1
|
Wang J, Zhao R, Cao H, Yin Z, Ma J, Xing Y, Zhang W, Chang X, Guo J. A novel autosomal dominant ERLIN2 variant activates endoplasmic reticulum stress in a Chinese HSP family. Ann Clin Transl Neurol 2023; 10:2139-2148. [PMID: 37752894 PMCID: PMC10646992 DOI: 10.1002/acn3.51902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
OBJECTIVE Hereditary spastic paraplegia (HSP) has been reported rarely because of a monoallelic variant in ERLIN2. The present study aimed at describing a novel autosomal dominant ERLIN2 pedigree in a Chinese family and exploring the possible mechanism of HSP caused by ERLIN2 variants. METHODS The proband and his family underwent a comprehensive medical history inquiry and neurological examinations. Whole-exome sequencing was performed on the proband, and Sanger sequencing was performed on some family members. HeLa cell lines and mouse primary cortical neurons were used for immunofluorescence (IF) and reverse transcription-PCR (RT-PCR). RESULTS Seven patients were clinically diagnosed with pure spastic paraplegia in four consecutive generations with the autosomal dominant inheritance model. All patients presented juvenile-adolescent onset and gradually worsening pure HSP phenotype. Whole-exome sequencing of the proband and Sanger sequencing of all available family members identified a novel heterozygous c.212 T>C (p.V71A) variant in exon 8 of the ERLIN2 gene. The c.212 T>C demonstrated a high pathogenic effect score through functional prediction. RT-PCR and IF analysis of overexpressed V71A revealed an altered ER morphology and increased XBP-1S mRNA levels, suggesting the activation of ER stress. Overexpression of V71A in primary cultured cortical neurons promoted axon growth. INTERPRETATION The novel c.212 T>C heterozygous variant in human ERLIN2 caused pure HSP. Moreover, c.212 T>C heterozygous variant in ERLIN2 increased ER stress and affected axonal development.
Collapse
Affiliation(s)
- Juan Wang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
- First Clinical Medical College, Shanxi Medical UniversityTaiyuanChina
| | - Rongjuan Zhao
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Hanshuai Cao
- First Clinical Medical College, Shanxi Medical UniversityTaiyuanChina
| | - Zhaoxu Yin
- First Clinical Medical College, Shanxi Medical UniversityTaiyuanChina
| | - Jing Ma
- First Clinical Medical College, Shanxi Medical UniversityTaiyuanChina
| | - Yingming Xing
- First Clinical Medical College, Shanxi Medical UniversityTaiyuanChina
| | - Wei Zhang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Xueli Chang
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Junhong Guo
- Department of NeurologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
2
|
Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G, Mondola P. Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:1747. [PMID: 37760050 PMCID: PMC10525763 DOI: 10.3390/antiox12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Flavia Carriero
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| |
Collapse
|
3
|
Bernal AF, Mota N, Pamplona R, Area-Gomez E, Portero-Otin M. Hakuna MAM-Tata: Investigating the role of mitochondrial-associated membranes in ALS. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166716. [PMID: 37044239 DOI: 10.1016/j.bbadis.2023.166716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease leading to selective and progressive motor neuron (MN) death. Despite significant heterogeneity in pathogenic and clinical terms, MN demise ultimately unifies patients. Across the many disturbances in neuronal biology present in the disease and its models, two common trends are loss of calcium homeostasis and dysregulations in lipid metabolism. Since both mitochondria and endoplasmic reticulum (ER) are essential in these functions, their intertwin through the so-called mitochondrial-associated membranes (MAMs) should be relevant in this disease. In this review, we present a short overview of MAMs functional aspects and how its dysfunction could explain a substantial part of the cellular disarrangements in ALS's natural history. MAMs are hubs for lipid synthesis, integrating glycerophospholipids, sphingolipids, and cholesteryl ester metabolism. These lipids are essential for membrane biology, so there should be a close coupling to cellular energy demands, a role that MAMs may partially fulfill. Not surprisingly, MAMs are also host part of calcium signaling to mitochondria, so their impairment could lead to mitochondrial dysfunction, affecting oxidative phosphorylation and enhancing the vulnerability of MNs. We present data supporting that MAMs' maladaptation could be essential to MNs' vulnerability in ALS.
