradability, viscoelasticity and moisturizing properties, natural HA and its chemically modified derivatives are widely used in medical, pharmaceutical, food and cosmetic industries. For broad application purposes, abundant HA-based biochemical products have been developed, including the methodologies for characterization of these products. This review provides an overview focusing on the methods used for determining HA structure as well as the strategies for constructing its derivatives. Apart from the analytical approaches for defining the physicochemical properties of HA (e.g., molecular weight, rheology and swelling capacity), quantitative methods for assessing the purity of HA-based materials are discussed. In addition, the biological functions and potential applications of HA and its derivatives are briefly embarked and perspectives in methodological development are discussed.
Collapse
Affiliation(s)
- Yiyang Wu
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Siran Zhao
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jiandong Wang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Yujuan Chen
- Bloomage Biotechnology Corporation Limited, Jinan, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| |
Collapse
|
4
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Scarano A, Qorri E, Sbarbati A, Gehrke SA, Frisone A, Amuso D, Tari SR. The efficacy of hyaluronic acid fragments with amino acid in combating facial skin aging: an ultrasound and histological study. J Ultrasound 2024; 27:689-697. [PMID: 38913131 PMCID: PMC11333785 DOI: 10.1007/s40477-024-00925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Various techniques have been employed in aesthetic medicine to combat skin aging, in particular that of the facial region. Hyaluronic acid is utilized to enhance moisture levels and extracellular matrix molecules. This study aims to histologically assess the effects of low molecular weight hyaluronic acid fragments combined with amino acids (HAAM) on facial skin rejuvenation through intradermal microinjections. METHODS A total of twenty women, with an average age of 45 and ranging from 35 to 64 years old, participated in the study, including 8 in menopause and 12 in the childbearing age group. Mesotherapy was used to administer HAAM to the patients. Prior to and three months after the treatment, each patient underwent small circular punch biopsies. Ultrasound examinations were conducted using B-mode, capturing 2D images in longitudinal or transverse orientations with frequencies ranging from 5 to 13 Mega-hertz (MY LAB X8, ESAOTE, Genova, Italy). A total of 60 ultrasound examinations were taken, with 30 collected before treatment and 30 after treatment. RESULTS The histological analysis demonstrates an increase in fibroblast activity resulting in the production of Type III reticular collagen, as well as an increased number of blood vessels and epidermal thickness. However, the analysis of ultrasound data before and after treatment showed no statistical difference in skin thickness in malar area, chin and mandibular angle. CONCLUSIONS Histological assessments indicate that subcutaneous infiltration of HAAM has a substantial impact on the dermis of facial skin.
Collapse
Affiliation(s)
- Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy.
| | - E Qorri
- Department of Dentistry, Faculty of Medical Sciences, Albanian University, 1001, Tirana, Albania
| | - A Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - S A Gehrke
- Department of Research, Bioface/PgO/UCAM, Montevideo, Uruguay
| | - Alessio Frisone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy
| | - D Amuso
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Sergio Rexhep Tari
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy
| |
Collapse
|
6
|
Erkanli ME, Kang TK, Kirsch T, Turley EA, Kim JR, Cowman MK. The spatial separation of basic amino acids is similar in RHAMM and hyaluronan binding peptide P15-1 despite different sequences and conformations. PROTEOGLYCAN RESEARCH 2024; 2:e70001. [PMID: 39290872 PMCID: PMC11404675 DOI: 10.1002/pgr2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Peptides that increase pro-reparative responses to injury and disease by modulating the functional organization of hyaluronan (HA) with its cell surface binding proteins (e.g., soluble receptor for hyaluronan-mediated motility [RHAMM] and integral membrane CD44) have potential therapeutic value. The binding of RHAMM to HA is an attractive target, since RHAMM is normally absent or expressed at low levels in homeostatic conditions, but its expression is significantly elevated in the extracellular matrix during tissue stress, response-to-injury, and in cancers and inflammation-based diseases. The HA-binding site in RHAMM contains two closely spaced sequences of clustered basic amino acids, in an alpha-helical conformation. In the present communication, we test whether an alpha-helical conformation is required for effective peptide binding to HA, and competitive disruption of HA-RHAMM interaction. The HA-binding RHAMM-competitive peptide P15-1, identified using the unbiased approach of phage display, was examined using circular dichroism spectroscopy and the conformation-predictive AI-based AlphaFold2 algorithm. Unlike the HA-binding site in RHAMM, peptide P15-1 was found to adopt irregular conformations in solution rather than alpha helices. Instead, our structural analysis suggests that the primary determinant of peptide-HA binding is associated with a specific clustering and spacing pattern of basic amino acids, allowing favorable electrostatic interaction with carboxylate groups on HA.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Ted Keunsil Kang
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Thorsten Kirsch
- Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA
- Department of Orthopedic Surgery, Grossman School of Medicine New York University New York New York USA
| | - Eva A Turley
- Verspeeten Family Cancer Centre, London Health Sciences Centre, Lawson Health Research Institute London Ontario Canada
- Departments of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry Western University London Ontario Canada
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering New York University Brooklyn New York USA
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering New York University New York New York USA
- Department of Orthopedic Surgery, Grossman School of Medicine New York University New York New York USA
| |
Collapse
|
7
|
McGuire J, Taguchi T, Tombline G, Paige V, Janelsins M, Gilmore N, Seluanov A, Gorbunova V. Hyaluronidase inhibitor delphinidin inhibits cancer metastasis. Sci Rep 2024; 14:14958. [PMID: 38942920 PMCID: PMC11213947 DOI: 10.1038/s41598-024-64924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Cancer remains a formidable global health challenge, with metastasis being a key contributor to its lethality. Abundant high molecular mass hyaluronic acid, a major non-protein component of extracellular matrix, protects naked mole rats from cancer and reduces cancer incidence in mice. Hyaluronidase plays a critical role in degrading hyaluronic acid and is frequently overexpressed in metastatic cancer. Here we investigated the potential of targeting hyaluronidases to reduce metastasis. A high throughput screen identified delphinidin, a natural plant compound found in fruits and vegetables, as a potent hyaluronidase inhibitor. Delphinidin-mediated inhibition of hyaluronidase activity led to an increase in high molecular weight hyaluronic acid in cell culture and in mouse tissues, and reduced migration and invasion behavior of breast, prostate, and melanoma cancer cells. Moreover, delphinidin treatment suppressed melanoma metastasis in mice. Our study provides a proof of principle that inhibition of hyaluronidase activity suppresses cancer cell migration, invasion and metastasis. Furthermore, we identified a natural compound delphinidin as a potential anticancer therapeutic. Thus, we have identified a path for clinical translation of the cancer resistance mechanism identified in the naked mole rat.
Collapse
Affiliation(s)
- Jeremy McGuire
- Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
| | - Taketo Taguchi
- Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Victoria Paige
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Michelle Janelsins
- Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Nikesha Gilmore
- Supportive Care in Cancer, Department of Surgery, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
8
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
9
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
10
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of Iron Oxide (Fe 2O 3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3873. [PMID: 36364649 PMCID: PMC9653814 DOI: 10.3390/nano12213873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have been combined with several polymers and employed for various nano-treatments for specific human diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing. Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Shima Mahtabian
- Department of Materials Engineering, Shahreza Bramch, Islamic Azad University, Shahreza, Isfahan 61349-37333, Iran
| | - Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Donelan W, Dominguez-Gutierrez PR, Kusmartsev S. Deregulated hyaluronan metabolism in the tumor microenvironment drives cancer inflammation and tumor-associated immune suppression. Front Immunol 2022; 13:971278. [PMID: 36238286 PMCID: PMC9550864 DOI: 10.3389/fimmu.2022.971278] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Hyaluronan (HA) is known to be a prominent component of the extracellular matrix in tumors, and many solid cancers are characterized by aberrant HA metabolism resulting in increased production in tumor tissue. HA has been implicated in regulating a variety of cellular functions in tumor cells and tumor-associated stromal cells, suggesting that altered HA metabolism can influence tumor growth and malignancy at multiple levels. Importantly, increased HA production in cancer is associated with enhanced HA degradation due to high levels of expression and activity of hyaluronidases (Hyal). Understanding the complex molecular and cellular mechanisms involved in abnormal HA metabolism and catabolism in solid cancers could have important implications for the design of future cancer therapeutic approaches. It appears that extensive crosstalk between immune cells and HA-enriched stroma contributes to tumor growth and progression in several ways. Specifically, the interaction of tumor-recruited Hyal2-expressing myeloid-derived suppressor cells (MDSCs) of bone marrow origin with HA-producing cancer-associated fibroblasts and epithelial tumor cells results in enhanced HA degradation and accumulation of small pro-inflammatory HA fragments, which further drives cancer-related inflammation. In addition, hyaluronan-enriched stroma supports the transition of tumor-recruited Hyal2+MDSCs to the PD-L1+ tumor-associated macrophages leading to the formation of an immunosuppressive and tolerogenic tumor microenvironment. In this review, we aim to discuss the contribution of tumor-associated HA to cancer inflammation, angiogenesis, and tumor-associated immune suppression. We also highlight the recent findings related to the enhanced HA degradation in the tumor microenvironment.
