1
|
Brown CR, Shetty M, Foster JD. Palmitoylation regulates norepinephrine transporter uptake, surface localization, and total expression with pathogenic implications in postural orthostatic tachycardia syndrome. J Neurochem 2025; 169:e16241. [PMID: 39395208 PMCID: PMC11808474 DOI: 10.1111/jnc.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
Postural orthostatic tachycardia syndrome (POTS) is an adrenergic signaling disorder characterized by excessive plasma norepinephrine, postural tachycardia, and syncope. The norepinephrine transporter (NET) modulates adrenergic homeostasis via the reuptake of extracellular catecholamines and is implicated in the pathogenesis of adrenergic and neurological disorders. In this study, we reveal NET is palmitoylated in male Sprague-Dawley rats and Lilly Laboratory Cell Porcine Kidney (LLC-PK1) cells. S-palmitoylation, or the addition of a 16-carbon saturated fatty acid, is a reversible post-translational modification responsible for the regulation of numerous biological mechanisms. We found that LLC-PK1 NET is dynamically palmitoylated, and that inhibition with the palmitoyl acyltransferase (DHHC) inhibitor, 2-bromopalmitate (2BP) results in decreased NET palmitoylation within 90 min of treatment. This result was followed closely by a reduction in transport capacity, cell surface, and total cellular NET expression after 120 min of treatment. Increasing 2BP concentrations and treatment time revealed a nearly complete loss of total NET protein. Co-expression with individual DHHCs revealed a single DHHC enzyme, DHHC1, promoted wild-type (WT) hNET palmitoylation and elevated NET protein levels. The POTS-associated NET mutant, A457P, exhibits dramatically decreased transport capacity and cell surface levels which we have confirmed in the current study. In an attempt to recover A457P NET expression, we co-expressed the A457P variant with DHHC1 to drive expression as seen with the WT protein but instead saw an increase in NET N-terminal immuno-detectable forms and fragments. Elimination of a potential palmitoylation site at cysteine 44 in the N-terminal tail of hNET resulted in a low expression phenotype mimicking the A457P hNET variant. Further investigation of A457P NET palmitoylation and surface expression is necessary, but our preliminary novel findings reveal palmitoylation as a mechanism of NET regulation and suggest that dysregulation of this process may contribute to the pathogenesis of adrenergic disorders like POTS.
Collapse
Affiliation(s)
- Christopher R. Brown
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNorth DakotaUSA
| | - Madhur Shetty
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNorth DakotaUSA
| | - James D. Foster
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNorth DakotaUSA
| |
Collapse
|
2
|
Sorkina T, Bagalkot T, Cheng MH, Guthrie DA, Newman AH, Watkins SC, Sorkin A. Monoamine transporter ubiquitination and inward-open conformation synergistically maximize transporter endocytosis. SCIENCE ADVANCES 2024; 10:eadq9793. [PMID: 39576869 PMCID: PMC11584022 DOI: 10.1126/sciadv.adq9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Monoamine transporters function in neuronal membranes to control extracellular concentrations of their substrates. Cell-surface expression of transporters is regulated by substrates and intracellular signaling, but the underlying mechanisms remain unclear. Here, we found that substrates of the dopamine transporter (DAT), amphetamine and dopamine, synergize with protein kinase C (PKC)-dependent DAT ubiquitination to markedly elevate clathrin-mediated endocytosis of DAT, which is accompanied by DAT movement out of plasma membrane protrusions with a negative curvature. Disruption of the outward-open (OO) DAT conformation or its stabilization in the inward-open (IO) conformation recapitulates substrate effects on DAT endocytosis. Amphetamine strongly increases PKC-dependent endocytosis of norepinephrine transporter (NET) but not of serotonin transporter (SERT), correlating with a substantially weaker ubiquitination of SERT compared to NET. We propose a "shape-transition" model whereby shifting from convex-shaped OO conformers to IO conformers minimizes retention of transporters in negatively curved membranes, which facilitates their PKC-dependent ubiquitination and recruitment to positively invaginated clathrin-coated membranes, driving robust transporter endocytosis.
Collapse
Affiliation(s)
- Tatiana Sorkina
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tarique Bagalkot
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Brown CR, Foster JD. Palmitoylation regulates norepinephrine transporter trafficking and expression and is potentially involved in the pathogenesis of postural orthostatic tachycardia syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586171. [PMID: 38585862 PMCID: PMC10996475 DOI: 10.1101/2024.03.22.586171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Postural orthostatic tachycardia syndrome (POTS) is an adrenergic signaling disorder characterized by excessive plasma norepinephrine, postural tachycardia, and syncope. The norepinephrine transporter (NET) modulates adrenergic homeostasis via reuptake of extracellular catecholamines and is implicated in the pathogenesis of adrenergic and neurological disorders. Previous research has outlined that NET activity and trafficking is modulated via reversible post-translational modifications like phosphorylation and ubiquitylation. S-palmitoylation, or the addition of a 16-carbon saturated fatty acid, is another post-translational modification responsible for numerous biological mechanisms. In this study, we reveal that NET is dynamically palmitoylated and inhibition of this modification with the palmitoyl acyltransferase (DHHC) inhibitor, 2-bromopalmitate (2BP), results in decreased NET palmitoylation within 90 min of treatment. This result was followed closely with a reduction in transport capacity, cell surface, and total cellular NET expression after 120 min of treatment. Increasing 2BP concentrations and treatment time revealed a nearly complete loss of total NET protein. Co-expression with individual DHHCs revealed a single DHHC enzyme, DHHC1, promoted WT hNET palmitoylation and elevated NET protein levels. The POTS associated NET mutant, A457P, exhibits dramatically decreased transport capacity and cell surface levels which we have confirmed in the current study. In an attempt to recover A457P NET expression we co-expressed the A457P variant with DHHC1 to drive expression as seen with the WT protein but instead saw an increase in NET N-terminal immuno-detectable fragments. Further investigation of A457P NET palmitoylation and surface expression is necessary, but our preliminary novel findings reveal palmitoylation as a mechanism of NET regulation and suggest that dysregulation of this process may contribute to the pathogenesis of POTS.
Collapse
|
4
|
Vaughan RA, Henry LK, Foster JD, Brown CR. Post-translational mechanisms in psychostimulant-induced neurotransmitter efflux. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:1-33. [PMID: 38467478 DOI: 10.1016/bs.apha.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The availability of monoamine neurotransmitters in the brain is under the control of dopamine, norepinephrine, and serotonin transporters expressed on the plasma membrane of monoaminergic neurons. By regulating transmitter levels these proteins mediate crucial functions including cognition, attention, and reward, and dysregulation of their activity is linked to mood and psychiatric disorders of these systems. Amphetamine-based transporter substrates stimulate non-exocytotic transmitter efflux that induces psychomotor stimulation, addiction, altered mood, hallucinations, and psychosis, thus constituting a major component of drug neurochemical and behavioral outcomes. Efflux is under the control of transporter post-translational modifications that synergize with other regulatory events, and this review will summarize our knowledge of these processes and their role in drug mechanisms.
Collapse
Affiliation(s)
- Roxanne A Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States.
| | - L Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Christopher R Brown
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
5
|
Gajeswski-Kurdziel PA, Walsh AE, Blakely RD. Functional and pathological consequences of being fast on the uptake: Protein kinase G and p38α MAPK regulation of serotonin transporters. Curr Res Physiol 2024; 7:100117. [PMID: 38298474 PMCID: PMC10825370 DOI: 10.1016/j.crphys.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) signaling plays an important role in dynamic control of peripheral and central nervous system physiology, with altered 5-HT homeostasis implicated in a significant number of disorders, ranging from pulmonary, bowel, and metabolic disease to depression, obsessive-compulsive disorder, and autism spectrum disorder (ASD). The presynaptic, 5-HT transporter (SERT) has a well-established role in regulating 5-HT signaling and is a target of widely prescribed psychotherapeutics, the 5-HT selective reuptake inhibitors (SSRIs). Although SSRI therapy provides symptom relief for many suffering from mood and anxiety disorders, response to these medications is slow (weeks), and too many receive modest or no benefit. At present, all prescribed SSRIs act as competitive SERT antagonists. Although non-serotonergic therapeutics for mood disorders deserve aggressive investigation, the development of agents that target SERT regulatory pathways have yet to be considered for their possible utility and may possibly offer improved efficacy and more rapid onset. Here, we focus attention on a significant body of evidence that SERT transport activity can be rapidly elevated by protein kinase G (PKG) and p38α mitogen activated protein kinase (MAPK) linked pathways, mechanisms that are impacted by disease-associated genetic variation. Here, we provide a brief overview of kinase-linked, posttranslational regulation of SERT, with a particular focus on evidence from pharmacological and genetic studies that the transporter's regulation by PKG/p38α MAPK associated pathways offers an opportunity to more subtly adjust, rather than eliminate, SERT function as a therapeutic strategy.
Collapse
Affiliation(s)
| | - Allison E. Walsh
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Jupiter, FL, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
6
|
Brown CR, Foster JD. Palmitoylation Regulates Human Serotonin Transporter Activity, Trafficking, and Expression and Is Modulated by Escitalopram. ACS Chem Neurosci 2023; 14:3431-3443. [PMID: 37644775 DOI: 10.1021/acschemneuro.3c00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During serotonergic transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of this process is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective serotonin reuptake inhibitors (SSRIs). S-Palmitoylation, the reversible addition of a 16-carbon fatty acid to proteins, is an increasingly recognized dynamic post-translational modification responsible for modulating protein kinetics, trafficking, and localization patterns in response to physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyltransferase inhibitor 2-bromopalmitate (2BP), we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT Vmax, without changes in Km or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal that palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and ultimately decreased cellular SERT protein levels.
Collapse
Affiliation(s)
- Christopher R Brown
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
7
|
Brown CR, Foster JD. Palmitoylation regulates human serotonin transporter activity, trafficking, and expression and is modulated by escitalopram. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540092. [PMID: 37214849 PMCID: PMC10197645 DOI: 10.1101/2023.05.09.540092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During neuronal transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of serotonergic signaling is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective-serotonin reuptake inhibitors (SSRIs). S-palmitoylation is an increasingly recognized dynamic post-translational modification, regulating protein kinetics, trafficking, and localization patterns upon physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyl-transferase inhibitor, 2-bromopalmitate (2BP) we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT V max , without changes in K m or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and loss of total SERT protein.