Collapse
Affiliation(s)
- Anna Fernàndez Bernal
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Edifici Biomedicina I, Avda Rovira Roure 80, E25196 Lleida, Spain.
| | - Natàlia Mota
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Edifici Biomedicina I, Avda Rovira Roure 80, E25196 Lleida, Spain.
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Edifici Biomedicina I, Avda Rovira Roure 80, E25196 Lleida, Spain.
| | - Estela Area-Gomez
- Centro de Investigaciones Biológicas Margarita Salas CSIC, C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida-IRBLleida, Edifici Biomedicina I, Avda Rovira Roure 80, E25196 Lleida, Spain.
| |
Collapse
|
4
|
Dutta S, Hornung S, Taha HB, Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol 2023; 145:515-540. [PMID: 37012443 PMCID: PMC10071251 DOI: 10.1007/s00401-023-02557-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.
Collapse
Affiliation(s)
- Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, India
| | - Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Singh J, Patten SA. Modeling neuromuscular diseases in zebrafish. Front Mol Neurosci 2022; 15:1054573. [PMID: 36583079 PMCID: PMC9794147 DOI: 10.3389/fnmol.2022.1054573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Neuromuscular diseases are a diverse group of conditions that affect the motor system and present some overlapping as well as distinct clinical manifestations. Although individually rare, the combined prevalence of NMDs is similar to Parkinson's. Over the past decade, new genetic mutations have been discovered through whole exome/genome sequencing, but the pathogenesis of most NMDs remains largely unexplored. Little information on the molecular mechanism governing the progression and development of NMDs accounts for the continual failure of therapies in clinical trials. Different aspects of the diseases are typically investigated using different models from cells to animals. Zebrafish emerges as an excellent model for studying genetics and pathogenesis and for developing therapeutic interventions for most NMDs. In this review, we describe the generation of different zebrafish genetic models mimicking NMDs and how they are used for drug discovery and therapy development.
Collapse
Affiliation(s)
- Jaskaran Singh
- INRS – Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Shunmoogum A. Patten
- INRS – Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada,Departement de Neurosciences, Université de Montréal, Montréal, QC, Canada,Centre d'Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada,*Correspondence: Shunmoogum A. Patten,
| |
Collapse
|
6
|
Ismail OI, Rashed NA. Riboflavin attenuates tartrazine toxicity in the cerebellar cortex of adult albino rat. Sci Rep 2022; 12:19346. [PMID: 36369258 PMCID: PMC9652251 DOI: 10.1038/s41598-022-23894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Tartrazine is a synthetic yellowish dye considered one of the most common food colorants. Extensive usage of tartrazine in humans led to harmful health impacts. To investigate the impact of tartrazine administration on the cerebellum and to assess the potential role of riboflavin co-administration in the adult male albino rat. Four groups of adult albino rats were included in this study. Group I was supplied with distilled water. Group II was supplied tartrazine orally at a dose of 7.5 mg/kg BW dissolved in distilled water. Group III was supplied with tartrazine at the same previously mentioned dose and riboflavin orally at a dose of 25 mg/kg BW dissolved in distilled water. Group IV was supplied with riboflavin at the same previously mentioned dose. The study was conducted for 30 days then rats were sacrificed, weighted and the cerebella extracted and handled for light, ultrastructural and immunohistochemical evaluation. It was found with tartrazine treatment focal areas of Purkinje cell loss leaving empty spaces, a broad spread of neuronal affection to the degree of the disappearance of some of the granular cells, reduced the thickness of the molecular and granular layers, and strong positive GFAP immunoreactions. With riboflavin coadministration restored continuous Purkinje layer with normal appeared Purkinje cells, but some cells were still shrunken and vacuolated as well as the molecular and granular cell layers appeared normal. Tartrazine had deleterious effects on the cerebellar cytoarchitecture, and riboflavin co-administration alleviated these neurotoxic effects.