Collapse
|
12
|
Zamloot V, Ebelt ND, Soo C, Jinka S, Manuel ER. Targeted Depletion of Hyaluronic Acid Mitigates Murine Breast Cancer Growth. Cancers (Basel) 2022; 14:4614. [PMID: 36230537 PMCID: PMC9562634 DOI: 10.3390/cancers14194614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Hyaluronic acid (HA) is highly elevated in breast cancers compared to normal breast tissue and is associated with increased tumor aggressiveness and poor prognosis. HA interacts with cell-trafficking CD44 receptors to promote tumor cell migration and proliferation and regulates both pro- and anti-inflammatory cytokine production through tumor-associated macrophages. The highly negative charge of HA enables its uptake of vast amounts of water that greatly increases the tumor interstitial fluidic pressure, which, combined with the presence of other extracellular matrix components such as collagen, results in tumor stroma with abnormal vasculature, hypoxia, and increased drug resistance. Thus, the degradation of HA in breast cancer may attenuate growth and improve permeability to anticancer agents. Previous methods to deplete tumor HA have resulted in significant off-tumor effects due to the systemic use of mammalian hyaluronidases. To overcome this, we developed a hyaluronidase-secreting Salmonella typhimurium (YS-HAse) that specifically and preferentially colonizes tumors to deplete HA. We show that the systemic administration of YS-HAse in immunocompetent murine models of breast cancer enhances tumor perfusion, controls tumor growth, and restructures the tumor immune contexture. These studies highlight the utility of YS-HAse as a novel microbial-based therapeutic that may also be combined with existing therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Edwin R. Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Adachi Y, Sato N, Oba T, Amaike T, Kudo Y, Kohi S, Nakayama T, Hirata K. Prognostic and functional role of hyaluronan‑binding protein 1 in pancreatic ductal adenocarcinoma. Oncol Lett 2022; 24:222. [PMID: 35720501 PMCID: PMC9178692 DOI: 10.3892/ol.2022.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan-binding protein 1 (HABP1) is among the molecules known to bind to hyaluronan and is involved in a variety of cellular processes, including cell proliferation and migration. HABP1 has been implicated in the progression of various cancers; however, there have been (to the best of our knowledge) few studies on the expression and function of HABP1 in pancreatic ductal adenocarcinoma (PDAC), a topic that is examined in the present study. Immunohistochemical analysis of HABP1 protein was conducted in archival tissues from 105 patients with PDAC. Furthermore, the functional effect of HABP1 on proliferation, colony formation, and migration in PDAC cells was examined by knockdown of HABP1. It was revealed that HABP1 was overexpressed in 49 (46.2%) out of 105 patients with PDAC. Overall survival was significantly shorter in patients with high HABP1 expression than in those with low HABP1 expression (median survival time of 12.8 months vs. 28.5 months; log-rank test, P=0.004). Knockdown of HABP1 expression in PDAC cells resulted in decreased cell proliferation, colony formation, and cell migration activity. Thus, HABP1 may serve as a prognostic factor in PDAC and may be of use as a novel therapeutic target.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Norihiro Sato
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takuya Oba
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takao Amaike
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Yuzan Kudo
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Shiro Kohi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Keiji Hirata
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| |
Collapse
|
14
|
Salabi F, Jafari H. New insights about scorpion venom hyaluronidase; isoforms, expression and phylogeny. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2018613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fatemeh Salabi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Hedieh Jafari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
15
|
Alghaith AF, Mahrous GM, Alqahtani AS, Nasr FA, Alotaibi TS, Radwan AA. Enhancement of the dissolution and in-vitro activity of a new antineoplastic agent. Pharm Dev Technol 2021; 27:134-144. [PMID: 34806524 DOI: 10.1080/10837450.2021.2008966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The cell-surface molecule CD44 plays a major role in the regulation of cancer stem cells. The CD44 inhibitor compound N'-(1-dimethylaminomethyl-2-oxoindolin-3-ylidene)-2-(benzyloxy)benzohydrazide (OYB), anticancer agent is practically insoluble in water. Hence, the solid dispersion (SD) technique was used for enhancing the dissolution of OYB. The SD of OYB was achieved using OYB:poloxamer 188 (1:7) via the fusion method. The anticancer activities of the free-OYB solution and the SD formulation (OYB-SD) were investigated in-vitro. The dissolution rate of OYB-SD (1:7) increased by two-fold compared with the untreated drug (51.52% to 100% at pH 1.2 and 8.25% to 19.15% at pH 7 buffer). In addition, OYB-SD afforded 3 folds cytotoxic effect, against LoVo cells, compared to the untreated compound (IC50 4.72 ± 0.57 µg/ml and 13.97 ± 0.90 µg/ml respectively) and against HepG2 (∼3-fold) (4.98 ± 0.368 µg/ml and 13.85 ± 1.82 µg/ml respectively) and MCF-7 (1.4-fold) cells (15.20 ± 0.20 µg/ml and 21.12 ± 0.51 µg/ml respectively), and enhanced the apoptotic potential in LoVo cells compared with free-OYB. The improved cytotoxic activity of the drug might be attributable to the enhanced dissolution of OYB.
Collapse
Affiliation(s)
- Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Gamal M Mahrous
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.,Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahd A Nasr
- Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talal S Alotaibi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Awwad A Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Hypoxia increases KIAA1199/CEMIP expression and enhances cell migration in pancreatic cancer. Sci Rep 2021; 11:18193. [PMID: 34521918 PMCID: PMC8440617 DOI: 10.1038/s41598-021-97752-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by dense desmoplasia and hypoxic microenvironment. Our previous reports demonstrated that hyaluronan (HA), especially low-molecular-weight HA, provides a favourable microenvironment for PDAC progression. However, the effect of hypoxia on HA metabolism remains unknown. Using quantitative real-time RT-PCR and western blot analysis, we analysed the changes in the expression of HA-synthesizing enzymes (HAS2 and HAS3) and HA-degrading enzymes (HYAL1, KIAA1199/CEMIP) in PDAC cell lines under hypoxic conditions. Hypoxia increased the mRNA and protein expression of KIAA1199, whereas it decreased HYAL1 expression. The expression of HAS3 was increased and HAS2 remained unchanged in response to hypoxia. The effect of KIAA1199 on hypoxia-induced cell migration was determined using a transwell migration assay and small-interfering RNA (siRNA). Hypoxia enhanced the migratory ability of PDAC cells, which was inhibited by KIAA1199 knockdown. We also used immunohistochemistry to analyse the protein expression of hypoxia inducible factor (HIF) 1α and KIAA1199 in PDAC tissues. There was a significant immunohistochemically positive correlation between KIAA1199 and HIF1α. These findings suggest that hypoxia-induced KIAA1199 expression may contribute to enhanced motility in PDAC.
Collapse
|
17
|
Zhang G, He Y, Liu Y, Du Y, Yang C, Gao F. Reduced hyaluronan cross-linking induces breast cancer malignancy in a CAF-dependent manner. Cell Death Dis 2021; 12:586. [PMID: 34099638 PMCID: PMC8184848 DOI: 10.1038/s41419-021-03875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022]
Abstract
Hyaluronan (HA) cross-linking is a conformational state of HA, a covalent complex between HA and heavy chains (HCs) from inter-α-trypsin inhibitor (I-α-I) mediated by tumor necrosis factor-induced protein 6 (TSG6). Cross-linked HA has been identified as a protective factor in physiological and inflammatory conditions. However, the state of HA cross-linking in tumor microenvironment has not been fully elucidated. As a major constituent of the extracellular matrix (ECM), HA is mainly synthesized by cancer-associated fibroblasts (CAFs). Our study aimed to clarify the role of HA cross-linking in breast cancer malignancy. Compared to normal mammary gland tissues, cross-linked HA levels were significantly decreased in breast cancer and associated with tumor malignancy. When NFbs were activated into CAFs, the levels of cross-linked HA and TSG6 were both suppressed. Through upregulating TSG6, CAFs restored the high level of cross-linked HA and significantly inhibited breast cancer malignancy, whereas NFbs promoted the malignancy when the cross-linked HA level was reduced. Furthermore, the inhibitory role of HA cross-linking in tumor malignancy was directly verified using the synthesized HA-HC complex. Collectively, our study found that the deficiency of cross-linked HA induced breast cancer malignancy in a CAF-dependent manner, suggesting that recovering HA cross-linking may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China.
