1
|
Silnitsky S, Rubin SJS, Zerihun M, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Int J Mol Sci 2023; 24:17600. [PMID: 38139428 PMCID: PMC10743896 DOI: 10.3390/ijms242417600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).
Collapse
Affiliation(s)
- Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| |
Collapse
|
2
|
Insertion Depth Modulates Protein Kinase C-δ-C1b Domain Interactions with Membrane Cholesterol as Revealed by MD Simulations. Int J Mol Sci 2023; 24:ijms24054598. [PMID: 36902029 PMCID: PMC10002858 DOI: 10.3390/ijms24054598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Protein kinase C delta (PKC-δ) is an important signaling molecule in human cells that has both proapoptotic as well as antiapoptotic functions. These conflicting activities can be modulated by two classes of ligands, phorbol esters and bryostatins. Phorbol esters are known tumor promoters, while bryostatins have anti-cancer properties. This is despite both ligands binding to the C1b domain of PKC-δ (δC1b) with a similar affinity. The molecular mechanism behind this discrepancy in cellular effects remains unknown. Here, we have used molecular dynamics simulations to investigate the structure and intermolecular interactions of these ligands bound to δC1b with heterogeneous membranes. We observed clear interactions between the δC1b-phorbol complex and membrane cholesterol, primarily through the backbone amide of L250 and through the K256 side-chain amine. In contrast, the δC1b-bryostatin complex did not exhibit interactions with cholesterol. Topological maps of the membrane insertion depth of the δC1b-ligand complexes suggest that insertion depth can modulate δC1b interactions with cholesterol. The lack of cholesterol interactions suggests that bryostatin-bound δC1b may not readily translocate to cholesterol-rich domains within the plasma membrane, which could significantly alter the substrate specificity of PKC-δ compared to δC1b-phorbol complexes.
Collapse
|
3
|
Lin C, Yan J, Kapur MD, Norris KL, Hsieh C, Huang D, Vitale N, Lim K, Guan Z, Wang X, Chi J, Yang W, Yao T. Parkin coordinates mitochondrial lipid remodeling to execute mitophagy. EMBO Rep 2022; 23:e55191. [PMID: 36256516 PMCID: PMC9724658 DOI: 10.15252/embr.202255191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Autophagy has emerged as the prime machinery for implementing organelle quality control. In the context of mitophagy, the ubiquitin E3 ligase Parkin tags impaired mitochondria with ubiquitin to activate autophagic degradation. Although ubiquitination is essential for mitophagy, it is unclear how ubiquitinated mitochondria activate autophagosome assembly locally to ensure efficient destruction. Here, we report that Parkin activates lipid remodeling on mitochondria targeted for autophagic destruction. Mitochondrial Parkin induces the production of phosphatidic acid (PA) and its subsequent conversion to diacylglycerol (DAG) by recruiting phospholipase D2 and activating the PA phosphatase, Lipin-1. The production of DAG requires mitochondrial ubiquitination and ubiquitin-binding autophagy receptors, NDP52 and optineurin (OPTN). Autophagic receptors, via Golgi-derived vesicles, deliver an autophagic activator, EndoB1, to ubiquitinated mitochondria. Inhibition of Lipin-1, NDP52/OPTN, or EndoB1 results in a failure to produce mitochondrial DAG, autophagosomes, and mitochondrial clearance, while exogenous cell-permeable DAG can induce autophagosome production. Thus, mitochondrial DAG production acts downstream of Parkin to enable the local assembly of autophagosomes for the efficient disposal of ubiquitinated mitochondria.
Collapse
Affiliation(s)
- Chao‐Chieh Lin
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Jin Yan
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| | - Meghan D Kapur
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| | - Kristi L Norris
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| | - Cheng‐Wei Hsieh
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - De Huang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et IntégrativesUPR‐3212 CNRS ‐ Université de StrasbourgStrasbourgFrance
| | - Kah‐Leong Lim
- Lee Kong Chian School of MedicineSingapore CitySingapore
| | - Ziqiang Guan
- Department of BiochemistryDuke University Medical CenterDurhamNCUSA
| | - Xiao‐Fan Wang
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| | - Jen‐Tsan Chi
- Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamNCUSA
| | - Wei‐Yuan Yang
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Tso‐Pang Yao
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamNCUSA
| |
Collapse
|
4
|
van Senten JR, Møller TC, Von Moo E, Seiersen SD, Bräuner-Osborne H. Use of CRISPR/Cas9-edited HEK293 cells reveals that both conventional and novel protein kinase C isozymes are involved in mGlu 5a receptor internalization. J Biol Chem 2022; 298:102466. [PMID: 36087841 PMCID: PMC9530845 DOI: 10.1016/j.jbc.2022.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
The internalization of G protein-coupled receptors (GPCRs) can be regulated by protein kinase C (PKC). However, most tools available to study the contribution of PKC isozymes have considerable limitations, including a lack of selectivity. In this study, we generated and characterized human embryonic kidney 293A (HEK293A) cell lines devoid of conventional or novel PKC isozymes (ΔcPKC and ΔnPKC) and employ these to investigate the contribution of PKC isozymes in the internalization of the metabotropic glutamate receptor 5 (mGlu5). Direct activation of PKC and mutation of rat mGlu5a Ser901, a PKC-dependent phosphorylation site in the receptor C-tail, both showed that PKC isozymes facilitate approximately 40% of the receptor internalization. Nonetheless, we determined that mGlu5a internalization was not altered upon the loss of cPKCs or nPKCs. This indicates that isozymes from both classes are involved, compensate for the absence of the other class, and thus fulfill dispensable functions. Additionally, using the Gαq/11 inhibitor YM-254890, GPCR kinase 2 and 3 (GRK2 and GRK3) knock-out cells and a receptor containing a mutated putative adaptor protein complex 2 (AP-2) interaction motif, we demonstrate that internalization of rat mGlu5a is mediated by Gαq/11 proteins (77% of the response), GRK2 (27%) and AP-2 (29%), but not GRK3. Our PKC knock-out cell lines expand the repertoire of knock-out HEK293A cell lines available to research GPCR pharmacology. Moreover, since pharmacological tools to study PKC isozymes generally lack specificity and/or potency, we present the PKC knock-out cell lines as more specific research tools to investigate PKC-mediated aspects of cell biology.
Collapse
Affiliation(s)
- Jeffrey R van Senten
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ee Von Moo
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Sofie D Seiersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
5
|
Heinonen S, Lautala S, Koivuniemi A, Bunker A. Insights into the behavior of unsaturated diacylglycerols in mixed lipid bilayers in relation to protein kinase C activation-A molecular dynamics simulation study. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183961. [PMID: 35568204 DOI: 10.1016/j.bbamem.2022.183961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The lipid second messenger diacylglycerol (DAG) is known for its involvement in many types of cellular signaling, especially as an endogenous agonist for protein kinase C (PKC). Evidence has emerged that the degree of saturation of the DAG molecules can affect PKC activation. DAG molecules with different acyl chain saturation have not only been observed to induce varying extents of PKC activation, but also to express selectivity towards different PKC isozymes. Both qualities are important for precise therapeutic activation of PKC; understanding DAG behavior at the molecular level in different environments has much potential in the development of drugs to target PKC. We used molecular dynamics simulations to study the behavior of two different unsaturated DAG species in lipid environments with varying degrees of unsaturation. We focus on phosphatidylethanolamine (PE) instead of phosphatidylcholine (PC) to more accurately model the relevant biomembranes. The effect of cholesterol (CHOL) on these systems was also explored. We found that both high level of unsaturation in the acyl chains of the DAG species and presence of CHOL in the surrounding membrane increase DAG molecule availability at the lipid-water interface. This can partially explain the previously observed differences in PKC activation strength and specificity, the complete mechanism is, however, likely to be more complex. Our simulations coupled with the current understanding of lipids highlight the need for more simulations of biologically accurate lipid environments in order to determine the correct correlations between molecular mechanisms and biological behavior when studying PKC activation.
