1
|
Ahmad S, Single S, Liu Y, Hough KP, Wang Y, Thannickal VJ, Athar M, Goliwas KF, Deshane JS. Heavy Metal Exposure-Mediated Dysregulation of Sphingolipid Metabolism. Antioxidants (Basel) 2024; 13:978. [PMID: 39199224 DOI: 10.3390/antiox13080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Exposure to heavy metals (HMs) is often associated with inflammation and cell death, exacerbating respiratory diseases including asthma. Most inhaled particulate HM exposures result in the deposition of HM-bound fine particulate matter, PM2.5, in pulmonary cell populations. While localized high concentrations of HMs may be a causative factor, existing studies have mostly evaluated the effects of systemic or low-dose chronic HM exposures. This report investigates the impact of local high concentrations of specific HMs (NaAsO2, MnCl2, and CdCl2) on sphingolipid homeostasis and oxidative stress, as both play a role in mediating responses to HM exposure and have been implicated in asthma. Utilizing an in vitro model system and three-dimensional ex vivo human tissue models, we evaluated the expression of enzymatic regulators of the salvage, recycling, and de novo synthesis pathways of sphingolipid metabolism, and observed differential modulation in these enzymes between HM exposures. Sphingolipidomic analyses of specific HM-exposed cells showed increased levels of anti-apoptotic sphingolipids and reduced pro-apoptotic sphingolipids, suggesting activation of the salvage and de novo synthesis pathways. Differential sphingolipid regulation was observed within HM-exposed lung tissues, with CdCl2 exposure and NaAsO2 exposure activating the salvage and de novo synthesis pathway, respectively. Additionally, using spatial transcriptomics and quantitative real-time PCR, we identified HM exposure-induced transcriptomic signatures of oxidative stress in epithelial cells and human lung tissues.
Collapse
Affiliation(s)
- Shaheer Ahmad
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Sierra Single
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Yuelong Liu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Kenneth P Hough
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Yong Wang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine and Southeast Veterans Healthcare System, New Orleans, LA 70119-6535, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kayla F Goliwas
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| |
Collapse
|
2
|
Hui W, Wenhua S, Shuojie Z, Lulin W, Panpan Z, Tongtong Z, Xiaoli X, Juhua D. How does NFAT3 regulate the occurrence of cardiac hypertrophy? IJC HEART & VASCULATURE 2023; 48:101271. [PMID: 37753338 PMCID: PMC10518445 DOI: 10.1016/j.ijcha.2023.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Cardiac hypertrophy is initially an adaptive response to physiological and pathological stimuli. Although pathological myocardial hypertrophy is the main cause of morbidity and mortality, our understanding of its mechanism is still weak. NFAT3 (nuclear factor of activated T-cell-3) is a member of the nuclear factor of the activated T cells (NFAT) family. NFAT3 plays a critical role in regulating the expression of cardiac hypertrophy genes by inducing their transcription. Recently, accumulating evidence has indicated that NFAT3 is a potent regulator of the progression of cardiac hypertrophy. This review, for the first time, summarizes the current studies on NFAT3 in cardiac hypertrophy, including the pathophysiological processes and the underlying pathological mechanism, focusing on the nuclear translocation and transcriptional function of NFAT3. This review will provide deep insight into the pathogenesis of cardiac hypertrophy and a theoretical basis for identifying new therapeutic targets in the NFAT3 network.
Collapse
Affiliation(s)
- Wang Hui
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su Wenhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Cardiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhang Shuojie
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wang Lulin
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Panpan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Tongtong
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xie Xiaoli
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dan Juhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Nithyashree N, Prakash N, Waghe P, Santhosh CR, Pavithra BH, Rajashekaraiah R, Sathyanarayana ML, Sunilchandra U, Anjan Kumar KR, Manjunatha SS, Muralidhar Y, Shivaprasad GR. Nanocurcumin Restores Arsenic-Induced Disturbances in Neuropharmacological Activities in Wistar Rats. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/30342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study was carried out to examine the ameliorative potential of nanocurcumin against arsenic induced (sub-chronic) alterations in central nervous system in male Wistar rats. Nanocurcumin was synthesised and the hydrodynamic diameter, zeta potential and particle size were~76.60 nm, (-) 30 mV and 95nm, respectively. Experimental rats sub-chronically exposed to sodium (meta) arsenite (As; 10 mg.kg-1; 70 days; p.o) induced significant (p<0.05) reduction in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione and favoured free radical generation and induced lipid peroxidation in brain tissue. The exposure resulted in significant (p<0.05) decrease in voluntary- and involuntary motor activities and enhanced anxiety levels. However, experimental rats receiving nanocurcumin (15 mg.kg-1; p.o) showed significant (p<0.05) recovery in enzymatic - and non-enzymatic antioxidant defence system and restoration of redox balance and overcome arsenic induced depression in motor activities and elevated anxiety levels. Further, Arsenic induced elevation in pro-inflammatory cytokines, cyclooxygenase-2 activity and prostaglandin-E2 in brain and angiotensin-II levels (plasma) was significantly (p<0.05) ameliorated by nanocurcumin. Additionally, quantitative real -time polymerase chain reaction revealed a fivefold decrease in Nox2 expression in brain following nanocurcumin administration. Thus, the study concludes that nanocurcumin can serve as a potential therapeutic candidate to counter arsenic induced redox imbalance and neuropharmacological disturbances and there exists a vast scope to exploit its utility after appropriate clinical modelling.
Collapse
|
4
|
Zhong QH, Zha SW, Lau ATY, Xu YM. Recent knowledge of NFATc4 in oncogenesis and cancer prognosis. Cancer Cell Int 2022; 22:212. [PMID: 35698138 PMCID: PMC9190084 DOI: 10.1186/s12935-022-02619-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Nuclear factor of activated T-cells, cytoplasmic 4 (NFATc4), a transcription factor of NFAT family, which is activated by Ca2+/calcineurin signaling. Recently, it is reported that aberrantly activated NFATc4 participated and modulated in the initiation, proliferation, invasion, and metastasis of various cancers (including cancers of the lung, breast, ovary, cervix, skin, liver, pancreas, as well as glioma, primary myelofibrosis and acute myelocytic leukemia). In this review, we cover the latest knowledge on NFATc4 expression pattern, post-translational modification, epigenetic regulation, transcriptional activity regulation and its downstream targets. Furthermore, we perform database analysis to reveal the prognostic value of NFATc4 in various cancers and discuss the current unexplored areas of NFATc4 research. All in all, the result from these studies strongly suggest that NFATc4 has the potential as a molecular therapeutic target in multiple human cancer types.
Collapse
Affiliation(s)
- Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| | - Si-Wei Zha
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| |
Collapse
|
5
|
K + and Ca 2+ Channels Regulate Ca 2+ Signaling in Chondrocytes: An Illustrated Review. Cells 2020; 9:cells9071577. [PMID: 32610485 PMCID: PMC7408816 DOI: 10.3390/cells9071577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
An improved understanding of fundamental physiological principles and progressive pathophysiological processes in human articular joints (e.g., shoulders, knees, elbows) requires detailed investigations of two principal cell types: synovial fibroblasts and chondrocytes. Our studies, done in the past 8–10 years, have used electrophysiological, Ca2+ imaging, single molecule monitoring, immunocytochemical, and molecular methods to investigate regulation of the resting membrane potential (ER) and intracellular Ca2+ levels in human chondrocytes maintained in 2-D culture. Insights from these published papers are as follows: (1) Chondrocyte preparations express a number of different ion channels that can regulate their ER. (2) Understanding the basis for ER requires knowledge of (a) the presence or absence of ligand (ATP/histamine) stimulation and (b) the extraordinary ionic composition and ionic strength of synovial fluid. (3) In our chondrocyte preparations, at least two types of Ca2+-activated K+ channels are expressed and can significantly hyperpolarize ER. (4) Accounting for changes in ER can provide insights into the functional roles of the ligand-dependent Ca2+ influx through store-operated Ca2+ channels. Some of the findings are illustrated in this review. Our summary diagram suggests that, in chondrocytes, the K+ and Ca2+ channels are linked in a positive feedback loop that can augment Ca2+ influx and therefore regulate lubricant and cytokine secretion and gene transcription.
Collapse
|
6
|
Luo Y, Tian Z, Hua X, Huang M, Xu J, Li J, Huang H, Cohen M, Huang C. Isorhapontigenin (ISO) inhibits stem cell-like properties and invasion of bladder cancer cell by attenuating CD44 expression. Cell Mol Life Sci 2020; 77:351-363. [PMID: 31222373 PMCID: PMC6923629 DOI: 10.1007/s00018-019-03185-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022]
Abstract
Cancer stem cells (CSC) are highly associated with poor prognosis in cancer patients. Our previous studies report that isorhapontigenin (ISO) down-regulates SOX2-mediated cyclin D1 induction and stem-like cell properties in glioma stem-like cells. The present study revealed that ISO could inhibit stem cell-like phenotypes and invasivity of human bladder cancer (BC) by specific attenuation of expression of CD44 but not SOX-2, at both the protein transcription and degradation levels. On one hand, ISO inhibited cd44 mRNA expression through decreases in Sp1 direct binding to its promoter region-binding site, resulting in attenuation of its transcription. On the other hand, ISO also down-regulated USP28 expression, which in turn reduced CD44 protein stability. Further studies showed that ISO treatment induced miR-4295, which specific bound to 3'-UTR activity of usp28 mRNA and inhibited its translation and expression, while miR-4295 induction was mediated by increased Dicer protein to enhance miR-4295 maturation upon ISO treatment. Our results provide the first evidence that ISO has a profound inhibitory effect on human BC stem cell-like phenotypes and invasivity through the mechanisms distinct from those previously noted in glioma stem-like cells.