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China.
| |
Collapse
|
18
|
Koltai T, Reshkin SJ, Carvalho TMA, Cardone RA. Targeting the Stromal Pro-Tumoral Hyaluronan-CD44 Pathway in Pancreatic Cancer. Int J Mol Sci 2021; 22:3953. [PMID: 33921242 PMCID: PMC8069142 DOI: 10.3390/ijms22083953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. Present-day treatments have not shown real improvements in reducing the high mortality rate and the short survival of the disease. The average survival is less than 5% after 5 years. New innovative treatments are necessary to curtail the situation. The very dense pancreatic cancer stroma is a barrier that impedes the access of chemotherapeutic drugs and at the same time establishes a pro-proliferative symbiosis with the tumor, thus targeting the stroma has been suggested by many authors. No ideal drug or drug combination for this targeting has been found as yet. With this goal in mind, here we have explored a different complementary treatment based on abundant previous publications on repurposed drugs. The cell surface protein CD44 is the main receptor for hyaluronan binding. Many malignant tumors show over-expression/over-activity of both. This is particularly significant in pancreatic cancer. The independent inhibition of hyaluronan-producing cells, hyaluronan synthesis, and/or CD44 expression, has been found to decrease the tumor cell's proliferation, motility, invasion, and metastatic abilities. Targeting the hyaluronan-CD44 pathway seems to have been bypassed by conventional mainstream oncological practice. There are existing drugs that decrease the activity/expression of hyaluronan and CD44: 4-methylumbelliferone and bromelain respectively. Some drugs inhibit hyaluronan-producing cells such as pirfenidone. The association of these three drugs has never been tested either in the laboratory or in the clinical setting. We present a hypothesis, sustained by hard experimental evidence, suggesting that the simultaneous use of these nontoxic drugs can achieve synergistic or added effects in reducing invasion and metastatic potential, in PDAC. A non-toxic, low-cost scheme for inhibiting this pathway may offer an additional weapon for treating pancreatic cancer.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (R.A.C.)
| |
Collapse
|
19
|
CD44 and Tumor-Derived Extracellular Vesicles (TEVs). Possible Gateway to Cancer Metastasis. Int J Mol Sci 2021; 22:ijms22031463. [PMID: 33540535 PMCID: PMC7867195 DOI: 10.3390/ijms22031463] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis, the final stage of tumor progression, is a complex process governed by the interplay of multiple types of cells and the tumor microenvironment. One of the aspects of this interplay involves the release of various factors by the tumor cells alone or by forcing other cells to do so. As a consequence of these actions, tumor cells are prepared in favorable conditions for their dissemination and spread to other sites/organs, which guarantees their escape from immunosurveillance and further progression. Tumor-derived extracellular vesicles (TEVs) represent a heterogeneous population of membrane-bound vesicles that are being actively released by different tumors. The array of proteins (i.e., receptors, cytokines, chemokines, etc.) and nucleic acids (i.e., mRNA, miR, etc.) that TEVs can transfer to other cells is often considered beneficial for the tumor’s survival and proliferation. One of the proteins that is associated with many different tumors as well as their TEVs is a cluster of differentiation 44 in its standard (CD44s) and variant (CD44v) form. This review covers the present information regarding the TEVs-mediated CD44s/CD44v transfer/interaction in the context of cancer metastasis. The content and the impact of the transferred cargo by this type of TEVs also are discussed with regards to tumor cell dissemination.
Collapse
|
20
|
Hadas R, Gershon E, Cohen A, Atrakchi O, Lazar S, Golani O, Dassa B, Elbaz M, Cohen G, Eilam R, Dekel N, Neeman M. Hyaluronan control of the primary vascular barrier during early mouse pregnancy is mediated by uterine NK cells. JCI Insight 2020; 5:135775. [PMID: 33208556 PMCID: PMC7710306 DOI: 10.1172/jci.insight.135775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Successful implantation is associated with a unique spatial pattern of vascular remodeling, characterized by profound peripheral neovascularization surrounding a periembryo avascular niche. We hypothesized that hyaluronan controls the formation of this distinctive vascular pattern encompassing the embryo. This hypothesis was evaluated by genetic modification of hyaluronan metabolism, specifically targeted to embryonic trophoblast cells. The outcome of altered hyaluronan deposition on uterine vascular remodeling and postimplantation development were analyzed by MRI, detailed histological examinations, and RNA sequencing of uterine NK cells. Our experiments revealed that disruption of hyaluronan synthesis, as well as its increased cleavage at the embryonic niche, impaired implantation by induction of decidual vascular permeability, defective vascular sinus folds formation, breach of the maternal-embryo barrier, elevated MMP-9 expression, and interrupted uterine NK cell recruitment and function. Conversely, enhanced deposition of hyaluronan resulted in the expansion of the maternal-embryo barrier and increased diffusion distance, leading to compromised implantation. The deposition of hyaluronan at the embryonic niche is regulated by progesterone-progesterone receptor signaling. These results demonstrate a pivotal role for hyaluronan in successful pregnancy by fine-tuning the periembryo avascular niche and maternal vascular morphogenesis. Hyaluronan fine-tunes the periembryo avascular niche and maternal vascular morphogenesis during implantation.
Collapse
Affiliation(s)
- Ron Hadas
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Eran Gershon
- Agricultural Research Organization, Volcani Center, Israel
| | - Aviad Cohen
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel.,Department of Gynecology, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler School of Medicine, Tel Aviv University, Israel
| | - Ofir Atrakchi
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Shlomi Lazar
- Department of Pharmacology, The Israel Institute for Biological Research, Nes Ziona, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities and
| | | | - Michal Elbaz
- Agricultural Research Organization, Volcani Center, Israel
| | - Gadi Cohen
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| |
Collapse
|
21
|
Scarano A, Sbarbati A, Amore R, Iorio EL, Ferraro G, Marchetti M, Amuso D. The role of hyaluronic acid and amino acid against the aging of the human skin: A clinical and histological study. J Cosmet Dermatol 2020; 20:2296-2304. [PMID: 33090687 DOI: 10.1111/jocd.13811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND In esthetic medicine, different techniques have been used against the aging of the human skin especially in the facial area. Hyaluronic acid is used for improving the quantity of water and extracellular matrix molecule. The aim of this study is a clinical and histological evaluation of the effect of low-molecular-weight hyaluronic acid fragments mixed with amino acid (HAAM) on the rejuvenation the face skin treated with intradermal microinjections. METHODS Twenty women with mean age 45 range from 35 to 64 were studied, thereof 8 in menopause and 12 of childbearing age. The patients were treated with the HAAM products by mesotherapy technique; before and after 3 months of the therapeutic procedure, each patient underwent small biopsies with a circular punch biopsy. RESULTS The clinical results of the present study showed that the administration of the dermal filler containing fragments of hyaluronic acid between 20 and 38 monomers and amino acid via dermis injection technique produces an esthetic improvement in the faces of the treated patients, while the histological evaluation shows an increased fibroblast activity with the production of type III reticular collagen and increased number of vessels and epidermis thickness. CONCLUSIONS The clinical and histological assessment showed that subcutaneous HAAM infiltration has a significant impact on the dermis and clinical aspects of the face.