Collapse
Affiliation(s)
- Suvi Heinonen
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Saara Lautala
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Artturi Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
6
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
7
|
Yin H, Shi A, Wu J. Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2022; 15:2003-2030. [PMID: 35837578 PMCID: PMC9275506 DOI: 10.2147/dmso.s367483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted clinicopathological syndrome characterised by excessive hepatic lipid accumulation that causes steatosis, excluding alcoholic factors. Platelet-activating factor (PAF), a biologically active lipid transmitter, induces platelet activation upon binding to the PAF receptor. Recent studies have found that PAF is associated with gamma-glutamyl transferase, which is an indicator of liver disease. Moreover, PAF can stimulate hepatic lipid synthesis and cause hypertriglyceridaemia. Furthermore, the knockdown of the PAF receptor gene in the animal models of NAFLD helped reduce the inflammatory response, improve glucose homeostasis and delay the development of NAFLD. These findings suggest that PAF is associated with NAFLD development. According to reports, patients with NAFLD or animal models have marked platelet activation abnormalities, mainly manifested as enhanced platelet adhesion and aggregation and altered blood rheology. Pharmacological interventions were accompanied by remission of abnormal platelet activation and significant improvement in liver function and lipids in the animal model of NAFLD. These confirm that platelet activation may accompany a critical importance in NAFLD development and progression. However, how PAFs are involved in the NAFLD signalling pathway needs further investigation. In this paper, we review the relevant literature in recent years and discuss the role played by PAF in NAFLD development. It is important to elucidate the pathogenesis of NAFLD and to find effective interventions for treatment.
Collapse
Affiliation(s)
- Hang Yin
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Anhua Shi
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
- Correspondence: Junzi Wu; Anhua Shi, Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China, Tel/Fax +86 187 8855 7524; +86 138 8885 0813, Email ;
| |
Collapse
|
8
|
You Y, Das J. Molecular dynamics simulation studies on binding of activator and inhibitor to Munc13-1 C1 in the presence of membrane. J Biomol Struct Dyn 2022; 40:14160-14175. [PMID: 34779746 PMCID: PMC9482821 DOI: 10.1080/07391102.2021.2001375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Munc13-1 is a presynaptic active zone protein that plays a critical role in priming the synaptic vesicle and releasing neurotransmitters in the brain. Munc13-1 acts as a scaffold and is activated when diacylglycerol (DAG)/phorbol ester binds to its C1 domain in the plasma membrane. Our previous studies showed that bryostatin 1 activated the Munc13-1, but resveratrol inhibited the phorbol ester-induced Munc13-1 activity. To gain structural insights into the binding of the ligand into Munc13-1 C1 in the membrane, we conducted 1.0 μs molecular dynamics (MD) simulation on Munc13-1 C1-ligand-lipid ternary system using phorbol 13-acetate, bryostatin 1 and resveratrol as ligands. Munc13-1 C1 shows higher conformational stability and less mobility along membrane with phorbol 13-acetate and bryostatin 1 than with resveratrol. Bryostatin 1 and phorbol ester remained in the protein active site, but resveratrol moved out of Munc13-1 C1 during the MD simulation. While bryostatin 1-bound Munc13-1 C1 showed two different positioning in the membrane, phorbol 13-acetate and resveratrol-bound Munc13-1 C1 only showed one positioning. Phorbol 13-acetate formed hydrogen bond with Ala-574 and Gly-589. Bryostatin 1 had more hydrogen bonds with Trp-588 and Arg-592 than with other residues. Resveratrol formed hydrogen bond with Ile-590. This study suggests that different ligands control Munc13-1 C1's mobility and positioning in the membrane differently. Ligand also has a critical role in the interaction between Munc13-1 C1 and lipid membrane. Our results provide structural basis of the pharmacological activity of the ligands and highlight the importance of membrane in Munc13-1 activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Joydip Das
- To whom to address correspondence at: Joydip Das, Department of Pharmacological and Pharmaceutical Sciences, Health 2, 4849 Calhoun Road, Room 3044, Houston TX 77204-5037. ; Tel: 713-743-1708; FAX 713-743-1229
| |
Collapse
|
9
|
You Y, Katti S, Yu B, Igumenova TI, Das J. Probing the Diacylglycerol Binding Site of Presynaptic Munc13-1. Biochemistry 2021; 60:1286-1298. [PMID: 33818064 PMCID: PMC8906797 DOI: 10.1021/acs.biochem.1c00165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Munc13-1 is a presynaptic active zone protein that acts as a master regulator of synaptic vesicle priming and neurotransmitter release in the brain. It has been implicated in the pathophysiology of several neurodegenerative diseases. Diacylglycerol and phorbol ester activate Munc13-1 by binding to its C1 domain. The objective of this study is to identify the structural determinants of ligand binding activity of the Munc13-1 C1 domain. Molecular docking suggested that residues Trp-588, Ile-590, and Arg-592 of Munc13-1 are involved in ligand interactions. To elucidate the role of these three residues in ligand binding, we generated W588A, I590A, and R592A mutants in full-length Munc13-1, expressed them as GFP-tagged proteins in HT22 cells, and measured their ligand-induced membrane translocation by confocal microscopy and immunoblotting. The extent of 1,2-dioctanoyl-sn-glycerol (DOG)- and phorbol ester-induced membrane translocation decreased in the following order: wild type > I590A > W588A > R592A and wild type > W588A > I590A > R592A, respectively. To understand the effect of the mutations on ligand binding, we also measured the DOG binding affinity of the isolated wild-type C1 domain and its mutants in membrane-mimicking micelles using nuclear magnetic resonance methods. The DOG binding affinity decreased in the following order: wild type > I590A > R592A. No binding was detected for W588A with DOG in micelles. This study shows that Trp-588, Ile-590, and Arg-592 are essential determinants for the activity of Munc13-1 and the effects of the three residues on the activity are ligand-dependent. This study bears significance for the development of selective modulators of Munc13-1.
Collapse
Affiliation(s)
- Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, Health 2, University of Houston, Houston, Texas 77204, United States
| | - Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Binhan Yu
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, Health 2, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
10
|
Katti S, Igumenova TI. Structural insights into C1-ligand interactions: Filling the gaps by in silico methods. Adv Biol Regul 2021; 79:100784. [PMID: 33526356 PMCID: PMC8867786 DOI: 10.1016/j.jbior.2020.100784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
Protein Kinase C isoenzymes (PKCs) are the key mediators of the phosphoinositide signaling pathway, which involves regulated hydrolysis of phosphatidylinositol (4,5)-bisphosphate to diacylglycerol (DAG) and inositol-1,4,5-trisphosphate. Dysregulation of PKCs is implicated in many human diseases making this class of enzymes an important therapeutic target. Specifically, the DAG-sensing cysteine-rich conserved homology-1 (C1) domains of PKCs have emerged as promising targets for pharmaceutical modulation. Despite significant progress, the rational design of the C1 modulators remains challenging due to difficulties associated with structure determination of the C1-ligand complexes. Given the dearth of experimental structural data, computationally derived models have been instrumental in providing atomistic insight into the interactions of the C1 domains with PKC agonists. In this review, we provide an overview of the in silico approaches for seven classes of C1 modulators and outline promising future directions.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX, 77843, United States.
