1
|
Abini-Agbomson S, Gretarsson K, Shih RM, Hsieh L, Lou T, De Ioannes P, Vasilyev N, Lee R, Wang M, Simon MD, Armache JP, Nudler E, Narlikar G, Liu S, Lu C, Armache KJ. Catalytic and non-catalytic mechanisms of histone H4 lysine 20 methyltransferase SUV420H1. Mol Cell 2023; 83:2872-2883.e7. [PMID: 37595555 DOI: 10.1016/j.molcel.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/H4K20me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation. It is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes, suggesting that the enzyme likely has uncharacterized non-catalytic activities. Our cryoelectron microscopy (cryo-EM), biochemical, biophysical, and cellular analyses reveal how SUV420H1 recognizes its nucleosome substrates, and how histone variant H2A.Z stimulates its catalytic activity. SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from the histone octamer, which is a non-catalytic activity. We hypothesize that this regulates the accessibility of large macromolecular complexes to chromatin. We show that SUV420H1 can promote chromatin condensation, another non-catalytic activity that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.
Collapse
Affiliation(s)
- Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Rochelle M Shih
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Laura Hsieh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Tracy Lou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Miao Wang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Geeta Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Abini-Agbomson S, Gretarsson K, Shih RM, Hsieh L, Lou T, De Ioannes P, Vasilyev N, Lee R, Wang M, Simon M, Armache JP, Nudler E, Narlikar G, Liu S, Lu C, Armache KJ. Catalytic and non-catalytic mechanisms of histone H4 lysine 20 methyltransferase SUV420H1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533220. [PMID: 36993485 PMCID: PMC10055266 DOI: 10.1101/2023.03.17.533220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The intricate regulation of chromatin plays a key role in controlling genome architecture and accessibility. Histone lysine methyltransferases regulate chromatin by catalyzing the methylation of specific histone residues but are also hypothesized to have equally important non-catalytic roles. SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation, and is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes suggesting the enzyme likely has uncharacterized non-catalytic activities. To characterize the catalytic and non-catalytic mechanisms SUV420H1 uses to modify chromatin, we determined cryo- EM structures of SUV420H1 complexes with nucleosomes containing histone H2A or its variant H2A.Z. Our structural, biochemical, biophysical, and cellular analyses reveal how both SUV420H1 recognizes its substrate and H2A.Z stimulates its activity, and show that SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from histone octamer. We hypothesize that this detachment increases DNA accessibility to large macromolecular complexes, a prerequisite for DNA replication and repair. We also show that SUV420H1 can promote chromatin condensates, another non-catalytic role that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.
Collapse
Affiliation(s)
- Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Rochelle M. Shih
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Laura Hsieh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Tracy Lou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Miao Wang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Matthew Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Geeta Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Lead contact
| |
Collapse
|
3
|
Singh PB, Newman AG. On the relations of phase separation and Hi-C maps to epigenetics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191976. [PMID: 32257349 PMCID: PMC7062049 DOI: 10.1098/rsos.191976] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks of constitutive heterochromatin, heterochromatin protein 1 (HP1) and its binding partner the H3K9me2/3 determinant of the histone code. They are key epigenetic regulators in eukaryotes. Both hallmarks are also found outside mammalian constitutive heterochromatin as constituents of larger (0.1-5 Mb) heterochromatin-like domains and smaller (less than 100 kb) complexes. The well-documented ability of HP1 proteins to function as bridges between H3K9me2/3-marked nucleosomes contributes to polymer-polymer phase separation that packages epigenetically heritable chromatin states during interphase. Contacts mediated by HP1 'bridging' are likely to have been detected in Hi-C maps, as evidenced by the B4 heterochromatic subcompartment that emerges from contacts between large KRAB-ZNF heterochromatin-like domains. Further, mutational analyses have revealed a finer, innate, compartmentalization in Hi-C experiments that probably reflect contacts involving smaller domains/complexes. Proteins that bridge (modified) DNA and histones in nucleosomal fibres-where the HP1-H3K9me2/3 interaction represents the most evolutionarily conserved paradigm-could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Nur-Sultan Z05K4F4, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russian Federation
| | - Andrew G. Newman
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Sánchez OF, Mendonca A, Min A, Liu J, Yuan C. Monitoring Histone Methylation (H3K9me3) Changes in Live Cells. ACS OMEGA 2019; 4:13250-13259. [PMID: 31460452 PMCID: PMC6705211 DOI: 10.1021/acsomega.9b01413] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/19/2019] [Indexed: 05/16/2023]
Abstract
H3K9me3 (methylation of lysine 9 of histone H3) is an epigenetic modification that acts as a repressor mark. Several diseases, including cancers and neurological disorders, have been associated with aberrant changes in H3K9me3 levels. Different tools have been developed to enable detection and quantification of H3K9me3 levels in cells. Most techniques, however, lack live cell compatibility. To address this concern, we have engineered recombinant protein sensors for probing H3K9me3 in situ. A heterodimeric sensor containing a chromodomain and chromo shadow domain from HP1a was found to be optimal in recognizing H3K9me3 and exhibited similar spatial resolution to commercial antibodies. Our sensor offers similar quantitative accuracy in characterizing changes in H3K9me3 compared to antibodies but claims single cell resolution. The sensor was applied to evaluate changes in H3K9me3 responding to environmental chemical atrazine (ATZ). ATZ was found to result in significant reductions in H3K9me3 levels after 24 h of exposure. Its impact on the distribution of H3K9me3 among cell populations was also assessed and found to be distinctive. We foresee the application of our sensors in multiple toxicity and drug-screening applications.