Collapse
Affiliation(s)
- Antonio Scarano
- Aesthetic Medicine, Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Andrea Sbarbati
- Aesthetic Medicine and Wellness, University of Palermo, Palermo, Italy
| | - Roberto Amore
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Eugenio Luigi Iorio
- Aesthetic Medicine, Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Giueseppe Ferraro
- Department of Plastic, Reconstructive and Aesthetic Surgery, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Marco Marchetti
- School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Amuso
- Aesthetic Medicine and Wellness, University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Bulle A, Lim KH. Beyond just a tight fortress: contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduct Target Ther 2020; 5:249. [PMID: 33122631 PMCID: PMC7596088 DOI: 10.1038/s41392-020-00341-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Novel effective treatment is direly needed for patients with pancreatic ductal adenocarcinoma (PDAC). Therapeutics that target the driver mutations, especially the KRAS oncoprotein and its effector cascades, have been ineffective. It is increasing clear that the extensive fibro-inflammatory stroma (or desmoplasia) of PDAC plays an active role in the progression and therapeutic resistance of PDAC. The desmoplastic stroma is composed of dense extracellular matrix (ECM) deposited mainly by the cancer-associated-fibroblasts (CAFs) and infiltrated with various types of immune cells. The dense ECM functions as a physical barrier that limits tumor vasculatures and distribution of therapeutics to PDAC cells. In addition, mounting evidence have demonstrated that both CAFs and ECM promote PDAC cells aggressiveness through multiple mechanisms, particularly engagement of the epithelial-mesenchymal transition (EMT) program. Acquisition of a mesenchymal-like phenotype renders PDAC cells more invasive and resistant to therapy-induced apoptosis. Here, we critically review seminal and recent articles on the signaling mechanisms by which each stromal element promotes EMT in PDAC. We discussed the experimental models that are currently employed and best suited to study EMT in PDAC, which are instrumental in increasing the chance of successful clinical translation.
Collapse
Affiliation(s)
- Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
23
|
Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P. Hyaluronic Acid: Redefining Its Role. Cells 2020; 9:E1743. [PMID: 32708202 PMCID: PMC7409253 DOI: 10.3390/cells9071743] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
The discovery of several unexpected complex biological roles of hyaluronic acid (HA) has promoted new research impetus for biologists and, the clinical interest in several fields of medicine, such as ophthalmology, articular pathologies, cutaneous repair, skin remodeling, vascular prosthesis, adipose tissue engineering, nerve reconstruction and cancer therapy. In addition, the great potential of HA in medicine has stimulated the interest of pharmaceutical companies which, by means of new technologies can produce HA and several new derivatives in order to increase both the residence time in a variety of human tissues and the anti-inflammatory properties. Minor chemical modifications of the molecule, such as the esterification with benzyl alcohol (Hyaff-11® biomaterials), have made possible the production of water-insoluble polymers that have been manufactured in various forms: membranes, gauzes, nonwoven meshes, gels, tubes. All these biomaterials are used as wound-covering, anti-adhesive devices and as scaffolds for tissue engineering, such as epidermis, dermis, micro-vascularized skin, cartilage and bone. In this review, the essential biological functions of HA and the applications of its derivatives for pharmaceutical and tissue regeneration purposes are reviewed.
Collapse
Affiliation(s)
- G. Abatangelo
- Faculty of Medicine, University of Padova, 35121 Padova, Italy
| | - V. Vindigni
- Clinic of Plastic and Reconstructive Surgery, University of Padova, 35128 Padova, Italy; (V.V.); (L.P.)
| | - G. Avruscio
- Department of Cardiac, Thoracic and Vascular Sciences, Angiology Unit, University of Padova, 35128 Padova, Italy;
| | - L. Pandis
- Clinic of Plastic and Reconstructive Surgery, University of Padova, 35128 Padova, Italy; (V.V.); (L.P.)
| | - P. Brun
- Department of Molecular Medicine, Histology unit, University of Padova, 35121 Padova, Italy;
| |
Collapse
|
24
|
Abugomaa A, Elbadawy M, Yamawaki H, Usui T, Sasaki K. Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cells 2020; 9:235. [PMID: 31963556 PMCID: PMC7016964 DOI: 10.3390/cells9010235] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer (BC) is a complex and highly heterogeneous stem cell disease associated with high morbidity and mortality rates if it is not treated properly. Early diagnosis with personalized therapy and regular follow-up are the keys to a successful outcome. Cancer stem cells (CSCs) are the leading power behind tumor growth, with the ability of self-renewal, metastasis, and resistance to conventional chemotherapy. The fast-developing CSC field with robust genome-wide screening methods has found a platform for establishing more reliable therapies to target tumor-initiating cell populations. However, the high heterogeneity of the CSCs in BC disease remains a large issue. Therefore, in the present review, we discuss the various types of bladder CSC heterogeneity, important regulatory pathways, roles in tumor progression and tumorigenesis, and the experimental culture models. Finally, we describe the current stem cell-based therapies for BC disease.
Collapse
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan;
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| |
Collapse
|
25
|
Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell Signal 2019; 66:109487. [PMID: 31778739 DOI: 10.1016/j.cellsig.2019.109487] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Extracellular matrix (ECM) macromolecules together with a multitude of different molecules residing in the extracellular space play a vital role in the regulation of cellular phenotype and behavior. This is achieved via constant reciprocal interactions between the molecules of the ECM and the cells. The ECM-cell interactions are mediated via cell surface receptors either directly or indirectly with co-operative molecules. The ECM is also under perpetual remodeling process influencing cell-signaling pathways on its part. The fragmentation of ECM macromolecules provides even further complexity for the intricate environment of the cells. However, as long as the interactions between the ECM and the cells are in balance, the health of the body is retained. Alternatively, any dysregulation in these interactions can lead to pathological processes and finally to various diseases. Thus, therapeutic applications that are based on retaining normal ECM-cell interactions are highly rationale. Moreover, in the light of the current knowledge, also concurrent multi-targeting of the complex ECM-cell interactions is required for potent pharmacotherapies to be developed in the future.
Collapse
|
26
|
Heldin P, Kolliopoulos C, Lin CY, Heldin CH. Involvement of hyaluronan and CD44 in cancer and viral infections. Cell Signal 2019; 65:109427. [PMID: 31654718 DOI: 10.1016/j.cellsig.2019.109427] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Hyaluronan and its major receptor CD44 are ubiquitously distributed. They have important structural as well as signaling roles, regulating tissue homeostasis, and their expression levels are tightly regulated. In addition to signaling initiated by the interaction of the intracellular domain of CD44 with cytoplasmic signaling molecules, CD44 has important roles as a co-receptor for different types of receptors of growth factors and cytokines. Dysregulation of hyaluronan-CD44 interactions is seen in diseases, such as inflammation and cancer. In the present communication, we discuss the mechanism of hyaluronan-induced signaling via CD44, as well as the involvement of hyaluronan-engaged CD44 in malignancies and in viral infections.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University Department of Surgery, Uppsala University, Sweden; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
27
|
El-Gendi SM, Tawil GHE, Bessa SS, Kobil AMA. Immunohistochemical expression of CD44v6 in differentiated thyroid carcinomas. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2011.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Samer Saad Bessa
- Department of General Surgery, Alexandria Faculty of Medicine, Egypt
| | | |
Collapse
|
28
|
Zhang G, Lu R, Wu M, Liu Y, He Y, Xu J, Yang C, Du Y, Gao F. Colorectal cancer-associated ~ 6 kDa hyaluronan serves as a novel biomarker for cancer progression and metastasis. FEBS J 2019; 286:3148-3163. [PMID: 31004406 DOI: 10.1111/febs.14859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Low molecular weight hyaluronan (LMW-HA) is believed to accumulate in tumors and to exert protumor effects. This study aimed to identify colorectal cancer (CRC)-associated LMW-HA, precisely determine its MW, and elucidate its role in predicting tumor progression. The MW distribution of HA extracted from CRC and paired noncancerous tissues was evaluated. We found that the level of HA with a MW below 30 kDa was markedly elevated in CRC tissues, and we defined HA with a MW of ~ 6 kDa as CRC-associated LMW-HA. In line with this finding, ~ 6 kDa HA was significantly accumulated in cancer tissues relative to total HA, and this LMW-HA played a critical role in tumor metastasis. Moreover, serum ~ 6 kDa HA levels in CRC patients were significantly increased and positively correlated with the levels in matched cancer tissues. Elevated serum ~ 6 kDa HA levels could be used to discriminate patients with or without CRC and was associated with early relapse, advanced tumor-node-metastasis stage, lymphovascular invasion, and lymph node (LN) metastasis. Notably, serum ~ 6 kDa HA levels were significantly reduced after tumor resection. Our study suggests that ~ 6 kDa HA may serve as a new biomarker for estimating tumor progression, predicting LN metastasis, and monitoring tumor recurrence.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Man Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Jing Xu