Collapse
|
8
|
Blunted Amphetamine-induced Reinforcing Behaviors and Transporter Downregulation in Knock-in Mice Carrying Alanine Mutations at Threonine-258 and Serine-259 of Norepinephrine Transporter. J Mol Neurosci 2022; 72:1965-1976. [DOI: 10.1007/s12031-022-01988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 10/17/2022]
|
9
|
Nwokafor C, Serova LI, Tanelian A, Nahvi RJ, Sabban EL. Variable Response of Norepinephrine Transporter to Traumatic Stress and Relationship to Hyperarousal. Front Behav Neurosci 2021; 15:725091. [PMID: 34650410 PMCID: PMC8507558 DOI: 10.3389/fnbeh.2021.725091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The noradrenergic systems play a key role in stress triggered disorders such as post-traumatic stress disorder (PTSD). We hypothesized that traumatic stress will alter expression of norepinephrine transporter (NET) in locus coeruleus (LC) and its target brain regions which could be related to hyperarousal. Male Sprague-Dawley rats were subjected to single prolonged stress (SPS) and several weeks later the LC was isolated. NET mRNA levels in LC, determined by RT-PCR, displayed variable response with high and low responsive subgroups. In different cohort, acoustic startle response (ASR) was measured 2 weeks after SPS and levels of NET mRNA and protein in LC determined. The high NET responsive subgroup had greater hyperarousal. Nevertheless, NET protein levels, as determined by western blots, were lower than unstressed controls in LC, ventral hippocampus and medial prefrontal cortex and displayed considerable variability. Hypermethylation of specific CpG region in promoter of SLC6A2 gene, encoding NET, was present in the low, but not high, NET mRNA responsive subgroup. Taken together, the results demonstrate variability in stress elicited changes in NET gene expression and involvement of epigenetic changes. This may underlie mechanisms of susceptibility and resilience to traumatic stress triggered neuropsychiatric symptoms, especially hyperarousal.
Collapse
Affiliation(s)
- Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
10
|
Mannangatti P, Ragu Varman D, Ramamoorthy S, Jayanthi LD. Neurokinin-1 Antagonism Distinguishes the Role of Norepinephrine Transporter from Dopamine Transporter in Mediating Amphetamine Behaviors. Pharmacology 2021; 106:597-605. [PMID: 34515205 DOI: 10.1159/000518033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Amphetamine (AMPH) and other psychostimulants act on the norepinephrine (NE) transporter (NET) and the dopamine (DA) transporter (DAT) and enhance NE and DA signaling. Both NET and DAT share anatomical and functional characteristics and are regulated similarly by psychostimulants and receptor-linked signaling pathways. We and others have demonstrated that NET and DAT are downregulated by AMPH and substance P/neurokinin-1 receptor (NK1R)-mediated protein kinase C pathway. OBJECTIVES Since both NET and DAT are downregulated by AMPH and NK1R activation and share high sequence homology, the objective of the study was to determine the catecholamine transporter specificity in NK1R modulation of AMPH-induced behaviors. METHODS The effect of NK1R antagonism on AMPH-induced conditioned place preference (CPP) as well as AMPH-induced NET and DAT downregulation was examined using NET and DAT knockout mice (NET-KO and DAT-KO) along with their wild-type littermates. RESULTS Aprepitant (5 mg/kg i.p.) significantly attenuated AMPH (2 mg/kg i.p.)-induced CPP in the wild-type and DAT-KO but not in the NET-KO. Locomotor activity measured during the post-conditioning test (in the absence of AMPH) showed higher locomotor activity in DAT-KO compared to wild-type or NET-KO. However, the locomotor activity of all 3 genotypes remained unchanged following aprepitant. Additionally, in the ventral striatum of wild-type, the AMPH-induced downregulation of NET function and surface expression but not that of DAT was attenuated by aprepitant. CONCLUSIONS The results from the current study demonstrate that aprepitant attenuates the expression of AMPH-induced CPP in DAT-KO mice but not in NET-KO mice suggesting a role for NK1R-mediated NET regulation in AMPH-induced behaviors.
Collapse
Affiliation(s)
- Padmanabhan Mannangatti
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
11
|
Du Y, Wang T, Guo J, Li W, Yang T, Szendrey M, Zhang S. Kv1.5 channels are regulated by PKC-mediated endocytic degradation. J Biol Chem 2021; 296:100514. [PMID: 33676894 PMCID: PMC8050386 DOI: 10.1016/j.jbc.2021.100514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
The voltage-gated potassium channel Kv1.5 plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. While the modulation of Kv1.5 function has been well studied, less is known about how the protein levels of Kv1.5 on the cell membrane are regulated. Here, through electrophysiological and biochemical analyses of Kv1.5 channels heterologously expressed in HEK293 cells and neonatal rat ventricular myocytes, as well as native Kv1.5 in human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocytes, we found that activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA, 10 nM) diminished Kv1.5 current (IKv1.5) and protein levels of Kv1.5 in the plasma membrane. Mechanistically, PKC activation led to monoubiquitination and degradation of the mature Kv1.5 proteins. Overexpression of Vps24, a protein that sorts transmembrane proteins into lysosomes via the multivesicular body (MVB) pathway, accelerated, whereas the lysosome inhibitor bafilomycin A1 completely prevented PKC-mediated Kv1.5 degradation. Kv1.5, but not Kv1.1, Kv1.2, Kv1.3, or Kv1.4, was uniquely sensitive to PMA treatment. Sequence alignments suggested that residues within the N terminus of Kv1.5 are essential for PKC-mediated Kv1.5 reduction. Using N-terminal truncation as well as site-directed mutagenesis, we identified that Thr15 is the target site for PKC that mediates endocytic degradation of Kv1.5 channels. These findings indicate that alteration of protein levels in the plasma membrane represents an important regulatory mechanism of Kv1.5 channel function under PKC activation conditions.
Collapse
Affiliation(s)
- Yuan Du
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mark Szendrey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
12
|
Bolland DE, Moritz AE, Stanislowski DJ, Vaughan RA, Foster JD. Palmitoylation by Multiple DHHC Enzymes Enhances Dopamine Transporter Function and Stability. ACS Chem Neurosci 2019; 10:2707-2717. [PMID: 30965003 PMCID: PMC6746250 DOI: 10.1021/acschemneuro.8b00558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The dopamine transporter (DAT) is a plasma membrane protein that mediates the reuptake of extracellular dopamine (DA) and controls the spatiotemporal dynamics of dopaminergic neurotransmission. The transporter is subject to fine control that tailors clearance of transmitter to physiological demands, and dysregulation of reuptake induced by psychostimulant drugs, transporter polymorphisms, and signaling defects may impact transmitter tone in disease states. We previously demonstrated that DAT undergoes complex regulation by palmitoylation, with acute inhibition of the modification leading to rapid reduction of transport activity and sustained inhibition of the modification leading to transporter degradation and reduced expression. Here, to examine mechanisms and outcomes related to increased modification, we coexpressed DAT with palmitoyl acyltransferases (PATs), also known as DHHC enzymes, which catalyze palmitate addition to proteins. Of 12 PATs tested, DAT palmitoylation was stimulated by DHHC2, DHHC3, DHHC8, DHHC15, and DHHC17, with others having no effect. Increased modification was localized to previously identified palmitoylation site Cys580 and resulted in upregulation of transport kinetics and elevated transporter expression mediated by reduced degradation. These findings confirm palmitoylation as a regulator of multiple DAT properties crucial for appropriate DA homeostasis and identify several potential PAT pathways linked to these effects. Defects in palmitoylation processes thus represent possible mechanisms of transport imbalances in DA disorders.
Collapse
Affiliation(s)
| | | | - Daniel J. Stanislowski
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202
| |
Collapse
|
13
|
Kovalchuk V, Samluk Ł, Juraszek B, Jurkiewicz-Trząska D, Sucic S, Freissmuth M, Nałęcz KA. Trafficking of the amino acid transporter B 0,+ (SLC6A14) to the plasma membrane involves an exclusive interaction with SEC24C for its exit from the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:252-263. [PMID: 30445147 PMCID: PMC6314439 DOI: 10.1016/j.bbamcr.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
A plasma membrane amino acid transporter B0,+ (ATB0,+), encoded by the SLC6A14 gene, is specific for neutral and basic amino acids. It is up-regulated in several types of malignant cancers. Neurotransmitter transporters of the SLC6 family interact with specific SEC24 proteins of the COPII complex along their pathway from the endoplasmic reticulum (ER) to Golgi. This study focused on the possible role of SEC24 proteins in ATB0,+ trafficking. Rat ATB0,+ was expressed in HEK293 cells, its localization and trafficking were examined by Western blot, deglycosylation, immunofluorescence (co-localization with ER and trans-Golgi markers) and biotinylation. The expression of ATB0,+ at the plasma membrane was decreased by dominant negative mutants of SAR1, a GTPase, whose activity triggers the formation of the COPII complex. ATB0,+ co-precipitated with SEC24C (but not with the remaining isoforms A, B and D). This interaction was confirmed by immunocytochemistry and the proximity ligation assay. Co-localization of SEC24C with endogenous ATB0,+ was also observed in MCF-7 breast cancer cells. Contrary to the endogenous transporter, part of the overexpressed ATB0,+ is directed to proteolysis, a process significantly reversed by a proteasome inhibitor bortezomib. Co-transfection with a SEC24C dominant negative mutant attenuated ATB0,+ expression at the plasma membrane, due to proteolytic degradation. These results support a hypothesis that lysine at position +2 downstream of the ER export "RI" motif on the cargo protein is crucial for SEC24C binding and for further trafficking to the Golgi. Moreover, there is an equilibrium between ER export and degradation mechanisms in case of overexpressed transporter.
Collapse
Affiliation(s)
- Vasylyna Kovalchuk
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Łukasz Samluk
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Barbara Juraszek
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Dominika Jurkiewicz-Trząska
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna A Nałęcz
- Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
14
|
Wells R, Spurrier AJ, Linz D, Gallagher C, Mahajan R, Sanders P, Page A, Lau DH. Postural tachycardia syndrome: current perspectives. Vasc Health Risk Manag 2017; 14:1-11. [PMID: 29343965 PMCID: PMC5749569 DOI: 10.2147/vhrm.s127393] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Postural tachycardia syndrome (POTS) is the combination of an exaggerated heart rate response to standing, in association with symptoms of lightheadedness or pre-syncope that improve when recumbent. The condition is often associated with fatigue and brain fog, resulting in significant disruptions at a critical time of diagnosis in adolescence and young adulthood. The heterogeneity of the underlying pathophysiology and the variable response to therapeutic interventions make management of this condition challenging for both patients and physicians alike. Here, we aim to review the factors and mechanisms that may contribute to the symptoms and signs of POTS and to present our perspectives on the clinical approach toward the diagnosis and management of this complex syndrome.