Collapse
Affiliation(s)
- Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Alan Min
- Department of Computer Science, Purdue University, West Lafayette 47907, Indiana, United States
| | - Jichang Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
- Purdue University Center for Cancer Research, West Lafayette 47907, Indiana, United States
| |
Collapse
|
5
|
Wu YK, Umeshima H, Kurisu J, Kengaku M. Nesprins and opposing microtubule motors generate a point force that drives directional nuclear motion in migrating neurons. Development 2018. [PMID: 29519888 DOI: 10.1242/dev.158782] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nuclear migration of newly born neurons is essential for cortex formation in the brain. The nucleus is translocated by actin and microtubules, yet the actual force generated by the interplay of these cytoskeletons remains elusive. High-resolution time-lapse observation of migrating murine cerebellar granule cells revealed that the nucleus actively rotates along the direction of its translocation, independently of centrosome motion. Pharmacological and molecular perturbation indicated that spin torque is primarily generated by microtubule motors through the LINC complex in the absence of actomyosin contractility. In contrast to the prevailing view that microtubules are uniformly oriented around the nucleus, we observed that the perinuclear microtubule arrays are of mixed polarity and both cytoplasmic dynein complex and kinesin-1 are required for nuclear rotation. Kinesin-1 can exert a point force on the nuclear envelope via association with nesprins, and loss of kinesin-1 causes failure in neuronal migration in vivo Thus, microtubules steer the nucleus and drive its rotation and translocation via a dynamic, focal interaction of nesprins with kinesin-1 and dynein, and this is necessary for neuronal migration during brain development.
Collapse
Affiliation(s)
- You Kure Wu
- Graduate School of Biostudies, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroki Umeshima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junko Kurisu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mineko Kengaku
- Graduate School of Biostudies, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan .,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Christogianni A, Chatzantonaki E, Soupsana K, Giannios I, Platania A, Politou AS, Georgatos S. Heterochromatin remodeling in embryonic stem cells proceeds through stochastic de-stabilization of regional steady-states. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:661-673. [DOI: 10.1016/j.bbagrm.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/19/2016] [Accepted: 01/19/2017] [Indexed: 01/10/2023]
|
7
|
Liu Y, Qin S, Lei M, Tempel W, Zhang Y, Loppnau P, Li Y, Min J. Peptide recognition by heterochromatin protein 1 (HP1) chromoshadow domains revisited: Plasticity in the pseudosymmetric histone binding site of human HP1. J Biol Chem 2017; 292:5655-5664. [PMID: 28223359 DOI: 10.1074/jbc.m116.768374] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/16/2017] [Indexed: 12/26/2022] Open
Abstract
Heterochromatin protein 1 (HP1), a highly conserved non-histone chromosomal protein in eukaryotes, plays important roles in the regulation of gene transcription. Each of the three human homologs of HP1 includes a chromoshadow domain (CSD). The CSD interacts with various proteins bearing the PXVXL motif but also with a region of histone H3 that bears the similar PXXVXL motif. The latter interaction has not yet been resolved in atomic detail. Here we demonstrate that the CSDs of all three human HP1 homologs have comparable affinities to the PXXVXL motif of histone H3. The HP1 C-terminal extension enhances the affinity, as does the increasing length of the H3 peptide. The crystal structure of the human HP1γ CSD (CSDγ) in complex with an H3 peptide suggests that recognition of H3 by CSDγ to some extent resembles CSD-PXVXL interaction. Nevertheless, the prolyl residue of the PXXVXL motif appears to play a role distinct from that of Pro in the known HP1β CSD-PXVXL complexes. We consequently generalize the historical CSD-PXVXL interaction model and expand the search scope for additional CSD binding partners.
Collapse
Affiliation(s)
- Yanli Liu
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada and
| | - Su Qin
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada and
| | - Ming Lei
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada and
| | - Wolfram Tempel
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada and
| | - Yuzhe Zhang
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada and
| | - Peter Loppnau
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada and
| | - Yanjun Li
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada and
| | - Jinrong Min
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada and .,the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Cardinale A, Filesi I, Singh PB, Biocca S. Intrabody-mediated diverting of HP1β to the cytoplasm induces co-aggregation of H3-H4 histones and lamin-B receptor. Exp Cell Res 2015; 338:70-81. [PMID: 26364738 DOI: 10.1016/j.yexcr.2015.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Abstract
Diverting a protein from its intracellular location is a unique property of intrabodies. To interfere with the intracellular traffic of heterochromatin protein 1β (HP1β) in living cells, we have generated a cytoplasmic targeted anti-HP1β intrabody, specifically directed against the C-terminal portion of the molecule. HP1β is a conserved component of mouse and human constitutive heterochromatin involved in diverse nuclear functions including gene silencing, DNA repair and nuclear membrane assembly. We found that the anti-HP1β intrabody sequesters HP1β into cytoplasmic aggregates, inhibiting its traffic to the nucleus. Lamin B receptor (LBR) and a subset of core histones (H3/H4) are also specifically co-sequestered in the cytoplasm of anti-HP1β intrabody-expressing cells. Methylated histone H3 at K9 (Me9H3), a marker of constitutive heterochromatin, is not affected by the anti-HP1β intrabody expression. Hyper-acetylating conditions completely dislodge H3 from HP1β:LBR containing aggregates. The expression of anti-HP1β scFv fragments induces apoptosis, associated with an alteration of nuclear morphology. Both these phenotypes are specifically rescued either by overexpression of recombinant full length HP1β or by HP1β mutant containing the chromoshadow domain, but not by recombinant LBR protein. The HP1β-chromodomain mutant, on the other hand, does not rescue the phenotypes, but does compete with LBR for binding to HP1β. These findings provide new insights into the mode of action of cytoplasmic-targeted intrabodies and the interaction between HP1β and its binding partners involved in peripheral heterochromatin organisation.