Collapse
Affiliation(s)
- Omnia I Ismail
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Noha A Rashed
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
7
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
8
|
Zhao C, Liao Y, Rahaman A, Kumar V. Towards Understanding the Relationship Between ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:892518. [PMID: 35783140 PMCID: PMC9248913 DOI: 10.3389/fnagi.2022.892518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Biological stress due to the aberrant buildup of misfolded/unfolded proteins in the endoplasmic reticulum (ER) is considered a key reason behind many human neurodegenerative diseases. Cells adapted to ER stress through the activation of an integrated signal transduction pathway known as the unfolded protein response (UPR). Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by degeneration of the motor system. It has largely been known that ER stress plays an important role in the pathogenesis of ALS through the dysregulation of proteostasis. Moreover, accumulating evidence indicates that ER stress and UPR are important players in TDP-43 pathology. In this mini-review, the complex interplay between ER stress and the UPR in ALS and TDP-43 pathology will be explored by taking into account the studies from in vitro and in vivo models of ALS. We also discuss therapeutic strategies to control levels of ER stress and UPR signaling components that have contrasting effects on ALS pathogenesis.
Collapse
Affiliation(s)
- Chenxuan Zhao
- School of Engineering, College of Technology and Business, Guangzhou, China
| | - Yong Liao
- Center of Scientific Research, Maoming People’s Hospital, Maoming, China
- *Correspondence: Yong Liao Vijay Kumar
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, India
- *Correspondence: Yong Liao Vijay Kumar
| |
Collapse
|
9
|
Wu S, Du L. Protein Aggregation in the Pathogenesis of Ischemic Stroke. Cell Mol Neurobiol 2021; 41:1183-1194. [PMID: 32529541 PMCID: PMC11448579 DOI: 10.1007/s10571-020-00899-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/05/2020] [Indexed: 01/31/2023]
Abstract
Despite the distinction between ischemic stroke and neurodegenerative disorders, they share numerous pathophysiologies particularly those mediated by inflammation and oxidative stress. Although protein aggregation is considered to be a hallmark of neurodegenerative diseases, the formation of protein aggregates can be also induced within a short time after cerebral ischemia, aggravating cerebral ischemic injury. Protein aggregation uncovers a previously unappreciated molecular overlap between neurodegenerative diseases and ischemic stroke. Unfortunately, compared with neurodegenerative disease, mechanism of protein aggregation after cerebral ischemia and how this can be averted remain unclear. This review highlights current understanding on protein aggregation and its intrinsic role in ischemic stroke.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Feneberg E, Gordon D, Thompson AG, Finelli MJ, Dafinca R, Candalija A, Charles PD, Mäger I, Wood MJ, Fischer R, Kessler BM, Gray E, Turner MR, Talbot K. An ALS-linked mutation in TDP-43 disrupts normal protein interactions in the motor neuron response to oxidative stress. Neurobiol Dis 2020; 144:105050. [PMID: 32800996 DOI: 10.1016/j.nbd.2020.105050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/19/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
TDP-43 pathology is a key feature of amyotrophic lateral sclerosis (ALS), but the mechanisms linking TDP-43 to altered cellular function and neurodegeneration remain unclear. We have recently described a mouse model in which human wild-type or mutant TDP-43 are expressed at low levels and where altered stress granule formation is a robust phenotype of TDP-43M337V/- expressing cells. In the present study we use this model to investigate the functional connectivity of human TDP-43 in primary motor neurons under resting conditions and in response to oxidative stress. The interactome of human TDP-43WT or TDP-43M337V was compared by mass spectrometry, and gene ontology enrichment analysis identified pathways dysregulated by the M337V mutation. We found that under normal conditions the interactome of human TDP-43WT was enriched for proteins involved in transcription, translation and poly(A)-RNA binding. In response to oxidative stress, TDP-43WT recruits proteins of the endoplasmic reticulum and endosomal-extracellular transport pathways, interactions which are reduced in the presence of the M337V mutation. Specifically, TDP-43M337V impaired protein-protein interactions involved in stress granule formation including reduced binding to the translation initiation factors Poly(A)-binding protein and Eif4a1 and the endoplasmic reticulum chaperone Grp78. The M337V mutation also affected interactions involved in endosomal-extracellular transport and this this was associated with reduced extracellular vesicle secretion in primary motor neurons from TDP-43M337V/- mice and in human iPSCs-derived motor neurons. Taken together, our analysis highlights a TDP-43 interaction network in motor neurons and demonstrates that an ALS associated mutation may alter the interactome to drive aberrant pathways involved in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Emily Feneberg
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Mattéa J Finelli
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ruxandra Dafinca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ana Candalija
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Imre Mäger
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Matthew J Wood
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom.