Collapse
Affiliation(s)
- Yisi Luo
- Nelson Institute and Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10100, USA
| | - Zhongxian Tian
- Nelson Institute and Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10100, USA
| | - Xiaohui Hua
- Nelson Institute and Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10100, USA
| | - Maowen Huang
- Nelson Institute and Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10100, USA
| | - Jiheng Xu
- Nelson Institute and Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10100, USA
| | - Jingxia Li
- Nelson Institute and Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10100, USA
| | - Haishan Huang
- Nelson Institute and Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10100, USA
| | - Mitchell Cohen
- Nelson Institute and Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10100, USA
| | - Chuanshu Huang
- Nelson Institute and Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10100, USA.
| |
Collapse
|
7
|
Krick S, Grabner A, Baumlin N, Yanucil C, Helton S, Grosche A, Sailland J, Geraghty P, Viera L, Russell DW, Wells JM, Xu X, Gaggar A, Barnes J, King GD, Campos M, Faul C, Salathe M. Fibroblast growth factor 23 and Klotho contribute to airway inflammation. Eur Respir J 2018; 52:1800236. [PMID: 29748308 PMCID: PMC6044452 DOI: 10.1183/13993003.00236-2018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 04/27/2018] [Indexed: 01/20/2023]
Abstract
Circulating levels of fibroblast growth factor (FGF)23 are associated with systemic inflammation and increased mortality in chronic kidney disease. α-Klotho, a co-receptor for FGF23, is downregulated in chronic obstructive pulmonary disease (COPD). However, whether FGF23 and Klotho-mediated FGF receptor (FGFR) activation delineates a pathophysiological mechanism in COPD remains unclear. We hypothesised that FGF23 can potentiate airway inflammation via Klotho-independent FGFR4 activation.FGF23 and its effect were studied using plasma and transbronchial biopsies from COPD and control patients, and primary human bronchial epithelial cells isolated from COPD patients as well as a murine COPD model.Plasma FGF23 levels were significantly elevated in COPD patients. Exposure of airway epithelial cells to cigarette smoke and FGF23 led to a significant increase in interleukin-1β release via Klotho-independent FGFR4-mediated activation of phospholipase Cγ/nuclear factor of activated T-cells signalling. In addition, Klotho knockout mice developed COPD and showed airway inflammation and elevated FGFR4 expression in their lungs, whereas overexpression of Klotho led to an attenuation of airway inflammation.Cigarette smoke induces airway inflammation by downregulation of Klotho and activation of FGFR4 in the airway epithelium in COPD. Inhibition of FGF23 or FGFR4 might serve as a novel anti-inflammatory strategy in COPD.
Collapse
Affiliation(s)
- Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Duke University, Durham, USA
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Christopher Yanucil
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Astrid Grosche
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Juliette Sailland
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Liliana Viera
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek W. Russell
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - J. Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Lung Health Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrod Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gwendalyn D. King
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Campos
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthias Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Cheliensisin A (Chel A) induces apoptosis in human bladder cancer cells by promoting PHLPP2 protein degradation. Oncotarget 2018; 7:66689-66699. [PMID: 27556506 PMCID: PMC5341830 DOI: 10.18632/oncotarget.11440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022] Open
Abstract
Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis, is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer.
Collapse
|
9
|
Zhang K, Li N, Chen Z, Shao K, Zhou F, Zhang C, Mu X, Wan J, Li B, Feng X, Shi S, Xiong M, Cao K, Wang X, Huang C, He J. High Expression of Nuclear Factor of Activated T Cells in Chinese Primary Non-Small Cell Lung Cancer Tissues. Int J Biol Markers 2018; 22:221-5. [DOI: 10.1177/172460080702200310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Purpose Nuclear factor of activated T cells (NFAT) has been reported to be involved in the development of various types of cancer including adenocarcinoma of the breast. This research was the first to investigate NFAT protein expression in primary non-small cell lung cancer (NSCLC) tissues from Chinese patients. Methods NFAT protein expression was determined in 130 surgically resected primary NSCLC and matched normal tissues by immunohistochemical analysis. The association between NFAT expression and clinical categorical variables was further analyzed with the SPSS software. Results We found that NFAT expression was much higher in 85 tumor tissues (65.4%) and lower in 45 tumor tissues (34.6%) compared with the matched normal tissues. Further statistical analysis by the chi-square test showed that high expression of NFAT proteins was significantly associated with tumor differentiation (p=0.045), invasion (p=0.031), histology (p<0.0001), tumor size (p=0.038) and cigarette smoking history (p=0.024). However, there was no correlation between the expression of NFAT proteins and pTNM classification, and no difference in 5-year survival rate between patients with high or low expression of NFAT proteins. Multivariate logistic regression analysis for the correlation between NFAT protein expression levels and various characteristics showed a significant association with histology (p=0.008, OR=0.273). Conclusion Our results revealed that high NFAT expression was present in Chinese NSCLCs and that NFAT expression might be involved in the process of human lung cancer development.
Collapse
Affiliation(s)
- K. Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai
- These two authors contributed equally to this work
| | - N. Li
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
- These two authors contributed equally to this work
| | - Z. Chen
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
| | - K. Shao
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
| | - F. Zhou
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
| | - C. Zhang
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
| | - X. Mu
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
| | - J. Wan
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
| | - B. Li
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
| | - X. Feng
- Department of Pathology, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing - China
| | - S. Shi
- Department of Pathology, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing - China
| | - M. Xiong
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
| | - K. Cao
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai
| | - X. Wang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai
| | - C. Huang
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY - USA
| | - J. He
- Laboratory of Thoracic Surgery, Cancer Hospital/Institute, Chinese Academy of Medical Sciences, Beijing
| |
Collapse
|
10
|
Xiao ZJ, Liu J, Wang SQ, Zhu Y, Gao XY, Tin VPC, Qin J, Wang JW, Wong MP. NFATc2 enhances tumor-initiating phenotypes through the NFATc2/SOX2/ALDH axis in lung adenocarcinoma. eLife 2017; 6. [PMID: 28737489 PMCID: PMC5570574 DOI: 10.7554/elife.26733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/22/2017] [Indexed: 12/17/2022] Open
Abstract
Tumor-initiating cells (TIC) are dynamic cancer cell subsets that display enhanced tumor functions and resilience to treatment but the mechanism of TIC induction or maintenance in lung cancer is not fully understood. In this study, we show the calcium pathway transcription factor NFATc2 is a novel regulator of lung TIC phenotypes, including tumorspheres, cell motility, tumorigenesis, as well as in vitro and in vivo responses to chemotherapy and targeted therapy. In human lung cancers, high NFATc2 expression predicted poor tumor differentiation, adverse recurrence-free and cancer-specific overall survivals. Mechanistic investigations identified NFATc2 response elements in the 3’ enhancer region of SOX2, and NFATc2/SOX2 coupling upregulates ALDH1A1 by binding to its 5’ enhancer. Through this axis, oxidative stress induced by cancer drug treatment is attenuated, leading to increased resistance in a mutation-independent manner. Targeting this axis provides a novel approach for the long-term treatment of lung cancer through TIC elimination. DOI:http://dx.doi.org/10.7554/eLife.26733.001 Cancer develops when cells become faulty and start to grow uncontrollably. They eventually form lumps or tumors, which may spread to surrounding tissues or even to other areas in the body. One of the reasons why cancer treatment remains a challenge is that there are over 200 types of cells in the body, and there are a lot of moments in the life cycle of a cell when things could go wrong. Researchers have shown that many cancers, including lung cancer, are not only extremely different from patient to patient, but also display great differences between cancer cells within the same tumor. Increasing evidence suggest that these differences may be caused by a type of cells called tumor initiating cells, or TICs for short. These TICs behave like stem cells and can renew themselves or mature into different types of cells. They are thought to help cancers grow and spread, and even make them resistant to treatments. Previous research has shown that in many types of cancer, the protein NFATc2 helps cancer cells to grow and spread. Until now, however, it was not known if NFATc2 is also important in TICs in lung cancer. Using human lung cancer cell lines and animal models, Xiao et al. show that the protein NFATc2 stimulates the stem-cell like behavior of TICs. The results showed that TICs had higher levels of the NFATc2 protein than other lung cancer cells that were not TICs. Tumors with higher levels were also more aggressive. When NFATc2 was removed from the cells, they formed smaller tumors and were more sensitive to drug treatment compared to cancer cells with NFATc2. Further experiments revealed that NFATc2 helped to increase the levels of a protein called Sox2, which gives cells the ability to renew or develop into different cell types. Together, these two proteins stimulated the production of another protein that was already known to play a crucial role in TIC maintenance. A better understanding of the mechanisms regulating TICs in lung cancer will help scientists tackle new questions about how this cancer progresses and resists to therapy. In the longer-term, combining classic cancer treatments with new therapeutic strategies targeting NFATc2 could make treatments for lung cancer patients more effective. DOI:http://dx.doi.org/10.7554/eLife.26733.002
Collapse
Affiliation(s)
- Zhi-Jie Xiao
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Liu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Si-Qi Wang
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yun Zhu
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xu-Yuan Gao
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Vicky Pui-Chi Tin
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jing Qin
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun-Wen Wang
- Department of Health Sciences Research AND Center for Individualized Medicine, Mayo Clinic, Scottsdale, United States.,Department of Biomedical Informatics, Arizona State University, Scottsdale, United States
| | - Maria Pik Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
11
|
Chibowska K, Baranowska-Bosiacka I, Falkowska A, Gutowska I, Goschorska M, Chlubek D. Effect of Lead (Pb) on Inflammatory Processes in the Brain. Int J Mol Sci 2016; 17:ijms17122140. [PMID: 27999370 PMCID: PMC5187940 DOI: 10.3390/ijms17122140] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 12/29/2022] Open
Abstract
That the nervous system is the main target of lead (Pb) has long been considered an established fact until recent evidence has linked the Pb effect on the immune system to the toxic effects of Pb on the nervous system. In this paper, we present recent literature reports on the effect of Pb on the inflammatory processes in the brain, particularly the expression of selected cytokines in the brain (interleukin 6, TGF-β1, interleukin 16, interleukin 18, and interleukin 10); expression and activity of enzymes participating in the inflammatory processes, such as cyclooxygenase 2, caspase 1, nitrogen oxide synthase (NOS 2) and proteases (carboxypeptidases, metalloproteinases and chymotrypsin); and the expression of purine receptors P2X4 and P2X7. A significant role in the development of inflammatory processes in the brain is also played by microglia (residual macrophages in the brain and the spinal cord), which act as the first line of defense in the central nervous system, and astrocytes—Whose most important function is to maintain homeostasis for the proper functioning of neurons. In this paper, we also present evidence that exposure to Pb may result in micro and astrogliosis by triggering TLR4-MyD88-NF-κB signaling cascade and the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Karina Chibowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Anna Falkowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
12
|
Xiao T, Zhu JJ, Huang S, Peng C, He S, Du J, Hong R, Chen X, Bode AM, Jiang W, Dong Z, Zheng D. Phosphorylation of NFAT3 by CDK3 induces cell transformation and promotes tumor growth in skin cancer. Oncogene 2016; 36:2835-2845. [PMID: 27893713 PMCID: PMC5442426 DOI: 10.1038/onc.2016.434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
The nuclear factor of activated T cells (NFAT) family proteins are transcription factors that regulate the expression of pro-inflammatory cytokines and other genes during the immune response. Although the NFAT proteins have been extensively investigated in the immune system, their role in cancer progression remains controversial. Here, we report that NFAT3 is highly expressed in various skin cancer cell lines and tumor tissues. Knockdown of endogenous NFAT3 expression by short hairpin RNA (shRNA) significantly inhibited tumor cell proliferation, colony formation and anchorage-independent cell growth. Furthermore, results of the mammalian two-hybrid assay showed that cyclin-dependent kinase 3 (CDK3) directly interacted with NFAT3 and phosphorylated NFAT3 at serine 259 (Ser259), which enhanced the transactivation and transcriptional activity of NFAT3. The phosphorylation site of NFAT3 was critical for epidermal growth factor (EGF)-stimulated cell transformation of the HaCaT immortalized skin cell line and mutation of NFAT3 at Ser259 led to a reduction of colony formation in soft agar. We also found that overexpressing wildtype NFAT3, but not mutant NFAT3-S259A, promoted A431 xenograft tumor growth. Importantly, we showed that CDK3, NFAT3 and phosphorylated NFAT3-Ser259 were highly expressed in skin cancer compared with normal skin tissues. These results provided evidence supporting the oncogenic potential of NFAT3 and suggested that CDK3-mediated phosphorylation of NFAT3 has an important role in skin tumorigenesis.