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China.,Translational Medicine Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| |
Collapse
|
29
|
Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J 2019; 286:2883-2908. [PMID: 30724463 DOI: 10.1111/febs.14777] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
Hyaluronan (HA) is a linear nonsulfated glycosaminoglycan of the extracellular matrix that plays a pivotal role in a variety of biological processes. High-molecular weight HA exhibits different biological properties than oligomers and low-molecular weight HA. Depending on their molecular size, HA fragments can influence cellular behavior in a different mode of action. This phenomenon is attributed to the different manner of interaction with the HA receptors, especially CD44 and RHAMM. Both receptors can trigger signaling cascades that regulate cell functional properties, such as proliferation migration, angiogenesis, and wound healing. HA fragments are able to enhance or attenuate the HA receptor-mediated signaling pathways, as they compete with the endogenous HA for binding to the receptors. The modulation of these pathways could be crucial for the development of pathological conditions, such as inflammation and cancer. The primary goal of this review is to critically present the importance of HA molecular size on cellular signaling, functional cell properties, and morphology in normal and pathological conditions, including inflammation and cancer. A deeper understanding of these mechanisms could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia G Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
30
|
Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 2018; 16:69-78. [PMID: 30496697 DOI: 10.1080/17425247.2019.1554647] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION For many years, the controlled delivery of therapeutic compounds has been a matter of great interest in the field of nanomedicine. Among the wide amount of drug nanocarriers, magnetic iron oxide nanoparticles (IONs) stand out from the crowd and constitute robust nanoplatforms since they can achieve high drug loading as well as targeting abilities stemming from their remarkable properties (magnetic and biological properties). These applications require precise design of the nanoparticles regarding several parameters which must be considered together in order to attain highest therapeutic efficacy. AREAS COVERED This short review presents recent developments in the field of cancer targeted drug delivery using magnetic nanocarriers as drug delivery systems. EXPERT OPINION The design of nanocarriers enabling efficient delivery of therapeutic compounds toward targeted locations is one of the major area of research in the targeted drug delivery field. By precisely shaping the structural properties of the iron oxide nanoparticles, drugs loaded onto the nanoparticles can be efficiently guided and selectively delivered toward targeted locations. With these goals in mind, special attention should be given to the pharmacokinetics and in vivo behavior of the developed nanocarriers.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- a Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory , University of Mons , Mons , Belgium
| | - Dimitri Stanicki
- a Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory , University of Mons , Mons , Belgium
| | - Sophie Laurent
- a Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory , University of Mons , Mons , Belgium.,b Center for Microscopy and Molecular Imaging (CMMI) , Gosselies , Belgium
| |
Collapse
|
31
|
Fleming JM, Yeyeodu ST, McLaughlin A, Schuman D, Taylor DK. In Situ Drug Delivery to Breast Cancer-Associated Extracellular Matrix. ACS Chem Biol 2018; 13:2825-2840. [PMID: 30183254 DOI: 10.1021/acschembio.8b00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) contributes to tumor progression through changes induced by tumor and stromal cell signals that promote increased ECM density and stiffness. The increase in ECM stiffness is known to promote tumor cell invasion into surrounding tissues and metastasis. In addition, this scar-like ECM creates a protective barrier around the tumor that reduces the effectiveness of innate and synthetic antitumor agents. Herein, clinically approved breast cancer therapies as well as novel experimental approaches that target the ECM are discussed, including in situ hydrogel drug delivery systems, an emerging technology the delivers toxic chemotherapeutics, gene-silencing microRNAs, and tumor suppressing immune cells directly inside the tumor. Intratumor delivery of therapeutic agents has the potential to drastically reduce systemic side effects experienced by the patient and increase the efficacy of these agents. This review also describes the opposing effects of ECM degradation on tumor progression, where some studies report improved drug delivery and delayed cancer progression and others report enhanced metastasis and decreased patient survival. Given the recent increase in ECM-targeting drugs entering preclinical and clinical trials, understanding and addressing the factors that impact the effect of the ECM on tumor progression is imperative for the sake of patient safety and survival outcome.
Collapse
Affiliation(s)
- Jodie M. Fleming
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States
| | - Susan T. Yeyeodu
- Charles River Discovery Services, Morrisville, North Carolina, United States
| | - Ashley McLaughlin
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, United States
| | - Darren Schuman
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, United States
| | - Darlene K. Taylor
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, United States
| |
Collapse
|
32
|
Valkonen M, Haapasalo H, Rilla K, Tyynelä-Korhonen K, Soini Y, Pasonen-Seppänen S. Elevated expression of hyaluronan synthase 2 associates with decreased survival in diffusely infiltrating astrocytomas. BMC Cancer 2018; 18:664. [PMID: 29914429 PMCID: PMC6006557 DOI: 10.1186/s12885-018-4569-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/31/2018] [Indexed: 11/30/2022] Open
Abstract
Background Diffusely infiltrating astrocytomas originate from astrocytic glial cells or their precursor cells and are the most common type of brain tumors in adults. In this retrospective study, we investigated the content of hyaluronan, its cell surface receptor, CD44 and the expression of hyaluronan metabolizing enzymes, in these aggressive tumors. Hyaluronan is the main component of extracellular matrix in the brain. In many tumors, aberrant hyaluronan metabolism implicates aggressive disease progression and metastatic potential. Methods Our material consisted of 163 diffusely infiltrating astrocytomas (WHO grades II-IV). Tumor samples were processed into tissue microarray (TMA) blocks. The TMA sections were stained for hyaluronan, CD44, hyaluronan synthases 1–3 (HAS1–3) and hyaluronidase 2 (HYAL2). The immunostaining results were compared with χ2 –test or with Kruskal-Wallis test for correlation with clinicopathological parameters and survival analyses were done with Kaplan-Meier log rank test and Cox regression. Results Hyaluronan and CD44 were strongly expressed in astrocytic gliomas but their expression did not correlate with WHO grade or any other clinicopathological parameters whereas high HAS2 staining intensity was observed in IDH1 negative tumors (p = 0.003). In addition, in non-parametric tests increased HAS2 staining intensity correlated with increased cell proliferation (p = 0.013) and in log rank test with decreased overall survival of patients (p = 0.001). In the Cox regression analysis HAS2 expression turned out to be a significant independent prognostic factor (p = 0.008). Conclusions This study indicates that elevated expression of HAS2 is associated with glioma progression and suggests that HAS2 has a prognostic significance in diffusely infiltrating astrocytomas. Electronic supplementary material The online version of this article (10.1186/s12885-018-4569-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Valkonen
- Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
| | - Hannu Haapasalo
- Department of Pathology, University of Tampere and Fimlab Laboratories, Tampere, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
| | | | - Ylermi Soini
- Institute of Clinical Medicine/ Clinical Pathology, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.,Cancer Center of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
33
|
The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 2018; 11:64. [PMID: 29747682 PMCID: PMC5946470 DOI: 10.1186/s13045-018-0605-5] [Citation(s) in RCA: 847] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
CD44, a non-kinase transmembrane glycoprotein, is overexpressed in several cell types including cancer stem cells and frequently shows alternative spliced variants that are thought to play a role in cancer development and progression. Hyaluronan, the main ligand for CD44, binds to and activates CD44 resulting in activation of cell signaling pathways that induces cell proliferation, increases cell survival, modulates cytoskeletal changes, and enhances cellular motility. The different functional roles of CD44 standard (CD44s) and specific CD44 variant (CD44v) isoforms are not fully understood. CD44v contain additional peptide motifs that can interact with and sequester growth factors and cytokines at the cell surface thereby functioning as coreceptors to facilitate cell signaling. Moreover, CD44v were expressed in metastasized tumors, whereas switching between CD44v and CD44s may play a role in regulating epithelial to mesenchymal transition (EMT) and in the adaptive plasticity of cancer cells. Here, we review current data on the structural and functional properties of CD44, the known roles for CD44 in tumorigencity, the regulation of CD44 expression, and the potential for targeting CD44 for cancer therapy.