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom; Lead Contact.
| |
Collapse
|
11
|
Cristofani R, Crippa V, Cicardi ME, Tedesco B, Ferrari V, Chierichetti M, Casarotto E, Piccolella M, Messi E, Galbiati M, Rusmini P, Poletti A. A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Front Aging Neurosci 2020; 12:191. [PMID: 32792938 PMCID: PMC7385251 DOI: 10.3389/fnagi.2020.00191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are fatal diseases characterized by loss of motor neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of the spinal cord. While generally sporadic, inherited forms linked to mutant genes encoding altered RNA/protein products have also been described. Several different mechanisms have been found altered or dysfunctional in MNDs, like the protein quality control (PQC) system. In this review, we will discuss how the PQC system is affected in two MNDs—spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS)—and how this affects the clearance of aberrantly folded proteins, which accumulate in motor neurons, inducing dysfunctions and their death. In addition, we will discuss how the PQC system can be targeted to restore proper cell function, enhancing the survival of affected cells in MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Barbara Tedesco
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Ghosh SG, Wang L, Breuss MW, Green JD, Stanley V, Yang X, Ross D, Traynor BJ, Alhashem AM, Azam M, Selim L, Bastaki L, Elbastawisy HI, Temtamy S, Zaki M, Gleeson JG. Recurrent homozygous damaging mutation in TMX2, encoding a protein disulfide isomerase, in four families with microlissencephaly. J Med Genet 2020; 57:274-282. [PMID: 31586943 PMCID: PMC7405652 DOI: 10.1136/jmedgenet-2019-106409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/26/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Protein disulfide isomerase (PDI) proteins are part of the thioredoxin protein superfamily. PDIs are involved in the formation and rearrangement of disulfide bonds between cysteine residues during protein folding in the endoplasmic reticulum and are implicated in stress response pathways. METHODS Eight children from four consanguineous families residing in distinct geographies within the Middle East and Central Asia were recruited for study. All probands showed structurally similar microcephaly with lissencephaly (microlissencephaly) brain malformations. DNA samples from each family underwent whole exome sequencing, assessment for repeat expansions and confirmatory segregation analysis. RESULTS An identical homozygous variant in TMX2 (c.500G>A), encoding thioredoxin-related transmembrane protein 2, segregated with disease in all four families. This variant changed the last coding base of exon 6, and impacted mRNA stability. All patients presented with microlissencephaly, global developmental delay, intellectual disability and epilepsy. While TMX2 is an activator of cellular C9ORF72 repeat expansion toxicity, patients showed no evidence of C9ORF72 repeat expansions. CONCLUSION The TMX2 c.500G>A allele associates with recessive microlissencephaly, and patients show no evidence of C9ORF72 expansions. TMX2 is the first PDI implicated in a recessive disease, suggesting a protein isomerisation defect in microlissencephaly.
Collapse
Affiliation(s)
- Shereen Georges Ghosh
- Neurosciences, University of California San Diego, La Jolla, California, USA
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Lu Wang
- Neurosciences, University of California San Diego, La Jolla, California, USA
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Martin W Breuss
- Neurosciences, University of California San Diego, La Jolla, California, USA
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Joshua D Green
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institutes of Health, Bethesda, Maryland, USA
| | - Valentina Stanley
- Neurosciences, University of California San Diego, La Jolla, California, USA
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Xiaoxu Yang
- Neurosciences, University of California San Diego, La Jolla, California, USA
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Danica Ross
- Neurosciences, University of California San Diego, La Jolla, California, USA
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institutes of Health, Bethesda, Maryland, USA
- Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amal M Alhashem
- Pediatrics, Prince Sultan Military Medical City, Riyadh, Al Riyadh, Saudi Arabia
| | - Matloob Azam
- Pediatrics and Child Neurology, Wah Medical College, Wah Cantt, Pakistan
| | - Laila Selim
- Pediatric Neurology, Cairo University, Cairo, Egypt