Collapse
Affiliation(s)
- T Xiao
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - J J Zhu
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - S Huang
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - C Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - S He
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - J Du
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - R Hong
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - X Chen
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - A M Bode
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - W Jiang
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - Z Dong
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - D Zheng
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| |
Collapse
|
13
|
Suzuki Y, Ohya S, Yamamura H, Giles WR, Imaizumi Y. A New Splice Variant of Large Conductance Ca2+-activated K+ (BK) Channel α Subunit Alters Human Chondrocyte Function. J Biol Chem 2016; 291:24247-24260. [PMID: 27758860 DOI: 10.1074/jbc.m116.743302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
Large conductance Ca2+-activated K+ (BK) channels play essential roles in both excitable and non-excitable cells. For example, in chondrocytes, agonist-induced Ca2+ release from intracellular store activates BK channels, and this hyperpolarizes these cells, augments Ca2+ entry, and forms a positive feed-back mechanism for Ca2+ signaling and stimulation-secretion coupling. In the present study, functional roles of a newly identified splice variant in the BK channel α subunit (BKαΔe2) were examined in a human chondrocyte cell line, OUMS-27, and in a HEK293 expression system. Although BKαΔe2 lacks exon2, which codes the intracellular S0-S1 linker (Glu-127-Leu-180), significant expression was detected in several tissues from humans and mice. Molecular image analyses revealed that BKαΔe2 channels are not expressed on plasma membrane but can traffic to the plasma membrane after forming hetero-tetramer units with wild-type BKα (BKαWT). Single-channel current analyses demonstrated that BKα hetero-tetramers containing one, two, or three BKαΔe2 subunits are functional. These hetero-tetramers have a smaller single channel conductance and exhibit lower trafficking efficiency than BKαWT homo-tetramers in a stoichiometry-dependent manner. Site-directed mutagenesis of residues in exon2 identified Helix2 and the linker to S1 (Trp-158-Leu-180, particularly Arg-178) as an essential segment for channel function including voltage dependence and trafficking. BKαΔe2 knockdown in OUMS-27 chondrocytes increased BK current density and augmented the responsiveness to histamine assayed as cyclooxygenase-2 gene expression. These findings provide significant new evidence that BKαΔe2 can modulate cellular responses to physiological stimuli in human chondrocyte and contribute under pathophysiological conditions, such as osteoarthritis.
Collapse
Affiliation(s)
- Yoshiaki Suzuki
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan
| | - Susumu Ohya
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan.,the Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan, and
| | - Hisao Yamamura
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan
| | - Wayne R Giles
- the Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yuji Imaizumi
- From the Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan,
| |
Collapse
|
14
|
Cleavage and polyadenylation specific factor 4 targets NF-κB/cyclooxygenase-2 signaling to promote lung cancer growth and progression. Cancer Lett 2016; 381:1-13. [PMID: 27450326 DOI: 10.1016/j.canlet.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/25/2022]
Abstract
Overexpression of cyclooxygenase 2 (COX-2) is frequently found in early and advanced lung cancers. However, the precise regulatory mechanism of COX-2 in lung cancers remains unclear. Here we identified cleavage and polyadenylation specific factor 4 (CPSF4) as a new regulatory factor for COX-2 and demonstrated the role of the CPSF4/COX-2 signaling pathway in the regulation of lung cancer growth and progression. Overexpression or knockdown of CPSF4 up-regulated or suppressed the expression of COX-2 at mRNA and protein levels, and promoted or inhibited cell proliferation, migration and invasion in lung cancer cells. Inhibition or induction of COX-2 reversed the CPSF4-mediated regulation of lung cancer cell growth. Cancer cells with CPSF4 overexpression or knockdown exhibited increased or decreased expression of p-IKKα/β and p-IκBα, the translocation of p50/p65 from the cytoplasm to the nucleus, and the binding of p65 on COX-2 promoter region. In addition, CPSF4 was found to bind to COX-2 promoter sequences directly and activate the transcription of COX-2. Silencing of NF-κB expression or blockade of NF-κB activity abrogated the binding of CPSF4 on COX-2 promoter, and thereby attenuated the CPSF4-mediated up-regulation of COX-2. Moreover, CPSF4 was found to promote lung tumor growth and progression by up-regulating COX-2 expression in a xenograft lung cancer mouse model. CPSF4 overexpression or knockdown promoted or inhibited tumor growth in mice, while such regulation of tumor growth mediated by CPSF4 could be rescued through the inhibition or activation of COX-2 signaling. Correspondingly, CPSF4 overexpression or knockdown also elevated or attenuated COX-2 expression in tumor tissues of mice, while treatment with a COX-2 inducer LPS or a NF-κB inhibitor reversed this elevation or attenuation. Furthermore, we showed that CPSF4 was positively correlated with COX-2 levels in tumor tissues of lung cancer patients. Simultaneous high expression of CPSF4 and COX-2 proteins predicted poor prognosis of patients with lung cancers. Our results therefore demonstrated a novel mechanism for the transcriptional regulation of COX-2 by CPSF4 in lung cancer, and also offer a potential therapeutic target for lung cancers bearing aberrant activation of CPSF4/COX-2 signaling.
Collapse
|
15
|
Wang L, Hitron JA, Wise JTF, Son YO, Roy RV, Kim D, Dai J, Pratheeshkumar P, Zhang Z, Xu M, Luo J, Shi X. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells. Toxicol Appl Pharmacol 2015. [PMID: 26220687 DOI: 10.1016/j.taap.2015.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development.
Collapse
Affiliation(s)
- Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - James T F Wise
- Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Donghern Kim
- Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jin Dai
- Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Poyil Pratheeshkumar
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Mei Xu
- Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jia Luo
- Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
16
|
Wei J, Du K, Cai Q, Ma L, Jiao Z, Tan J, Xu Z, Li J, Luo W, Chen J, Gao J, Zhang D, Huang C. Lead induces COX-2 expression in glial cells in a NFAT-dependent, AP-1/NFκB-independent manner. Toxicology 2014; 325:67-73. [PMID: 25193092 DOI: 10.1016/j.tox.2014.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/22/2022]
Abstract
Epidemiologic studies have provided solid evidence for the neurotoxic effect of lead for decades of years. In view of the fact that children are more vulnerable to the neurotoxicity of lead, lead exposure has been an urgent public health concern. The modes of action of lead neurotoxic effects include disturbance of neurotransmitter storage and release, damage of mitochondria, as well as induction of apoptosis in neurons, cerebrovascular endothelial cells, astroglia and oligodendroglia. Our studies here, from a novel point of view, demonstrates that lead specifically caused induction of COX-2, a well known inflammatory mediator in neurons and glia cells. Furthermore, we revealed that COX-2 was induced by lead in a transcription-dependent manner, which relayed on transcription factor NFAT, rather than AP-1 and NFκB, in glial cells. Considering the important functions of COX-2 in mediation of inflammation reaction and oxidative stress, our studies here provide a mechanistic insight into the understanding of lead-associated inflammatory neurotoxicity effect via activation of pro-inflammatory NFAT3/COX-2 axis.
Collapse
Affiliation(s)
- Jinlong Wei
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Kejun Du
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; Department of Occupational and Environmental Health and Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Qinzhen Cai
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lisha Ma
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhenzhen Jiao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinrong Tan
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhou Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Wenjin Luo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
17
|
Health Effects Associated with Inhalation of Airborne Arsenic Arising from Mining Operations. GEOSCIENCES 2014. [DOI: 10.3390/geosciences4030128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
19
|
Zhang R, Wang Y, Li J, Jin H, Song S, Huang C. The Chinese herb isolate yuanhuacine (YHL-14) induces G2/M arrest in human cancer cells by up-regulating p21 protein expression through an p53 protein-independent cascade. J Biol Chem 2014; 289:6394-6403. [PMID: 24451377 DOI: 10.1074/jbc.m113.513960] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yuanhuacine (YHL-14), the major component of daphnane diterpene ester isolated from the flower buds of Daphne genkwa, has been reported to have activity against cell proliferation in various cancer cell lines. Nevertheless, the potential mechanism has not been explored yet. Here we demonstrate that YHL-14 inhibits bladder and colon cancer cell growth through up-regulation of p21 expression in an Sp1-dependent manner. We found that YHL-14 treatment resulted in up-regulation of p21 expression and a significant G2/M phase arrest in T24T and HCT116 cells without affecting p53 protein expression and activation. Further studies indicate that p21 induction by YHL-14 occurs at the transcriptional level via up-regulation of Sp1 protein expression. Moreover, our results show that p38 is essential for YHL-14-mediated Sp1 protein stabilization, G2/M growth arrest induction, and anchorage-independent growth inhibition of cancer cells. Taken together, our studies demonstrate a novel mechanism of YHL-14 against cancer cell growth in bladder and colon cancer cell lines, which provides valuable information for the design and synthesis of other new conformation-constrained derivatives on the basis of the structure of YHL-14 for cancer therapy.