| |
Collapse
|
11
|
Role of Protein Kinase C in Immune Cell Activation and Its Implication Chemical-Induced Immunotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:151-163. [PMID: 33539015 DOI: 10.1007/978-3-030-49844-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKCs) isoforms play a key regulatory role in a variety of cellular functions, including cell growth and differentiation, gene expression, hormone secretion, etc. Patterns of expression for each PKC isoform differ among tissues, and it is also clear that different PKCs are often not functionally redundant, for example specific PKCs mediate specific cellular signals required for activation, proliferation, differentiation and survival of immune cells. In the last 20 years, we have been studying the role of PKCs, mainly PKCβ and its anchoring protein RACK1 (Receptor for Activated C Kinase 1), in immune cell activation, and their implication in immunosenescence and immunotoxicity. We could demonstrate that PKCβ and RACK1 are central in dendritic cell maturation and activation by chemical allergens, and their expressions can be targeted by EDCs and anti-inflammatory drugs. In this chapter, current knowledge on the role of PKC in immune cell activation and possible implication in immunotoxicity will be described.
Collapse
|
12
|
Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 2020; 19:113. [PMID: 32466765 PMCID: PMC7257441 DOI: 10.1186/s12944-020-01286-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase C (PKC) and Protein kinase D (PKD) isoforms can sense diacylglycerol (DAG) generated in the different cellular compartments in various physiological processes. DAG accumulates in multiple organs of the obese subjects, which leads to the disruption of metabolic homeostasis and the development of diabetes as well as associated diseases. Multiple studies proved that aberrant activation of PKCs and PKDs contributes to the development of metabolic diseases. DAG-sensing PKC and PKD isoforms play a crucial role in the regulation of metabolic homeostasis and therefore might serve as targets for the treatment of metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Katarzyna Kolczynska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
13
|
Kostyuk AI, Demidovich AD, Kotova DA, Belousov VV, Bilan DS. Circularly Permuted Fluorescent Protein-Based Indicators: History, Principles, and Classification. Int J Mol Sci 2019; 20:E4200. [PMID: 31461959 PMCID: PMC6747460 DOI: 10.3390/ijms20174200] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) are a reliable tool for studying the various biological processes in living systems. The circular permutation of single FPs led to the development of an extensive class of biosensors that allow the monitoring of many intracellular events. In circularly permuted FPs (cpFPs), the original N- and C-termini are fused using a peptide linker, while new termini are formed near the chromophore. Such a structure imparts greater mobility to the FP than that of the native variant, allowing greater lability of the spectral characteristics. One of the common principles of creating genetically encoded biosensors is based on the integration of a cpFP into a flexible region of a sensory domain or between two interacting domains, which are selected according to certain characteristics. Conformational rearrangements of the sensory domain associated with ligand interaction or changes in the cellular parameter are transferred to the cpFP, changing the chromophore environment. In this review, we highlight the basic principles of such sensors, the history of their creation, and a complete classification of the available biosensors.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | | | - Daria A Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
- Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| |
Collapse
|
14
|
Herranz G, Aguilera P, Dávila S, Sánchez A, Stancu B, Gómez J, Fernández-Moreno D, de Martín R, Quintanilla M, Fernández T, Rodríguez-Silvestre P, Márquez-Expósito L, Bello-Gamboa A, Fraile-Ramos A, Calvo V, Izquierdo M. Protein Kinase C δ Regulates the Depletion of Actin at the Immunological Synapse Required for Polarized Exosome Secretion by T Cells. Front Immunol 2019; 10:851. [PMID: 31105694 PMCID: PMC6499072 DOI: 10.3389/fimmu.2019.00851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/02/2019] [Indexed: 12/02/2022] Open
Abstract
Multivesicular bodies (MVB) are endocytic compartments that enclose intraluminal vesicles (ILVs) formed by inward budding from the limiting membrane of endosomes. In T lymphocytes, ILVs are secreted as Fas ligand-bearing, pro-apoptotic exosomes following T cell receptor (TCR)-induced fusion of MVB with the plasma membrane at the immune synapse (IS). In this study we show that protein kinase C δ (PKCδ), a novel PKC isotype activated by diacylglycerol (DAG), regulates TCR-controlled MVB polarization toward the IS and exosome secretion. Concomitantly, we demonstrate that PKCδ-interfered T lymphocytes are defective in activation-induced cell death. Using a DAG sensor based on the C1 DAG-binding domain of PKCδ and a GFP-PKCδ chimera, we reveal that T lymphocyte activation enhances DAG levels at the MVB endomembranes which mediates the association of PKCδ to MVB. Spatiotemporal reorganization of F-actin at the IS is inhibited in PKCδ-interfered T lymphocytes. Therefore, we propose PKCδ as a DAG effector that regulates the actin reorganization necessary for MVB traffic and exosome secretion.
Collapse
Affiliation(s)
- Gonzalo Herranz
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Pablo Aguilera
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Sergio Dávila
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Alicia Sánchez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Bianca Stancu
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Jesús Gómez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - David Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Raúl de Martín
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Mario Quintanilla
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Teresa Fernández
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Pablo Rodríguez-Silvestre
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Laura Márquez-Expósito
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Ana Bello-Gamboa
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Alberto Fraile-Ramos
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Manuel Izquierdo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| |
Collapse
|
15
|
Diacylglycerol kinase control of protein kinase C. Biochem J 2019; 476:1205-1219. [DOI: 10.1042/bcj20180620] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Abstract
The diacylglycerol kinases (DGK) are lipid kinases that transform diacylglycerol (DAG) into phosphatidic acid (PA) in a reaction that terminates DAG-based signals. DGK provide negative regulation to conventional and novel protein kinase C (PKC) enzymes, limiting local DAG availability in a tissue- and subcellular-restricted manner. Defects in the expression/activity of certain DGK isoforms contribute substantially to cognitive impairment and mental disorders. Abnormal DGK overexpression in tumors facilitates invasion and resistance to chemotherapy preventing tumor immune destruction by tumor-infiltrating lymphocytes. Effective translation of these findings into therapeutic approaches demands a better knowledge of the physical and functional interactions between the DGK and PKC families. DGKζ is abundantly expressed in the nervous and immune system, where physically and functionally interacts with PKCα. The latest discoveries suggest that PDZ-mediated interaction facilitates spatial restriction of PKCα by DGKζ at the cell–cell contact sites in a mechanism where the two enzymes regulate each other. In T lymphocytes, DGKζ interaction with Sorting Nexin 27 (SNX27) guarantees the basal control of PKCα activation. SNX27 is a trafficking component required for normal brain function whose deficit has been linked to Alzheimer's disease (AD) pathogenesis. The enhanced PKCα activation as the result of SNX27 silencing in T lymphocytes aligns with the recent correlation found between gain-of-function PKCα mutations and AD and suggests that disruption of the mechanisms that provides a correct spatial organization of DGKζ and PKCα may lie at the basis of immune and neuronal synapse impairment.