Collapse
|
34
|
TGFβ counteracts LYVE-1-mediated induction of lymphangiogenesis by small hyaluronan oligosaccharides. J Mol Med (Berl) 2017; 96:199-209. [PMID: 29282520 DOI: 10.1007/s00109-017-1615-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/11/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
During tissue injury, inflammation, and tumor growth, enhanced production and degradation of the extracellular matrix glycosaminoglycan hyaluronan (HA) can lead to the accumulation of small HA (sHA) oligosaccharides. We have previously reported that accumulation of sHA in colorectal tumors correlates with lymphatic invasion and lymph node metastasis, and therefore, investigated here are the effects of sHA on the lymphatic endothelium. Using cultured primary lymphatic endothelial cells (LECs) and ex vivo and in vivo lymphangiogenesis assays, we found that in contrast to high-molecular-weight HA (HMW-HA), sHA of 4-25 disaccharides in length can promote the proliferation of LECs and lymphangiogenesis in a manner that is dependent on their size and concentration. At pathophysiologically relevant concentrations found in tumor interstitial fluid, sHA is pro-proliferative, acts synergistically with VEGF-C and FGF-2, and stimulates the outgrowth of lymphatic capillaries in ex vivo lymphangiogenesis assays. In vivo, intradermally injected sHA acts together with VEGF-C to increase lymphatic vessel density. Higher concentrations of sHA were found to induce expression of the anti-lymphangiogenic cytokine TGFβ in LECs, which serves to counter-regulate sHA-induced LEC proliferation and lymphangiogenesis. Using appropriate knockout mice and blocking antibodies, we found that the effects of sHA are mediated by the sialylated form of the lymphatic HA receptor LYVE-1, but not by CD44 or TLR-4. These data are consistent with the notion that accumulation of sHA in tumors may contribute to tumor-induced lymphangiogenesis, leading to increased dissemination to regional lymph nodes. KEY MESSAGES : sHA promotes lymphangiogenesis primarily through increased LEC proliferation sHA induces proliferation in a narrow concentration window due to upregulated TGFβ Smaller HA oligosaccharides more potently induce proliferation than larger ones VEGF-C and FGF-2-induced LEC proliferation and lymphangiogenesis is augmented by sHA Sialylated LYVE-1, but not CD44 or TLR-4, mediate the effects of sHA on LEC.
Collapse
|
35
|
Stiffness-dependent motility and proliferation uncoupled by deletion of CD44. Sci Rep 2017; 7:16499. [PMID: 29184125 PMCID: PMC5705666 DOI: 10.1038/s41598-017-16486-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/14/2017] [Indexed: 01/16/2023] Open
Abstract
Information in the microenvironment guides complex cellular decisions such as whether or not to proliferate and migrate. The effects of soluble extracellular signals on these cellular functions are fairly well understood, but relatively little is known about how the extracellular matrix (ECM), and particularly the mechanical information in the ECM, guides these cellular decisions. Here, we show that CD44, a major receptor for the glycosaminoglycan ECM component hyaluronan, coordinates the motility and proliferative responses to ECM stiffening. We analyzed these cellular responses on fibronectin-coated polyacrylamide hydrogels prepared at a physiologic range of ECM stiffness and found that stiffening of the ECM leads to both cell cycling and cell motility in serum-stimulated primary mouse dermal fibroblasts. Remarkably, deletion of CD44 impaired stiffness-stimulated motility of the primary cells without affecting other hallmark cellular responses to ECM stiffening including cell spread area, stress fiber formation, focal adhesion maturation, and intracellular stiffening. Even stiffness-mediated cell proliferation was unaffected by deletion of CD44. Our results reveal a novel effect of CD44, which is imposed downstream of ECM-mechanosensing and determines if cells couple or uncouple their proliferative and motility responses to ECM stiffness.
Collapse
|
36
|
Kohi S, Sato N, Koga A, Matayoshi N, Hirata K. KIAA1199 is induced by inflammation and enhances malignant phenotype in pancreatic cancer. Oncotarget 2017; 8:17156-17163. [PMID: 28179576 PMCID: PMC5370030 DOI: 10.18632/oncotarget.15052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent evidence suggests a critical role of hyaluronan (HA), especially low-molecular-weight HA (LMW-HA), in the aggressive tumor phenotype. Increased expression of KIAA1199, a newly identified protein involved in HA degradation, has been reported in various cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about the functional significance of KIAA1199 in PDAC. METHODS Using siRNA knockdown and forced expression models, we investigated the effects of KIAA1199 expression on malignant behaviors (proliferation, migration, and invasion) of PDAC cells. We also examined the effect of inflammation on the transcriptional regulation of KIAA1199 using a pro-inflammatory cytokine and anti-inflammatory agent. RESULTS Knockdown of KIAA1199 expression using siRNA resulted in decreased cell migration and proliferation. On the other hand, forced expression of KIAA1199 using gene transduction significantly enhanced the migration and invasion. Importantly, increased KIAA1199 expression was associated with an increased level of LMW-HA in the conditioned medium. Exposure to a pro-inflammatory cytokine, interleukin-1ß, increased the KIAA1199 transcription and enhanced the migration. In contrast, treatment with NS-398, a cyclooxygenase-2 inhibitor, decreased the KIAA1199 expression and inhibited the migration. CONCLUSIONS These findings suggest that increased KIAA1199 expression may contribute to the aggressive phenotype partly through increasing the LMW-HA concentration. Our present results also suggest a possible link between inflammation, induced KIAA1199 expression, and enhanced migration during PDAC progression.
Collapse
Affiliation(s)
- Shiro Kohi
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Norihiro Sato
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Atsuhiro Koga
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Nobutaka Matayoshi
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Keiji Hirata
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
37
|
Gebauer F, Kemper M, Sauter G, Prehm P, Schumacher U. Is hyaluronan deposition in the stroma of pancreatic ductal adenocarcinoma of prognostic significance? PLoS One 2017; 12:e0178703. [PMID: 28582436 PMCID: PMC5459453 DOI: 10.1371/journal.pone.0178703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/17/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis and the number of PDAC-related deaths is rising. Recently the tumour stroma and in particular one of its main components, hyaluronan (HA), have attracted considerable attention as intravenous hyaluronidase treatment together with conventional chemotherapy considerably prolonged survival in HA-rich PDA patients. We therefore wanted to investigate the prognostic significance of HA deposition in PDA using both antibodies to HA and hyaluronan binding protein (HABP). MATERIAL AND METHODS Tissue microarrays of PDAs of 184 patients and pancreatic xenografts tumours were immunohistochemically (IHC) stained for HA using either biotinylated hyaluronic acid binding protein (HABP) or anti-HA antibody. RESULTS The pattern of staining with HABP differed significantly from that with antibody IHC. Antibody staining was found both within cancer cells and in the extracellular matrix and staining could not be eliminated by hyaluronidase predigestion of the tissue sections. In contrast, HABP staining was generally confined to the extracellular matrix and was completely abolished by hyaluronidase pretreatment. HA positivity as determined by HABP was associated with larger primary tumours (p = 0.046). There were no correlations between overall survival, disease-free survival and HA expression. CONCLUSION Presence of HA alone is not of prognostic importance in PDAC, and IHC with utilization of antibody detection shows no reliable staining pattern and should not be applied for HA IHC.
Collapse
Affiliation(s)
- Florian Gebauer
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Kemper
- Centre of Experimental Medicine, Department of Anatomy and Experimental Morphology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Centre for Diagnostic, Department of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Udo Schumacher
- Centre of Experimental Medicine, Department of Anatomy and Experimental Morphology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Cortes-Dericks L, Schmid RA. CD44 and its ligand hyaluronan as potential biomarkers in malignant pleural mesothelioma: evidence and perspectives. Respir Res 2017; 18:58. [PMID: 28403901 PMCID: PMC5389171 DOI: 10.1186/s12931-017-0546-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and highly drug resistant tumor arising from the mesothelial surfaces of the lung pleura. The standard method to confirm MPM is the tedious, time-consuming cytological examination of cancer biopsy. Biomarkers that are detectable in pleural effusion or patient serum are reasonable options to provide a faster and noninvasive diagnostic approach. As yet, the current biomarkers for MPM lack specificity and sensitivity to discriminate this neoplasm from other lung tumors. CD44, a multifunctional surface receptor has been implicated in tumor progression in different cancers including MPM. The interaction of CD44 with its ligand, hyaluronan (HA) has demonstrated an important role in modulating cell proliferation and invasiveness in MPM. In particular, the high expression levels of these molecules have shown diagnostic relevance in MPM. This review will summarize the biology and diagnostic implication of CD44 and HA as well as the interaction of both molecules in MPM that will demonstrate their potential as biomarkers. Augmentation of the current markers in MPM may lead to an earlier diagnosis and management of this disease.