Collapse
Affiliation(s)
- Ruowen Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987; Key Laboratory of Structure-based Drug Design and Discovery, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yulei Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Shaojiang Song
- Key Laboratory of Structure-based Drug Design and Discovery, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987.
| |
Collapse
|
20
|
Vijayakaran K, Kannan K, Kesavan M, Suresh S, Sankar P, Tandan SK, Sarkar SN. Arsenic reduces the antipyretic activity of paracetamol in rats: modulation of brain COX-2 activity and CB₁ receptor expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:438-447. [PMID: 24448467 DOI: 10.1016/j.etap.2013.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
We examined whether subacute arsenic exposure can reduce paracetamol-mediated antipyretic activity by affecting COX pathway and cannabinoid CB1 receptor regulation. Rats were preexposed to elemental arsenic (4 ppm) as sodium arsenite through drinking water for 28 days. Next day pyrexia was induced with lipopolysaccharide and paracetamol's (200 mg/kg, oral) antipyretic activity was assessed. The activities of COX-1 and COX-2, the levels of PGE₂, TNF-α and IL-1β and expression of CB₁ receptors were assessed in brain. Arsenic inhibited paracetamol-mediated antipyretic activity. COX-1 activity was not affected by any treatments. Paracetamol decreased COX-2 activity, levels of PGE₂, TNF-α and IL-1β and caused up-regulation of CB1 receptors. Arsenic caused opposite effects on these parameters. In the arsenic-preexposed rats, paracetamol-mediated effects were attenuated, while CB₁ receptor up-regulation was reversed to down-regulation. Results suggest that elevated COX-2 activity and reduced CB₁ expression could be involved in the arsenic-mediated attenuation of the antipyretic activity of paracetamol.
Collapse
Affiliation(s)
- Karunakaran Vijayakaran
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Kandasamy Kannan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Manickam Kesavan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Subramaniyam Suresh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Palanisamy Sankar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Surendra Kumar Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Souvendra Nath Sarkar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
21
|
Ding J, Wang H. Multiple interactive factors in hepatocarcinogenesis. Cancer Lett 2013; 346:17-23. [PMID: 24374016 DOI: 10.1016/j.canlet.2013.12.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/08/2013] [Accepted: 12/10/2013] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the third most frequent cause of cancer mortality globally. Each year there are approximately 630,000 new cases of HCC in the world and more than half of the new cases occur in China. Major risk factors of HCC include HBV or HCV infection, alcoholic liver disease, and nonalcoholic fatty liver disease. Most of these risk factors lead to chronic hepatitis and cirrhosis, which is present in 80-90% of HCC patients. Hepatocarcinogenesis has been regarded as a multi-stage process involving multiple genetic or environmental factors. Interaction and cross-regulation of distinct factors synergistically contributes to HCC occurrence. A comprehensive knowledge on the multiple factors and their interaction in hepatocarcinogenesis is necessary to improve the effectiveness of HCC intervention. In this review, we will focus on the recent progress made in understanding the mechanisms of hepatocarcinogenesis and discuss some potential issues or challenges in this area.
Collapse
Affiliation(s)
- Jin Ding
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| |
Collapse
|
22
|
Du K, Yu Y, Zhang D, Luo W, Huang H, Chen J, Gao J, Huang C. NFκB1 (p50) suppresses SOD2 expression by inhibiting FoxO3a transactivation in a miR190/PHLPP1/Akt-dependent axis. Mol Biol Cell 2013; 24:3577-83. [PMID: 24068327 PMCID: PMC3826995 DOI: 10.1091/mbc.e13-06-0343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study reports a novel function of p50 in its regulation of SOD2 transcription via an NFκB-independent pathway. p50-regulated FoxO3a phosphorylation and transactivation contributes to SOD2 transcription, and p50–down-regulated PHLPP1 translation via miR190 is responsible for activation of Akt and FoxO3a. The biological functions of nuclear factor κB1 (NFκB1; p50) have not been studied as often as those of other members of the NFκB family due to its lack of a transcriptional domain. Our recent studies showed that p50 functions as an apoptotic mediator via its inhibition of GADD45α protein degradation and increase in p53 protein translation. Here we report a novel function of p50 in its regulation of superoxide dismutase 2 (SOD2) transcription via an NFκB-independent pathway. We find that deletion of p50 in mouse embryonic fibroblasts (MEFs; p50−/−) up-regulates SOD2 expression at both protein and mRNA levels. SOD2 promoter–driven luciferase is also up-regulated in p50−/− cells compared with wild-type (WT) MEF (p50+/+) cells, suggesting p50 regulation of SOD2 at the transcriptional level. Our results also show that p50 deficiency specifically results in down-regulation of phosphorylation and increased transactivation of FoxO3a compared with WT cells. Further studies indicate that p50–down-regulated FoxO3a phosphorylation is mediated by activated Akt via up-regulation of microRNA 190 (miR190), in turn inhibiting PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) translation. Together our studies identify a novel p50 function in the regulation of SOD2 transcription by modulating the miR190/PHLPP1/Akt-FoxO3a pathway, which provides significant insight into the physiological function of p50.
Collapse
Affiliation(s)
- Kejun Du
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Shanxi 710032, China Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Daniel C, Gerlach K, Väth M, Neurath MF, Weigmann B. Nuclear factor of activated T cells - a transcription factor family as critical regulator in lung and colon cancer. Int J Cancer 2013; 134:1767-75. [PMID: 23775822 DOI: 10.1002/ijc.28329] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
Nuclear factor of activated T cells (NFAT) was first identified as a transcription factor which is activated upon T cell stimulation. Subsequent studies uncovered that a whole family of individual NFAT proteins exists with pleiotropic functions not only in immune but also in nonimmune cells. However, dysregulation of NFAT thereby favors malignant growth and cancer. Summarizing the recent advances in understanding how individual NFAT factors regulate the immune system, this review gives new insights into the critical role of NFAT in cancer development with special focus on inflammation-associated colorectal cancer.
Collapse
Affiliation(s)
- Carolin Daniel
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen,German Research Center for Environmental Health (GmbH), Munich, Germany
| | | | | | | | | |
Collapse
|
24
|
Che X, Liu J, Huang H, Mi X, Xia Q, Li J, Zhang D, Ke Q, Gao J, Huang C. p27 suppresses cyclooxygenase-2 expression by inhibiting p38β and p38δ-mediated CREB phosphorylation upon arsenite exposure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2083-91. [PMID: 23639288 DOI: 10.1016/j.bbamcr.2013.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/06/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
p27 is a cyclin-dependent kinase (CDK) inhibitor that suppresses a cell's transition from G0 to S phase, therefore acting as a tumor suppressor. Our most recent studies demonstrate that upon arsenite exposure, p27 suppresses Hsp27 and Hsp70 expressions through the JNK2/c-Jun- and HSF-1-dependent pathways, suggesting a novel molecular mechanism underlying the tumor suppressive function of p27 in a CDK-independent manner. We found that p27-deficiency (p27-/-) resulted in the elevation of cyclooxygenase-2 (COX-2) expression at transcriptional level, whereas the introduction of p27 brought back COX-2 expression to a level similar to that of p27+/+ cells, suggesting that p27 exhibits an inhibitory effect on COX-2 expression. Further studies identified that p27 inhibition of COX-2 expression was specifically due to phosphorylation of transcription factor cAMP response element binding (CREB) phosphorylation mediated by p38β and p38δ. These results demonstrate a novel mechanism underlying tumor suppression effect of p27 and will contribute to the understanding of the overall mechanism of p27 tumor suppression in a CDK-independent manner.
Collapse
Affiliation(s)
- Xun Che
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zuo Z, Ouyang W, Li J, Costa M, Huang C. Cyclooxygenase-2 (COX-2) mediates arsenite inhibition of UVB-induced cellular apoptosis in mouse epidermal Cl41 cells. Curr Cancer Drug Targets 2012; 12:607-16. [PMID: 22463588 DOI: 10.2174/156800912801784802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 12/29/2022]
Abstract
Inorganic arsenic is an environmental human carcinogen, and has been shown to act as a co-carcinogen with solar ultraviolet (UV) radiation in mouse skin tumor induction even at low concentrations. However, the precise mechanism of its co-carcinogenic action is largely unknown. Apoptosis plays an essential role as a protective mechanism against neoplastic development in the organism by eliminating genetically damaged cells. Thus, suppression of apoptosis is thought to contribute to carcinogenesis. It is known that cyclooxygenase-2 (COX-2) can promote carcinogenesis by inhibiting cell apoptosis under stress conditions; and our current studies investigated the potential contribution of COX-2 to the inhibitory effect of arsenite in UV-induced cell apoptosis in mouse epidermal Cl41 cells. We found that treatment of cells with low concentration (5 μM) arsenite attenuated cellular apoptosis upon UVB radiation accompanied with a coinductive effect on COX-2 expression and nuclear factor-κB (NFκB) transactivation. Our results also showed that the COX-2 induction by arsenite and UVB depended on an NFκB pathway because COX-2 co-induction could be attenuated in either p65-deficient or p50-deficient cells. Moreover, UVB-induced cell apoptosis could be dramatically reduced by the introduction of exogenous COX-2 expression, whereas the inhibitory effect of arsenite on UVB-induced cell apoptosis could be impaired in COX-2 knockdown C141 cells. Our results indicated that COX-2 mediated the anti-apoptotic effect of arsenite in UVB radiation through an NFκB-dependent pathway. Given the importance of apoptosis evasion during carcinogenesis, we anticipated that COX-2 induction might be at least partially responsible for the co-carcinogenic effect of arsenite on UVB-induced skin carcinogenesis.