Collapse
|
16
|
Abstract
Protein kinase C (PKC) isozymes belong to a family of Ser/Thr kinases whose activity is governed by reversible release of an autoinhibitory pseudosubstrate. For conventional and novel isozymes, this is effected by binding the lipid second messenger, diacylglycerol, but for atypical PKC isozymes, this is effected by binding protein scaffolds. PKC shot into the limelight following the discovery in the 1980s that the diacylglycerol-sensitive isozymes are "receptors" for the potent tumor-promoting phorbol esters. This set in place a concept that PKC isozymes are oncoproteins. Yet three decades of cancer clinical trials targeting PKC with inhibitors failed and, in some cases, worsened patient outcome. Emerging evidence from cancer-associated mutations and protein expression levels provide a reason: PKC isozymes generally function as tumor suppressors and their activity should be restored, not inhibited, in cancer therapies. And whereas not enough activity is associated with cancer, variants with enhanced activity are associated with degenerative diseases such as Alzheimer's disease. This review describes the tightly controlled mechanisms that ensure PKC activity is perfectly balanced and what happens when these controls are deregulated. PKC isozymes serve as a paradigm for the wisdom of Confucius: "to go beyond is as wrong as to fall short."
Collapse
Affiliation(s)
- Alexandra C Newton
- a Department of Pharmacology , University of California at San Diego , La Jolla , CA , USA
| |
Collapse
|
17
|
Czikora A, Pany S, You Y, Saini AS, Lewin NE, Mitchell GA, Abramovitz A, Kedei N, Blumberg PM, Das J. Structural determinants of phorbol ester binding activity of the C1a and C1b domains of protein kinase C theta. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1046-1056. [PMID: 29317197 DOI: 10.1016/j.bbamem.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
The PKC isozymes represent the most prominent family of signaling proteins mediating response to the ubiquitous second messenger diacylglycerol. Among them, PKCθ is critically involved in T-cell activation. Whereas all the other conventional and novel PKC isoforms have twin C1 domains with potent binding activity for phorbol esters, in PKCθ only the C1b domain possesses potent binding activity, with little or no activity reported for the C1a domain. In order to better understand the structural basis accounting for the very weak ligand binding of the PKCθ C1a domain, we assessed the effect on ligand binding of twelve amino acid residues which differed between the C1a and C1b domains of PKCθ. Mutation of Pro9 of the C1a domain of PKCθ to the corresponding Lys9 found in C1b restored in vitro binding activity for [3H]phorbol 12,13-dibutyrate to 3.6 nM, whereas none of the other residues had substantial effect. Interestingly, the converse mutation in the C1b domain of Lys9 to Pro9 only diminished binding affinity to 11.7 nM, compared to 254 nM in the unmutated C1a. In confocal experiments, deletion of the C1b domain from full length PKCθ diminished, whereas deletion of the C1a domain enhanced 5-fold (at 100 nM PMA) the translocation to the plasma membrane. We conclude that the Pro168 residue in the C1a domain of full length PKCθ plays a critical role in the ligand and membrane binding, while exchanging the residue (Lys240) at the same position in C1b domain of full length PKCθ only modestly reduced the membrane interaction.
Collapse
Affiliation(s)
- Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Amandeep S Saini
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Adelle Abramovitz
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
18
|
PKCδ silencing alleviates saturated fatty acid induced ER stress by enhancing SERCA activity. Biosci Rep 2017; 37:BSR20170869. [PMID: 29046367 PMCID: PMC5700272 DOI: 10.1042/bsr20170869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
Protein kinase C δ (PKCδ) plays an important role in nonalcoholic fatty liver disease (NAFLD), however, the mechanism remains unknown. The present study explored the role of PKCδ in NAFLD development and investigated the relationships between PKCδ, calcium homeostasis, and endoplasmic reticulum (ER) stress (ERS). Hepatic steatosis cell model was induced by palmitic acid (PA) in L02 cells. Lipid accretion was evaluated using Oil Red O staining and a triglyceride (TG) detection kit. PKCδ was down-regulated by siRNA. RT-PCR and Western blotting were used to detect the expression of ERS markers. The fluorescence of Ca2+ influx was recorded using confocal microscopy. Sarco-ER Ca2+-ATPase (SERCA) activity was measured by ultramicro-ATP enzyme test kit. PA treatment induced lipid accretion in L02 cells, destroyed the ER structure, and increased PKCδ activation in a time-dependent manner. Further, PA treatment significantly increased the expression of ERS markers, Ig heavy chain binding protein (Bip), and homologous proteins of CCAAT-enhancer binding proteins (CHOP). PKCδ silencing down-regulated Bip and CHOP expression, indicating a successful alleviation of ERS. The increased calcium storage induced by PA stimulation was significantly decreased in L02 cells treated with PKCδ siRNA compared with the negative control. Moreover, diminished SERCA activity caused by PA was recovered in PKCδ siRNA transfected cells. To the best of our knowledge, this is the first report demonstrating that the inhibition of PKCδ alleviates ERS by enhancing SERCA activity and stabilizing calcium homeostasis.
Collapse
|
19
|
Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol 2017; 48:36-52. [PMID: 28571764 DOI: 10.1016/j.semcancer.2017.04.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
Abstract
The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its potential usage as a therapeutic target.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
20
|
Binding mode prediction of aplysiatoxin, a potent agonist of protein kinase C, through molecular simulation and structure–activity study on simplified analogs of the receptor-recognition domain. Bioorg Med Chem 2016; 24:4218-4227. [DOI: 10.1016/j.bmc.2016.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/27/2023]
|
21
|
Wuttke A, Yu Q, Tengholm A. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells. J Biol Chem 2016; 291:14986-95. [PMID: 27226533 PMCID: PMC4946917 DOI: 10.1074/jbc.m115.698456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 01/08/2023] Open
Abstract
PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function.
Collapse
Affiliation(s)
- Anne Wuttke
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| | - Qian Yu
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| | - Anders Tengholm
- From the Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
22
|
Naik E, Dixit VM. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. THE JOURNAL OF IMMUNOLOGY 2016; 196:3438-51. [PMID: 26936881 DOI: 10.4049/jimmunol.1403165] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/09/2016] [Indexed: 11/19/2022]
Abstract
To achieve a durable adaptive immune response, lymphocytes must undergo clonal expansion and induce a survival program that enables the persistence of Ag-experienced cells and the development of memory. During the priming phase of this response, CD4(+)T lymphocytes either remain tolerized or undergo clonal expansion. In this article, we show that Usp9X functions as a positive regulatory switch during T lymphocyte priming through removal of inhibitory monoubiquitination from ZAP70. In the absence of Usp9X, an increased amount of ZAP70 localized to early endosomes consistent with the role of monoubiquitin in endocytic sorting. Usp9X becomes competent to deubiquitinate ZAP70 through TCR-dependent phosphorylation and enhancement of its catalytic activity and association with the LAT signalosome. In B lymphocytes, Usp9X is required for the induction of PKCβ kinase activity after BCR-dependent activation. Accordingly, inUsp9Xknockout B cells, there was a significant reduction in phospho-CARMA1 levels that resulted in reduced CARMA1/Bcl-10/MALT-1 complex formation and NF-κB-dependent cell survival. The pleiotropic effect of Usp9X during Ag-receptor signaling highlights its importance for the development of an effective and durable adaptive immune response.