Collapse
Affiliation(s)
- Alessio Cardinale
- Laboratory of Molecular and Cellular Neurobiology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Ilaria Filesi
- Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133 Roma, Italy
| | - Prim B Singh
- Department of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Silvia Biocca
- Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133 Roma, Italy.
| |
Collapse
|
9
|
Garrigues JM, Sidoli S, Garcia BA, Strome S. Defining heterochromatin in C. elegans through genome-wide analysis of the heterochromatin protein 1 homolog HPL-2. Genome Res 2014; 25:76-88. [PMID: 25467431 PMCID: PMC4317175 DOI: 10.1101/gr.180489.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Formation of heterochromatin serves a critical role in organizing the genome and regulating gene expression. In most organisms, heterochromatin flanks centromeres and telomeres. To identify heterochromatic regions in the heavily studied model C. elegans, which possesses holocentric chromosomes with dispersed centromeres, we analyzed the genome-wide distribution of the heterochromatin protein 1 (HP1) ortholog HPL-2 and compared its distribution to other features commonly associated with heterochromatin. HPL-2 binding highly correlates with histone H3 mono- and dimethylated at lysine 9 (H3K9me1 and H3K9me2) and forms broad domains on autosomal arms. Although HPL-2, like other HP1 orthologs, binds H3K9me peptides in vitro, the distribution of HPL-2 in vivo appears relatively normal in mutant embryos that lack H3K9me, demonstrating that the chromosomal distribution of HPL-2 can be achieved in an H3K9me-independent manner. Consistent with HPL-2 serving roles independent of H3K9me, hpl-2 mutant worms display more severe defects than mutant worms lacking H3K9me. HPL-2 binding is enriched for repetitive sequences, and on chromosome arms is anticorrelated with centromeres. At the genic level, HPL-2 preferentially associates with well-expressed genes, and loss of HPL-2 results in up-regulation of some binding targets and down-regulation of others. Our work defines heterochromatin in an important model organism and uncovers both shared and distinctive properties of heterochromatin relative to other systems.
Collapse
Affiliation(s)
- Jacob M Garrigues
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Susan Strome
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA;
| |
Collapse
|
10
|
Manukyan M, Singh PB. Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states. Sci Rep 2014; 4:4789. [PMID: 24763337 PMCID: PMC3999444 DOI: 10.1038/srep04789] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
We measured the dynamics of an essential epigenetic modifier, HP1β, in human cells at different stages of differentiation using Fluorescence Recovery After Photobleaching (FRAP). We found that HP1β mobility is similar in human embryonic stem cells (hES) and iPS cells where it is more mobile compared to fibroblasts; HP1β is less mobile in senescent fibroblasts than in young (dividing) fibroblasts. Introduction of "reprogramming factors", Oct4, Sox2, Klf4, cMyc and Lin28, into senescent fibroblasts and measuring the changes in HP1β mobility as reprogramming proceeds shows that the mobility of HP1β in senescent cells increases and by day 9 is the same as that found in young fibroblasts. Thus the dynamics of a key epigenetic modifier can be rejuvenated without de-differentiation through an embryonic stage. Future work will test whether other aspects of cellular physiology that age can be so rejuvenated without de-differentiation.
Collapse
Affiliation(s)
- Maria Manukyan
- Albert-Ludwigs-Universität Freiburg, BIOSS Centre for Biological Signalling Studies, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Prim B. Singh
- Fächerverbund Anatomie, Institut für Zell- und Neurobiologie, Charite – Universitätsmedizin, 10117 Berlin, Germany
| |
Collapse
|
11
|
Figueiredo MLA, Philip P, Stenberg P, Larsson J. HP1a recruitment to promoters is independent of H3K9 methylation in Drosophila melanogaster. PLoS Genet 2012; 8:e1003061. [PMID: 23166515 PMCID: PMC3499360 DOI: 10.1371/journal.pgen.1003061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin protein 1 (HP1) proteins, recognized readers of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me), are important regulators of heterochromatin-mediated gene silencing and chromosome structure. In Drosophila melanogaster three histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9: Su(var)3-9, Setdb1, and G9a. To probe the dependence of HP1a binding on H3K9me, its dependence on these three HKMTs, and the division of labor between the HKMTs, we have examined correlations between HP1a binding and H3K9me patterns in wild type and null mutants of these HKMTs. We show here that Su(var)3-9 controls H3K9me-dependent binding of HP1a in pericentromeric regions, while Setdb1 controls it in cytological region 2L:31 and (together with POF) in chromosome 4. HP1a binds to the promoters and within bodies of active genes in these three regions. More importantly, however, HP1a binding at promoters of active genes is independent of H3K9me and POF. Rather, it is associated with heterochromatin protein 2 (HP2) and open chromatin. Our results support a hypothesis in which HP1a nucleates with high affinity independently of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites. HP1 is a key protein in heterochromatin and epigenetic silencing, a phenomenon involving chromatin condensation. It is generally accepted that HP1 forms a dimer that links two adjacent nucleosomes through interactions with histone 3 methylated at lysine 9 (H3K9me). Since HP1 also interacts with the histone lysine methyltransferases (HKMTs) generating this modification, histone H3 becomes methylated and HP1 spreading is propagated. Here, we show that HP1a in Drosophila binds to promoters of active genes on chromosome 4 and pericentromeric regions. In contrast to current dogma, this binding is independent of H3K9me. In the presence of the HKMTs and H3K9me, HP1a is also enriched within the bodies of the bound genes. These findings shed new light on the role of HP1a and the epigenetic nature of this chromatin mark. We propose that HP1a interacts independently of H3K9me with the nucleosome with high affinity, probably via the H3 histone-fold. This interaction is followed by a more transient interaction between HP1a and H3K9me, which results in spreading of the HP1a enrichment into gene bodies. Overall, the presented results and hypothesized model provide an explanation for this epigenetic mark and possibly more general insights into the relationships between chromo-domain proteins and methylated histones.