Collapse
Affiliation(s)
- Z Zuo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, 10987, USA
| | | | | | | | | |
Collapse
|
26
|
Liu XP, Huang YC, Hung WC, Chen WT, Yu HS, Chai CY. Sodium arsenite-induced abnormalities in expressions of Caveolin-1, eNOS, IKKβ, and COX-2 in SV-40 immortalized human uroepithelial cells and in urothelial carcinomas. Toxicol In Vitro 2012; 26:1098-105. [DOI: 10.1016/j.tiv.2012.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 06/07/2012] [Accepted: 07/04/2012] [Indexed: 11/25/2022]
|
27
|
Fang Y, Yu Y, Hou Q, Zheng X, Zhang M, Zhang D, Li J, Wu XR, Huang C. The Chinese herb isolate isorhapontigenin induces apoptosis in human cancer cells by down-regulating overexpression of antiapoptotic protein XIAP. J Biol Chem 2012; 287:35234-35243. [PMID: 22896709 DOI: 10.1074/jbc.m112.389494] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the Chinese herb Gnetum cleistostachyum has been used as a remedy for cancers for hundred years, the active compounds and molecular mechanisms underlying its anti-cancer activity have not been explored. Recently a new derivative of stilbene compound, isorhapontigenin (ISO), was isolated from this Chinese herb. In the present study, we examined the potential of ISO in anti-cancer activity and the mechanisms involved in human cancer cell lines. We found that ISO exhibited significant inhibitory effects on human bladder cancer cell growth that was accompanied by marked apoptotic induction as well as down-regulation of the X-linked inhibitor of apoptosis protein (XIAP). Further studies have shown that ISO down-regulation of XIAP protein expression was only observed in endogenous XIAP, but not in constitutionally exogenously expressed XIAP in the same cells, excluding the possibility of ISO regulating XIAP expression at the level of protein degradation. We also identified that ISO down-regulated XIAP gene transcription via inhibition of Sp1 transactivation. There was no significant effect of ISO on apoptosis and colony formation of cells transfected with exogenous HA-tagged XIAP. Collectively, current studies, for the first time to the best of our knowledge, identify ISO as a major active compound for the anti-cancer activity of G. cleistostachyum by down-regulation of XIAP expression and induction of apoptosis through specific targeting of a SP1 pathway, and cast new light on the treatment of the cancer patients with XIAP overexpression.
Collapse
Affiliation(s)
- Yong Fang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987; Department of Medical Oncology, Sir Run Run Shaw Hospital, ZheJiang University, Hangzhou, Zhejiang 310016, China
| | - Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Qi Hou
- Materia Medica of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao Zheng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Min Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Xue-Ru Wu
- Department of Urology and Pathology, New York University School of Medicine, New York, New York 10016
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987.
| |
Collapse
|
28
|
Musson REA, Mullenders LHF, Smit NPM. Effects of arsenite and UVA-1 radiation on calcineurin signaling. Mutat Res 2012; 735:32-38. [PMID: 22564430 DOI: 10.1016/j.mrfmmm.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/16/2012] [Accepted: 04/26/2012] [Indexed: 05/31/2023]
Abstract
Calcineurin is a Ca(2+)-dependent serine/threonine phosphatase and the target of the immunosuppressive drugs cyclosporin and tacrolimus, which are used in transplant recipients to prevent rejection. Unfortunately, the therapeutic use of this drugs is complicated by a high incidence of skin malignancy, which has set off a number of studies into the role of calcineurin signaling in skin, particularly with respect to cell cycle control and DNA repair. Both UVA1 radiation and arsenic species are known to promote skin cancer development via production of reactive oxygen species. In light of the well-documented sensitivity of calcineurin to oxidative stress, we examined and compared the effects of UVA1 and arsenite on calcineurin signaling. In this paper, we show that physiologically relevant doses of UVA1 radiation and low micromolar concentrations of arsenite strongly inhibit calcineurin phosphatase activity in Jurkat and skin cells and decrease NFAT nuclear translocation in Jurkat cells. The effects on calcineurin signaling could be partly prevented by inhibition of NADPH oxidase in Jurkat cells or increased dismutation of superoxide in Jurkat and skin cells. In addition, both UVA1 and arsenite decreased NF-κB activity, although at lower concentrations, arsenite enhanced NF-κB activity. These data indicate that UVA1 and arsenite affect a signal transduction route of growingly acknowledged importance in skin and that calcineurin may serve as a potential link between ROS exposure and impaired tumor suppression.
Collapse
Affiliation(s)
- Ruben E A Musson
- Department of Clinical Chemistry, Leiden University Medical Center, The Netherlands.
| | | | | |
Collapse
|
29
|
Chen ZL, Zhao SH, Wang Z, Qiu B, Li BZ, Zhou F, Tan XG, He J. Expression and unique functions of four nuclear factor of activated T cells isoforms in non-small cell lung cancer. CHINESE JOURNAL OF CANCER 2012; 30:62-8. [PMID: 21192845 PMCID: PMC4012264 DOI: 10.5732/cjc.010.10156] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nuclear factor of activated T cells (NFAT) is an important family of transcription factors that can be activated by calmodulin and calcineurin in human cells. To investigate the expression and clinical significance of NFAT isoforms and calcineurin in non-small cell lung cancer (NSCLC), we collected tumor and adjacent normal tissues from 159 NSCLC patients and assembled them in a tissue microarray. Protein levels of NFAT1, NFAT2, NFAT3, NFAT4, and calcineurin were determined using immunohistochemistry. Correlations between NFAT and calcineurin expression and clinicopathologic characteristics were analyzed. We found that the positive rates of NFAT1 (52.8%, 84/159), NFAT2 (11.3%, 18/159), NFAT3 (28.3%, 45/ 159), NFAT4 (47.2%, 75/159), and calcineurin (47.8%, 76/159) expression were significantly higher in tumor tissues than in adjacent normal lung tissues (P < 0.001), respectively. The positive rate of NFAT1 expression was significantly higher in patients with adenocarcinoma (63.5%, 47/74) than in those with squamous cell carcinoma (43.5%, 37/85) (χ2 = 6.340, P = 0.012); with lymph node metastasis (61.6%, 53/ 86) than without lymph node metastasis (42.5%, 31/73) (χ2 = 5.818, P = 0.016); and with stage-ll and -III diseases (61.8%, 55/89) than with stage-I disease (41.4%, 29/70) (χ2 = 6.524, P = 0.011). Moreover, the overexpression of NFAT1 was associated with poor survival of NSCLC patients (χ2 = 5.006, P = 0.025). The positive rate of NFAT4 was significantly higher in patients with squamous carcinoma (57.6%, 49/85) than in those with adenocarcinoma (35.1%, 26/74) (χ2 = 8.045, P = 0.005) and with high and moderate differentiation (54.9%, 61/111) than with low differentiation (29.2%, 14/48) (χ2 = 8.943, P = 0.003). Calcineurin overexpression was significantly associated with histologic type (higher in squamous carcinoma than in adenocarcinoma, χ2 = 8.897, P = 0.003), differentiation grade (higher in high-moderation grade than in low grade, χ2 = 9.566, P = 0.002) and gender (higher in male than in female, χ2 = 5.766, P = 0.016). Furthermore, calcineurin expression was significantly correlated with NFAT4 level (r = 0.429, P < 0.001). These results suggest that NFAT1 expression is associated with lung adenocarcinoma progression, and NFAT4 expression, which was higher in squamous lung cancer, is associated with calcineurin expression and differentiation grade.
Collapse
Affiliation(s)
- Zhao-Li Chen
- Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zuo Z, Cai T, Li J, Zhang D, Yu Y, Huang C. Hexavalent chromium Cr(VI) up-regulates COX-2 expression through an NFκB/c-Jun/AP-1-dependent pathway. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:547-553. [PMID: 22472290 PMCID: PMC3339461 DOI: 10.1289/ehp.1104179] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Hexavalent chromium [Cr(VI)] is recognized as a human carcinogen via inhalation. However, the molecular mechanisms by which Cr(VI) causes cancers are not well understood. OBJECTIVES We evaluated cyclooxygenase-2 (COX-2) expression and the signaling pathway leading to this induction due to Cr(VI) exposure in cultured cells. METHODS We used the luciferase reporter assay and Western blotting to determine COX-2 induction by Cr(VI). We used dominant negative mutant, genetic knockout, gene knockdown, and chromatin immunoprecipitation approaches to elucidate the signaling pathway leading to COX-2 induction. RESULTS We found that Cr(VI) exposure induced COX-2 expression in both normal human bronchial epithelial cells and mouse embryonic fibroblasts in a concentration- and time-dependent manner. Deletion of IKKβ [inhibitor of transcription factor NFκB (IκB) kinase β; an upstream kinase responsible for nuclear factor κB (NFκB) activation] or overexpression of TAM67 (a dominant-negative mutant of c-Jun) dramatically inhibited the COX-2 induction due to Cr(VI), suggesting that both NFκB and c-Jun/AP-1 pathways were required for Cr(VI)-induced COX-2 expression. Our results show that p65 and c-Jun are two major components involved in NFκB and AP-1 activation, respectively. Moreover, our studies suggest crosstalk between NFκB and c-Jun/AP-1 pathways in cellular response to Cr(VI) exposure for COX-2 induction. CONCLUSION We demonstrate for the first time that Cr(VI) is able to induce COX-2 expression via an NFκB/c-Jun/AP-1-dependent pathway. Our results provide novel insight into the molecular mechanisms linking Cr(VI) exposure to lung inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Zhenghong Zuo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ahmad W, Prawez S, Chanderashekara HH, Tandan SK, Sankar P, Sarkar SN. Subacute arsenic exposure through drinking water reduces the pharmacodynamic effects of ketoprofen in male rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:267-276. [PMID: 22236721 DOI: 10.1016/j.etap.2011.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/14/2011] [Accepted: 12/15/2011] [Indexed: 05/31/2023]
Abstract