Collapse
Affiliation(s)
- Edwina Naik
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| |
Collapse
|
23
|
Lim PS, Sutton CR, Rao S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology 2015; 146:508-22. [PMID: 26194700 DOI: 10.1111/imm.12510] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022] Open
Abstract
Protein kinase C (PKC) form a key family of enzymes involved in signalling pathways that specifically phosphorylates substrates at serine/threonine residues. Phosphorylation by PKC is important in regulating a variety of cellular events such as cell proliferation and the regulation of gene expression. In the immune system, PKCs are involved in regulating signal transduction pathways important for both innate and adaptive immunity, ultimately resulting in the expression of key immune genes. PKCs act as mediators during immune cell signalling through the immunological synapse. PKCs are traditionally known to be cytoplasmic signal transducers and are well embedded in the signalling pathways of cells to mediate the cells' response to a stimulus from the plasma membrane to the nucleus. PKCs are also found to transduce signals within the nucleus, a process that is distinct from the cytoplasmic signalling pathway. There is now growing evidence suggesting that PKC can directly regulate gene expression programmes through a non-traditional role as nuclear kinases. In this review, we will focus on the role of PKCs as key cytoplasmic signal transducers in immune cell signalling, as well as its role in nuclear signal transduction. We will also highlight recent evidence for its newly discovered regulatory role in the nucleus as a chromatin-associated kinase.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Christopher Ray Sutton
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
24
|
Phetsouphanh C, Kelleher AD. The Role of PKC-θ in CD4+ T Cells and HIV Infection: To the Nucleus and Back Again. Front Immunol 2015; 6:391. [PMID: 26284074 PMCID: PMC4519685 DOI: 10.3389/fimmu.2015.00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/17/2015] [Indexed: 11/13/2022] Open
Abstract
Protein kinase C (PKC)-θ is the only member of the PKC family that has the ability to translocate to the immunological synapse between T cells and antigen-presenting cells upon T cell receptor and MHC-II recognition. PKC-θ interacts functionally and physically with other downstream effector molecules to mediate T cell activation, differentiation, and migration. It plays a critical role in the generation of Th2 and Th17 responses and is less important in Th1 and CTL responses. PKC-θ has been recently shown to play a role in the nucleus, where it mediates inducible gene expression in the development of memory CD4+ T cells. This novel PKC (nPKC) can up-regulate HIV-1 transcription and PKC-θ activators such as Prostratin have been used in early HIV-1 reservoir eradication studies. The exact manner of the activation of virus by these compounds and the role of PKC-θ, particularly its nuclear form and its association with NF-κB in both the cytoplasmic and nuclear compartments, needs further precise elucidation especially given the very important role of NF-κB in regulating transcription from the integrated retrovirus. Continued studies of this nPKC isoform will give further insight into the complexity of T cell signaling kinases.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| | - Anthony D Kelleher
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
25
|
PKCη is an anti-apoptotic kinase that predicts poor prognosis in breast and lung cancer. Biochem Soc Trans 2015; 42:1519-23. [PMID: 25399563 DOI: 10.1042/bst20140182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The successful treatment of cancer in a disseminated stage using chemotherapy is limited by the occurrence of drug resistance, often mediated by anti-apoptotic mechanisms. Thus the challenge is to pinpoint the underlying key factors and to develop therapies for their direct targeting. Protein kinase C (PKC) enzymes are promising candidates, as some PKCs were shown to be involved in regulation of apoptosis. Our studies and others have shown that PKCη is an anti-apoptotic kinase, able to confer protection on tumour cells against stress and chemotherapy. We have demonstrated that PKCη shuttles between the cytoplasm and the nucleus and that upon DNA damage is tethered at the nuclear membrane. The C1b domain mediates translocation of PKCη to the nuclear envelope and, similar to the full-length protein, could also confer protection against cell death. Furthermore, its localization in cell and nuclear membranes in breast cancer biopsies of neoadjuvant-treated breast cancer patients was an indicator for poor survival and a predictor for the effectiveness of treatment. PKCη is also a novel biomarker for poor prognosis in non-small-cell lung cancer (NSCLC). Thus PKCη presents a potential target for therapy where inhibition of its activity and/or translocation to membranes could interfere with the resistance to chemotherapy.
Collapse
|
26
|
An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. Raf-interactome in tuning the complexity and diversity of Raf function. FEBS J 2014; 282:32-53. [PMID: 25333451 DOI: 10.1111/febs.13113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022]
Abstract
Raf kinases have been intensely studied subsequent to their discovery 30 years ago. The Ras-Raf-mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase/mitogen-activated protein kinase (Ras-Raf-MEK-ERK/MAPK) signaling pathway is at the heart of the signaling networks that control many fundamental cellular processes and Raf kinases takes centre stage in the MAPK pathway, which is now appreciated to be one of the most common sources of the oncogenic mutations in cancer. The dependency of tumors on this pathway has been clearly demonstrated by targeting its key nodes; however, blockade of the central components of the MAPK pathway may have some unexpected side effects. Over recent years, the Raf-interactome or Raf-interacting proteins have emerged as promising targets for protein-directed cancer therapy. This review focuses on the diversity of Raf-interacting proteins and discusses the mechanisms by which these proteins regulate Raf function, as well as the implications of targeting Raf-interacting proteins in the treatment of human cancer.
Collapse
Affiliation(s)
- Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, China
| | | | | | | | | | | |
Collapse
|
27
|
Differential targeting of cPKC and nPKC decodes and regulates Ca2+ and lipid signalling. Biochem Soc Trans 2014; 42:1538-42. [DOI: 10.1042/bst20140239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein kinases C (PKCs) are ubiquitously expressed and play critical roles in a plethora of physiological and pathophysiological processes. Owing to PKCs’ highly conserved phosphorylation consensus sequence, it has been difficult to distinguish the role of individual PKC isoforms. Recently, the identification of novel membrane targeting via subcellularly targeted diacylglycerol production found for novel PKCs (nPKCs), together with a characterization of their putative functions, has shed new light on the specific roles of individual PKCs in cellular processes.
Collapse
|
28
|
Affiliation(s)
- Joydip Das
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| | - Ghazi M. Rahman
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| |
Collapse
|
29
|
Glade MJ, Smith K. Phosphatidylserine and the human brain. Nutrition 2014; 31:781-6. [PMID: 25933483 DOI: 10.1016/j.nut.2014.10.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. METHODS A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. RESULTS A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. CONCLUSION Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes.
Collapse
Affiliation(s)
| | - Kyl Smith
- Progressive Laboratories Inc., Irving, Texas
| |
Collapse
|
30
|
Stewart MD, Cole TR, Igumenova TI. Interfacial partitioning of a loop hinge residue contributes to diacylglycerol affinity of conserved region 1 domains. J Biol Chem 2014; 289:27653-64. [PMID: 25124034 DOI: 10.1074/jbc.m114.585570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conventional and novel isoenzymes of PKC are activated by the membrane-embedded second messenger diacylglycerol (DAG) through its interactions with the C1 regulatory domain. The affinity of C1 domains to DAG varies considerably among PKCs. To gain insight into the origin of differential DAG affinities, we conducted high-resolution NMR studies of C1B domain from PKCδ (C1Bδ) and its W252Y variant. The W252Y mutation was previously shown to render C1Bδ less responsive to DAG (Dries, D. R., Gallegos, L. L., and Newton, A. C. (2007) A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. J. Biol. Chem. 282, 826-830) and thereby emulate the behavior of C1B domains from conventional PKCs that have a conserved Tyr at the equivalent position. Our data revealed that W252Y mutation did not perturb the conformation of C1Bδ in solution but significantly reduced its propensity to partition into a membrane-mimicking environment in the absence of DAG. Using detergent micelles doped with a paramagnetic lipid, we determined that both the residue identity at position 252 and complexation with diacylglycerol influence the geometry of C1Bδ-micelle interactions. In addition, we identified the C-terminal helix α1 of C1Bδ as an interaction site with the head groups of phosphatidylserine, a known activator of PKCδ. Taken together, our studies (i) reveal the identities of C1Bδ residues involved in interactions with membrane-mimicking environment, DAG, and phosphatidylserine, as well as the affinities associated with each event and (ii) suggest that the initial ligand-independent membrane recruitment of C1B domains, which is greatly facilitated by the interfacial partitioning of Trp-252, is responsible, at least in part, for the differential DAG affinities.
