1
|
Wang Y, Li Y, Li M, Wang K, Xiong J, Wang T, Wang Y, Guo Y, Kong L, Li M. A Combined Transcriptomic and Proteomic Analysis of Monkeypox Virus A23 Protein on HEK293T Cells. Int J Mol Sci 2024; 25:8678. [PMID: 39201364 PMCID: PMC11354578 DOI: 10.3390/ijms25168678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Monkeypox virus (MPXV) is a cross-kingdom pathogen infecting both humans and wildlife, which poses a significant health risk to the public. Although MPXV attracts broad attention, there is a lack of adequate studies to elucidate pathogenic mechanisms associated with viral infections. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was used to explore the transcriptional and metabolic responses of MPXV A23 protein to HEK293T cells. The protein-protein interactions and signaling pathways were conducted by GO and KEGG analyses. The localization of A23 protein in HEK293T cells was detected by immunofluorescence. A total of 648 differentially expressed genes (DEGs) were identified in cells by RNA-Seq, including 314 upregulated genes and 334 downregulated genes. Additionally, liquid chromatography-tandem mass spectrometry (LC-MS/MS) detected 115 cellular proteins that interact with the A23 proteins. Transcriptomic sequencing analysis revealed that transfection of MPXV A23 protein modulated genes primarily associated with cellular apoptosis and DNA damage repair. Proteomic analysis indicated that this protein primarily interacted with host ribosomal proteins and histones. Following the identification of the nuclear localization sequence RKKR within the A23 protein, a truncated mutant A23ΔRKKR was constructed to investigate the subcellular localization of A23 protein. The wild-type A23 protein exhibits a significantly higher nuclear-to-cytoplasmic ratio, exceeding 1.5, in contrast to the mutant A23ΔRKKR, which has a ratio of approximately 1. Immunofluorescence assays showed that the A23 protein was mainly localized in the nucleus. The integration of transcriptomics and proteomics analysis provides a comprehensive understanding of the interaction between MPXV A23 protein and the host. Our findings highlight the potential role of this enzyme in suppressing host antiviral immune responses and modulating host gene expression.
Collapse
Affiliation(s)
- Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yihan Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Keyi Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Jiaqi Xiong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yu Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yunli Guo
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Meifeng Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| |
Collapse
|
2
|
Graf A, Rziha HJ, Krebs S, Wolf E, Blum H, Büttner M. Parapoxvirus species revisited by whole genome sequencing: A retrospective analysis of bovine virus isolates. Virus Res 2024; 346:199404. [PMID: 38782262 PMCID: PMC11152744 DOI: 10.1016/j.virusres.2024.199404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Parapoxviruses (PPV) of animals are spread worldwide. While the Orf virus (ORFV) species is a molecularly well-characterized prototype pathogen of small ruminants, the genomes of virus species affecting large ruminants, namely Bovine papular stomatitis virus (BPSV) and Pseudocowpox virus (PCPV), are less well known. Using Nanopore sequencing we retrospectively show the whole genome sequences (WGS) of six BPSV, three PCPV isolates and an attenuated ORFV strain, originating from different geographic locations. A phylogenetic tree shows that the de novo assembled genomes belong to PPV species including WGS of reference PPV. Remarkably, Nanopore sequencing allowed the molecular resolution of inverted terminal repeats (ITR) and the hairpin loop within the de novo assembled WGS. Additionally, peculiarities regarding map location of two genes and the heterogeneity of a genomic region were noted. Details for the molecular variability of an interferon response modulatory gene (ORF116) and the PCPV specificity of gene 073.5 are reported. In summary, WGS gained by Nanopore sequencing allowed analysis of complete PPV genomes and confident virus species attribution within a phylogenetic tree avoiding uncertainty of limited gene-based diagnostics. Nanopore-based WGS provides robust comparison of PPV genomes and reliable identity determination of new Poxviruses.