Collapse
Affiliation(s)
- Rachel Wells
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Departments of Cardiology and Medicine, Royal Adelaide Hospital.,Department of Medicine, Royal Adelaide Hospital
| | | | - Dominik Linz
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Departments of Cardiology and Medicine, Royal Adelaide Hospital
| | - Celine Gallagher
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Departments of Cardiology and Medicine, Royal Adelaide Hospital
| | - Rajiv Mahajan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Departments of Cardiology and Medicine, Royal Adelaide Hospital
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Departments of Cardiology and Medicine, Royal Adelaide Hospital
| | - Amanda Page
- Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, Adelaide, SA, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Departments of Cardiology and Medicine, Royal Adelaide Hospital
| |
Collapse
|
15
|
Hu B, Zhang J, Wang J, He B, Wang D, Zhang W, Zhou X, Li H. Responses of PKCε to cardiac overloads on myocardial sympathetic innervation and NET expression. Auton Neurosci 2017; 210:24-33. [PMID: 29195789 DOI: 10.1016/j.autneu.2017.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023]
Abstract
Protein kinase C (PKC) is a key mediator of many diverse physiological and pathological responses. PKC activation play an important regulatory role of cardiac function. The present study was performed to investigate whether there were differential activations of the PKCε and how the activation coupled with norepinephrine transporter (NET) surface expression, sympathetic innervation pattern and extracellular matrix remodeling in different cardiac hemodynamic overloads induced by abdominal aortic constriction or aortocaval fistula. At 8weeks after the operations, heart failure were induced, accompanied with myocardial hypertrophy, which was more pronounced in pressure overload (POL) than that of volume overload (VOL) rats, left ventricular dysfunction and increased plasma norepinephrine (NE). In POL rats there was an increase in myocardial collagen deposition, in contrast, the amount decreased in VOL as compared with the sham rats. POL remarkably upregulated PKCε membrane-cytosol ratio and downregulated NET membrane fraction, whereas, in VOL induced opposite changes. Accompanied with the PKCε activation, nerve sprouting, evidenced by myocardial GAP43 protein increased, and different nerve phenotypes were found, in POL tyrosine hydroxylase (TH) positive nerve density increased with NET and choline acetyltransferase (ChAT) immunoreactivity density decreased, in contrast, in VOL NET and ChAT increased, TH did not change. The overloads did not induce alteration of NET mRNA expression, but resulted in different myocardial β1-AR mRNA expression, in POL β1-AR mRNAwas significantly downregulated, while in VOL rats unaltered. Conclusion, the present results suggested that the different cardiac hemodynamic overload could differentially activate a common signaling, PKCε intermediate and thereby generate biological diversity.
Collapse
Affiliation(s)
- Bing Hu
- Xiqing Hospital, Tianjin, China
| | - Jing Zhang
- Pingjin Hospital, Logistics University of CAPF, China
| | - Jing Wang
- Pingjin Hospital, Logistics University of CAPF, China
| | - Bing He
- Tianjin Key Laboratory for Biomarkers of Occupation and Environmental Hazard, China
| | - Deshun Wang
- Pingjin Hospital, Logistics University of CAPF, China
| | | | - Xin Zhou
- Pingjin Hospital, Logistics University of CAPF, China; Institute of Cardiovascular disease of CAPF, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, China
| | - He Li
- Pingjin Hospital, Logistics University of CAPF, China; Institute of Cardiovascular disease of CAPF, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, China.
| |
Collapse
|
16
|
Mannangatti P, Ramamoorthy S, Jayanthi LD. Interference of norepinephrine transporter trafficking motif attenuates amphetamine-induced locomotor hyperactivity and conditioned place preference. Neuropharmacology 2017; 128:132-141. [PMID: 28986281 DOI: 10.1016/j.neuropharm.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
Abstract
Amphetamine (AMPH)-mediated norepinephrine transporter (NET) downregulation requires NET-T258/S259 trafficking motif. The present study utilizes cell permeable NET-T258/S259 motif interfering peptide, which blocks AMPH-induced NET downregulation, to explore the role of this form of NET regulation in AMPH-mediated behaviors. In rats receiving intra-accumbal microinjections of TAT-conjugated peptides encompassing NET-T258/S259 motif, acute systemic AMPH failed to inhibit NE transport in the TAT-NET-T258/S259 wild-type (WT) peptide injected hemisphere but not in the vehicle or scrambled peptide injected hemisphere. Acute AMPH-induced hyperactivity was significantly reduced in rats receiving intra-accumbal TAT-NET-T258/S259 WT peptide compared to those receiving intra-accumbal vehicle or TAT-NET-T258A/S259A mutant peptide or corresponding TAT-conjugated scrambled peptide. Basal locomotor activity was not altered by peptide infusions alone. Similarly AMPH-induced locomotor sensitization was significantly reduced in rats receiving intra-accumbal TAT-NET-T258/S259 WT peptide prior to AMPH challenge and not in rats receiving the mutant or scrambled peptide. In conditioned place preference (CPP) paradigm, a single bilateral intra-accumbal microinjection of TAT-NET-T258/S259 WT peptide prior to CPP testing significantly reduced AMPH-induced CPP expression. Likewise, a single bilateral intra-accumbal microinjection of TAT-NET-T258/S259 WT peptide prior to drug-challenge significantly attenuated AMPH-primed CPP reinstatement. On the other hand, bilateral intra-accumbal microinjection of scrambled peptide did not affect AMPH-induced CPP expression or reinstatement. These data demonstrate a role for T258/S259-dependent NET regulation in AMPH-induced hyperactivity and sensitization as well as AMPH-induced CPP expression and reinstatement.
Collapse
Affiliation(s)
- Padmanabhan Mannangatti
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
17
|
Mortensen OV, Larsen MB, Amara SG. MAP Kinase Phosphatase 3 (MKP3) Preserves Norepinephrine Transporter Activity by Modulating ERK1/2 Kinase-Mediated Gene Expression. Front Cell Neurosci 2017; 11:253. [PMID: 28878626 PMCID: PMC5572231 DOI: 10.3389/fncel.2017.00253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/08/2017] [Indexed: 12/03/2022] Open
Abstract
The norepinephrine transporter (NET) mediates the clearance of norepinephrine (NE) from the extracellular space and is a target of therapeutic antidepressants and psychostimulants. Previously we identified a MAP kinase phosphatase 3 (MKP3), as an important modulator of protein kinase C (PKC) mediated internalization of the related dopamine transporter (DAT). Here we show that MKP3 decreases PKC-mediated down regulation of NET expressed in PC12 cells. We demonstrate that this process involves a PKC-stimulated decrease of NET surface expression that is dependent on dynamin. Surprisingly, MAP kinase inhibitors have no effect on the PKC-mediated regulation of NET activity, suggesting that, like PKC-mediated regulation of the DAT, the acute activation of MAP kinases is not likely to be involved. To elucidate potential mechanisms we used a substrate trap-based assay to identify extracellular-signal-regulated kinase (ERK)1/2 as the predominant substrate of MKP3. Furthermore we also established that brief chemical stabilization of a modified destabilized MKP3 does not alter PKC-mediated down regulation of NET. Finally, the expression of a dominant negative version of H-Ras, an upstream activator of ERK1/2, abolishes phorbol 12-myristate 13-acetate (PMA)-mediated down regulation of NET in a manner similar to MKP3. Taken together we propose that chronic MKP3 expression regulates surface NET through the sustained inhibition of ERK1/2 MAP kinase signaling that alters gene expression in PC12 cells. This is supported by gene expression data from naïve and MKP3-expressing PC12 cells that reveal robust decreases in gene expression of several genes in the MKP3-tranfected cells. Interestingly, caveolin-1, a protein with a critical role in membrane protein trafficking is down regulated by MKP3 expression. We further show that selective silencing of the caveolin-1 gene in naïve PC12 cells attenuates PKC-mediated downregulation of NET activity, consistent with a potential role for caveolins in regulating NET surface expression. In summary, these results suggest that chronic MKP3 expression alters the expression of genes in PC12 cells that are involved in the regulation of NET surface expression.
Collapse
Affiliation(s)
- Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of MedicinePhiladelphia, PA, United States
| | - Mads B Larsen
- Department of Cell Biology and Physiology, University of Pittsburgh School of MedicinePittsburgh, PA, United States
| | - Susan G Amara
- National Institute of Mental HealthBethesda, MD, United States
| |
Collapse
|
18
|
Mannangatti P, Sundaramurthy S, Ramamoorthy S, Jayanthi LD. Differential effects of aprepitant, a clinically used neurokinin-1 receptor antagonist on the expression of conditioned psychostimulant versus opioid reward. Psychopharmacology (Berl) 2017; 234:695-705. [PMID: 28013351 PMCID: PMC5266628 DOI: 10.1007/s00213-016-4504-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/08/2016] [Indexed: 01/29/2023]
Abstract
RATIONALE Neurokinin-1 receptor (NK1R) signaling modulates behaviors associated with psychostimulants and opioids. Psychostimulants, such as amphetamine (AMPH) and cocaine, bind to monoamine transporters and alter their functions. Both dopamine and norepinephrine transporters are regulated by NK1R activation suggesting a role for NK1R mediated catecholamine transporter regulation in psychostimulant-mediated behaviors. OBJECTIVES The effect of in vivo administration of aprepitant (10 mg/kg) on the expression of AMPH (0.5 and 2 mg/kg) and cocaine (5 and 20 mg/kg)-induced conditioned place preference (CPP) as well as locomotor activation was examined in C57BL/6J mice. The effect of aprepitant on morphine (1 and 5 mg/kg)-induced CPP was also examined to identify the specific actions of aprepitant on psychostimulant versus opioid-induced behaviors. RESULTS Aprepitant administration significantly attenuated the CPP expression and locomotor activation produced by AMPH and cocaine. In contrast, aprepitant significantly enhanced the expression of CPP produced by morphine while significantly suppressing the locomotor activity of the mice conditioned with morphine. Aprepitant by itself did not induce significant CPP or conditioned place aversion or locomotor activation or suppression. CONCLUSIONS Attenuation of AMPH or cocaine-induced CPP and locomotor activation by aprepitant suggests a role for NK1R signaling in psychostimulant-mediated behaviors. Stimulation of morphine-induced CPP expression and suppression of locomotor activity of morphine-conditioned mice suggest differential effects of NK1R antagonism on conditioned psychostimulant versus opioid reward. Collectively, these findings indicate that clinically used NK1R antagonist, aprepitant may serve as a potential therapeutic agent in the treatment of psychostimulant abuse.