| | - Laila Bastaki
- Kuwait Medical Genetics Centre, Maternity Hospital, Shuwaikh, Kuwait
| | - Hanan I Elbastawisy
- Ophthalmic Genetics, Research Institute of Ophthalmology, Sulaibikhat, Egypt
| | - Samia Temtamy
- Center of Excellence for Human Genetics, National Research Centre, Cairo, Egypt
| | - Maha Zaki
- Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
- Department of Neuroscience and Pediatrics, Howard Hughes Medical Institute, La Jolla, California, USA
| |
Collapse
|
13
|
Clark EM, Nonarath HJT, Bostrom JR, Link BA. Establishment and validation of an endoplasmic reticulum stress reporter to monitor zebrafish ATF6 activity in development and disease. Dis Model Mech 2020; 13:dmm.041426. [PMID: 31852729 PMCID: PMC6994954 DOI: 10.1242/dmm.041426] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Induction of endoplasmic reticulum (ER) stress is associated with diverse developmental and degenerative diseases. Modified ER homeostasis causes activation of conserved stress pathways at the ER called the unfolded protein response (UPR). ATF6 is a transcription factor activated during ER stress as part of a coordinated UPR. ATF6 resides at the ER and, upon activation, is transported to the Golgi apparatus, where it is cleaved by proteases to create an amino-terminal cytoplasmic fragment (ATF6f). ATF6f translocates to the nucleus to activate transcriptional targets. Here, we describe the establishment and validation of zebrafish reporter lines for ATF6 activity. These transgenic lines are based on a defined and multimerized ATF6 consensus site, which drives either eGFP or destabilized eGFP, enabling dynamic study of ATF6 activity during development and disease. The results show that the reporter is specific for the ATF6 pathway, active during development and induced in disease models known to engage UPR. Specifically, during development, ATF6 activity is highest in the lens, skeletal muscle, fins and gills. The reporter is also activated by common chemical inducers of ER stress, including tunicamycin, thapsigargin and brefeldin A, as well as by heat shock. In models for amyotrophic lateral sclerosis and cone dystrophy, ATF6 reporter expression is induced in spinal cord interneurons or photoreceptors, respectively, suggesting a role for ATF6 response in multiple neurodegenerative diseases. Collectively our results show that these ATF6 reporters can be used to monitor ATF6 activity changes throughout development and in zebrafish models of disease. This article has an associated First Person interview with the first author of the paper. Summary: In this study, we validate transgenic zebrafish generated to specifically report the activity of ATF6, representing a major branch of the endoplasmic reticulum stress pathway with functions in development and disease.
Collapse
Affiliation(s)
- Eric M Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Hannah J T Nonarath
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| |
Collapse
|
14
|
Thapa S, Abdelaziz DH, Abdulrahman BA, Schatzl HM. Sephin1 Reduces Prion Infection in Prion-Infected Cells and Animal Model. Mol Neurobiol 2020; 57:2206-2219. [PMID: 31981074 DOI: 10.1007/s12035-020-01880-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. These diseases have the potential to transmit within or between species, and no cure is available to date. Targeting the unfolded protein response (UPR) as an anti-prion therapeutic approach has been widely reported for prion diseases. Here, we describe the anti-prion effect of the chemical compound Sephin1 which has been shown to protect in mouse models of protein misfolding diseases including amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) by selectively inhibiting the stress-induced regulatory subunit of protein phosphatase 1, thus prolonging eIF2α phosphorylation. We show here that Sephin1 dose and time dependently reduced PrPSc in different neuronal cell lines which were persistently infected with various prion strains. In addition, prion seeding activity was reduced in Sephin1-treated cells. Importantly, we found that Sephin1 significantly overcame the endoplasmic reticulum (ER) stress induced in treated cells, as measured by lower expression of stress-induced aberrant prion protein. In a mouse model of prion infection, intraperitoneal treatment with Sephin1 significantly prolonged survival of prion-infected mice. When combining Sephin1 with the neuroprotective drug metformin, the survival of prion-infected mice was also prolonged. These results suggest that Sephin1 could be a potential anti-prion drug selectively targeting one component of the UPR pathway.