Collapse
Affiliation(s)
| | - Philge Philip
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Jan Larsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
12
|
Munari F, Soeroes S, Zenn HM, Schomburg A, Kost N, Schröder S, Klingberg R, Rezaei-Ghaleh N, Stützer A, Gelato KA, Walla PJ, Becker S, Schwarzer D, Zimmermann B, Fischle W, Zweckstetter M. Methylation of lysine 9 in histone H3 directs alternative modes of highly dynamic interaction of heterochromatin protein hHP1β with the nucleosome. J Biol Chem 2012; 287:33756-65. [PMID: 22815475 DOI: 10.1074/jbc.m112.390849] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Binding of heterochromatin protein 1 (HP1) to the histone H3 lysine 9 trimethylation (H3K9me3) mark is a hallmark of establishment and maintenance of heterochromatin. Although genetic and cell biological aspects have been elucidated, the molecular details of HP1 binding to H3K9me3 nucleosomes are unknown. Using a combination of NMR spectroscopy and biophysical measurements on fully defined recombinant experimental systems, we demonstrate that H3K9me3 works as an on/off switch regulating distinct binding modes of hHP1β to the nucleosome. The methyl-mark determines a highly flexible and very dynamic interaction of the chromodomain of hHP1β with the H3-tail. There are no other constraints of interaction or additional multimerization interfaces. In contrast, in the absence of methylation, the hinge region and the N-terminal tail form weak nucleosome contacts mainly with DNA. In agreement with the high flexibility within the hHP1β-H3K9me3 nucleosome complex, the chromoshadow domain does not provide a direct binding interface. Our results report the first detailed structural analysis of a dynamic protein-nucleosome complex directed by a histone modification and provide a conceptual framework for understanding similar interactions in the context of chromatin.
Collapse
Affiliation(s)
- Francesca Munari
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Richart AN, Brunner CIW, Stott K, Murzina NV, Thomas JO. Characterization of chromoshadow domain-mediated binding of heterochromatin protein 1α (HP1α) to histone H3. J Biol Chem 2012; 287:18730-7. [PMID: 22493481 PMCID: PMC3365711 DOI: 10.1074/jbc.m111.337204] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The chromoshadow domain (CSD) of heterochromatin protein 1 (HP1) was recently shown to contribute to chromatin binding and transcriptional regulation through interaction with histone H3. Here, we demonstrate the structural basis of this interaction for the CSD of HP1α. This mode of H3 binding is dependent on dimerization of the CSD and recognition of a PxVxL-like motif, as for other CSD partners. NMR chemical shift mapping showed that the H3 residues that mediate the CSD interaction occur in and adjacent to the αN helix just within the nucleosome core. Access to the binding region would require some degree of unwrapping of the DNA near the nucleosomal DNA entry/exit site.
Collapse
|
14
|
Rashmi RN, Eckes B, Glöckner G, Groth M, Neumann S, Gloy J, Sellin L, Walz G, Schneider M, Karakesisoglou I, Eichinger L, Noegel AA. The nuclear envelope protein Nesprin-2 has roles in cell proliferation and differentiation during wound healing. Nucleus 2012; 3:172-86. [PMID: 22198684 PMCID: PMC3383573 DOI: 10.4161/nucl.19090] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nesprin-2, a type II transmembrane protein of the nuclear envelope, is a component of the LINC complex that connects the nuclear lamina with the actin cytoskeleton. To elucidate its physiological role we studied wound healing in Nesprin-2 Giant deficient mice and found that a loss of the protein affected wound healing particularly at later stages during fibroblast differentiation and keratinocyte proliferation leading to delayed wound closure. We identified altered expression and localization of transcription factors as one of the underlying mechanisms. Furthermore, the actin cytoskeleton which surrounds the nucleus was altered and keratinocyte migration was slowed down and focal adhesion formation enhanced. We also uncovered a new activity of Nesprin-2. When we probed for an interaction of Nesprin-2 Giant with chromatin we observed in ChIP Seq experiments an association of the protein with heterochromatic and centromeric DNA. Through this activity Nesprin-2 can affect the nuclear landscape and gene regulation. Our findings suggest functions for Nesprin-2 at the nuclear envelope (NE) in gene regulation and in regulation of the actin cytoskeleton which impact on wound healing.