Collapse
Affiliation(s)
- Mikaela D Stewart
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Taylor R Cole
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Tatyana I Igumenova
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
31
|
Jain K, Basu A. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression. Cancers (Basel) 2014; 6:860-78. [PMID: 24727247 PMCID: PMC4074807 DOI: 10.3390/cancers6020860] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022] Open
Abstract
The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCɛ, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCɛ. While earlier research established the survival functions of PKCɛ, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCɛ has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCɛ affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCɛ signaling to cancer stem cell functioning. This review focuses on the role of PKCɛ in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCɛ as a target for cancer therapy.
Collapse
Affiliation(s)
- Kirti Jain
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107, USA.
| | - Alakananda Basu
- Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107, USA.
| |
Collapse
|
32
|
Rahman GM, Das J. Modeling studies on the structural determinants for the DAG/phorbol ester binding to C1 domain. J Biomol Struct Dyn 2014; 33:219-32. [DOI: 10.1080/07391102.2014.895679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Tewson PH, Quinn AM, Hughes TE. A multiplexed fluorescent assay for independent second-messenger systems: decoding GPCR activation in living cells. JOURNAL OF BIOMOLECULAR SCREENING 2013; 18:797-806. [PMID: 23580666 PMCID: PMC4242713 DOI: 10.1177/1087057113485427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a growing need in drug discovery and basic research to measure multiple second-messenger components of cell signaling pathways in real time and in relevant tissues and cell types. Many G-protein-coupled receptors activate the heterotrimeric protein, Gq, which in turn activates phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce two second messengers: diacylglycerol (DAG), which remains in the plasma membrane, and inositol triphosphate (IP3), which diffuses through the cytosol to release stores of intracellular calcium ions (Ca(2+)). Our goal was to create a series of multiplex sensors that would make it possible to simultaneously measure two different components of the Gq pathway in living cells. Here we describe new fluorescent sensors for DAG and PIP2 that produce robust changes in green or red fluorescence and can be combined with one another, or with existing Ca(2+) sensors, in a live-cell assay. These assays can detect multiple components of Gq signaling, simultaneously in real time, on standard fluorescent plate readers or live-cell imaging systems.
Collapse
|
34
|
Abstract
PKC (protein kinase C) has been in the limelight since the discovery three decades ago that it acts as a major receptor for the tumour-promoting phorbol esters. Phorbol esters, with their potent ability to activate two of the three classes of PKC isoenzymes, have remained the best pharmacological tool for directly modulating PKC activity. However, with the discovery of other phorbol ester-responsive proteins, the advent of various small-molecule and peptide modulators, and the need to distinguish isoenzyme-specific activity, the pharmacology of PKC has become increasingly complex. Not surprisingly, many of the compounds originally touted as direct modulators of PKC have subsequently been shown to hit many other cellular targets and, in some cases, not even directly modulate PKC. The complexities and reversals in PKC pharmacology have led to widespread confusion about the current status of the pharmacological tools available to control PKC activity. In the present review, we aim to clarify the cacophony in the literature regarding the current state of bona fide and discredited cellular PKC modulators, including activators, small-molecule inhibitors and peptides, and also address the use of genetically encoded reporters and of PKC mutants to measure the effects of these drugs on the spatiotemporal dynamics of signalling by specific isoenzymes.
Collapse
Affiliation(s)
- Alyssa X. Wu-Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0721, (858) 534-4527, Fax: (858) 822-5888
| | - Alexandra C. Newton
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0721, (858) 534-4527, Fax: (858) 822-5888
| |
Collapse
|
35
|
Identification of the activator-binding residues in the second cysteine-rich regulatory domain of protein kinase Cθ (PKCθ). Biochem J 2013; 451:33-44. [PMID: 23289588 DOI: 10.1042/bj20121307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PKC (protein kinase C) θ is predominantly expressed in T-cells and is critically involved in immunity. Design of PKCθ-selective molecules to manage autoimmune disorders by targeting its activator-binding C1 domain requires the knowledge of its structure and the activator-binding residues. The C1 domain consists of twin C1 domains, C1A and C1B, of which C1B plays a critical role in the membrane translocation and activation of PKCθ. In the present study we determined the crystal structure of PKCθC1B to 1.63 Å (1 Å=0.1 nm) resolution, which showed that Trp(253) at the rim of the activator-binding pocket was orientated towards the membrane, whereas in PKCδC1B the homologous tryptophan residue was orientated away from the membrane. This particular orientation of Trp(253) affects the size of the activator-binding pocket and the membrane affinity. To further probe the structural constraints on activator-binding, five residues lining the activator-binding site were mutated (Y239A, T243A, W253G, L255G and Q258G) and the binding affinities of the PKCθC1B mutants were measured. These mutants showed reduced binding affinities for phorbol ester [PDBu (phorbol 12,13-dibutyrate)] and diacylglycerol [DOG (sn-1,2-dioctanoylglycerol), SAG (sn-1-stearoyl 2-arachidonyl glycerol)]. All five full-length PKCθ mutants exhibited reduced phorbol-ester-induced membrane translocation compared with the wild-type. These results provide insights into the PKCθ activator-binding domain, which will aid in future design of PKCθ-selective molecules.
Collapse
|
36
|
Van Kolen K, Bruinzeel W, He W, De Kimpe N, Van Puyvelde L, Cik M, Pullan S. Investigation of signalling cascades induced by neurotrophic synaptolepis factor K7 reveals a critical role for novel PKCε. Eur J Pharmacol 2013; 701:73-81. [DOI: 10.1016/j.ejphar.2013.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 11/30/2022]
|
37
|
Abstract
The regulation of kinases by scaffolding proteins greatly contributes to the fidelity of signal transduction. In the present study, we explored an interaction between the ubiquitous enzyme PKC (protein kinase C) and the scaffolding protein AKAP7 (A-kinase-anchoring protein 7). Using protein biochemistry and surface plasmon resonance approaches, we demonstrate that both AKAP7γ and AKAP7α are capable of high-affinity interactions with multiple isoenzymes of PKC. Furthermore, this interaction is achieved via multi-site binding on both proteins. FRET (fluorescence resonance energy transfer) analysis using a PKC activity reporter suggests that anchoring of the kinase within AKAP7 complexes enhances the phosphorylation of substrate proteins. Finally, we determined using FRAP (fluorescence recovery after photobleaching) and virtual modelling that AKAP7 restricts the mobility of PKC within cells by tethering it to subcellular compartments. Collectively, the results of the present study suggests that AKAP7 could play an integral role in dictating PKC localization and function in tissues where the two proteins are co-expressed.