Collapse
Affiliation(s)
- Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Mathias Büttner
- Institute of Immunology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
3
|
Nautiyal A, Thakur M. Prokaryotic DNA Crossroads: Holliday Junction Formation and Resolution. ACS OMEGA 2024; 9:12515-12538. [PMID: 38524412 PMCID: PMC10956419 DOI: 10.1021/acsomega.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/26/2024]
Abstract
Cells are continually exposed to a multitude of internal and external stressors, which give rise to various types of DNA damage. To protect the integrity of their genetic material, cells are equipped with a repertoire of repair proteins that engage in various repair mechanisms, facilitated by intricate networks of protein-protein and protein-DNA interactions. Among these networks is the homologous recombination (HR) system, a molecular repair mechanism conserved in all three domains of life. On one hand, HR ensures high-fidelity, template-dependent DNA repair, while on the other hand, it results in the generation of combinatorial genetic variations through allelic exchange. Despite substantial progress in understanding this pathway in bacteria, yeast, and humans, several critical questions remain unanswered, including the molecular processes leading to the exchange of DNA segments, the coordination of protein binding, conformational switching during branch migration, and the resolution of Holliday Junctions (HJs). This Review delves into our current understanding of the HR pathway in bacteria, shedding light on the roles played by various proteins or their complexes at different stages of HR. In the first part of this Review, we provide a brief overview of the end resection processes and the strand-exchange reaction, offering a concise depiction of the mechanisms that culminate in the formation of HJs. In the latter half, we expound upon the alternative methods of branch migration and HJ resolution more comprehensively and holistically, considering the historical research timelines. Finally, when we consolidate our knowledge about HR within the broader context of genome replication and the emergence of resistant species, it becomes evident that the HR pathway is indispensable for the survival of bacteria in diverse ecological niches.
Collapse
Affiliation(s)
- Astha Nautiyal
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Manoj Thakur
- Sri
Venkateswara College, Benito Juarez Road, University of Delhi, New Delhi 110021, India
| |
Collapse
|
4
|
Ray S, Pal N, Walter NG. Single bacterial resolvases first exploit, then constrain intrinsic dynamics of the Holliday junction to direct recombination. Nucleic Acids Res 2021; 49:2803-2815. [PMID: 33619520 PMCID: PMC7969024 DOI: 10.1093/nar/gkab096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/30/2021] [Accepted: 02/06/2021] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination forms and resolves an entangled DNA Holliday Junction (HJ) crucial for achieving genetic reshuffling and genome repair. To maintain genomic integrity, specialized resolvase enzymes cleave the entangled DNA into two discrete DNA molecules. However, it is unclear how two similar stacking isomers are distinguished, and how a cognate sequence is found and recognized to achieve accurate recombination. We here use single-molecule fluorescence observation and cluster analysis to examine how prototypic bacterial resolvase RuvC singles out two of the four HJ strands and achieves sequence-specific cleavage. We find that RuvC first exploits, then constrains the dynamics of intrinsic HJ isomer exchange at a sampled branch position to direct cleavage toward the catalytically competent HJ conformation and sequence, thus controlling recombination output at minimal energetic cost. Our model of rapid DNA scanning followed by ‘snap-locking’ of a cognate sequence is strikingly consistent with the conformational proofreading of other DNA-modifying enzymes.
Collapse
Affiliation(s)
- Sujay Ray
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan Ann Arbor, MI 48109, USA
| | - Nibedita Pal
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
van Schalkwyk A, Kara P, Ebersohn K, Mather A, Annandale CH, Venter EH, Wallace DB. Potential link of single nucleotide polymorphisms to virulence of vaccine-associated field strains of lumpy skin disease virus in South Africa. Transbound Emerg Dis 2020; 67:2946-2960. [PMID: 32506755 PMCID: PMC9292827 DOI: 10.1111/tbed.13670] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 11/27/2022]
Abstract
South Africa is endemic for lumpy skin disease and is therefore reliant on various live attenuated vaccines for the control and prevention of the disease. In recent years, widespread outbreaks of vaccine‐like strains of lumpy skin disease virus (LSDV) were reported internationally, leading to an increase in the generation of full genome sequences from field isolates. In this study, the complete genomes of six LSDVs submitted during active outbreaks in the 1990s in South Africa were generated. Based on phylogenetic analysis, the six viruses clustered with vaccine strains in LSDV Subgroup 1.1 and are subsequently referred to as vaccine‐associated. The genetic differences between the phenotypically distinct vaccine and vaccine‐associated strains were 67 single nucleotide polymorphisms (SNPs). This study characterized the location and possible importance of each of these SNPs in their role during virulence and host specificity.