Collapse
Affiliation(s)
| | | | | | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
19
|
Sung U, Binda F, Savchenko V, Owens WA, Daws LC. Ca 2+ dependent surface trafficking of norepinephrine transporters depends on threonine 30 and Ca 2+ calmodulin kinases. J Chem Neuroanat 2016; 83-84:19-35. [PMID: 28017803 DOI: 10.1016/j.jchemneu.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 11/28/2022]
Abstract
The antidepressant-sensitive norepinephrine (NE) transporter (NET) inactivates NE released during central and peripheral neuronal activity by transport into presynaptic cells. Altered NE clearance due to dysfunction of NET has been associated with the development of mental illness and cardiovascular diseases. NET activity in vivo is influenced by stress, neuronal activity, hormones and drugs. We investigated the mechanisms of Ca2+ regulation of NET and found that Ca2+ influenced both Vmax and Km for NE transport into cortical synaptosomes. Changes in extracellular Ca2+ triggered rapid and bidirectional surface trafficking of NET expressed in cultured cells. Deletion of residues 28-47 in the NET NH2-terminus abolished the Ca2+ effect on surface trafficking. Mutagenesis studies identified Thr30 in this region as the essential residue for both Ca2+- dependent phosphorylation and trafficking of NET. Depolarization of excitable cells increased surface NET in a Thr30 dependent manner. A proteomic analysis, RNA interference, and pharmacological inhibition supported roles of CaMKI and CaMKII in Ca2+-modulated NE transport and NET trafficking. Depolarization of primary noradrenergic neurons in culture with elevated K+ increased NET surface expression in a process that required external Ca2+ and depended on CaMK activity. Hippocampal NE clearance in vivo was also stimulated by depolarization, and inhibitors of CaMK signaling prevented this stimulation. In summary, Ca2+ signaling influenced surface trafficking of NET through a CaMK-dependent mechanism requiring Thr30.
Collapse
Affiliation(s)
- Uhna Sung
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-8548, United States.
| | - Francesca Binda
- Institute of Cellular and Integrative Neurosciences, CNRS, Strasbourg, France
| | - Valentina Savchenko
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-8548, United States
| | - William A Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
20
|
Straznicky NE, Guo L, Corcoran SJ, Esler MD, Phillips SE, Sari CI, Grima MT, Karapanagiotidis S, Wong CY, Eikelis N, Mariani JA, Kobayashi D, Dixon JB, Lambert GW, Lambert EA. Norepinephrine transporter expression is inversely associated with glycaemic indices: a pilot study in metabolically diverse persons with overweight and obesity. Obes Sci Pract 2016; 2:13-23. [PMID: 27812376 PMCID: PMC5066670 DOI: 10.1002/osp4.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/04/2015] [Accepted: 10/09/2015] [Indexed: 01/20/2023] Open
Abstract
Objective The objective of this study was to examine the cross‐sectional relationship between the expression of norepinephrine transporter (NET), the protein responsible for neuronal uptake‐1, and indices of glycaemia and hyperinsulinaemia, in overweight and obese individuals. Methods Thirteen non‐medicated, non‐smoking subjects, aged 58 ± 1 years (mean ± standard error of the mean), body mass index (BMI) 31.4 ± 1.0 kg m−2, with wide‐ranging plasma glucose and haemoglobin A1c (HbA1c, range 5.1% to 6.5%) participated. They underwent forearm vein biopsy to access sympathetic nerves for the quantification of NET by Western blot, oral glucose tolerance test (OGTT), euglycaemic hyperinsulinaemic clamp, echocardiography and assessments of whole‐body norepinephrine kinetics and muscle sympathetic nerve activity. Results Norepinephrine transporter expression was inversely associated with fasting plasma glucose (r = −0.62, P = 0.02), glucose area under the curve during OGTT (AUC0–120, r = −0.65, P = 0.02) and HbA1c (r = −0.67, P = 0.01), and positively associated with steady‐state glucose utilization during euglycaemic clamp (r = 0.58, P = 0.04). Moreover, NET expression was inversely related to left ventricular posterior wall dimensions (r = −0.64, P = 0.02) and heart rate (r = −0.55, P = 0.05). Indices of hyperinsulinaemia were not associated with NET expression. In stepwise linear regression analysis adjusted for age, body mass index and blood pressure, HbA1c was an independent inverse predictor of NET expression, explaining 45% of its variance. Conclusions Hyperglycaemia is associated with reduced peripheral NET expression. Further studies are required to identify the direction of causality.
Collapse
Affiliation(s)
- N E Straznicky
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - L Guo
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - S J Corcoran
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - M D Esler
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - S E Phillips
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - C I Sari
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - M T Grima
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - S Karapanagiotidis
- Alfred Baker Medical Unit Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - C Y Wong
- Alfred Baker Medical Unit Baker IDI Heart & Diabetes Institute Melbourne Australia; Cardiology, Western Health University of Melbourne Melbourne Australia
| | - N Eikelis
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - J A Mariani
- Heart Failure Research Group Baker IDI Heart & Diabetes Institute Melbourne Australia; Faculty of Medicine, Nursing and Health Sciences Monash University Melbourne Australia
| | - D Kobayashi
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia
| | - J B Dixon
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia; Primary Health Care Monash University Melbourne Australia
| | - G W Lambert
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia; Faculty of Medicine, Nursing and Health Sciences Monash University Melbourne Australia
| | - E A Lambert
- Human Neurotransmitters Laboratory Baker IDI Heart & Diabetes Institute Melbourne Australia; Departments of Physiology Monash University Melbourne Australia; Departments of Physiology University of Melbourne Melbourne Australia
| |
Collapse
|
21
|
Modulation of serotonin transporter function by kappa-opioid receptor ligands. Neuropharmacology 2016; 113:281-292. [PMID: 27743931 DOI: 10.1016/j.neuropharm.2016.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/16/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Kappa opioid receptor (KOR) agonists produce dysphoria and psychotomimesis. While KOR agonists produce pro-depressant-like effects, KOR antagonists produce anti-depressant-like effects in rodent models. The cellular mechanisms and downstream effector(s) by which KOR ligands produce these effects are not clear. KOR agonists modulate serotonin (5-HT) transmission in the brain regions implicated in mood and motivation regulation. Presynaptic serotonin transporter (SERT) activity is critical in the modulation of synaptic 5-HT and, subsequently, in mood disorders. Detailing the molecular events of KOR-linked SERT regulation is important for examining the postulated role of this protein in mood disorders. In this study, we used heterologous expression systems and native tissue preparations to determine the cellular signaling cascades linked to KOR-mediated SERT regulation. KOR agonists U69,593 and U50,488 produced a time and concentration dependent KOR antagonist-reversible decrease in SERT function. KOR-mediated functional down-regulation of SERT is sensitive to CaMKII and Akt inhibition. The U69,593-evoked decrease in SERT activity is associated with a decreased transport Vmax, reduced SERT cell surface expression, and increased SERT phosphorylation. Furthermore, KOR activation enhanced SERT internalization and decreased SERT delivery to the membrane. These data demonstrate that KOR activation decreases 5-HT uptake by altering SERT trafficking mechanisms and phosphorylation status to reduce the functional availability of surface SERT.
Collapse
|
22
|
Yousuf MA, Lee JS, Zhou X, Ramke M, Lee JY, Chodosh J, Rajaiya J. Protein Kinase C Signaling in Adenoviral Infection. Biochemistry 2016; 55:5938-5946. [PMID: 27700064 DOI: 10.1021/acs.biochem.6b00858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of protein kinase C (PKC), a serine/threonine protein kinase, ubiquitously influences cellular signal transduction and has been shown to play a role in viral entry. In this study, we explored a role for PKC in human adenovirus type 37 infection of primary human corneal fibroblasts, a major target cell for infection. We sought evidence for an interaction between PKC activation and two potential downstream targets: cSrc kinase, shown previously to play a critical role in adenovirus signaling in these cells, and caveolin-1, reported earlier to be important to entry of adenovirus type 37. Infection of fibroblasts increased PKCα phosphorylation and translocation of PKCα from the cytosol to caveolin-1 containing vesicles. Virus-induced phosphorylation of both cSrc and AKT was abolished in cell lysates pretreated with calphostin C, a chemical inhibitor of PKC. Inhibition of PKC also reduced virus associated phosphorylation of caveolin-1, while inhibition of cSrc by the chemical inhibitor PP2 reduced only caveolin-1 phosphorylation, but not PKCα phosphorylation, in lipid rafts. These results suggest a role for PKCα upstream to both cSrc and caveolin-1. Phosphorylated PKCα was found in the same endosomal fractions as phosphorylated cSrc, and PKCα was present to a greater degree in caveolin-1 pull downs from virus infected than mock infected cell lysates. Calphostin C also reduced early viral gene expression, indicating that PKCα activity may be required for viral entry. PKCα plays a central role in adenovirus infection of corneal fibroblasts and regulation of downstream molecules, including the important lipid raft component caveolin-1.