Collapse
|
38
|
Farah CA, Sossin WS. The role of C2 domains in PKC signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:663-83. [PMID: 22453964 DOI: 10.1007/978-94-007-2888-2_29] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
More than two decades ago, the discovery of the first C2 domain in conventional Protein Kinase Cs (cPKCs) and of its role as a calcium-binding motif began to shed light on the activation mechanism of this family of Serine/Threonine kinases which are involved in several critical signal transduction pathways. In this chapter, we review the current knowledge of the structure and the function of the different C2 domains in PKCs. The C2 domain of cPKCs is a calcium sensor and its calcium-dependent binding to phospholipids is crucial for kinase activation. While the functional role of the cPKC C2 domain is better understood, phylogenetic analysis revealed that the novel C2 domain is more ancient and related to the C2 domain in the fungal PKC family, while the cPKC C2 domain is first associated with PKC in metazoans. The C2 domain of novel PKCs (nPKCs) does not contain a calcium-binding motif but still plays a critical role in nPKCs activation by regulating C1-C2 domain interactions and consequently C2 domain-mediated inhibition in both the nPKCs of the epsilon family and the nPKCs of the delta family. Moreover, the C2 domain of the nPKCs of the delta family was shown to recognize phosphotyrosines in a novel mode different from the ones observed for the Src Homology 2 (SH2) and the phosphotyrosine binding domains (PTB). By binding to phosphotyrosines, the C2 domain regulates the activation of this subclass of PKCs. The C2 domain was also shown to be involved in protein-protein interactions and binding to the receptor for activated C-kinase (RACKs) thus contributing to the subcellular localization of PKCs. In summary, the C2 domain is a critical player that can sense the activated signaling pathway in response to external stimuli to specifically regulate the different conventional and novel PKC isoforms.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, BT 105, 3801 University Street, Montreal, QC H3A 2B4, Canada.
| | | |
Collapse
|
39
|
Zeng L, Webster SV, Newton PM. The biology of protein kinase C. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:639-61. [PMID: 22453963 DOI: 10.1007/978-94-007-2888-2_28] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review gives a basic introduction to the biology of protein kinase C, one of the first calcium-dependent kinases to be discovered. We review the structure and function of protein kinase C, along with some of the substrates of individual isoforms. We then review strategies for inhibiting PKC in experimental systems and finally discuss the therapeutic potential of targeting PKC. Each aspect is covered in summary, with links to detailed resources where appropriate.
Collapse
Affiliation(s)
- Lily Zeng
- School of Medicine, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
40
|
Wu-Zhang AX, Murphy AN, Bachman M, Newton AC. Isozyme-specific interaction of protein kinase Cδ with mitochondria dissected using live cell fluorescence imaging. J Biol Chem 2012; 287:37891-906. [PMID: 22988234 DOI: 10.1074/jbc.m112.412635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PKCδ signaling to mitochondria has been implicated in both mitochondrial apoptosis and metabolism. However, the mechanism by which PKCδ interacts with mitochondria is not well understood. Using FRET-based imaging, we show that PKCδ interacts with mitochondria by a novel and isozyme-specific mechanism distinct from its canonical recruitment to other membranes such as the plasma membrane or Golgi. Specifically, we show that PKCδ interacts with mitochondria following stimulation with phorbol esters or, in L6 myocytes, with insulin via a mechanism that requires two steps. In the first step, PKCδ translocates acutely to mitochondria by a mechanism that requires its C1A and C1B domains and a Leu-Asn sequence in its turn motif. In the second step, PKCδ is retained at mitochondria by a mechanism that depends on its C2 domain, a unique Glu residue in its activation loop, intrinsic catalytic activity, and the mitochondrial membrane potential. In contrast, of these determinants, only the C1B domain is required for the phorbol ester-stimulated translocation of PKCδ to other membranes. PKCδ also basally localizes to mitochondria and increases mitochondrial respiration via many of the same determinants that promote its agonist-evoked interaction. PKCδ localized to mitochondria has robust activity, as revealed by a FRET reporter of PKCδ-specific activity (δCKAR). These data support a model in which multiple determinants unique to PKCδ drive a specific interaction with mitochondria that promotes mitochondrial respiration.
Collapse
Affiliation(s)
- Alyssa X Wu-Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
41
|
Tewson P, Westenberg M, Zhao Y, Campbell RE, Quinn AM, Hughes TE. Simultaneous detection of Ca2+ and diacylglycerol signaling in living cells. PLoS One 2012; 7:e42791. [PMID: 22912738 PMCID: PMC3422227 DOI: 10.1371/journal.pone.0042791] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/10/2012] [Indexed: 02/07/2023] Open
Abstract
Phospholipase C produces two second messengers - diacylglycerol (DAG), which remains in the membrane, and inositol triphosphate (IP3), which triggers the release of calcium ions (Ca2+) from intracellular stores. Genetically encoded sensors based on a single circularly permuted fluorescent protein (FP) are robust tools for studying intracellular Ca2+ dynamics. We have developed a robust sensor for DAG based on a circularly permuted green FP that can be co-imaged with the red fluorescent Ca2+ sensor R-GECO for simultaneous measurement of both second messengers.
Collapse
Affiliation(s)
- Paul Tewson
- Montana Molecular, Bozeman, Montana, United States of America
| | - Mara Westenberg
- Montana Molecular, Bozeman, Montana, United States of America
| | - Yongxin Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Thomas E. Hughes
- Montana Molecular, Bozeman, Montana, United States of America
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
42
|
Graybill C, Wee B, Atwood SX, Prehoda KE. Partitioning-defective protein 6 (Par-6) activates atypical protein kinase C (aPKC) by pseudosubstrate displacement. J Biol Chem 2012; 287:21003-11. [PMID: 22544755 DOI: 10.1074/jbc.m112.360495] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Atypical protein kinase C (aPKC) controls cell polarity by modulating substrate cortical localization. Aberrant aPKC activity disrupts polarity, yet the mechanisms that control aPKC remain poorly understood. We used a reconstituted system with purified components and a cultured cell cortical displacement assay to investigate aPKC regulation. We find that aPKC is autoinhibited by two domains within its NH(2)-terminal regulatory half, a pseudosubstrate motif that occupies the kinase active site, and a C1 domain that assists in this process. The Par complex member Par-6, previously thought to inhibit aPKC, is a potent activator of aPKC in our assays. Par-6 and aPKC interact via PB1 domain heterodimerization, and this interaction activates aPKC by displacing the pseudosubstrate, although full activity requires the Par-6 CRIB-PDZ domains. We propose that, along with its previously described roles in controlling aPKC localization, Par-6 allosterically activates aPKC to allow for high spatial and temporal control of substrate phosphorylation and polarization.
Collapse
Affiliation(s)
- Chiharu Graybill
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Mitochondria are dynamic organelles that frequently undergo fusion and fission, the balance of which is critical for proper cellular functioning and viability. Most studies on mitochondrial fusion and fission mechanisms have focused on proteins thought to physically mediate the events. However, dynamic changes in membrane phospholipids also play roles in facilitating the fusion and fission events. This chapter will review the importance of lipids in mitochondrial dynamics and some of the methods that can be used to study the function of lipids in mitochondrial fusion and fission.
Collapse
Affiliation(s)
- Huiyan Huang
- Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, USA
| | | |
Collapse
|
44
|
|
45
|
Ziemba BP, Booth JC, Jones DNM. 1H, 13C and 15N NMR assignments of the C1A and C1B subdomains of PKC-delta. BIOMOLECULAR NMR ASSIGNMENTS 2011; 5:125-129. [PMID: 21132404 PMCID: PMC4396712 DOI: 10.1007/s12104-010-9283-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
The Protein Kinase C family of enzymes is a group of serine/threonine kinases that play central roles in cell-cycle regulation, development and cancer. A key step in the activation of PKC is translocation to membranes and binding of membrane-associated activators including diacylglycerol (DAG). Interaction of novel and conventional isotypes of PKC with DAG and phorbol esters occurs through the two C1 regulatory domains (C1A and C1B), which exhibit distinct ligand binding selectivity that likely controls enzyme activation by different co-activators. PKC has also been implicated in physiological responses to alcohol consumption and it has been proposed that PKCα (Slater et al. J Biol Chem 272(10):6167-6173, 1997; Slater et al. Biochemistry 43(23):7601-7609, 2004), PKCε (Das et al. Biochem J 421(3):405-413, 2009) and PKCδ (Das et al. J Biol Chem 279(36):37964-37972, 2004; Das et al. Protein Sci 15(9):2107-2119, 2006) contain specific alcohol-binding sites in their C1 domains. We are interested in understanding how ethanol affects signal transduction processes through its affects on the structure and function of the C1 domains of PKC. Here we present the (1)H, (15)N and (13)C NMR chemical shift assignments for the Rattus norvegicus PKCδ C1A and C1B proteins.