We evaluated the modulatory role of the groundwater contaminant arsenic on the pharmacodynamic responses of the nonsteroidal analgesic-antipyretic drug ketoprofen and the major pro-inflammatory mediators linked to the mechanism of ketoprofen's therapeutic effects. Rats were pre-exposed to sodium arsenite (0.4, 4 and 40 ppm) through drinking water for 28 days. The pharmacological effects of orally administered ketoprofen (5 mg/kg) were evaluated the following day. Pain, inflammation and pyretic responses were, respectively, assessed through formalin-induced nociception, carrageenan-induced inflammation and lipopolysaccharide-induced pyrexia. Arsenic inhibited ketoprofen's analgesic, anti-inflammatory and antipyretic effects. Further, arsenic enhanced cyclooxygenase-1 and cyclooxygenase-2 activities and tumor necrosis factor-α, interleukin-1β and prostaglandin-E(2) production in hind paw muscle. These results suggest a functional antagonism of ketoprofen by arsenic. This may relate to arsenic-mediated local release of tumor necrosis factor-α and interleukin-1β, which causes cyclooxygenase induction and consequent prostaglandin-E(2) release. In conclusion, subacute exposure to environmentally relevant concentrations of arsenic through drinking water may aggravate pain, inflammation and pyrexia and thereby, may reduce the therapeutic efficacy of ketoprofen.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Arsenites/administration & dosage
- Arsenites/toxicity
- Carrageenan
- Cyclooxygenase 1/metabolism
- Cyclooxygenase 2/metabolism
- Dinoprostone/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drinking Water/chemistry
- Drug Interactions
- Fever/chemically induced
- Fever/metabolism
- Fever/prevention & control
- Formaldehyde
- Hindlimb
- Inflammation/chemically induced
- Inflammation/metabolism
- Inflammation/prevention & control
- Inflammation Mediators/metabolism
- Interleukin-1beta/metabolism
- Ketoprofen/administration & dosage
- Ketoprofen/pharmacology
- Lipopolysaccharides
- Male
- Membrane Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Pain/chemically induced
- Pain/metabolism
- Pain/prevention & control
- Rats
- Rats, Wistar
- Sodium Compounds/administration & dosage
- Sodium Compounds/toxicity
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
- Water Pollutants, Chemical/administration & dosage
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Wasif Ahmad
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243 122, Bareilly, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
32
|
Cai T, Li X, Ding J, Luo W, Li J, Huang C. A cross-talk between NFAT and NF-κB pathways is crucial for nickel-induced COX-2 expression in Beas-2B cells. Curr Cancer Drug Targets 2011; 11:548-59. [PMID: 21486220 DOI: 10.2174/156800911795656001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/30/2010] [Indexed: 01/09/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a critical enzyme implicated in chronic inflammation-associated cancer development. Our studies have shown that the exposure of Beas-2B cells, a human bronchial epithelial cell line, to lung carcinogenic nickel compounds results in increased COX-2 expression. However, the signaling pathways leading to nickel-induced COX-2 expression are not well understood. In the current study, we found that the exposure of Beas-2B cells to nickel compounds resulted in the activation of both nuclear factor of activated T cell (NFAT) and nuclear factor-κB (NF-κB). The expression of COX-2 induced upon nickel exposure was inhibited by either a NFAT pharmacological inhibitor or the knockdown of NFAT3 by specific siRNA. We further found that the activation of NFAT and NF-κB was dependent on each other. Since our previous studies have shown that NF-κB activation is critical for nickel-induced COX-2 expression in Beas-2B cells exposed to nickel compounds under same experimental condition, we anticipate that there might be a cross-talk between the activation of NFAT and NF-κB for the COX-2 induction due to nickel exposure in Beas-2B cells. Furthermore, we showed that the scavenging of reactive oxygen species (ROS) by introduction of mitochondrial catalase inhibited the activation of both NFAT and NF-κB, and the induction of COX-2 due to nickel exposure. Taken together, our results defining the evidence showing a key role of the cross-talk between NFAT and NF-κB pathways in regulating nickel-induced COX-2 expression, further provide insight into the understanding of the molecular mechanisms linking nickel exposure to its lung carcinogenic effects.
Collapse
Affiliation(s)
- Tongjian Cai
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | | | |
Collapse
|
33
|
Manimaran A, Sarkar SN, Sankar P. Repeated preexposure or coexposure to arsenic differentially alters acetaminophen-induced oxidative stress in rat kidney. ENVIRONMENTAL TOXICOLOGY 2011; 26:250-259. [PMID: 19950220 DOI: 10.1002/tox.20551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Acetaminophen (AP) is a widely used, cheap, and over-the-counter nonsteroidal anti-inflammatory drug. Its toxicity depends on the cytochrome P-450 (CYP)-mediated oxidation to the toxic metabolite N-acetyl-p-benzoquinoneimine. On the other hand, arsenic, a global groundwater and environmental contaminant of major public health concern, decreases hepatic CYP content and its dependent monoxygenase activities. We hypothesized that arsenic exposure would reduce the AP toxicity. Our aim was to evaluate the effects of repeated preexposure or coexposure to arsenic on the oxidative stress induced by a single or repeated oral administration of AP in rat kidney and its possible relationship with the effects of arsenic on certain antioxidants. Rats were exposed to arsenic through drinking water at 25 ppm for 28 days. The dosages of AP used for a single administration after arsenic preexposure for 28 days were 420 and 1000 mg kg(-1) , while for daily concurrent administration with arsenic for 28 days were 105 and 420 mg kg(-1) body weight. AP increased lipid peroxidation (LPO) in rat kidney where its acute administration caused more LPO than its subacute dosing. Repeated arsenic exposure differentially altered the AP-induced LPO. Arsenic preexposure antagonized LPO induced by the acute AP administration; in contrast, arsenic coexposure aggravated the repeated dose (AP)-mediated LPO. Arsenic-mediated alterations in renal sensitivity to LPO did not appear to be linked to the antioxidants such as reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase; nor could it be related to glutathione-S-transferase activity. The results indicated that repeated arsenic preexposure decreased susceptibility of rat kidney to acute AP-mediated oxidative stress; on the contrary, its coexposure rendered the rat kidney more vulnerable to oxidative stress induced by the repeated dosing of AP.
Collapse
Affiliation(s)
- Ayyasamy Manimaran
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | | | | |
Collapse
|
34
|
Lin H, Sue YM, Chou Y, Cheng CF, Chang CC, Li HF, Chen CC, Juan SH. Activation of a nuclear factor of activated T-lymphocyte-3 (NFAT3) by oxidative stress in carboplatin-mediated renal apoptosis. Br J Pharmacol 2011; 161:1661-76. [PMID: 20718735 DOI: 10.1111/j.1476-5381.2010.00989.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Although carboplatin is currently used as a therapeutic drug for ovarian, breast, and non-small cell lung cancers, it has serious side effects including renal and cardiac toxicity. Herein, we examined the effect of carboplatin on murine renal tubular cell (RTC) apoptosis both in vivo and in vitro and the underlying molecular mechanisms associated with its activation of the nuclear factor of activated T-lymphocytes-3 (NFAT3). EXPERIMENTAL APPROACH Mechanisms of carboplatin-mediated renal apoptosis were examined using NFAT-reporter transgenic mice and RTCs with NFAT3 overexpression or knockdown. KEY RESULTS We demonstrated that carboplatin initiated an intrinsic apoptotic pathway of activating caspase-3 and -9, accompanied by a decrease in the ratio of Bcl-XL/Bax and a significant increase in Bcl-XS. Carboplatin increased NFAT activation in NFAT-luciferase reporter transgenic mice, RTCs and cells exogenously overexpressing NFAT3 that exacerbated cell death. Furthermore, the addition of either N-acetylcysteine (NAC, an antioxidant) or NFAT inhibitors, including FK-506 (tacrolimus), cyclosporin A (CsA, a calcineurin inhibitor), and BAPTA-AM (a calcium chelator) successfully reversed carboplatin-mediated cell apoptosis, which was further confirmed using siNFAT3. Additionally, NAC blocked NFAT3 activation by inhibition of NADPH oxidase activation, and ERK/JNK and PKC pathways, resulting in a decrease in cell apoptosis; the therapeutic effect of NAC was verified in vivo. CONCLUSION AND IMPLICATIONS The results presented herein show that carboplatin-mediated reactive oxygen species might signal calcineurin and NFAT3 activation in RTCs, whereas NAC and NFAT inhibitors reversed carboplatin-mediated RTC apoptosis, suggesting that oxidative stress-mediated NFAT3 activation is essential for carboplatin-mediated RTC apoptosis.
Collapse
Affiliation(s)
- Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Liang JQ, Wu K, Jia ZH, Liu C, Ding J, Huang SN, Yin PP, Wu XC, Wei C, Wu YL, Wang HY. Chinese medicine Tongxinluo modulates vascular endothelial function by inducing eNOS expression via the PI-3K/Akt/HIF-dependent signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:517-523. [PMID: 20969943 DOI: 10.1016/j.jep.2010.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/21/2010] [Accepted: 10/13/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY To investigate the molecular mechanisms whereby the Chinese medicinal compound Tongxinluo improves vascular endothelial function through studying the induction of endothelial nitric oxide synthase (eNOS) and its upstream signaling pathway. MATERIALS AND METHODS Hyperhomocysteinemia was induced in Wistar rats by a methionine-rich diet followed by Tongxinluo treatment. The aorta ring was isolated for measuring vascular dilation of aorta and eNOS expression. Human umbilical vein endothelial cells (HUVECs) were transfected with AP-1, NF-κB, HRE or eNOS reporter plasmid followed by Tongxinluo exposure. Expression of the reporter genes was measured by luciferase assay. The level of eNOS was studied by western blot and the nitric oxide content was measured using the nitrate reductase method. HUVECs were also transiently transfected with the dominant negative mutant of HIF-1, PI-3K or Akt to explore the role of HIF and PI-3K/Akt pathway in eNOS induction by Tongxinluo. RESULTS Tongxinluo could significantly up-regulate the expression of eNOS in the aortic tissue and improve the endothelium-dependent vasodilation of the aorta ring. Additionally, Tongxinluo at various doses could significantly enhance the expression of HRE and eNOS reporter gene as well as up-regulate the protein level of eNOS. Meanwhile, Tongxinluo caused a dose-dependent increase in the NO content in the supernatant of HUVECs. Suppression of HIF-1 activation by DN-HIF or inhibition of PI-3K/Akt pathway by ΔP85 or DN-Akt both attenuated HRE reporter gene activation and eNOS induction by Tongxinluo. CONCLUSION Tongxinluo, a compound Chinese traditional medicine, up-regulates the expression of eNOS via the PI-3K/Akt/HIF-dependent signaling pathway, thus improving the endothelium-dependent vasodilation.