Collapse
Affiliation(s)
- Mohammad A Yousuf
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Ji Sun Lee
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Xiaohong Zhou
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Mirja Ramke
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Jeong Yoon Lee
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - James Chodosh
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Jaya Rajaiya
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| |
Collapse
|
23
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
24
|
Juraszek B, Nałęcz KA. Protein phosphatase PP2A - a novel interacting partner of carnitine transporter OCTN2 (SLC22A5) in rat astrocytes. J Neurochem 2016; 139:537-551. [DOI: 10.1111/jnc.13777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/15/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Barbara Juraszek
- Laboratory of Transport through Biomembranes; Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Katarzyna A. Nałęcz
- Laboratory of Transport through Biomembranes; Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
25
|
Khan AW, Corcoran SJ, Esler M, El-Osta A. Epigenomic changes associated with impaired norepinephrine transporter function in postural tachycardia syndrome. Neurosci Biobehav Rev 2016; 74:342-355. [PMID: 27345145 DOI: 10.1016/j.neubiorev.2016.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 06/05/2016] [Accepted: 06/15/2016] [Indexed: 01/20/2023]
Abstract
The postural tachycardia syndrome (POTS) is characterised clinically by symptoms of light-headedness, palpitations, fatigue and exercise intolerance occurring with standing and relieved by lying down. Symptoms occur in association with an inappropriate rise in heart rate in the absence of a fall in blood pressure with the assumption of standing. The pathophysiology of POTS is complicated and poorly understood. Plasma norepinephrine (NE) is often elevated in patients with POTS, resulting in consideration of dysfunction of the norepinephrine transporter (NET) encoded by SLC6A2 gene. Whilst some studies have implicated a defect in the SLC6A2 gene, the cause of reduced SLC6A2 expression and function remains unclear. The search to explain the molecular mechanism of NET dysfunction has focused on genetic variation in the SLC6A2 gene and remains inconclusive. More recent studies show epigenetic mechanisms implicated in the regulation of SLC6A2 expression. In this article, we discuss the epigenetic mechanisms involved in SLC6A2 repression and highlight the potential therapeutic application of targeting these mechanisms in POTS.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Susan J Corcoran
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia.
| | - Murray Esler
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia.
| | - Assam El-Osta
- Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia; Central Clinical School, Faculty of Medicine, Monash University, Victoria, Australia.
| |
Collapse
|
26
|
Zestos AG, Mikelman SR, Kennedy RT, Gnegy ME. PKCβ Inhibitors Attenuate Amphetamine-Stimulated Dopamine Efflux. ACS Chem Neurosci 2016; 7:757-66. [PMID: 26996926 DOI: 10.1021/acschemneuro.6b00028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Amphetamine abuse afflicts over 13 million people, and there is currently no universally accepted treatment for amphetamine addiction. Amphetamine serves as a substrate for the dopamine transporter and reverses the transporter to cause an increase in extracellular dopamine. Activation of the beta subunit of protein kinase C (PKCβ) enhances extracellular dopamine in the presence of amphetamine by facilitating the reverse transport of dopamine and internalizing the D2 autoreceptor. We previously demonstrated that PKCβ inhibitors block amphetamine-stimulated dopamine efflux in synaptosomes from rat striatum in vitro. In this study, we utilized in vivo microdialysis in live, behaving rats to assess the effect of the PKCβ inhibitors, enzastaurin and ruboxistaurin, on amphetamine-stimulated locomotion and increases in monoamines and their metabolites. A 30 min perfusion of the nucleus accumbens core with 1 μM enzastaurin or 1 μM ruboxistaurin reduced efflux of dopamine and its metabolite 3-methoxytyramine induced by amphetamine by approximately 50%. The inhibitors also significantly reduced amphetamine-stimulated extracellular levels of norepinephrine. The stimulation of locomotor behavior by amphetamine, measured simultaneously with the analytes, was comparably reduced by the PKCβ inhibitors. Using a stable isotope label retrodialysis procedure, we determined that ruboxistaurin had no effect on basal levels of dopamine, norepinephrine, glutamate, or GABA. In addition, normal uptake function through the dopamine transporter was unaltered by the PKCβ inhibitors, as measured in rat synaptosomes. Our results support the utility of using PKCβ inhibitors to reduce the effects of amphetamine.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
- Department
of Chemistry, University of Michigan, 9300 North University Avenue, Ann Arbor, Michigan 48105, United States
| | - Sarah R. Mikelman
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
| | - Robert T. Kennedy
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
- Department
of Chemistry, University of Michigan, 9300 North University Avenue, Ann Arbor, Michigan 48105, United States
| | - Margaret E. Gnegy
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
| |
Collapse
|
27
|
Vuorenpää A, Jørgensen TN, Newman AH, Madsen KL, Scheinin M, Gether U. Differential Internalization Rates and Postendocytic Sorting of the Norepinephrine and Dopamine Transporters Are Controlled by Structural Elements in the N Termini. J Biol Chem 2016; 291:5634-5651. [PMID: 26786096 DOI: 10.1074/jbc.m115.702050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 11/06/2022] Open
Abstract
The norepinephrine transporter (NET) mediates reuptake of synaptically released norepinephrine in central and peripheral noradrenergic neurons. The molecular processes governing availability of NET in the plasma membrane are poorly understood. Here we use the fluorescent cocaine analogue JHC 1-64, as well as several other approaches, to investigate the trafficking itinerary of NET in live noradrenergic neurons. Confocal imaging revealed extensive constitutive internalization of JHC 1-64-labeled NET in the neuronal somata, proximal extensions and presynaptic boutons. Phorbol 12-myristate 13-acetate increased intracellular accumulation of JHC 1-64-labeled NET and caused a parallel reduction in uptake capacity. Internalized NET strongly colocalized with the "long loop" recycling marker Rab11, whereas less overlap was seen with the "short loop" recycling marker Rab4 and the late endosomal marker Rab7. Moreover, mitigating Rab11 function by overexpression of dominant negative Rab11 impaired NET function. Sorting of NET to the Rab11 recycling compartment was further supported by confocal imaging and reversible biotinylation experiments in transfected differentiated CATH.a cells. In contrast to NET, the dopamine transporter displayed markedly less constitutive internalization and limited sorting to the Rab11 recycling compartment in the differentiated CATH.a cells. Exchange of domains between the two homologous transporters revealed that this difference was determined by non-conserved structural elements in the intracellular N terminus. We conclude that NET displays a distinct trafficking itinerary characterized by continuous shuffling between the plasma membrane and the Rab11 recycling compartment and that the functional integrity of the Rab11 compartment is critical for maintaining proper presynaptic NET function.
Collapse
Affiliation(s)
- Anne Vuorenpää
- From the Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute 18.6, University of Copenhagen, DK-2200 Copenhagen, Denmark,; the Department of Pharmacology, Drug Development, and Therapeutics, University of Turku, Turku FI-20014, Finland,; the Unit of Clinical Pharmacology, Turku University Hospital, Turku FI-20520, Finland, and
| | - Trine N Jørgensen
- From the Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute 18.6, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Amy H Newman
- the Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| | - Kenneth L Madsen
- From the Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute 18.6, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mika Scheinin
- the Department of Pharmacology, Drug Development, and Therapeutics, University of Turku, Turku FI-20014, Finland,; the Unit of Clinical Pharmacology, Turku University Hospital, Turku FI-20520, Finland, and
| | - Ulrik Gether
- From the Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, Panum Institute 18.6, University of Copenhagen, DK-2200 Copenhagen, Denmark,.
| |
Collapse
|
28
|
Akt-mediated regulation of antidepressant-sensitive serotonin transporter function, cell-surface expression and phosphorylation. Biochem J 2015; 468:177-90. [PMID: 25761794 DOI: 10.1042/bj20140826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study is focused on the cellular basis for Akt-mediated SERT regulation. SERT has been implicated in mood disorders. SERT is a primary target for antidepressants used in the therapeutic intervention of psychiatric disorders.
Collapse
|
29
|
Mannangatti P, NarasimhaNaidu K, Damaj MI, Ramamoorthy S, Jayanthi LD. A Role for p38 Mitogen-activated Protein Kinase-mediated Threonine 30-dependent Norepinephrine Transporter Regulation in Cocaine Sensitization and Conditioned Place Preference. J Biol Chem 2015; 290:10814-27. [PMID: 25724654 DOI: 10.1074/jbc.m114.612192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Indexed: 01/08/2023] Open
Abstract
The noradrenergic and p38 mitogen-activated protein kinase (p38 MAPK) systems are implicated in cocaine-elicited behaviors. Previously, we demonstrated a role for p38 MAPK-mediated norepinephrine transporter (NET) Thr(30) phosphorylation in cocaine-induced NET up-regulation (Mannangatti, P., Arapulisamy, O., Shippenberg, T. S., Ramamoorthy, S., and Jayanthi, L. D. (2011) J. Biol. Chem. 286, 20239-20250). The present study explored the functional interaction between p38 MAPK-mediated NET regulation and cocaine-induced behaviors. In vitro cocaine treatment of mouse prefrontal cortex synaptosomes resulted in enhanced NET function, surface expression, and phosphorylation. Pretreatment with PD169316, a p38 MAPK inhibitor, completely blocked cocaine-mediated NET up-regulation and phosphorylation. In mice, in vivo administration of p38 MAPK inhibitor SB203580 completely blocked cocaine-induced NET up-regulation and p38 MAPK activation in the prefrontal cortex and nucleus accumbens. When tested for cocaine-induced locomotor sensitization and conditioned place preference (CPP), mice receiving SB203580 on cocaine challenge day or on postconditioning test day exhibited significantly reduced cocaine sensitization and CPP. A transactivator of transcription (TAT) peptide strategy was utilized to test the involvement of the NET-Thr(30) motif. In vitro treatment of synaptosomes with TAT-NET-Thr(30) (wild-type peptide) completely blocked cocaine-mediated NET up-regulation and phosphorylation. In vivo administration of TAT-NET-Thr(30) peptide but not TAT-NET-T30A (mutant peptide) completely blocked cocaine-mediated NET up-regulation and phosphorylation. In the cocaine CPP paradigm, mice receiving TAT-NET-Thr(30) but not TAT-NET-T30A on postconditioning test day exhibited significantly reduced cocaine CPP. Following extinction, TAT-NET-Thr(30) when given prior to cocaine challenge significantly reduced reinstatement of cocaine CPP. These results demonstrate that the direct inhibition of p38 MAPK or the manipulation of NET-Thr(30) motif/phosphorylation via a TAT peptide strategy prevents cocaine-induced NET up-regulation, locomotor sensitization, and CPP, suggesting a role for Thr(30)-linked NET regulation in cocaine-elicited behaviors.