Collapse
Affiliation(s)
- Antoinette van Schalkwyk
- Vaccine and Diagnostic Development, Agricultural Research Council - Onderstepoort Veterinary Institute, Pretoria, South Africa
| | - Pravesh Kara
- Vaccine and Diagnostic Development, Agricultural Research Council - Onderstepoort Veterinary Institute, Pretoria, South Africa
| | - Karen Ebersohn
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Arshad Mather
- Vaccine and Diagnostic Development, Agricultural Research Council - Onderstepoort Veterinary Institute, Pretoria, South Africa
| | - Cornelius Henry Annandale
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Estelle Hildegard Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville Queensland, Australia
| | - David Brian Wallace
- Vaccine and Diagnostic Development, Agricultural Research Council - Onderstepoort Veterinary Institute, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Conrad SJ, Liu J. Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes. Methods Mol Biol 2019; 1937:189-209. [PMID: 30706397 DOI: 10.1007/978-1-4939-9065-8_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatments with poxvirus vectors can have long-lasting immunological impact in the host, and thus they have been extensively studied to treat diseases and for vaccine development. More importantly, the oncolytic properties of poxviruses have led to their development as cancer therapeutics. Two poxviruses, vaccinia virus (VACV) and myxoma virus (MYXV), have been extensively studied as virotherapeutics with promising results. Vaccinia virus vectors have advanced to the clinic and have been tested as oncolytic therapeutics for several cancer types with successes in phase I/II clinical trials. In addition to oncolytic applications, MYXV has been explored for additional applications including immunotherapeutics, purging of cancer progenitor cells, and treatments for graft-versus-host diseases. These novel therapeutic applications have encouraged its advancement into clinical trials. To meet the demands of different treatment needs, VACV and MYXV can be genetically engineered to express therapeutic transgenes. The engineering process used in poxvirus vectors can be very different from that of other DNA virus vectors (e.g., the herpesviruses). This chapter is intended to serve as a guide to those wishing to engineer poxvirus vectors for therapeutic transgene expression and to produce viral preparations for preclinical studies.
Collapse
Affiliation(s)
- Steven J Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA. .,The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
7
|
Li H, Hwang Y, Perry K, Bushman F, Van Duyne GD. Structure and Metal Binding Properties of a Poxvirus Resolvase. J Biol Chem 2016; 291:11094-104. [PMID: 27013661 DOI: 10.1074/jbc.m115.709139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 11/06/2022] Open
Abstract
Poxviruses replicate their linear genomes by forming concatemers that must be resolved into monomeric units to produce new virions. A viral resolvase cleaves DNA four-way junctions extruded at the concatemer junctions to produce monomeric genomes. This cleavage reaction is required for viral replication, so the resolvase is an attractive target for small molecule inhibitors. To provide a platform for understanding resolvase mechanism and designing inhibitors, we have determined the crystal structure of the canarypox virus (CPV) resolvase. CPV resolvase is dimer of RNase H superfamily domains related to Escherichia coli RuvC, with an active site lined by highly conserved acidic residues that bind metal ions. There are several intriguing structural differences between resolvase and RuvC, and a model of the CPV resolvase·Holliday junction complex provides insights into the consequences of these differences, including a plausible explanation for the weak sequence specificity exhibited by the poxvirus enzymes. The model also explains why the poxvirus resolvases are more promiscuous than RuvC, cleaving a variety of branched, bulged, and flap-containing substrates. Based on the unique active site structure observed for CPV resolvase, we have carried out a series of experiments to test divalent ion usage and preferences. We find that the two resolvase metal binding sites have different preferences for Mg(2+) versus Mn(2+) Optimal resolvase activity is maintained with 5 μm Mn(2+) and 100 μm Mg(2+), concentrations that are well below those required for either metal alone. Together, our findings provide biochemical insights and structural models that will facilitate studying poxvirus replication and the search for efficient poxvirus inhibitors.