Collapse
Affiliation(s)
- Jun Qing Liang
- The International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Institute, Second Military Medical University, 225 Changhai Road, Shanghai 200438, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen W, Li Z, Bai L, Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci (Landmark Ed) 2011; 16:1172-85. [PMID: 21196225 DOI: 10.2741/3782] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung cancer ranks as the first malignant tumor killer worldwide. Despite the knowledge that carcinogens from tobacco smoke and the environment constitute the main causes of lung cancer, the mechanisms for lung carcinogenesis are still elusive. Cancer development and progression depend on the balance between cell survival and death signals. Common cell survival signaling pathways are activated by carcinogens as well as by inflammatory cytokines, which contribute substantially to cancer development. As a major cell survival signal, nuclear factor-kappaB (NF-kappaB) is involved in multiple steps in carcinogenesis and in cancer cell's resistance to chemo- and radio-therapy. Recent studies with animal models and cell culture systems have established the links between NF-kappaB and lung carcinogenesis, highlighting the significance of targeting NF-kappa signaling pathway for lung cancer treatment and chemoprevention. In this review, we summarize progresses in understanding the NF-kappaB pathway in lung cancer development as well as in modulating NF-kappaB for lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Wenshu Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR SE, Albuquerque, NM 87108, USA
| | | | | | | |
Collapse
|
37
|
赵 晓, 陈 照, 赵 守, 赫 捷. [Expression and significance of COX-2 and its transcription factors NFAT3 and c-Jun in non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:1035-40. [PMID: 21081043 PMCID: PMC6000498 DOI: 10.3779/j.issn.1009-3419.2010.11.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 08/23/2010] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Cyclooxygenases (COX), the key enzymes in the conversion of arachidonic acid (AA) to prostaglandins (PGs), are involved in initiation and progression of cancer. The aim of this study is to explore the relationship between the expressions of COX-2 and several transcription factors in non-small cell lung cancer. METHODS Immunohistochemistry was performed to assay the expression levels of COX-2, c-Fos, c-Jun and nuclear factor of activated T cells 3 (NFAT3) in tissue microarray containing 159 tumor tissues of non-small cell lung cancer. RESULTS The positive rate of COX-2 expression was 42.8%, and the expression of COX-2 was significantly higher in squamous cell carcinoma than that in adenocarcinoma (52.9% vs 31.3%, χ²=7.723, P=0.005). The expression of COX-2 was significantly associated with differentiation grade, with the lower level in the poorer differentiation grade group (χ²=7.600, P=0.022). In this panel of samples, the expression of COX-2 was significantly correlated with c-Fos expression (r=0.456, P<0.001) and NFAT3 level (r=0.294, P<0.001). The correlation between the expressions of NFAT3 and c-Fos were also observed (r=0.231, P=0.003). CONCLUSION The expression of COX-2 was significantly associated with the expressions of transcription factors NFAT3 and c-Fos in nonsmall cell lung cancer.
Collapse
Affiliation(s)
- 晓鸿 赵
- 100021 北京,北京协和医学院,中国医学科学院,肿瘤医院肿瘤研究所胸外科Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - 照丽 陈
- 100021 北京,北京协和医学院,中国医学科学院,肿瘤医院肿瘤研究所胸外科Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - 守华 赵
- 277500 滕州,山东省滕州市中心人民医院胸外科Department of Thoracic Surgery, Tengzhou Center People Hospital, Tengzhou 277500, China
| | - 捷 赫
- 100021 北京,北京协和医学院,中国医学科学院,肿瘤医院肿瘤研究所胸外科Department of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
38
|
Luo W, Li J, Zhang D, Cai T, Song L, Yin XM, Desai D, Amin S, Chen J, Huang C. Bid mediates anti-apoptotic COX-2 induction through the IKKbeta/NFkappaB pathway due to 5-MCDE exposure. Curr Cancer Drug Targets 2010; 10:96-106. [PMID: 20088789 DOI: 10.2174/156800910790980160] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 11/30/2009] [Indexed: 12/22/2022]
Abstract
Although Bid has been considered as a cell apoptotic mediator, current studies suggest a possible role in cell survival in mouse embryonic fibroblasts (MEFs) response to low doses of anti-(+/-)-5- methylchrysene-1,2-diol-3,4-epoxide(<or=0.25 microM) (5-MCDE). We found that exposure of MEFs to 0.25 microM 5-MCDE resulted in a slight apoptotic induction, while this apoptotic response was substantially increased in the Bid knockout MEFs (Bid(-/-)), suggesting Bid-mediated anti-apoptotic function in this response. This notion was further supported by the findings that re-constitution expression of Bid into Bid(-/-) cells could inhibit the increased apoptosis. Further studies showed that Bid anti-apoptotic function was associated with its mediation of COX-2 expression, which was based on the results of the reduction of COX-2 expression in Bid(-/-) cells, restoration of low sensitivity to 5-MCDE apoptotic response by the introduction of Bid into Bid(-/-) cells and increased sensitivity of WT MEFs to 5-MCDE apoptosis by knockdown of COX-2 expression. Furthermore, Bid mediated COX-2 expression through the IKKbeta/NFkappaB pathway because the deficiency of Bid in Bid(-/-) MEFs resulted in blockade of IKK/NFkappaB activation and knockout of IKKbeta caused abrogation of COX-2 expression induced by 5-MCDE. Collectively, our results demonstrate that Bid is critical for COX-2 induction through the IKKbeta/NFkappaB pathway, which mediates its anti-apoptotic function, in cell response to low doses of 5-MCDE exposure.
Collapse
Affiliation(s)
- Wenjing Luo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu J, Zhang D, Mi X, Xia Q, Yu Y, Zuo Z, Guo W, Zhao X, Cao J, Yang Q, Zhu A, Yang W, Shi X, Li J, Huang C. p27 suppresses arsenite-induced Hsp27/Hsp70 expression through inhibiting JNK2/c-Jun- and HSF-1-dependent pathways. J Biol Chem 2010; 285:26058-65. [PMID: 20566634 DOI: 10.1074/jbc.m110.100271] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p27 is an atypical tumor suppressor that can regulate the activity of cyclin-dependent kinases and G(0)-to-S phase transitions. More recent studies reveal that p27 may also exhibit its tumor-suppressive function through regulating many other essential cellular events. However, the molecular mechanisms underlying these anticancer effects of p27 are largely unknown. In this study, we found that depletion of p27 expression by either gene knock-out or knockdown approaches resulted in up-regulation of both Hsp27 and Hsp70 expression at mRNA- and promoter-derived transcription as well as protein levels upon arsenite exposure, indicating that p27 provides a negative signal for regulating the expression of Hsp27 and Hsp70. Consistently, arsenite-induced activation of JNK2/c-Jun and HSF-1 pathways was also markedly elevated in p27 knock-out (p27(-/-)) and knockdown (p27 shRNA) cells. Moreover, interference with the expression or function of JNK2, c-Jun, and HSF-1, but not JNK1, led to dramatic inhibition of arsenite-induced Hsp27 and Hsp70 expression. Collectively, our results demonstrate that p27 suppresses Hsp27 and Hsp70 expression at the transcriptional level specifically through JNK2/c-Jun- and HSF-1-dependent pathways upon arsenite exposure, which provides additional important molecular mechanisms for the tumor-suppressive function of p27.
Collapse
Affiliation(s)
- Jinyi Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ding J, Ning B, Gong W, Wen W, Wu K, Liang J, He G, Huang S, Sun W, Han T, Huang L, Cao G, Wu M, Xie W, Wang H. Cyclin D1 induction by benzo[a]pyrene-7,8-diol-9,10-epoxide via the phosphatidylinositol 3-kinase/Akt/MAPK- and p70s6k-dependent pathway promotes cell transformation and tumorigenesis. J Biol Chem 2009; 284:33311-9. [PMID: 19801633 DOI: 10.1074/jbc.m109.046417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), the major metabolite of B[a]P, has been well recognized as one ubiquitous carcinogen, but the molecular mechanism involved in its carcinogenic effect remains obscure. In the present study, we found that bronchial epithelial cells (Beas-2B) and hepatocytes treated with B[a]PDE presented a significant increase of cyclin D1 expression. Moreover, Akt, p70(s6k), and MAPKs including JNK, Erks, and p38 were notably activated in B[a]PDE-treated Beas-2B cells, whereas NF-kappaB, NFAT, and Egr-1 were not. Our results demonstrated that JNK and Erks were required in B[a]PDE-induced cyclin D1 expression because the inhibition of JNK or Erks by a selective chemical inhibitor or dominant negative mutant robustly impaired the cyclin D1 induction by B[a]PDE. Furthermore, we found that overexpression of the dominant negative mutant of p85 (regulatory subunit of phosphatidylinositol 3-kinase) or Akt dramatically suppressed B[a]PDE-induced JNK and Erk activation as well as cyclin D1 expression, suggesting that cyclin D1 induction by B[a]PDE is via the phosphatidylinositol 3-kinase/Akt/MAPK-dependent pathway. In addition, we clarified that p70(s6k) is also involved in B[a]PDE-induced cyclin D1 expression because rampamycin pretreatment dramatically reduced cyclin D1 induction by B[a]PDE. More importantly, we demonstrated that up-regulated cyclin D1 by B[a]PDE plays a critical role in oncogenic transformation and tumorigenesis of Beas-2B cells. These results not only broaden our knowledge of the molecular mechanism of B[a]PDE carcinogenicity but also lead to the further study of chemoprevention of B[a]PDE-associated human cancers.