Collapse
Affiliation(s)
- Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - Dalia H Abdelaziz
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Basant A Abdulrahman
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hermann M Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada. .,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada. .,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
15
|
Gimenez M, Veríssimo-Filho S, Wittig I, Schickling BM, Hahner F, Schürmann C, Netto LES, Rosa JC, Brandes RP, Sartoretto S, De Lucca Camargo L, Abdulkader F, Miller FJ, Lopes LR. Redox Activation of Nox1 (NADPH Oxidase 1) Involves an Intermolecular Disulfide Bond Between Protein Disulfide Isomerase and p47 phox in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2019; 39:224-236. [PMID: 30580571 DOI: 10.1161/atvbaha.118.311038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- PDI (protein disulfide isomerase A1) was reported to support Nox1 (NADPH oxidase) activation mediated by growth factors in vascular smooth muscle cells. Our aim was to investigate the molecular mechanism by which PDI activates Nox1 and the functional implications of PDI in Nox1 activation in vascular disease. Approach and Results- Using recombinant proteins, we identified a redox interaction between PDI and the cytosolic subunit p47phox in vitro. Mass spectrometry of crosslinked peptides confirmed redox-dependent disulfide bonds between cysteines of p47phox and PDI and an intramolecular bond between Cys 196 and 378 in p47phox. PDI catalytic Cys 400 and p47phox Cys 196 were essential for the activation of Nox1 by PDI in vascular smooth muscle cells. Transfection of PDI resulted in the rapid oxidation of a redox-sensitive protein linked to p47phox, whereas PDI mutant did not promote this effect. Mutation of p47phox Cys 196, or the redox active cysteines of PDI, prevented Nox1 complex assembly and vascular smooth muscle cell migration. Proximity ligation assay confirmed the interaction of PDI and p47phox in murine carotid arteries after wire injury. Moreover, in human atheroma plaques, a positive correlation between the expression of PDI and p47phox occurred only in PDI family members with the a' redox active site. Conclusions- PDI redox cysteines facilitate Nox1 complex assembly, thus identifying a new mechanism through which PDI regulates Nox activity in vascular disease.
Collapse
Affiliation(s)
- Marcela Gimenez
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil.,Department of Medicine, University of Iowa, Iowa City (M.G., B.M.S., F.J.M.)
| | - Sidney Veríssimo-Filho
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil
| | - Ilka Wittig
- Functional Proteomics Core Unit (I.W.), Goethe-Universität, Frankfurt, Germany
| | - Brandon M Schickling
- Department of Medicine, University of Iowa, Iowa City (M.G., B.M.S., F.J.M.).,Department of Medicine, Duke University, Durham, NC (B.M.S., S.S., F.J.M.)
| | - Fabian Hahner
- Institute for Cardiovascular Physiology (F.H., C.S., R.P.B.), Goethe-Universität, Frankfurt, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology (F.H., C.S., R.P.B.), Goethe-Universität, Frankfurt, Germany
| | - Luis E S Netto
- Institute of Biomedical Sciences, Department of Genetics and Evolutionary Biology, Institute of Biosciences (L.E.S.N.), University of São Paulo, Brazil
| | - José César Rosa
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School (J.C.R.), University of São Paulo, Brazil
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology (F.H., C.S., R.P.B.), Goethe-Universität, Frankfurt, Germany
| | - Simone Sartoretto
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil.,Department of Medicine, Duke University, Durham, NC (B.M.S., S.S., F.J.M.)
| | - Lívia De Lucca Camargo
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil
| | - Fernando Abdulkader
- Department of Physiology and Biophysics (F.A.), University of São Paulo, Brazil
| | - Francis J Miller
- Department of Medicine, University of Iowa, Iowa City (M.G., B.M.S., F.J.M.).,Department of Medicine, Duke University, Durham, NC (B.M.S., S.S., F.J.M.).,Department of Medicine, Veterans Affairs Medical Center, Durham, NC (F.J.M.)