Collapse
Affiliation(s)
- R N Rashmi
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dialynas G, Flannery KM, Zirbel LN, Nagy PL, Mathews KD, Moore SA, Wallrath LL. LMNA variants cause cytoplasmic distribution of nuclear pore proteins in Drosophila and human muscle. Hum Mol Genet 2011; 21:1544-56. [PMID: 22186027 PMCID: PMC3298278 DOI: 10.1093/hmg/ddr592] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the human LMNA gene, encoding A-type lamins, give rise to laminopathies, which include several types of muscular dystrophy. Here, heterozygous sequence variants in LMNA, which result in single amino-acid substitutions, were identified in patients exhibiting muscle weakness. To assess whether the substitutions altered lamin function, we performed in vivo analyses using a Drosophila model. Stocks were generated that expressed mutant forms of the Drosophila A-type lamin modeled after each variant. Larvae were used for motility assays and histochemical staining of the body-wall muscle. In parallel, immunohistochemical analyses were performed on human muscle biopsy samples from the patients. In control flies, muscle-specific expression of the wild-type A-type lamin had no apparent affect. In contrast, expression of the mutant A-type lamins caused dominant larval muscle defects and semi-lethality at the pupal stage. Histochemical staining of larval body wall muscle revealed that the mutant A-type lamin, B-type lamins, the Sad1p, UNC-84 domain protein Klaroid and nuclear pore complex proteins were mislocalized to the cytoplasm. In addition, cytoplasmic actin filaments were disorganized, suggesting links between the nuclear lamina and the cytoskeleton were disrupted. Muscle biopsies from the patients showed dystrophic histopathology and architectural abnormalities similar to the Drosophila larvae, including cytoplasmic distribution of nuclear envelope proteins. These data provide evidence that the Drosophila model can be used to assess the function of novel LMNA mutations and support the idea that loss of cellular compartmentalization of nuclear proteins contributes to muscle disease pathogenesis.
Collapse
Affiliation(s)
- George Dialynas
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Stenberg P, Larsson J. Buffering and the evolution of chromosome-wide gene regulation. Chromosoma 2011; 120:213-25. [PMID: 21505791 PMCID: PMC3098985 DOI: 10.1007/s00412-011-0319-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/15/2011] [Accepted: 03/31/2011] [Indexed: 11/30/2022]
Abstract
Copy number variation (CNV) in terms of aneuploidies of both entire chromosomes and chromosomal segments is an important evolutionary driving force, but it is inevitably accompanied by potentially problematic variations in gene doses and genomic instability. Thus, a delicate balance must be maintained between mechanisms that compensate for variations in gene doses (and thus allow such genomic variability) and selection against destabilizing CNVs. In Drosophila, three known compensatory mechanisms have evolved: a general segmental aneuploidy-buffering system and two chromosome-specific systems. The two chromosome-specific systems are the male-specific lethal complex, which is important for dosage compensation of the male X chromosome, and Painting of fourth, which stimulates expression of the fourth chromosome. In this review, we discuss the origin and function of buffering and compensation using Drosophila as a model.
Collapse
Affiliation(s)
- Per Stenberg
- Department of Molecular Biology, Umeå University, Sweden
| | | |
Collapse
|
17
|
Thomsen R, Christensen DB, Rosborg S, Linnet TE, Blechingberg J, Nielsen AL. Analysis of HP1α regulation in human breast cancer cells. Mol Carcinog 2011; 50:601-13. [PMID: 21374739 DOI: 10.1002/mc.20755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/10/2011] [Accepted: 01/27/2011] [Indexed: 12/20/2022]
Abstract
The three mammalian HP1 proteins, HP1α/CBX5, HP1β/CBX1, and HPγ/CBX3, are involved in chromatin packing and gene regulation. The HP1α protein is down-regulated in invasive compared to non-invasive breast cancer cells and HP1α is a suppressor of cell migration and invasion. In this report, we examined the background for HP1α protein down-regulation in invasive breast cancer cells. We identified a strict correlation between HP1α down-regulation at the protein level and the mRNA level. The HP1α mRNA down-regulation in invasive cancer cells was not caused by mRNA destabilization. Chromatin immunoprecipitation analysis of the HP1α gene showed a decrease in the histone mark for transcriptional activity H3-K36 tri-methylation and RNA polymerase II in invasive breast cancer cells which correlated with a decreased abundance of basal transcription factors at the HP1α promoter. E2F transcription factors regulate HP1α transcription and we identified that E2F5 depletion increased HP1α expression in invasive breast cancer cells. Finally, we have characterized two HP1α mRNA isoforms and both HP1α mRNA isoforms were down-regulated to a similar extend at the transcriptional level in invasive breast cancer cells. Collectively the presented results show that HP1α down-regulation in invasive breast cancer cells is primary a transcriptional effect and demonstrates a novel set of mechanisms involved in HP1α transcriptional regulation. The finding that HP1α is down-regulated primarily at the transcriptional level provides a new insight for the further elucidation of the detailed molecular mechanisms causing the HP1α down-regulation in invasive breast cancer cells.
Collapse
Affiliation(s)
- Rune Thomsen
- Department of Human Genetics, Aarhus University, Denmark
| | | | | | | | | | | |
Collapse
|
18
|
Billur M, Bartunik HD, Singh PB. The essential function of HP1 beta: a case of the tail wagging the dog? Trends Biochem Sci 2010; 35:115-23. [PMID: 19836960 DOI: 10.1016/j.tibs.2009.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/27/2009] [Accepted: 09/03/2009] [Indexed: 12/25/2022]
Abstract
A large body of work in various organisms has shown that the presence of HP1 structural proteins and methylated lysine 9 of histone H3 (H3K9me) represent the characteristic hallmarks of heterochromatin. We propose that a more critical assessment of the physiological importance of the H3K9me-HP1 interaction is warranted in light of recent studies on the mammalian HP1 beta protein. Based on this new research, we conclude that the essential function of HP1 beta (and perhaps that of its orthologues in other species) lies outside the canonical heterochromatic H3K9me-HP1 interaction. We suggest instead that binding of a small fraction of HP1 beta to the H3 histone fold performs a critical role in heterochromatin function and organismal survival.