Collapse
Affiliation(s)
- Huiguang Li
- From the Department of Biochemistry & Biophysics, the Graduate Group in Biochemistry and Molecular Biophysics, and
| | - Young Hwang
- the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kay Perry
- the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, and the Argonne National Laboratory, Argonne, Illinois 60439
| | - Frederic Bushman
- the Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| | | |
Collapse
|
8
|
|
9
|
Abstract
Poxviruses are large, enveloped viruses that replicate in the cytoplasm and encode proteins for DNA replication and gene expression. Hairpin ends link the two strands of the linear, double-stranded DNA genome. Viral proteins involved in DNA synthesis include a 117-kDa polymerase, a helicase-primase, a uracil DNA glycosylase, a processivity factor, a single-stranded DNA-binding protein, a protein kinase, and a DNA ligase. A viral FEN1 family protein participates in double-strand break repair. The DNA is replicated as long concatemers that are resolved by a viral Holliday junction endonuclease.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
10
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
11
|
Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol 2011; 12:33. [PMID: 21816114 PMCID: PMC3176155 DOI: 10.1186/1471-2199-12-33] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/05/2011] [Indexed: 04/10/2023] Open
Abstract
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others. Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v,v,i,, Královopolská 135, Brno, 612 65, Czech Republic.
| | | | | | | |
Collapse
|
12
|
Recombination-dependent concatemeric viral DNA replication. Virus Res 2011; 160:1-14. [PMID: 21708194 DOI: 10.1016/j.virusres.2011.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022]
Abstract
The initiation of viral double stranded (ds) DNA replication involves proteins that recruit and load the replisome at the replication origin (ori). Any block in replication fork progression or a programmed barrier may act as a factor for ori-independent remodelling and assembly of a new replisome at the stalled fork. Then replication initiation becomes dependent on recombination proteins, a process called recombination-dependent replication (RDR). RDR, which is recognized as being important for replication restart and stability in all living organisms, plays an essential role in the replication cycle of many dsDNA viruses. The SPP1 virus, which infects Bacillus subtilis cells, serves as a paradigm to understand the links between replication and recombination in circular dsDNA viruses. SPP1-encoded initiator and replisome assembly proteins control the onset of viral replication and direct the recruitment of host-encoded replisomal components at viral oriL. SPP1 uses replication fork reactivation to switch from ori-dependent θ-type (circle-to-circle) replication to σ-type RDR. Replication fork arrest leads to a double strand break that is processed by viral-encoded factors to generate a D-loop into which a new replisome is assembled, leading to σ-type viral replication. SPP1 RDR proteins are compared with similar proteins encoded by other viruses and their possible in vivo roles are discussed.
Collapse
|
13
|
Culyba MJ, Hwang Y, Hu JY, Minkah N, Ocwieja KE, Bushman FD. Metal cofactors in the structure and activity of the fowlpox resolvase. J Mol Biol 2010; 399:182-95. [PMID: 20380839 PMCID: PMC2880857 DOI: 10.1016/j.jmb.2010.03.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 11/21/2022]
Abstract
Poxvirus DNA replication generates linear concatemers containing many copies of the viral genome with inverted repeat sequences at the junctions between monomers. The inverted repeats refold to generate Holliday junctions, which are cleaved by the virus-encoded resolvase enzyme to form unit-length genomes. Here we report studies of the influence of metal cofactors on the activity and structure of the resolvase of fowlpox virus, which provides a tractable model for in vitro studies. Small-molecule inhibitors of related enzymes bind simultaneously to metal cofactors and nearby surface amino acid residues, so understanding enzyme-cofactor interactions is important for the design of antiviral agents. Analysis of inferred active-site residues (D7, E60, K102, D132, and D135) by mutagenesis and metal rescue experiments specified residues that contribute to binding metal ions and that multiple binding sites are probably involved. Differential electrophoretic analysis was used to map the conformation of the DNA junction when bound by resolvase. For the wild-type complex in the presence of EDTA (ethylenediaminetetraacetic acid) or Ca(2+), migration was consistent with the DNA arms arranged in near-tetrahedral geometry. However, the D7N active-site mutant resolvase held the arms in a more planar arrangement in EDTA, Ca(2+), or Mg(2+) conditions, implicating metal-dependent contacts at the active site in the larger architecture of the complex. These data show how divalent metals dictate the conformation of FPV resolvase-DNA complexes and subsequent DNA cleavage.