| | - Lucia Rossetti Lopes
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil
| |
Collapse
|
16
|
Takeda K, Nagashima S, Shiiba I, Uda A, Tokuyama T, Ito N, Fukuda T, Matsushita N, Ishido S, Iwawaki T, Uehara T, Inatome R, Yanagi S. MITOL prevents ER stress-induced apoptosis by IRE1α ubiquitylation at ER-mitochondria contact sites. EMBO J 2019; 38:e100999. [PMID: 31368599 PMCID: PMC6669929 DOI: 10.15252/embj.2018100999] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022] Open
Abstract
Unresolved endoplasmic reticulum (ER) stress shifts the unfolded protein response signaling from cell survival to cell death, although the switching mechanism remains unclear. Here, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) inhibits ER stress-induced apoptosis through ubiquitylation of IRE1α at the mitochondria-associated ER membrane (MAM). MITOL promotes K63-linked chain ubiquitination of IRE1α at lysine 481 (K481), thereby preventing hyper-oligomerization of IRE1α and regulated IRE1α-dependent decay (RIDD). Therefore, under ER stress, MITOL depletion or the IRE1α mutant (K481R) allows for IRE1α hyper-oligomerization and enhances RIDD activity, resulting in apoptosis. Similarly, in the spinal cord of MITOL-deficient mice, ER stress enhances RIDD activity and subsequent apoptosis. Notably, unresolved ER stress attenuates IRE1α ubiquitylation, suggesting that this directs the apoptotic switch of IRE1α signaling. Our findings suggest that mitochondria regulate cell fate under ER stress through IRE1α ubiquitylation by MITOL at the MAM.
Collapse
Affiliation(s)
- Keisuke Takeda
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Shun Nagashima
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Isshin Shiiba
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Aoi Uda
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Takeshi Tokuyama
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Naoki Ito
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Toshifumi Fukuda
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Nobuko Matsushita
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Satoshi Ishido
- Department of MicrobiologyHyogo College of MedicineNishinomiyaJapan
| | - Takao Iwawaki
- Medical Research InstituteKanazawa Medical UniversityIshikawaJapan
| | - Takashi Uehara
- Department of Medicinal PharmacologyGraduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ryoko Inatome
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| | - Shigeru Yanagi
- Laboratory of Molecular BiochemistrySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachioji, TokyoJapan
| |
Collapse
|
17
|
Chiaradia E, Renzone G, Scaloni A, Caputo M, Costanzi E, Gambelunghe A, Muzi G, Avellini L, Emiliani C, Buratta S. Protein carbonylation in dopaminergic cells exposed to rotenone. Toxicol Lett 2019; 309:20-32. [PMID: 30951809 DOI: 10.1016/j.toxlet.2019.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Rotenone is an environmental neurotoxin that induces degeneration of dopaminergic neurons and the most common features of Parkinson's disease in animal models. It acts as a mitochondrial complex I inhibitor that impairs cellular respiration, with consequent increase of reactive oxygen species and oxidative stress. This study evaluates the rotenone-induced oxidative damage in PC12 cells, focusing particularly on protein oxidation. The identification of specific carbonylated proteins highlighted putative alterations of important cellular processes possibly associated with Parkinson's disease. Carbonylation of ATP synthase and of enzymes acting in pyruvate and glucose metabolism suggested a failure of mechanisms ensuring cellular energy supply. Concomitant oxidation of cytoskeletal proteins and of enzymes involved in the synthesis of neuroactive molecules indicated alterations of the neurotransmission system. Carbonylation of chaperon proteins as well as of proteins acting in the autophagy-lysosome pathway and the ubiquitin-proteasome system suggested the possible formation of cytosolic unfolded protein inclusions as result of defective processes assisting recovery/degradation of damaged molecules. In conclusion, this study originally evidences specific protein targets of rotenone-induced oxidative damage, suggesting some possible molecular mechanisms involved in rotenone toxicity.
Collapse
Affiliation(s)
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Mara Caputo
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | - Giacomo Muzi
- Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | - Luca Avellini
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; CEMIN-Center of Excellence for Innovative Nanostructured Material, Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
| |
Collapse
|
18
|
Mao D, Lin G, Tepe B, Zuo Z, Tan KL, Senturk M, Zhang S, Arenkiel BR, Sardiello M, Bellen HJ. VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy 2019; 15:1214-1233. [PMID: 30741620 DOI: 10.1080/15548627.2019.1580103] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the ER-associated VAPB/ALS8 protein cause amyotrophic lateral sclerosis and spinal muscular atrophy. Previous studies have argued that ER stress may underlie the demise of neurons. We find that loss of VAP proteins (VAPs) leads to an accumulation of aberrant lysosomes and impairs lysosomal degradation. VAPs mediate ER to Golgi tethering and their loss may affect phosphatidylinositol-4-phosphate (PtdIns4P) transfer between these organelles. We found that loss of VAPs elevates PtdIns4P levels in the Golgi, leading to an expansion of the endosomal pool derived from the Golgi. Fusion of these endosomes with lysosomes leads to an increase in lysosomes with aberrant acidity, contents, and shape. Importantly, reducing PtdIns4P levels with a PtdIns4-kinase (PtdIns4K) inhibitor, or removing a single copy of Rab7, suppress macroautophagic/autophagic degradation defects as well as behavioral defects observed in Drosophila Vap33 mutant larvae. We propose that a failure to tether the ER to the Golgi when VAPs are lost leads to an increase in Golgi PtdIns4P levels, and an expansion of endosomes resulting in an accumulation of dysfunctional lysosomes and a failure in proper autophagic lysosomal degradation. Abbreviations: ALS: amyotrophic lateral sclerosis; CSF: cerebrospinal fluid; CERT: ceramide transfer protein; FFAT: two phenylalanines in an acidic tract; MSP: major sperm proteins; OSBP: oxysterol binding protein; PH: pleckstrin homology; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns4K: phosphatidylinositol 4-kinase; UPR: unfolded protein response; VAMP: vesicle-associated membrane protein; VAPA/B: mammalian VAPA and VAPB proteins; VAPs: VAMP-associated proteins (referring to Drosophila Vap33, and human VAPA and VAPB).