Collapse
Affiliation(s)
- Mustafa Billur
- Division of Immunoepigenetics, Department of Immunology and Cell Biology, Forschungszentrum Borstel, D-23845 Borstel, Germany
| | | | | |
Collapse
|
19
|
Lavigne M, Eskeland R, Azebi S, Saint-André V, Jang SM, Batsché E, Fan HY, Kingston RE, Imhof A, Muchardt C. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet 2009; 5:e1000769. [PMID: 20011120 PMCID: PMC2782133 DOI: 10.1371/journal.pgen.1000769] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/12/2009] [Indexed: 01/06/2023] Open
Abstract
The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling. HP1 proteins are transcriptional regulators frequently associated with gene silencing, a phenomenon involving masking of promoter DNA by dense chromatin. Owing to their chromo-domain, these proteins can read and bind an epigenetic mark that on many non-expressed genes is present on histone H3 at the surface of the nucleosome (the fundamental packing unit of chromatin). However, the binding to this mark does not explain the repressing activity of HP1 proteins. Here, we show that these proteins can establish a second contact with histone H3, independently of the epigenetic mark. This second contact site is located inside the nucleosome, in a position likely to be inaccessible. Interestingly, this site is also contacted by a subunit of the SWI/SNF complex and this contact is required for the ATP-dependent chromatin remodeling catalyzed by SWI/SNF. We provide evidence suggesting that HP1 proteins use the SWI/SNF chromatin remodeling to gain access to the contact site inside the nucleosome and to prevent further remodeling by competing with SWI/SNF for binding at this position. These observations lead us to suggest that HP1 proteins function as gatekeepers on promoters, detecting and stopping unwanted exposure of internal nucleosomal sites.
Collapse
Affiliation(s)
- Marc Lavigne
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Ragnhild Eskeland
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Saliha Azebi
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Violaine Saint-André
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Suk Min Jang
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Eric Batsché
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Hua-Ying Fan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Axel Imhof
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Christian Muchardt
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Müller KP, Erdel F, Caudron-Herger M, Marth C, Fodor BD, Richter M, Scaranaro M, Beaudouin J, Wachsmuth M, Rippe K. Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy. Biophys J 2009; 97:2876-85. [PMID: 19948116 PMCID: PMC2784559 DOI: 10.1016/j.bpj.2009.08.057] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/17/2009] [Accepted: 08/27/2009] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin protein 1 (HP1) is a central factor in establishing and maintaining the repressive heterochromatin state. To elucidate its mobility and interactions, we conducted a comprehensive analysis on different time and length scales by fluorescence fluctuation microscopy in mouse cell lines. The local mobility of HP1alpha and HP1beta was investigated in densely packed pericentric heterochromatin foci and compared with other bona fide euchromatin regions of the nucleus by fluorescence bleaching and correlation methods. A quantitative description of HP1alpha/beta in terms of its concentration, diffusion coefficient, kinetic binding, and dissociation rate constants was derived. Three distinct classes of chromatin-binding sites with average residence times t(res)
Collapse
Affiliation(s)
- Katharina P Müller
- Deutsches Krebsforschungszentrum and BioQuant, Research Group Genome Organization and Function, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kavi HH, Birchler JA. Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila. Epigenetics Chromatin 2009; 2:15. [PMID: 19917092 PMCID: PMC2785806 DOI: 10.1186/1756-8935-2-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 11/16/2009] [Indexed: 01/17/2023] Open
Abstract
Background Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in Schizosaccharomyces pombe have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure. Thus, an intricate interaction between the RNAi machinery and RNA Pol II affects heterochromatin structure. However, the role of the RNAi machinery and RNA Pol II on the metazoan heterochromatin landscape is not known. This study analyses the interaction of the small RNA machinery and RNA Pol II on Drosophila heterochromatin structure. Results The results in this paper show genetic and biochemical interaction between RNA Pol II (largest and second largest subunit) and small RNA silencing machinery components (dcr-2, ago1, ago2, piwi, Lip [D], aub and hls). Immunofluorescence analysis of polytene chromosomes from trans-heterozygotes of RNA Pol II and different mutations of the small RNA pathways show decreased H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on these mutants showed a strong suppression of white-mottled4h position effect variegation. This was further corroborated by a western blot analysis and chromatin immunoprecipitation, which showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single heterozygotes. Co-immunoprecipitation performed using Drosophila embryo extracts showed the RNA Pol II largest subunit interacting with Dcr-2 and dAGO1. Co-localization performed on polytene chromosomes showed RNA Pol II and dAGO1 overlapping at some sites. Conclusion Our experiments show a genetic and biochemical interaction between RNA Pol II (largest and second largest subunits) and the small RNA silencing machinery in Drosophila. The interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the chromocentric heterochromatin. Thus, RNA Pol II has an important role in establishing heterochromatin structure in Drosophila.