Collapse
Affiliation(s)
- Matthew J Culyba
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
14
|
Culyba MJ, Hwang Y, Minkah N, Bushman FD. DNA binding and cleavage by the fowlpox virus resolvase. J Biol Chem 2008; 284:1190-201. [PMID: 19004818 DOI: 10.1074/jbc.m807864200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first steps of poxvirus DNA synthesis yield concatemeric arrays of covalently linked genomes. The virus-encoded Holliday junction resolvase is required to process concatemers into unit-length genomes for packaging. Previous studies of the vaccinia virus resolvase have been problematic due to poor protein solubility. We found that fowlpox virus resolvase was much more tractable. Fowlpox resolvase formed complexes with a variety of branched DNA substrates, but not linear DNA, and had the highest affinity for a Holliday junction substrate, illustrating a previously unappreciated affinity for Holliday junctions over other substrates. The cleavage activity was monitored in fixed time assays, showing that, as with vaccinia resolvase, the fowlpox enzyme could cleave a wide array of branched DNA substrates. Single turnover kinetic analysis revealed the Holliday junction substrate was cleaved 90-fold faster than a splayed duplex substrate containing a single to double strand transition. Multiple turnover kinetic analysis, however, showed that the cleavage step was not limiting for the full reaction cycle. Cleavage by resolvase was also tightly coupled at symmetrical positions across the junction, and coupling required the complete Holliday junction structure. Last, we found that cleavage of an extruded cruciform yielded a product, which after treatment with ligase, had the properties expected for covalently closed DNA hairpin ends, as is seen for poxvirus genome monomers. These findings provide a tractable poxvirus resolvase usable for the development of small molecule inhibitors.
Collapse
Affiliation(s)
- Matthew J Culyba
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
15
|
Culyba MJ, Minkah N, Hwang Y, Benhamou OMJ, Bushman FD. DNA branch nuclease activity of vaccinia A22 resolvase. J Biol Chem 2007; 282:34644-52. [PMID: 17890227 DOI: 10.1074/jbc.m705322200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication, recombination, and repair can result in formation of diverse branched DNA structures. Many large DNA viruses are known to encode DNA branch nucleases, but several of the expected activities have not previously been found among poxvirus enzymes. Vaccinia encodes an enzyme, A22 resolvase, which is known to be active on four-stranded DNA junctions (Holliday junctions) or Holliday junction-like structures containing three of the four strands. Here we report that A22 resolvase in fact has a much wider substrate specificity than previously appreciated. A22 resolvase cleaves Y-junctions, single-stranded DNA flaps, transitions from double strands to unpaired single strands ("splayed duplexes"), and DNA bulges in vitro. We also report site-directed mutagenesis studies of candidate active site residues. The results identify the likely active site and support a model in which a single active site is responsible for cleavage on Holliday junctions and splayed duplexes. Lastly, we describe possible roles for the A22 resolvase DNA-branch nuclease activity in DNA replication and repair.
Collapse
Affiliation(s)
- Matthew J Culyba
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | | | | | |
Collapse
|
16
|
Culyba MJ, Harrison JE, Hwang Y, Bushman FD. DNA cleavage by the A22R resolvase of vaccinia virus. Virology 2006; 352:466-76. [PMID: 16781759 DOI: 10.1016/j.virol.2006.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 04/21/2006] [Accepted: 05/06/2006] [Indexed: 11/16/2022]
Abstract
Vaccinia virus encodes an enzyme, A22R, required during DNA replication for cleaving viral DNA concatamers to yield unit-length viral genomes. The concatamer junctions contain inverted repeat sequences that can be extruded as cruciforms, yielding Holliday junctions. Previous work indicated that A22R can cleave Holliday junctions in vitro. To investigate the mechanism of action of A22R, we have optimized reaction conditions and characterized the sequence specificity of cleavage. We found that addition of 20% dimethylsulfoxide boosted product formation six-fold, resulting in improved sensitivity of cleavage assays. To analyze cleavage specificity, we took advantage of mobile Holliday junctions, in which branch migration allowed sampling of many DNA sequences. We found that A22R weakly favors cleavage at the sequence 5'-(G/C) downward arrow(A/T)-3', and so is much less sequence specific than its Escherichia coli relative, RuvC. Analysis of the reaction products revealed that A22R cleaves to leave a 3' hydroxyl at the cleaved phosphodiester bond.
Collapse
Affiliation(s)
- Matthew J Culyba
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | | | | | |
Collapse
|