Collapse
Affiliation(s)
- Brian P Ziemba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
46
|
Duquesnes N, Lezoualc'h F, Crozatier B. PKC-delta and PKC-epsilon: foes of the same family or strangers? J Mol Cell Cardiol 2011; 51:665-73. [PMID: 21810427 DOI: 10.1016/j.yjmcc.2011.07.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/24/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022]
Abstract
Protein kinase C (PKC) is a family of 10 serine/threonine kinases divided into 3 subfamilies, classical, novel and atypical classes. Two PKC isozymes of the novel group, PKCε and PKCδ, have different and sometimes opposite effects. PKCε stimulates cell growth and differentiation while PKCδ is apoptotic. In the heart, they are among the most expressed PKC isozymes and they are opposed in the preconditioning process with a positive role of PKCε and an inhibiting role of PKCδ. The goal of this review is to analyze the structural differences of these 2 enzymes that may explain their different behaviors and properties.
Collapse
|
47
|
Huang H, Gao Q, Peng X, Choi SY, Sarma K, Ren H, Morris AJ, Frohman MA. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 2011; 20:376-87. [PMID: 21397848 DOI: 10.1016/j.devcel.2011.01.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/15/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
The mammalian Phospholipase D MitoPLD facilitates mitochondrial fusion by generating the signaling lipid phosphatidic acid (PA). The Drosophila MitoPLD homolog Zucchini (Zuc), a proposed cytoplasmic nuclease, is required for piRNA generation, a critical event in germline development. We show that Zuc localizes to mitochondria and has MitoPLD-like activity. Conversely, MitoPLD(-/-) mice exhibit the meiotic arrest, DNA damage, and male sterility characteristic of mice lacking piRNAs. The primary function of MitoPLD seems to be the generation of mitochondrial-surface PA. This PA in turn recruits the phosphatase Lipin 1, which converts PA to diacylglycerol and promotes mitochondrial fission, suggesting a mechanism for mitochondrial morphology homeostasis. MitoPLD and Lipin 1 have opposing effects on mitochondria length and on intermitochondrial cement (nuage), a structure found between aggregated mitochondria that is implicated in piRNA generation. We propose that mitochondrial-surface PA generated by MitoPLD/Zuc recruits or activates nuage components critical for piRNA production.
Collapse
Affiliation(s)
- Huiyan Huang
- Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5140, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
DNA damage targets PKCη to the nuclear membrane via its C1b domain. Exp Cell Res 2011; 317:1465-75. [PMID: 21514295 DOI: 10.1016/j.yexcr.2011.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/10/2011] [Accepted: 03/31/2011] [Indexed: 11/23/2022]
Abstract
Translocation to cellular membranes is one of the hallmarks of PKC activation, occurring as a result of the generation of lipid secondary messengers in target membrane compartments. The activation-induced translocation of PKCs and binding to membranes is largely directed by their regulatory domains. We have previously reported that PKCη, a member of the novel subfamily and an epithelial specific isoform, is localized at the cytoplasm and ER/Golgi and is translocated to the plasma membrane and the nuclear envelope upon short-term activation by PMA. Here we show that PKCη is shuttling between the cytoplasm and the nucleus and that upon etoposide induced DNA damage is tethered at the nuclear envelope. Although PKCη expression and its phosphorylation on the hydrophobic motif (Ser675) are increased by etoposide, this phosphorylation is not required for its accumulation at the nuclear envelope. Moreover, we demonstrate that the C1b domain is sufficient for translocation to the nuclear envelope. We further show that, similar to full-length PKCη, the C1b domain could also confer protection against etoposide-induced cell death. Our studies demonstrate translocation of PKCη to the nuclear envelope, and suggest that its spatial regulation could be important for its cellular functions including effects on cell death.
Collapse
|
49
|
Protein kinase C: an attractive target for cancer therapy. Cancers (Basel) 2011; 3:531-67. [PMID: 24212628 PMCID: PMC3756376 DOI: 10.3390/cancers3010531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 12/21/2022] Open
Abstract
Apoptosis plays an important role during all stages of carcinogenesis and the development of chemoresistance in tumor cells may be due to their selective defects in the intracellular signaling proteins, central to apoptotic pathways. Consequently, many studies have focused on rendering the chemotherapy more effective in order to prevent chemoresistance and pre-clinical and clinical data has suggested that protein kinase C (PKC) may represent an attractive target for cancer therapy. Therefore, a complete understanding of how PKC regulates apoptosis and chemoresistance may lead to obtaining a PKC-based therapy that is able to reduce drug dosages and to prevent the development of chemoresistance.
Collapse
|
50
|
Kajimoto T, Sawamura S, Tohyama Y, Mori Y, Newton AC. Protein kinase C {delta}-specific activity reporter reveals agonist-evoked nuclear activity controlled by Src family of kinases. J Biol Chem 2010; 285:41896-910. [PMID: 20959447 PMCID: PMC3009917 DOI: 10.1074/jbc.m110.184028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/18/2010] [Indexed: 12/20/2022] Open
Abstract
Conventional and novel protein kinase C (PKC) isozymes transduce the abundance of signals mediated by phospholipid hydrolysis; however redundancy in regulatory mechanisms confounds dissecting the unique signaling properties of each of the eight isozymes constituting these two subgroups. Previously, we created a genetically encoded reporter (C kinase activity reporter (CKAR)) to visualize the rate, amplitude, and duration of agonist-evoked PKC signaling at specific locations within the cell. Here we designed a reporter, δCKAR, that specifically measures the activation signature of one PKC isozyme, PKC δ, in cells, revealing unique spatial and regulatory properties of this isozyme. Specifically, we show two mechanisms of activation: 1) agonist-stimulated activation at the plasma membrane (the site of most robust PKC δ signaling), Golgi, and mitochondria that is independent of Src and can be triggered by phorbol esters and 2) agonist-stimulated activation in the nucleus that requires Src kinase activation and cannot be triggered by phorbol esters. Translocation studies reveal that the G-protein-coupled receptor agonist UTP induces the translocation of PKC δ into the nucleus by a mechanism that depends on the C2 domain and requires Src kinase activity. However, translocation from the cytosol into the nucleus is not required for the Src-dependent regulation of nuclear activity; a construct of PKC δ prelocalized to the nucleus continues to be activated by UTP by a mechanism dependent on Src kinase activity. These data identify the nucleus as a signaling hub for PKC δ that is driven by receptor-mediated signaling pathways (but not phorbol esters) and differs from signaling at plasma membrane and Golgi in that it is controlled by Src family kinases.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- From the Department of Pharmacology, University of California at San Diego, La Jolla, California 92093
- the Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan, and
| | - Seishiro Sawamura
- the Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan, and
| | - Yumi Tohyama
- the Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, Hyogo 670-8524, Japan
| | - Yasuo Mori
- the Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan, and
| | - Alexandra C. Newton
- From the Department of Pharmacology, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|