Collapse
Affiliation(s)
- Lourdes Cortes-Dericks
- Department of Clinical Research, Division of General Thoracic Surgery, University Hospital Berne, Berne, Switzerland.
| | - Ralph Alexander Schmid
- Department of Clinical Research, Division of General Thoracic Surgery, University Hospital Berne, Berne, Switzerland
| |
Collapse
|
39
|
Integrating the glioblastoma microenvironment into engineered experimental models. Future Sci OA 2017; 3:FSO189. [PMID: 28883992 PMCID: PMC5583655 DOI: 10.4155/fsoa-2016-0094] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion - both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed.
Collapse
|
40
|
The Development of a Novel Therapeutic Strategy to Target Hyaluronan in the Extracellular Matrix of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2017; 18:ijms18030600. [PMID: 28282922 PMCID: PMC5372616 DOI: 10.3390/ijms18030600] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases to affect humans, regardless of whether patients receive multimodal therapy (including surgery, radiotherapy, and chemotherapy). This resistance to intervention is currently considered to be caused by the desmoplastic change of the extracellular matrix (ECM) in PDAC tissues, which is characterized by the accumulation of cancer-associated fibroblasts, collagen, proteoglycan, and hyaluronan. Among these ECM components, hyaluronan has attracted interest because various studies have indicated that hyaluronan-rich PDAC is correlated with the progressive properties of cancer cells, both in experimental and clinical settings. Hence, the reduction of hyaluronan in cancer tissue may represent a novel therapeutic approach for PDAC. 4-methylumbelliferone (4-MU) is a derivative of coumarin that was reported to suppress the synthesis of hyaluronan in cultured human skin fibroblasts in 1995. As an additional study, our group firstly reported that 4-MU reduced the hyaluronan synthesis of mouse melanoma cells and exerted anti-cancer activity. Subsequently, we have showed that 4-MU inhibited liver metastasis in mice inoculated with human pancreatic cancer cells. Thereafter, 4-MU has been accepted as an effective agent for hyaluronan research and is expected to have clinical applications. This review provides an overview of the interaction between PDAC and hyaluronan, the properties of 4-MU as a suppressor of the synthesis of hyaluronan, and the perspectives of PDAC treatment targeting hyaluronan.
Collapse
|
41
|
Wu RL, Huang L, Zhao HC, Geng XP. Hyaluronic acid in digestive cancers. J Cancer Res Clin Oncol 2017; 143:1-16. [PMID: 27535565 DOI: 10.1007/s00432-016-2213-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/27/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE Hyaluronan (HA), an extracellular and peri-cellular glycosaminoglycan with a large molecular weight, plays an important role in cancer growth and metastasis. The aim of this study was to summarize the biological roles and regulation of HA and small HA fragments, and their metabolismn enzymes and receptors in human digestive cancers. METHODS A systematic literature search mainly focusing on the biological roles of HA in the development and progression of human digestive cancers was performed using electronic databases. RESULTS The correlation between HA accumulation and tumor progression has been shown in various digestive cancers. HA and HA fragment-tumor cell interaction could activate the downstream signaling pathways, promoting cell proliferation, adhesion, migration and invasion, and inducing angiogenesis, lymphangiogenesis, epithelial-mesenchymal transition, stem cell-like property, and chemoradioresistance in digestive cancers. CONCLUSIONS A better insight into the mechanism of HA and HA fragment involvement in digestive cancer progression might be useful for the development of novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Ruo-Lin Wu
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
- Research Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Lei Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Hong-Chuan Zhao
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Xiao-Ping Geng
- Department of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
42
|
Endogenous and exogenous miR-520c-3p modulates CD44-mediated extravillous trophoblast invasion. Placenta 2016; 50:25-31. [PMID: 28161058 DOI: 10.1016/j.placenta.2016.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/30/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Adequate extravillous trophoblast (EVT) invasion is essential for successful placentation. Although miR-520c-3p plays an important role in CD44-mediated invasion in cancer cells, there is little information on whether miR-520c-3p is involved in the regulatory mechanisms of CD44-mediated EVT invasion. METHODS We screened first trimester trophoblast cells and trophoblast cell lines for expression of miR-520c-3p using real-time polymerase chain reaction. The cell invasion assay was performed using EVT cell lines, HTR8/SVneo and HChEpC1b, to investigate the capability of suppressing EVT invasion by miR-520c-3p. Laser microdissection analysis was then used to determine whether miR-520c-3p was present in the first trimester decidua. Finally, the possibility of chorionic villous trophoblast (CVT)-EVT communication via exosomal miR-520c-3p was determined using an in vitro model based on BeWo exosomes and the EVT cell lines as recipient cells. RESULTS The miR-520c-3p level was significantly downregulated in EVT cell lines and EVTs. Cell invasion was significantly inhibited in miR-520c-3p-overexpressing cell lines, involving a significant reduction of CD44. Laser microdissection analysis showed that miR-520c-3p in the periarterial area of the decidua was significantly higher than that in the non-periarterial area. Using an in vitro model system, BeWo exosomal miR-520c-3p was internalized into the EVT cells with subsequently reduced cell invasion via CD44 repression. CONCLUSIONS EVT invasion is synergistically enhanced by the reciprocal expression of endogenous miR-520c-3p and CD44. The present study supports a novel model involving a placenta-associated miRNA function in cell-cell communication in which CVT exosomal miR-520c-3p regulates cell invasion by targeting CD44 in EVTs.
Collapse
|
43
|
Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep 2016; 6:29660. [PMID: 27412958 PMCID: PMC4944142 DOI: 10.1038/srep29660] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Annexin A1 (ANXA1) is a Ca(2+)-binding protein over-expressed in pancreatic cancer (PC). We recently reported that extracellular ANXA1 mediates PC cell motility acting on Formyl Peptide Receptors (FPRs). Here, we describe other mechanisms by which intracellular ANXA1 could mediate PC progression. We obtained ANXA1 Knock-Out (KO) MIA PaCa-2 cells using the CRISPR/Cas9 genome editing technology. LC-MS/MS analysis showed altered expression of several proteins involved in cytoskeletal organization. As a result, ANXA1 KO MIA PaCa-2 partially lost their migratory and invasive capabilities with a mechanism that appeared independent of FPRs. The acquisition of a less aggressive phenotype has been further investigated in vivo. Wild type (WT), PGS (scrambled) and ANXA1 KO MIA PaCa-2 cells were engrafted orthotopically in SCID mice. No differences were found about PC primary mass, conversely liver metastatization appeared particularly reduced in ANXA1 KO MIA PaCa-2 engrafted mice. In summary, we show that intracellular ANXA1 is able to preserve the cytoskeleton integrity and to maintain a malignant phenotype in vitro. The protein has a relevant role in the metastatization process in vivo, as such it appears attractive and suitable as prognostic and therapeutic marker in PC progression.