Collapse
Affiliation(s)
- Jin Ding
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Changzheng Hospital, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ding J, Ning B, Huang Y, Zhang D, Li J, Chen CY, Huang C. PI3K/Akt/JNK/c-Jun signaling pathway is a mediator for arsenite-induced cyclin D1 expression and cell growth in human bronchial epithelial cells. Curr Cancer Drug Targets 2009; 9:500-9. [PMID: 19519318 DOI: 10.2174/156800909788486740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Arsenite exposure is associated with an increased risk of human lung cancer. However, the molecular mechanisms underlying the arsenite-induced human lung carcinogenesis remain elusive. In this study, we demonstrated that arsenite upregulates cyclin D1 expression/activity to promote the growth of human bronchial epithelial Beas-2B cells. In this process, the JNKs (c-Jun N-terminal kinases)/c-Jun cascade is elicited. The inhibition of JNKs or c-Jun by chemical or genetic inhibitors blocks the cyclin D1 induction mediated by arsenite. Furthermore, using a loss of function mutant of p85 (Deltap85, a subunit of PI3K) or dominant-negative Akt (DN-Akt), we showed that PI3K and Akt act as the upstream regulators of JNKs and c-Jun in arsenite-mediated growth promotion. Overall, our data suggest a pathway of PI-3K/Akt/JNK/c-Jun/cylin D1 signaling in response to arsenite in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Jin Ding
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Matsuzuka T, Miller K, Pickel L, Doi C, Ayuzawa R, Tamura M. The synergistic induction of cyclooxygenase-2 in lung fibroblasts by angiotensin II and pro-inflammatory cytokines. Mol Cell Biochem 2008; 320:163-71. [PMID: 18827978 DOI: 10.1007/s11010-008-9918-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/15/2008] [Indexed: 01/06/2023]
Abstract
Although we have demonstrated that Angiotensin II (Ang II) signaling plays a role in colon and lung tumorigenesis, the precise mechanisms by which Ang II stimulates tumorigenesis remain unclear. The aim of this study was to investigate the synergistic induction of COX-2 by Ang II and pro-inflammatory cytokines in lung fibroblasts. We also compared the efficiencies of Ang II-dependent COX-2 induction in lung epithelial cells and stromal cells. Ang II induced COX-2 expression in lung fibroblasts in a dose-dependent manner (10(-9) to 10(-7) M) through the Ang II subtype 1 receptor (AT(1)). In addition, Ang II synergistically stimulated the induction of COX-2 by pro-inflammatory cytokines, IL-1beta, or TNF-alpha. Our results indicate that the pro-tumorigenic function of Ang II is attributable, in part, to its strong stimulatory effect of COX-2 expression in lung fibroblasts in which synergistic stimulation with pro-inflammatory cytokines was evident. It is also suggested that the AT(1) receptor in lung fibroblasts may be a rational target for chemoprevention of lung cancer.
Collapse
Affiliation(s)
- Takaya Matsuzuka
- Anatomy & Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
43
|
Flockhart RJ, Diffey BL, Farr PM, Lloyd J, Reynolds NJ. NFAT regulates induction of COX-2 and apoptosis of keratinocytes in response to ultraviolet radiation exposure. FASEB J 2008; 22:4218-27. [PMID: 18708588 PMCID: PMC2671982 DOI: 10.1096/fj.08-113076] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nuclear factor of activated T cells (NFAT) transcription factors are regulated by calcium/calcineurin signals and play important roles in T cells, muscle, bone, and neural tissue. NFAT is expressed in the epidermis, and although recent data suggest that NFAT is involved in the skin’s responses to ultraviolet radiation (UVR), the wavelengths of radiation that activate NFAT and the biological function of UV-activated NFAT remain undefined. We demonstrate that NFAT transcriptional activity is preferentially induced by UVB wavelengths in keratinocytes. The derived action spectrum for NFAT activation indicates that NFAT transcriptional activity is inversely associated with wavelength. UVR also evoked NFAT2 nuclear translocation in a parallel wavelength-dependent fashion and both transcriptional activation and nuclear translocation were inhibited by the calcineurin inhibitor cyclosporin A. UVR also evoked NFAT2 nuclear translocation in three-dimensional skin equivalents. Evidence suggests that COX-2 contributes to UV-induced carcinogenesis. Inhibiting UV-induced NFAT activation in keratinocytes, reduced COX-2 protein induction, and increased UV-induced apoptosis. COX-2 luciferase reporters lacking functional NFAT binding sites were less responsive to UVR, highlighting that NFAT is required for UV-induced COX-2 induction. Taken together, these data suggest that the proinflammatory, antiapoptotic, and procarcinogenic functions of UV-activated COX-2 may be mediated, in part, by upstream NFAT signaling. Flockhart, R. J., Diffey, B. L., Farr, P. M., Lloyd, J., Reynolds, N. J. NFAT regulates induction of COX-2 and apoptosis of keratinocytes in response to ultraviolet radiation exposure.
Collapse
Affiliation(s)
- R J Flockhart
- Institute of Cellular Medicine, Newcastle University, Framlington Pl., Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
44
|
Koga T, Lim JH, Jono H, Ha UH, Xu H, Ishinaga H, Morino S, Xu X, Yan C, Kai H, Li JD. Tumor suppressor cylindromatosis acts as a negative regulator for Streptococcus pneumoniae-induced NFAT signaling. J Biol Chem 2008; 283:12546-54. [PMID: 18332137 DOI: 10.1074/jbc.m710518200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gram-positive bacterium Streptococcus pneumoniae is an important human pathogen that colonizes the upper respiratory tract and is also the major cause of morbidity and mortality worldwide. S. pneumoniae causes invasive diseases such as pneumonia, meningitis, and otitis media. Despite the importance of pneumococcal diseases, little is known about the molecular mechanisms by which S. pneumoniae-induced inflammation is regulated, especially the negative regulatory mechanisms. Here we show that S. pneumoniae activates nuclear factor of activated T cells (NFAT) signaling pathway and the subsequent up-regulation of inflammatory mediators via a key pneumococcal virulence factor, pneumolysin. We also demonstrate that S. pneumoniae activates NFAT transcription factor independently of Toll-like receptors 2 and 4. Moreover, S. pneumoniae induces NFAT activation via both Ca(2+)-calcineurin and transforming growth factor-beta-activated kinase 1 (TAK1)-mitogen-activated protein kinase kinase (MKK) 3/6-p38alpha/beta-dependent signaling pathways. Interestingly, we found for the first time that tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for S. pneumoniae-induced NFAT signaling pathway via a deubiquitination-dependent mechanism. Finally, we showed that CYLD interacts with and deubiquitinates TAK1 to negatively regulate the activation of the downstream MKK3/6-p38alpha/beta pathway. Our studies thus bring new insights into the molecular pathogenesis of S. pneumoniae infections through the NFAT-dependent mechanism and further identify CYLD as a negative regulator for NFAT signaling, thereby opening up new therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Tomoaki Koga
- Department of Microbiology and Immunology and Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ding J, Wu K, Zhang D, Luo W, Li J, Ouyang W, Song L, Huang C. Activation of both nuclear factor of activated T cells and inhibitor of nuclear factor-kappa B kinase beta-subunit-/nuclear factor-kappa B is critical for cyclooxygenase-2 induction by benzo[a]pyrene in human bronchial epithelial cells. Cancer Sci 2007; 98:1323-9. [PMID: 17640307 PMCID: PMC11159518 DOI: 10.1111/j.1349-7006.2007.00530.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 04/22/2007] [Accepted: 05/07/2007] [Indexed: 11/28/2022] Open
Abstract
The carcinogenic effect of benzo[a]pyrene (B[a]P), presenting mainly in cigarette smoke and air pollution, has been well demonstrated both in vitro and in vivo. However, it is still not well understood how B[a]P facilitates pulmonary carcinogenesis. To explore this, we investigated the effect of B[a]P on the induction of cyclooxygenase-2 (COX-2), a critical enzyme implicated in inflammation and cancer development, as well as upstream signaling pathways leading to its expression in human bronchial epithelial cells (Beas-2B). We found that exposure of Beas-2B to B[a]P caused significant COX-2 induction at both the transcriptional and protein levels. B[a]P also switched on the nuclear factor of activated T cells (NFAT) and nuclear factor kappaB (NF-kappaB) signaling pathways. B[a]P-induced COX-2 expression was significantly blocked by inhibition of the NFAT pathway, and impairment of the NF-kappaB signaling pathway by ectopic expression of an inhibitor of nuclear factor-kappaB kinase beta-subunit (IKKbeta) kinase inactive mutant (IKKbeta-KM) also dramatically inhibited COX-2 induction. The IKKbeta/NF-kappaB-dependent COX-2 induction was further confirmed in mouse embryonic fibroblasts with IKKbeta deficiency (IKKbeta(-/-)) and in those that expressed reconstituted IKKbeta. However, activation of the NFAT and NF-kappaB signaling pathways by B[a]P were independent of each other, as blocking one signaling pathway didn't interrupt the activation of the other one. Mutation of either NFAT or NF-kappaB binding sites significantly blocked COX-2 promoter induction by B[a]P. Taken together, these data indicate that exposure of Beas-2B to B[a]P can upregulate COX-2 expression by increasing its transcription, which requires activation of both the NFAT and NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Jin Ding
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ouyang W, Zhang D, Ma Q, Li J, Huang C. Cyclooxygenase-2 induction by arsenite through the IKKbeta/NFkappaB pathway exerts an antiapoptotic effect in mouse epidermal Cl41 cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:513-8. [PMID: 17450217 PMCID: PMC1852668 DOI: 10.1289/ehp.9588] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 12/14/2006] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arsenic contamination has become a major public health concern worldwide. Epidemiologic data show that long-term arsenic exposure results in the risk of skin cancer. However, the mechanisms underlying carcinogenic effects of arsenite on skin remain to be studied. OBJECTIVES In the present study we evaluated cyclooxygenase-2 (COX-2) expression, the signaling pathways leading to COX-2 induction, and its antiapoptotic function in the response to arsenite exposure in mouse epidermal JB6 Cl41 cells. METHODS We used the luciferase reporter assay and Western blots to determine COX-2 induction by arsenite. We utilized dominant negative mutant, genetic knockout, gene knockdown, and gene overexpression approaches to elucidate the signaling pathway involved in COX-2 induction and its protective effect on cell apoptosis. RESULTS The induction of COX-2 by arsenite was inhibited in Cl41 cells transfected with IKKbeta-KM, a dominant mutant inhibitor of kbeta (Ikbeta) kinase (IKKbeta), and in IKKbeta-knockout (IKKbeta(-/-)) mouse embryonic fibroblasts (MEFs). IKKbeta/nuclear factor kappaB (NFkappaB) pathway-mediated COX-2 induction exerted an antiapoptotic effect on the cells exposed to arsenite because cell apoptosis was significantly enhanced in the Cl41 cells transfected with IKKbeta-KM or COX-2 small interference RNA (siCOX-2). In addition, IKKbeta(-/-) MEFs stably transfected with COX-2 showed more resistance to arsenite-induced apoptosis compared with the same control vector-transfected cells. CONCLUSIONS These results demonstrate that arsenite exposure can induce COX-2 expression through the IKKbeta/NFkappaB pathway, which thereby exerts an antiapoptotic effect in response to arsenite. In light of the importance of apoptosis evasion during carcinogenesis, we anticipate that COX-2 induction may be at least partially responsible for the carcinogenic effect of arsenite on skin.
Collapse
Affiliation(s)
- Weiming Ouyang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Qian Ma
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| |
Collapse
|