Collapse
Affiliation(s)
- Padmanabhan Mannangatti
- From the Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | - Mohamad Imad Damaj
- From the Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Sammanda Ramamoorthy
- From the Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298
| | | |
Collapse
|
30
|
Vatta MS, Bianciotti LG, Guil MJ, Hope SI. Regulation of the Norepinephrine Transporter by Endothelins. HORMONES AND TRANSPORT SYSTEMS 2015; 98:371-405. [DOI: 10.1016/bs.vh.2014.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Sørensen L, Strømgaard K, Kristensen AS. Characterization of intracellular regions in the human serotonin transporter for phosphorylation sites. ACS Chem Biol 2014; 9:935-44. [PMID: 24450286 DOI: 10.1021/cb4007198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the central nervous system, synaptic levels of the monoamine neurotransmitter serotonin are mainly controlled by the serotonin transporter (SERT), and drugs used in the treatment of various psychiatric diseases have SERT as primary target. SERT is a phosphoprotein that undergoes phosphorylation/dephosphorylation during transporter regulation by multiple pathways. In particular, activation and/or inhibition of kinases including PKC, PKG, p38MAPK, and CaMKII modulate SERT function and trafficking. The molecular mechanisms by which kinase activity is linked to SERT regulation are poorly understood, including the identity of specific phosphorylated residues. To elucidate SERT phosphorylation sites, we have generated peptides corresponding to the entire intracellular region of human SERT and performed in vitro phosphorylation assays with a panel of kinases suggested to be involved in SERT regulation or for which canonical phosphorylation sites are predicted. Peptide analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify and quantify site-specific phosphorylation. Five residues located in the N- and C-termini and in intracellular loop 1 and 2 were identified as phosphorylation sites; Ser149, Ser277, and Thr603 for PKC, Ser13 for CaMKII, and Thr616 for p38MAPK. Possible regulatory roles of these potential phosphoacceptors for SERT function and surface expression were investigated using phospho-mimicking and phosphodeficient mutations, coexpression of constitutively active kinases and pharmacological kinase induction in a heterologous expression system. Our results suggest that Ser277 is involved in an initial phase of PKC-mediated down-regulation of SERT. The five identified sites can guide future studies of direct links between SERT phosphorylation and regulatory processes.
Collapse
Affiliation(s)
- Lena Sørensen
- Department of Drug Design
and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design
and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders S. Kristensen
- Department of Drug Design
and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
32
|
Zheng J, Chan T, Cheung FSG, Zhu L, Murray M, Zhou F. PDZK1 and NHERF1 regulate the function of human organic anion transporting polypeptide 1A2 (OATP1A2) by modulating its subcellular trafficking and stability. PLoS One 2014; 9:e94712. [PMID: 24728453 PMCID: PMC3984249 DOI: 10.1371/journal.pone.0094712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1. Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ∼1.6- (PDZK1) and ∼1.8- (NHERF1) fold of control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-3-sulfate uptake (Vmax: 138.9±4.1 (PDZK1) and 181.4±16.7 (NHERF1) versus 55.5±3.2 pmol*(µg*4 min)−1 in control; P<0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1 enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1 regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by enhancing protein stability.
Collapse
Affiliation(s)
- Jian Zheng
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Ting Chan
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Ling Zhu
- Retinal Therapeutics Research Group, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
33
|
Lehmann LH, Stanmore DA, Backs J. The role of endothelin-1 in the sympathetic nervous system in the heart. Life Sci 2014; 118:165-72. [PMID: 24632477 DOI: 10.1016/j.lfs.2014.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/10/2014] [Accepted: 03/01/2014] [Indexed: 12/15/2022]
Abstract
Endothelin-1 (ET1) is a peptide that was initially identified as a strong inductor of vascular contraction. In the last 25 years, there have been several biological processes identified in which ET1 seems to play a critical role. In particular, genetic studies have unveiled that ET1 is important for neuronal development, growth and function. Experimental studies identified ET1 as a regulator of the interaction between sympathetic neurons and cardiac myocytes. This might be of clinical importance since patients suffering from heart failure are characterized by disrupted norepinephrine homeostasis in the heart. This review summarizes the important findings on the role of ET1 for sympathetic neurons and norepinephrine homeostasis in the heart.
Collapse
Affiliation(s)
- Lorenz H Lehmann
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - David A Stanmore
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.
| |
Collapse
|
34
|
Czeredys M, Samluk Ł, Michalec K, Tułodziecka K, Skowronek K, Nałęcz KA. Caveolin-1--a novel interacting partner of organic cation/carnitine transporter (Octn2): effect of protein kinase C on this interaction in rat astrocytes. PLoS One 2013; 8:e82105. [PMID: 24349196 PMCID: PMC3862573 DOI: 10.1371/journal.pone.0082105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/27/2013] [Indexed: 11/28/2022] Open
Abstract
OCTN2 - the Organic Cation Transporter Novel family member 2 (SLC22A5) is known to be a xenobiotic/drug transporter. It transports as well carnitine - a compound necessary for oxidation of fatty acids and mutations of its gene cause primary carnitine deficiency. Octn2 regulation by protein kinase C (PKC) was studied in rat astrocytes - cells in which β-oxidation takes place in the brain. Activation of PKC with phorbol ester stimulated L-carnitine transport and increased cell surface presence of the transporter, although no PKC-specific phosphorylation of Octn2 could be detected. PKC activation resulted in an augmented Octn2 presence in cholesterol/sphingolipid-rich microdomains of plasma membrane (rafts) and increased co-precipitation of Octn2 with raft-proteins, caveolin-1 and flotillin-1. Deletion of potential caveolin-1 binding motifs pointed to amino acids 14–22 and 447–454 as the caveolin-1 binding sites within Octn2 sequence. A direct interaction of Octn2 with caveolin-1 in astrocytes upon PKC activation was detected by proximity ligation assay, while such an interaction was excluded in case of flotillin-1. Functioning of a multi-protein complex regulated by PKC has been postulated in rOctn2 trafficking to the cell surface, a process which could be important both under physiological conditions, when carnitine facilitates fatty acids catabolism and controls free Coenzyme A pool as well as in pathology, when transport of several drugs can induce secondary carnitine deficiency.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Łukasz Samluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna Michalec
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Karolina Tułodziecka
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Krzysztof Skowronek
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna A. Nałęcz
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
35
|
Wang C, Qiu W, Zheng Y, Li H, Li Y, Feng B, Guo S, Yan L, Cao JM. Extraneuronal monoamine transporter mediates the permissive action of cortisol in the Guinea pig trachea: possible involvement of tracheal chondrocytes. PLoS One 2013; 8:e76193. [PMID: 24098439 PMCID: PMC3787990 DOI: 10.1371/journal.pone.0076193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/21/2013] [Indexed: 12/29/2022] Open
Abstract
Cortisol, a member of glucocorticoids, could potentiate the action of catecholamine by a non-genomic mechanism. Although this permissive effect has been well appreciated in the anti-asthmatic medication, the underlying signaling pathway has remained mysterious. Here, we show that extraneuronal monoamine transporter (EMT), a membraneous reuptake transporter for circulating catecholamine clearance, is the direct target of cortisol in its permissive effect. We found that BSA-conjugated cortisol, which functions as a cortisol but cannot penetrate cell membrane, enhanced the spasmolytic effect of β-adrenoceptor agonist (isoprenaline) in histamine-sensitized tracheal spirals of guinea pigs, and pharmacological inhibition of EMT with famotidine was powerful enough to imitate the permissive action of cortisol. To our surprise, EMT protein expression was high in the chondrocytes of tracheal cartilage, but was undetectable in tracheal smooth muscle cells. The functionality of EMT was further confirmed with measurement of catecholamine uptake by tracheal chondrocytes. Moreover, cortisol-initiated membrane signaling could activate protein kinase C (PKC), which phosphorylates EMT and induces its internalization via a lipid raft-dependent pathway. Both of the mechanisms slow down the reuptake process by chondrocytes, leading to extracellular catecholamine accumulation and results in a more profound adrenergic signaling activation in tracheal smooth muscle cells. Thus, an EMT-centered pathway was proposed to explain the permissive action of cortisol. Collectively, our results highlight the role of EMT in the crosstalk between glucocorticoid and catecholamine. EMT may represent a promising target for adrenergic signaling modulation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenying Qiu
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yiqing Zheng
- Department of Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Li
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yijia Li
- Department of Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Feng
- Department of Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Guo
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Yan
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ji-Min Cao
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Pramod AB, Foster J, Carvelli L, Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspects Med 2013; 34:197-219. [PMID: 23506866 DOI: 10.1016/j.mam.2012.07.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/03/2012] [Indexed: 02/08/2023]
Abstract
The SLC6 family of secondary active transporters are integral membrane solute carrier proteins characterized by the Na(+)-dependent translocation of small amino acid or amino acid-like substrates. SLC6 transporters, which include the serotonin, dopamine, norepinephrine, GABA, taurine, creatine, as well as amino acid transporters, are associated with a number of human diseases and disorders making this family a critical target for therapeutic development. In addition, several members of this family are directly involved in the action of drugs of abuse such as cocaine, amphetamines, and ecstasy. Recent advances providing structural insight into this family have vastly accelerated our ability to study these proteins and their involvement in complex biological processes.
Collapse
Affiliation(s)
- Akula Bala Pramod
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, United States
| | | | | | | |
Collapse
|
37
|
Arapulisamy O, Mannangatti P, Jayanthi LD. Regulated norepinephrine transporter interaction with the neurokinin-1 receptor establishes transporter subcellular localization. J Biol Chem 2013; 288:28599-610. [PMID: 23979140 DOI: 10.1074/jbc.m113.472878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr(258) + Ser(259) motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation.
Collapse
Affiliation(s)
- Obulakshmi Arapulisamy
- From the Department of Neurosciences, Division of Neuroscience Research, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | | | | |
Collapse
|
38
|
Chen P, Fan Y, Li Y, Sun Z, Bissette G, Zhu MY. Chronic social defeat up-regulates expression of norepinephrine transporter in rat brains. Neurochem Int 2012; 60:9-20. [PMID: 22107703 PMCID: PMC3249494 DOI: 10.1016/j.neuint.2011.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/30/2022]
Abstract
Stress has been reported to activate the locus coeruleus (LC)-noradrenergic system. However, the molecular link between chronic stress and noradrenergic neurons remains to be elucidated. In the present study adult Fischer 344 rats were subjected to a regimen of chronic social defeat (CSD) for 4weeks. Measurements by in situ hybridization and Western blotting showed that CSD significantly increased mRNA and protein levels of the norepinephrine transporter (NET) in the LC region and NET protein levels in the hippocampus, frontal cortex and amygdala. CSD-induced increases in NET expression were abolished by adrenalectomy or treatment with corticosteroid receptor antagonists, suggesting the involvement of corticosterone and corticosteroid receptors in this upregulation. Furthermore, protein levels of protein kinase A (PKA), protein kinase C (PKC), and phosphorylated cAMP-response element binding (pCREB) protein were significantly reduced in the LC and its terminal regions by the CSD paradigm. Similarly, these reduced protein levels caused by CSD were prevented by adrenalectomy. However, effects of corticosteroid receptor antagonists on CSD-induced down-regulation of PKA, PKC, and pCREB proteins were not consistent. While mifeprestone and spironolactone, either alone or in combination, totally abrogate CSD effects on these protein levels of PKA, PKC and pCREB in the LC and those in the hippocampus, frontal cortex and amygdala, their effects on PKA and PKC in the hippocampus, frontal cortex and amygdala were region-dependent. The present findings indicate a correlation between chronic stress and activation of the noradrenergic system. This correlation and CSD-induced alteration in signal transduction molecules may account for their critical effects on the development of symptoms of major depression.