Collapse
|
44
|
Poukka M, Bykachev A, Siiskonen H, Tyynelä-Korhonen K, Auvinen P, Pasonen-Seppänen S, Sironen R. Decreased expression of hyaluronan synthase 1 and 2 associates with poor prognosis in cutaneous melanoma. BMC Cancer 2016; 16:313. [PMID: 27184066 PMCID: PMC4867536 DOI: 10.1186/s12885-016-2344-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/08/2016] [Indexed: 12/16/2022] Open
Abstract
Background Hyaluronan is a large extracellular matrix molecule involved in several biological processes such as proliferation, migration and invasion. In many cancers, hyaluronan synthesis is altered, which implicates disease progression and metastatic potential. We have previously shown that synthesis of hyaluronan and expression of its synthases 1–2 (HAS1-2) decrease in cutaneous melanoma, compared to benign melanocytic lesions. Methods In the present study, we compared immunohistological staining results of HAS1 and HAS2 with clinical and histopathological parameters to investigate whether HAS1 or HAS2 has prognostic value in cutaneous melanoma. The specimens consisted of 129 tissue samples including superficial (Breslow ≤ 1 mm) and deep (Breslow > 4 mm) melanomas and lymph node metastases. The differences in immunostainings were analysed with non-parametric Mann–Whitney U test. Associations between immunohistological staining results and clinical parameters were determined with the χ2 test. Survival between patient groups was compared by the Kaplan-Meier method using log rank test and Cox’s regression model was used for multivariate analyses. Results The expression of HAS1 and HAS2 was decreased in deep melanomas and metastases compared to superficial melanomas. Decreased immunostaining of HAS2 in melanoma cells was significantly associated with several known unfavourable histopathologic prognostic markers like increased mitotic count, absence of tumor infiltrating lymphocytes and the nodular subtype. Furthermore, reduced HAS1 and HAS2 immunostaining in the melanoma cells was associated with increased recurrence of melanoma (p = 0.041 and p = 0.006, respectively) and shortened disease- specific survival (p = 0.013 and p = 0.001, respectively). Conclusions This study indicates that reduced expression of HAS1 and HAS2 is associated with melanoma progression and suggests that HAS1 and HAS2 have a prognostic significance in cutaneous melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2344-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Poukka
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | | | - Hanna Siiskonen
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Päivi Auvinen
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Reijo Sironen
- Institute of Clinical Medicine/Clinical Pathology, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.,Cancer Center of Eastern Finland, Kuopio, Finland
| |
Collapse
|
45
|
Detection of a specific pattern of hyaluronan oligosaccharides and their binding proteins in human ovarian tumour. Cell Biochem Funct 2016; 34:217-25. [DOI: 10.1002/cbf.3179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 02/03/2023]
|
46
|
Sato N, Cheng XB, Kohi S, Koga A, Hirata K. Targeting hyaluronan for the treatment of pancreatic ductal adenocarcinoma. Acta Pharm Sin B 2016; 6:101-5. [PMID: 27006892 PMCID: PMC4788704 DOI: 10.1016/j.apsb.2016.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/12/2015] [Accepted: 12/31/2015] [Indexed: 01/04/2023] Open
Abstract
Progression of cancer is often associated with interactions between cancer cells and extracellular matrix (ECM) surrounding them. Increasing evidence has suggested that accumulation of hyaluronan (HA), a major component of ECM, provides a favorable microenvironment for cancer progression. Pancreatic ductal adenocarcinoma (PDAC) is characterized typically by a dense desmoplastic stroma with a large amount of HA, making this molecule as an attractive target for therapy. Several studies have shown efficacy of inhibitors of HA synthesis or signaling for the treatment of PDAC. Recent studies have also demonstrated substantial improvements in the effects of chemotherapy by a targeted depletion of stromal HA in PDAC using an enzymatic agent. Thus, targeting HA has been recognized as a promising therapeutic strategy to treat this highly aggressive neoplasm. In this review article, we summarize our current understanding of the role of HA in the progression of PDAC and discuss possible therapeutic approaches targeting HA.
Collapse
|
47
|
Peng C, Wallwiener M, Rudolph A, Ćuk K, Eilber U, Celik M, Modugno C, Trumpp A, Heil J, Marmé F, Madhavan D, Nees J, Riethdorf S, Schott S, Sohn C, Pantel K, Schneeweiss A, Chang-Claude J, Yang R, Burwinkel B. Plasma hyaluronic acid level as a prognostic and monitoring marker of metastatic breast cancer. Int J Cancer 2016; 138:2499-509. [PMID: 26686298 DOI: 10.1002/ijc.29975] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/30/2015] [Accepted: 11/13/2015] [Indexed: 11/12/2022]
Abstract
Conventional tumor markers have limited value for prognostication and treatment monitoring in metastatic breast cancer (MBC) patients and novel circulating tumor markers therefore need to be explored. Hyaluronic acid (HA) is a major macropolysaccharide in the extracellular matrix and is reported to be associated with tumor progression. In our study, we investigated plasma HA level with respect to progression free survival (PFS) and overall survival (OS), as well as the treatment monitoring value in MBC patients. The prognostic value of plasma HA level was investigated in a discovery cohort of 212 MBC patients with 2.5-year follow-up and validated in an independent validation cohort of 334 patients with 5-year follow-up. The treatment monitoring value of plasma HA level was investigated in 61 MBC patients from discovery cohort who had been radiographically examined after first complete cycle of chemo therapy. We found a robust association between high plasma HA level and poor prognosis of MBC patients in both discovery (pPFS = 7.92 × 10(-6) and pOS = 5.27 × 10(-5)) and validation studies (pPFS = 3.66 × 10(-4) and pOS = 1.43 × 10(-4)). In the discovery cohort, the plasma HA level displayed independent prognostic value after adjusted for age and clinicopathological factors, with respect to PFS and OS. Further, the decrease of plasma HA level displayed good concordance with treatment response evaluated by radiographic examination (AUC = 0.79). Plasma HA level displays prognostic value, as well as treatment monitoring value for MBC patients.
Collapse
Affiliation(s)
- Cike Peng
- Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Markus Wallwiener
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Anja Rudolph
- Division of Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katarina Ćuk
- Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Ursula Eilber
- Division of Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Muhabbet Celik
- Division of Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Caroline Modugno
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Andreas Trumpp
- Hi-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Heil
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Frederik Marmé
- Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Dharanija Madhavan
- Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Juliane Nees
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Schott
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Christof Sohn
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Schneeweiss
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rongxi Yang
- Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
48
|
AbdElazeem MA, El-Sayed M. The pattern of CD44 and matrix metalloproteinase 9 expression is a useful predictor of ulcerative colitis–associated dysplasia and neoplasia. Ann Diagn Pathol 2015; 19:369-74. [PMID: 26420348 DOI: 10.1016/j.anndiagpath.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/13/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023]
|
49
|
Schmaus A, Bauer J, Sleeman JP. Sugars in the microenvironment: the sticky problem of HA turnover in tumors. Cancer Metastasis Rev 2015; 33:1059-79. [PMID: 25324146 DOI: 10.1007/s10555-014-9532-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The properties and behavior of tumor cells are closely regulated by their microenvironment. Accordingly, stromal cells and extracellular matrix components can have a pronounced effect on cancer initiation, growth, and progression. The linear glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix. Altered synthesis and degradation of HA in the tumor context has been implicated in many aspects of tumor biology. In particular, the accumulation of small HA oligosaccharides (sHA) in the tumor interstitial space may play a decisive role, due to the ability of sHA to activate a number of biological processes that are not modulated by high molecular weight (HMW)-HA. In this article, we review the normal physiological role and metabolism of HA and then survey the evidence implicating HA in tumor growth and progression, focusing in particular on the potential contribution of sHA to these processes.
Collapse
Affiliation(s)
- Anja Schmaus
- Institut für Toxikologie und Genetik, Karlsruhe Institute for Technology (KIT), Campus Nord, Postfach 3640, 76021, Karlsruhe, Germany
| | | | | |
Collapse
|
50
|
Chang IW, Liang PI, Li CC, Wu WJ, Huang CN, Lin VCH, Hsu CT, He HL, Wu TF, Hung CH, Li CF. HAS3 underexpression as an indicator of poor prognosis in patients with urothelial carcinoma of the upper urinary tract and urinary bladder. Tumour Biol 2015; 36:5441-5450. [PMID: 25934334 DOI: 10.1007/s13277-015-3210-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/03/2015] [Indexed: 02/01/2023] Open
Abstract
Via data mining a published transcriptomic database of UBUC (GSE31684), we discovered hyaluronan synthase-3 (HAS3) as the most significant gene stepwise downregulated from early tumorigenesis to progression among those associated with hyaluronan synthase activity (GO:0050501). We consequently analyzed HAS3 protein expression and their association with clinicopathological factors and survival in our well-characterized cohort of urothelial carcinoma of upper urinary tract (UTUC) and urinary bladder (UBUC). HAS3 expression was assessed by immunohistochemistry and evaluated by using H score method in 295 UBUCs and 340 UTUCs, respectively. HAS3 protein expression statuses were further correlated with clinicopathological parameters and evaluated the prognostic significance for disease-specific survival (DSS) and metastasis-free survival (MeFS). HAS3 protein underexpression was significantly associated with advanced pT status, nodal metastasis, high histological grade, vascular invasion, and frequent mitoses in both groups of UCs. HAS3 underexpression not only predicted poorer DSS and MeFS with univariate analysis, but also indicated dismal DSS and MeFS in multivariate analysis. HAS3 underexpression is associated with advanced tumor stage and adverse pathological features, as well as implies inferior clinical outcomes for both groups of patients with UTUCs and UBUCs, suggesting its critical role in tumor progression in UCs and may serve as a prospective prognostic biomarker and a novel therapeutic target in UCs.
Collapse
Affiliation(s)
- I-Wei Chang
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|