Collapse
Affiliation(s)
- Harsh H Kavi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
22
|
Lieberthal JG, Kaminsky M, Parkhurst CN, Tanese N. The role of YY1 in reduced HP1alpha gene expression in invasive human breast cancer cells. Breast Cancer Res 2009; 11:R42. [PMID: 19566924 PMCID: PMC2716511 DOI: 10.1186/bcr2329] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 05/31/2009] [Accepted: 06/30/2009] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Heterochromatin protein 1 (HP1) associates with chromatin by binding to histone H3 and contributes to gene silencing. There are three isoforms of HP1 in mammals: HP1alpha, beta, and gamma. Studies have shown that the level of HP1alpha is reduced in invasive human breast cancer cell lines such as MDA-MB-231 and HS578T compared with non-invasive cell lines such as MCF7 and T47D. It is hypothesized that reduced HP1alpha expression may lead to impaired epigenetic silencing of genes that are important in the acquisition of an invasive phenotype. We set out to determine whether reduced expression of HP1alpha in invasive breast cancer cell lines occurs at the level of transcription. METHODS We used transient transfection assays to investigate the mechanism of differential transcriptional activity of the human HP1alpha gene promoter in different cell lines. Mutational analysis of putative transcription factor binding sites in an HP1alpha gene reporter construct was performed to identify transcription factors responsible for the differential activity. SiRNA-mediated knockdown and chromatin immunoprecipitation experiments were performed to determine the role of a specific transcription factor in regulating the HP1alpha gene. RESULTS The transcription factor yin yang 1 (YY1) was found to play a role in differential transcriptional activity of the HP1alpha gene. Examination of the YY1 protein and mRNA levels revealed that both were reduced in the invasive cell line HS578T compared with MCF7 cells. YY1 knockdown in MCF7 cells resulted in a decreased level of HP1alpha mRNA, indicating that YY1 positively regulates HP1alpha expression. Chromatin immunoprecipitation experiments verified YY1 occupancy at the HP1alpha gene promoter in MCF7 cells but not HS578T cells. Overexpression of YY1 in HS578T cells decreased cell migration in a manner independent of HP1alpha overexpression. CONCLUSIONS Our data suggests that a reduction of YY1 expression in breast cancer cells could contribute to the acquisition of an invasive phenotype through increased cell migration as well as by reduced expression of HP1alpha.
Collapse
Affiliation(s)
- Jason G Lieberthal
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Marissa Kaminsky
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Christopher N Parkhurst
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Naoko Tanese
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| |
Collapse
|
23
|
Exner V, Aichinger E, Shu H, Wildhaber T, Alfarano P, Caflisch A, Gruissem W, Köhler C, Hennig L. The chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 is essential for H3K27me3 binding and function during Arabidopsis development. PLoS One 2009; 4:e5335. [PMID: 19399177 PMCID: PMC2670505 DOI: 10.1371/journal.pone.0005335] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/22/2009] [Indexed: 11/18/2022] Open
Abstract
Polycomb group (PcG) proteins are essential to maintain gene expression patterns during development. Transcriptional repression by PcG proteins involves trimethylation of H3K27 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2) in animals and plants. PRC1 binds to H3K27me3 and is required for transcriptional repression in animals, but in plants PRC1-like activities have remained elusive. One candidate protein that could be involved in PRC1-like functions in plants is LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), because LHP1 associates with genes marked by H3K27me3 in vivo and has a chromodomain that binds H3K27me3 in vitro. Here, we show that disruption of the chromodomain of Arabidopsis thaliana LHP1 abolishes H3K27me3 recognition, releases gene silencing and causes similar phenotypic alterations as transcriptional lhp1 null mutants. Therefore, binding to H3K27me3 is essential for LHP1 protein function.
Collapse
Affiliation(s)
- Vivien Exner
- Department of Biology & Zurich-Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Ernst Aichinger
- Department of Biology & Zurich-Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Huan Shu
- Department of Biology & Zurich-Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Thomas Wildhaber
- Department of Biology & Zurich-Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Pietro Alfarano
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology & Zurich-Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Claudia Köhler
- Department of Biology & Zurich-Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Lars Hennig
- Department of Biology & Zurich-Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Aucott R, Bullwinkel J, Yu Y, Shi W, Billur M, Brown JP, Menzel U, Kioussis D, Wang G, Reisert I, Weimer J, Pandita RK, Sharma GG, Pandita TK, Fundele R, Singh PB. HP1-beta is required for development of the cerebral neocortex and neuromuscular junctions. J Cell Biol 2008; 183:597-606. [PMID: 19015315 PMCID: PMC2582898 DOI: 10.1083/jcb.200804041] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 10/09/2008] [Indexed: 11/22/2022] Open
Abstract
HP1 proteins are thought to be modulators of chromatin organization in all mammals, yet their exact physiological function remains unknown. In a first attempt to elucidate the function of these proteins in vivo, we disrupted the murine Cbx1 gene, which encodes the HP1-beta isotype, and show that the Cbx1(-/-) -null mutation leads to perinatal lethality. The newborn mice succumbed to acute respiratory failure, whose likely cause is the defective development of neuromuscular junctions within the endplate of the diaphragm. We also observe aberrant cerebral cortex development in Cbx1(-/-) mutant brains, which have reduced proliferation of neuronal precursors, widespread cell death, and edema. In vitro cultures of neurospheres from Cbx1(-/-) mutant brains reveal a dramatic genomic instability. Our results demonstrate that HP1 proteins are not functionally redundant and that they are likely to regulate lineage-specific changes in heterochromatin organization.