Collapse
Affiliation(s)
- Ping Chen
- Departments of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
- School of Life Science and Technology, Tongji University, Shanghai China
| | - Yan Fan
- Departments of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
- Department of Biochemistry and Molecular Biology, Soochow University School of Medicine, Suzhou, China
| | - Ying Li
- Departments of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zhongwen Sun
- Department of Microbiology and Immunology, Suzhou Health College of Vocational Technology, Suzhou, China
| | - Garth Bissette
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Meng-Yang Zhu
- Departments of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
39
|
Zhou F, Lee AC, Krafczyk K, Zhu L, Murray M. Protein kinase C regulates the internalization and function of the human organic anion transporting polypeptide 1A2. Br J Pharmacol 2011; 162:1380-8. [PMID: 21133891 DOI: 10.1111/j.1476-5381.2010.01144.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The human organic anion transporting polypeptide 1A2 (OATP1A2) is expressed in cells from several regions of the human body, including the kidney, cholangiocytes and the blood-brain barrier, and mediates the cellular flux of various anionic substances, including drugs in clinical use. Several related mammalian transporters have been shown to be subject to post-translational regulation, including kinase-induced internalization. In the present study the role of protein kinase C (PKC) in the regulation of OATP1A2 was investigated in an in vitro cell model. EXPERIMENTAL APPROACH COS-7 cells in which OATP1A2 was overexpressed were treated with the PKC-specific activator (phorbol 12-myristate 13-acetate; PMA) and the PKC-specific inhibitor (Go6976). The impact of these treatments on the function and regulation of OATP1A2 was determined. KEY RESULTS PKC activation decreased the transport function of OATP1A2 in a time- and concentration-dependent manner. PMA (0.1 µM) decreased the V(max) of oestrone-3-sulphate uptake and decreased the cell surface expression of OATP1A2 immunoreactive protein; these effects of PMA were prevented by the PKC specific inhibitor Go6976. In further studies, PMA treatment accelerated the internalization of OATP1A2 but did not affect its recycling. The disruption of clathrine-dependent endocytosis attenuated both the constitutive and PKC-modulated internalization of OATP1A2. In contrast, blocking the caveolin-dependent pathway was without effect. CONCLUSIONS AND IMPLICATIONS PKC regulates the transport function of OATP1A2 by modulating protein internalization; this effect of PKC is mediated in part by clathrine-dependent pathways.
Collapse
Affiliation(s)
- Fanfan Zhou
- Pharmacogenomics and Drug Development Laboratory, Faculty of Pharmacy, The University of Sydney, Australia.
| | | | | | | | | |
Collapse
|
40
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 628] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Reyes G, Nivillac NMI, Karim MZ, Desouza L, Siu KWM, Coe IR. The Equilibrative Nucleoside Transporter (ENT1) can be phosphorylated at multiple sites by PKC and PKA. Mol Membr Biol 2011; 28:412-26. [DOI: 10.3109/09687688.2011.604861] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Mannangatti P, Arapulisamy O, Shippenberg TS, Ramamoorthy S, Jayanthi LD. Cocaine up-regulation of the norepinephrine transporter requires threonine 30 phosphorylation by p38 mitogen-activated protein kinase. J Biol Chem 2011; 286:20239-50. [PMID: 21498515 DOI: 10.1074/jbc.m111.226811] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The norepinephrine (NE) transporter (NET) regulates NE signaling by rapidly clearing synaptic NE. Cocaine binds NET and modulates NE transport. These actions contribute to rewarding effects and abuse liability of cocaine. Activation of mitogen-activated protein kinase (MAPK) cascades is implicated in cocaine-induced neuroadaptations. However, the role of MAPK and the mechanisms involved in cocaine modulation of NET are not clear. Acute intra-peritoneal injections of cocaine (20 mg/kg body weight) to rats resulted in increased NE uptake by prefrontal cortex (PFC) synaptosomes with a parallel increase in the surface expression of endogenous NET. Cocaine also enhanced the immunoreactivity of phospho-p38 MAPK in the PFC synaptosomes without affecting the total p38 MAPK. In vitro cocaine (30-50 μM) treatment of rat PFC synaptosomes increased native NET function, surface expression, and phosphorylation in a manner sensitive to p38 MAPK inhibition by PD169316. We next examined cocaine-elicited effects on wild-type human NET (hNET) expressed heterologously in human placental trophoblast cells to gain more insights into the mechanisms involved. Cocaine treatment of hNET expressing human placental trophoblast cells up-regulated the function, surface expression, and phosphorylation of hNET in a PD169316-sensitive manner. In addition, cocaine inhibited constitutive endocytosis of hNET. Mutational analysis of serine and threonine residues revealed that substitution of threonine 30, located at the amino terminus of hNET with alanine (T30A-hNET), abolished cocaine-induced up-regulation of NET function, surface expression, and phosphorylation. Furthermore, cocaine did not alter T30A-hNET endocytosis. These studies identify a novel molecular mechanism that cocaine-activated p38 MAPK-mediated phosphorylation of NET-T30 dictates surface NET availability, and hence, NE transport.
Collapse
Affiliation(s)
- Padmanabhan Mannangatti
- Department of Neurosciences, Division of Neuroscience Research, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
43
|
White AB, Galbiati F, Givogri MI, Lopez Rosas A, Qiu X, van Breemen R, Bongarzone ER. Persistence of psychosine in brain lipid rafts is a limiting factor in the therapeutic recovery of a mouse model for Krabbe disease. J Neurosci Res 2011; 89:352-64. [PMID: 21259322 PMCID: PMC3064524 DOI: 10.1002/jnr.22564] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/18/2010] [Accepted: 10/30/2010] [Indexed: 11/10/2022]
Abstract
Sphingolipids are intrinsic components of membrane lipid rafts. The abnormal accumulation of these molecules may introduce architectural and functional changes in these domains, leading to cellular dysfunction. Galactosylsphingosine (psychosine) is a pathogenic lipid raft-associated molecule whose accumulation leads to brain deterioration and irreversible neurological handicap in the incurable leukodystrophy Krabbe disease (KD). The relevance of clearing excessive levels of pathogenic psychosine from lipid rafts in therapy for KD has not been investigated. The work presented here demonstrates that psychosine inhibits raft-mediated endocytosis in neural cells. In addition, although in vitro enzyme reconstitution is sufficient for the reversal of related endocytic defects in affected neural cells, traditional in vivo enzyme therapies in the mouse model of KD appear to be insufficient for complete removal of pathogenic levels of raft-associated psychosine. This work describes a mechanism that may contribute to limiting the in vivo efficacy of traditional therapies for KD.
Collapse
Affiliation(s)
- AB White
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois
| | - F Galbiati
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois
| | - MI Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois
| | - A Lopez Rosas
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois
| | - X Qiu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois
| | - R van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois
| | - ER Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois
| |
Collapse
|
44
|
Ramamoorthy S, Shippenberg TS, Jayanthi LD. Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacol Ther 2011; 129:220-38. [PMID: 20951731 PMCID: PMC3031138 DOI: 10.1016/j.pharmthera.2010.09.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 10/18/2022]
Abstract
Presynaptic biogenic amine transporters mediate reuptake of released amines from the synapse, thus regulating serotonin, dopamine and norepinephrine neurotransmission. Medications utilized in the treatment of depression, attention deficit-hyperactivity disorder and other psychiatric disorders possess high affinity for amine transporters. In addition, amine transporters are targets for psychostimulants. Altered expression of biogenic amine transporters has long been implicated in several psychiatric and degenerative disorders. Therefore, appropriate regulation and maintenance of biogenic amine transporter activity is critical for the maintenance of normal amine homoeostasis. Accumulating evidence suggests that cellular protein kinases and phosphatases regulate amine transporter expression, activity, trafficking and degradation. Amine transporters are phosphoproteins that undergo dynamic control under the influence of various kinase and phosphatase activities. This review presents a brief overview of the role of amine transporter phosphorylation in the regulation of amine transport in the normal and diseased brain. Understanding the molecular mechanisms by which phosphorylation events affect amine transporter activity is essential for understanding the contribution of transporter phosphorylation to the regulation of monoamine neurotransmission and for identifying potential new targets for the treatment of various brain diseases.
Collapse
Affiliation(s)
- Sammanda Ramamoorthy
- Department of Neurosciences, Division of Neuroscience Research, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Toni S. Shippenberg
- Integrative Neuroscience Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, U.S. Department of Health and Human Services, Baltimore MD 21224, USA
| | - Lankupalle D. Jayanthi
- Department of Neurosciences, Division of Neuroscience Research, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
45
|
Vina-Vilaseca A, Bender-Sigel J, Sorkina T, Closs EI, Sorkin A. Protein kinase C-dependent ubiquitination and clathrin-mediated endocytosis of the cationic amino acid transporter CAT-1. J Biol Chem 2011; 286:8697-8706. [PMID: 21212261 DOI: 10.1074/jbc.m110.186858] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cationic amino acid transporter 1 (CAT-1) is responsible for the bulk of the uptake of cationic amino acids in most mammalian cells. Activation of protein kinase C (PKC) leads to down-regulation of the cell surface CAT-1. To examine the mechanisms of PKC-induced down-regulation of CAT-1, a functional mutant of CAT-1 (CAT-1-HA-GFP) was generated in which a hemagglutinin antigen (HA) epitope tag was introduced into the second extracellular loop and GFP was attached to the carboxyl terminus. CAT-1-HA-GFP was stably expressed in porcine aorthic endothelial and human epithelial kidney (HEK) 293 cells. Using the HA antibody internalization assay we have demonstrated that PKC-dependent endocytosis was strongly inhibited by siRNA depletion of clathrin heavy chain, indicating that CAT-1-HA-GFP internalization requires clathrin-coated pits. Internalized CAT-1-HA-GFP was accumulated in early, recycling, and late endosomes. PKC activation also resulted in ubiquitination of CAT-1. CAT-1 ubiquitination and endocytosis in phorbol ester-stimulated porcine aorthic endothelial and HEK293 cells were inhibited by siRNA knockdown of NEDD4-2 and NEDD4-1 E3 ubiquitin ligases, respectively. In contrast, ubiquitination and endocytosis of the dopamine transporter was dependent on NEDD4-2 in all cell types tested. Altogether, our data suggest that ubiquitination mediated by NEDD4-2 or NEDD4-1 leading to clathrin-mediated endocytosis is the common mode of regulation of various transporter proteins by PKC.
Collapse
Affiliation(s)
- Arnau Vina-Vilaseca
- From the Department of Pharmacology, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado 80010
| | - Julia Bender-Sigel
- the Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55101, Germany
| | - Tatiana Sorkina
- the Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and
| | - Ellen Ildicho Closs
- the Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55101, Germany
| | - Alexander Sorkin
- From the Department of Pharmacology, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado 80010,; the Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and.
| |
Collapse
|
46
|
Samluk Ł, Czeredys M, Nałęcz KA. Regulation of amino acid/carnitine transporter B 0,+ (ATB 0,+) in astrocytes by protein kinase C: independent effects on raft and non-raft transporter subpopulations. J Neurochem 2010; 115:1386-97. [PMID: 20977479 DOI: 10.1111/j.1471-4159.2010.07040.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neutral and basic amino acid transporter B(0,+) belongs to a Na,Cl-dependent superfamily of proteins transporting neurotransmitters, amino acids and osmolytes, known to be regulated by protein kinase C (PKC). The present study demonstrates an increased phosphorylation of B(0,+) on serine moiety after treatment of rat astrocytes with phorbol 12-myristate 13-acetate, a process correlated with an augmented activity of l-leucine transport and an enhanced presence of the transporter at the cell surface. After solubilization with Triton X-100 and sucrose gradient centrifugation, B(0,+) was detected in non-raft as well as in detergent-resistant raft fractions under control conditions, while phorbol 12-myristate 13-acetate treatment resulted in a complete disappearance of the transporter from the raft fraction. B(0,+) was observed to interact with caveolin-1 and flotillin-1 (reggie-2) proteins, the markers of detergent-resistant microdomains of plasma membrane. As verified in immunocytochemistry and immunoprecipitation experiments, modification of PKC activity did not affect these interactions. It is proposed that PKC reveals different effects on raft and non-raft subpopulations of B(0,+). Phorbol ester treatment results in trafficking of the transporter from the intracellular pool to non-raft microdomains and increased activity, while B(0,+) present in raft microdomains undergoes either internalization or is transferred laterally to non-raft domains.
Collapse
Affiliation(s)
- Łukasz Samluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
47
|
Tang J, Bouyer P, Mykoniatis A, Buschmann M, Matlin KS, Matthews JB. Activated PKC{delta} and PKC{epsilon} inhibit epithelial chloride secretion response to cAMP via inducing internalization of the Na+-K+-2Cl- cotransporter NKCC1. J Biol Chem 2010; 285:34072-85. [PMID: 20732874 DOI: 10.1074/jbc.m110.137380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) is a key determinant of transepithelial chloride secretion and dysregulation of chloride secretion is a common feature of many diseases including secretory diarrhea. We have previously shown that activation of protein kinase C (PKC) markedly reduces transepithelial chloride secretion in human colonic T84 cells, which correlates with both functional inhibition and loss of the NKCC1 surface expression. In the present study, we defined the specific roles of PKC isoforms in regulating epithelial NKCC1 and chloride secretion utilizing adenoviral vectors that express shRNAs targeting human PKC isoforms (α, δ, ε) (shPKCs) or LacZ (shLacZ, non-targeting control). After 72 h of adenoviral transduction, protein levels of the PKC isoforms in shPKCs-T84 cells were decreased by ∼90% compared with the shLacZ-control. Activation of PKCs by phorbol 12-myristate 13-acetate (PMA) caused a redistribution of NKCC1 immunostaining from the basolateral membrane to intracellular vesicles in both shLacZ- and shPKCα-T84 cells, whereas the effect of PMA was not observed in shPKCδ- and shPKCε- cells. These results were further confirmed by basolateral surface biotinylation. Furthermore, activation of PKCs by PMA inhibited cAMP-stimulated chloride secretion in the uninfected, shLacZ- and shPKCα-T84 monolayers, but the inhibitory effect was significantly attenuated in shPKCδ- and shPKCε-T84 monolayers. In conclusion, the activated novel isoforms PKCδ or PKCε, but not the conventional isoform PKCα, inhibits transepithelial chloride secretion through inducing internalization of the basolateral surface NKCC1. Our study reveals that the novel PKC isoform-regulated NKCC1 surface expression plays an important role in the regulation of chloride secretion.
Collapse
Affiliation(s)
- Jun Tang
- Department of Surgery, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
48
|
Annamalai B, Mannangatti P, Arapulisamy O, Ramamoorthy S, Jayanthi LD. Involvement of threonine 258 and serine 259 motif in amphetamine-induced norepinephrine transporter endocytosis. J Neurochem 2010; 115:23-35. [PMID: 20626559 DOI: 10.1111/j.1471-4159.2010.06898.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
D-amphetamine (AMPH) down-regulates the norepinephrine transporter (NET), although the exact trafficking pathways altered and motifs involved are not known. Therefore, we examined the cellular and molecular mechanisms involved in AMPH-induced NET regulation in human placental trophoblast cells expressing the wild-type (WT)-hNET and the hNET double mutant (DM)-bearing protein kinase C (PKC)-resistant T258A + S259A motif. NET function and surface expression were significantly reduced in cells expressing WT-hNET but not in cells expressing hNET-DM following AMPH treatment. AMPH inhibited plasma membrane recycling of both WT-hNET and hNET-DM. In contrast, AMPH stimulated endocytosis of WT-hNET, and did not affect hNET-DM endocytosis. Although PKC or calcium/calmodulin- dependent kinase-II (CaMKII) inhibition or depletion of calcium failed to block AMPH-mediated down-regulation of WT-hNET, NET-specific blocker desipramine completely prevented AMPH-induced down-regulation. Furthermore, AMPH treatment had no effect on phospho-CaMKII immunoreactivity. The inhibitory potency of AMPH was highest on hNET-DM, intermediary on T258A and S259A single mutants and lowest on WT-hNET. Single mutants exhibited partial resistance to AMPH-mediated down-regulation. AMPH accumulation was similar in cells expressing WT-hNET or hNET-DM. The results demonstrate that reduced plasma membrane insertion and enhanced endocytosis account for AMPH-mediated NET down-regulation, and provide the first evidence that T258/S259 motif is involved only in AMPH-induced NET endocytosis that is desipramine-sensitive, but PKC and CaMKII independent.
Collapse
Affiliation(s)
- Balasubramaniam Annamalai
- Department of Neurosciences, Division of Neuroscience Research, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
49
|
Schmidt HD, Pierce RC. Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann N Y Acad Sci 2010; 1187:35-75. [PMID: 20201846 DOI: 10.1111/j.1749-6632.2009.05144.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing body of evidence indicates that repeated exposure to cocaine leads to profound changes in glutamate transmission in limbic nuclei, particularly the nucleus accumbens. This review focuses on preclinical studies of cocaine-induced behavioral plasticity, including behavioral sensitization, self-administration, and the reinstatement of cocaine seeking. Behavioral, pharmacological, neurochemical, electrophysiological, biochemical, and molecular biological changes associated with cocaine-induced plasticity in glutamate systems are reviewed. The ultimate goal of these lines of research is to identify novel targets for the development of therapies for cocaine craving and addiction. Therefore, we also outline the progress and prospects of glutamate modulators for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
50
|
Köck K, Koenen A, Giese B, Fraunholz M, May K, Siegmund W, Hammer E, Völker U, Jedlitschky G, Kroemer HK, Grube M. Rapid modulation of the organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) function by protein kinase C-mediated internalization. J Biol Chem 2010; 285:11336-47. [PMID: 20159975 DOI: 10.1074/jbc.m109.056457] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Members of the organic anion transporting polypeptide (OATP) family are involved in various pharmacological, pathophysiological, and physiological processes, such as hepatic drug uptake, progress of cancer, or transport of hormones. Although variability in expression and function of OATPs has been investigated in detail, data concerning regulation are rather limited. Here, we report a novel mechanism for rapid regulation of OATP2B1 mediated by protein kinase C (PKC) resulting in significant changes of transport activity. PKC activation by the phorbol ester (phorbol 12-myristate 13-acetate, PMA) resulted in increased phosphorylation of OATP2B1 as well as reduced OATP2B1 transport activity with a decrease in V(max) of E(1)S uptake (288 +/- 21 (control) versus 165 +/- 16 pmol/min/mg of protein (PMA)). This effect was sensitive to the PKC inhibitor bisindolylmaleimide I (BIM-I). Confocal microscopy, fluorescence-based internalization assay, and live-cell imaging using green fluorescent protein-tagged OATP2B1 revealed that transport inhibition was due to internalization of the transporter. Furthermore, colocalization with LAMP-2 and chloroquine-sensitive degradation of OATP2B1 suggest that the internalized protein is targeted to a lysosomal degradation pathway. With regard to the underlying mechanism inhibition of caveolin/lipid raft-mediated endocytosis failed to prevent OATP2B1 internalization, whereas inhibition of clathrin-mediated processes blocked OATP2B1 sequestration. However, small interfering RNA-mediated clathrin knock-down affected general trafficking of OATP2B1 and resulted in intracellular accumulation in the absence of PMA. In conclusion, our data demonstrate that OATP2B1 function is regulated by PKC-mediated, clathrin-dependent internalization and followed by lysosomal degradation. Furthermore, internalization could be shown in an ex vivo placenta perfusion. Our findings represent a new, rapid mechanism in regulation of human OATPs.
Collapse
Affiliation(s)
- Kathleen Köck
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University, 17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|