Collapse
Affiliation(s)
- Rebecca Aucott
- Division of Immunoepigenetics, Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nady N, Min J, Kareta MS, Chédin F, Arrowsmith CH. A SPOT on the chromatin landscape? Histone peptide arrays as a tool for epigenetic research. Trends Biochem Sci 2008; 33:305-13. [PMID: 18538573 DOI: 10.1016/j.tibs.2008.04.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/18/2008] [Accepted: 04/23/2008] [Indexed: 12/23/2022]
Abstract
Post-translational modifications of histones serve as docking sites and signals for effector proteins and chromatin-remodeling enzymes, thereby influencing many fundamental cellular processes. Nevertheless, there are huge gaps in the knowledge of which proteins read and write the 'histone code'. Several techniques have been used to decipher complex histone-modification patterns. However, none is entirely satisfactory owing to the inherent limitations of in vitro studies of histones, such as deficits in the knowledge of the proteins involved, and the associated difficulties in the consistent and quantitative generation of histone marks. An alternative technique that could prove to be a useful tool in the study of the histone code is the use of synthetic peptide arrays (SPOT blot analysis) as a screening approach to characterize macromolecules that interact with specific covalent modifications of histone tails.
Collapse
Affiliation(s)
- Nataliya Nady
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | | | | | | | | |
Collapse
|
26
|
Zlatanova J, Seebart C, Tomschik M. The linker-protein network: control of nucleosomal DNA accessibility. Trends Biochem Sci 2008; 33:247-53. [PMID: 18468442 DOI: 10.1016/j.tibs.2008.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 12/26/2022]
Abstract
Numerous studies have recently addressed the accessibility of nucleosomal DNA to protein factors. Two popular concepts - the histone code and chromatin remodeling - consider the nucleosome as a passive entity that 'waits' to be marked by histone modifications and is 'mobilized' by ATP-dependent remodelers. Here, we propose a holistic view of the nucleosome as an active, dynamic entity, the accessibility of which is controlled by binding of different linker proteins to the DNA entry/exit site. The linker proteins might directly compete for this binding site; alternatively, protein chaperones and/or chromatin remodelers might exchange one linker protein for another. Finally, according to our proposed model, the exchange factors are themselves controlled by post-translational modifications or binding of protein partners, to respond to the ever-changing intra- and extra-cellular environment.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
27
|
Ritou E, Bai M, Georgatos SD. Variant-specific patterns and humoral regulation of HP1 proteins in human cells and tissues. J Cell Sci 2007; 120:3425-35. [PMID: 17855381 DOI: 10.1242/jcs.012955] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have examined the occurrence and distribution of HP1α and HP1β under in vivo, ex vivo and in vitro conditions. Consistent with a non-essential role in heterochromatin maintenance, both proteins are diminished or undetectable in several types of differentiated cells and are universally downregulated during erythropoiesis. Variant-specific patterns are observed in almost all human and mouse tissues examined. Yet, the most instructive example of HP1 plasticity is observed in the lymph nodes, where HP1α and HP1β exhibit regional patterns that are exactly complementary to one another. Furthermore, whereas HP1α shows a dispersed sub-nuclear distribution in the majority of peripheral lymphocytes, it coalesces into large heterochromatic foci upon stimulation with various mitogens and IL-2. The effect of inductive signals on HP1α distribution is reproduced by coculture of immortalized T- and B-cells and can be confirmed using specific markers. These complex patterns reveal an unexpected plasticity in HP1 variant expression and strongly suggest that the sub-nuclear distribution of HP1 proteins is regulated by humoral signals and microenvironmental cues.
Collapse
Affiliation(s)
- Eleni Ritou
- Stem Cell and Chromatin Group, Laboratory of Biology, The University of Ioannina School of Medicine, Dourouti, Greece
| | | | | |
Collapse
|
28
|
Dialynas GK, Terjung S, Brown JP, Aucott RL, Baron-Luhr B, Singh PB, Georgatos SD. Plasticity of HP1 proteins in mammalian cells. J Cell Sci 2007; 120:3415-24. [PMID: 17855382 DOI: 10.1242/jcs.012914] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have compared the distribution of endogenous heterochromatin protein 1 (HP1) proteins (α, β and γ) in different epithelial lines, pluripotent stem cells and embryonic fibroblasts. In parallel, we have interrogated assembly and dynamics of newly expressed HP1-GFP proteins in cells lacking both HP1α and HP1β alleles, blocked at the G1-S boundary, or cultured in the presence of HDAC and HAT inhibitors. The results reveal a range of cell type and differentiation state-specific patterns that do not correlate with `fast' or `slow' subunit exchange in heterochromatin. Furthermore, our observations show that targeting of HP1γ to heterochromatic sites depends on HP1α and H1β and that, on an architectural level, HP1α is the most polymorphic variant of the HP1 family. These data provide evidence for HP1 plasticity under shifting microenvironmental conditions and offer a new conceptual framework for understanding chromatin dynamics at the molecular level.
Collapse
Affiliation(s)
- George K Dialynas
- The Stem Cell and Chromatin Group, Laboratory of Biology, The University of Ioannina, School of Medicine and The Institute of Biomedical Research (FORTH/BRI), 45 110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
One of the oldest unsolved problems in genetics is the observation that gene silencing can 'spread' along a chromosome. Although spreading has been widely perceived as a process of long-range assembly of heterochromatin proteins, such 'oozing' might not apply in most cases. Rather, long-range silencing seems to be a dynamic process, involving local diffusion of histone-modifying enzymes from source binding sites to low-affinity sites nearby. Discontinuous silencing might reflect looping interactions, whereas the spreading of continuous silencing might be driven by the processive movement of RNA or DNA polymerases. We review the evidence for the spreading of silencing in many contexts and organisms and conclude that multiple mechanisms have evolved that silence genes at a distance.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | | |
Collapse
|