Collapse
Affiliation(s)
- Dongxue Mao
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Guang Lin
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Burak Tepe
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Zhongyuan Zuo
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Kai Li Tan
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Mumine Senturk
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Sheng Zhang
- c The Brown Foundation Institute of Molecular Medicine , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,d Department of Neurobiology and Anatomy , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,e Programs in Genetics & Epigenetics and Neuroscience , University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS) , Houston , TX , USA
| | - Benjamin R Arenkiel
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA
| | - Marco Sardiello
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA
| | - Hugo J Bellen
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA.,h Baylor College of Medicine , Howard Hughes Medical Institute , Houston , TX , USA
| |
Collapse
|
19
|
Medinas DB, Valenzuela V, Hetz C. Proteostasis disturbance in amyotrophic lateral sclerosis. Hum Mol Genet 2018; 26:R91-R104. [PMID: 28977445 DOI: 10.1093/hmg/ddx274] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motoneurons in the brain and spinal cord leading to paralysis and death. Although the etiology of ALS remains poorly understood, abnormal protein aggregation and altered proteostasis are common features of sporadic and familial ALS forms. The proteostasis network is decomposed into different modules highly conserved across species and comprehends a collection of mechanisms related to protein synthesis, folding, trafficking, secretion and degradation that is distributed in different compartments inside the cell. Functional studies in various ALS models are revealing a complex scenario where distinct and even opposite effects in disease progression are observed depending on the targeted component of the proteostasis network. Importantly, alteration of the folding capacity of the endoplasmic reticulum (ER) is becoming a common pathological alteration in ALS, representing one of the earliest defects observed in disease models, contributing to denervation and motoneuron dysfunction. Strategies to target-specific components of the proteostasis network using small molecules and gene therapy are under development, and promise interesting avenues for future interventions to delay or stop ALS progression.
Collapse
Affiliation(s)
- Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Vicente Valenzuela
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
20
|
Ting HC, Chang CY, Lu KY, Chuang HM, Tsai SF, Huang MH, Liu CA, Lin SZ, Harn HJ. Targeting Cellular Stress Mechanisms and Metabolic Homeostasis by Chinese Herbal Drugs for Neuroprotection. Molecules 2018; 23:E259. [PMID: 29382106 PMCID: PMC6017457 DOI: 10.3390/molecules23020259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
Traditional Chinese medicine has been practiced for centuries in East Asia. Herbs are used to maintain health and cure disease. Certain Chinese herbs are known to protect and improve the brain, memory, and nervous system. To apply ancient knowledge to modern science, some major natural therapeutic compounds in herbs were extracted and evaluated in recent decades. Emerging studies have shown that herbal compounds have neuroprotective effects or can ameliorate neurodegenerative diseases. To understand the mechanisms of herbal compounds that protect against neurodegenerative diseases, we summarize studies that discovered neuroprotection by herbal compounds and compound-related mechanisms in neurodegenerative disease models. Those compounds discussed herein show neuroprotection through different mechanisms, such as cytokine regulation, autophagy, endoplasmic reticulum (ER) stress, glucose metabolism, and synaptic function. The interleukin (IL)-1β and tumor necrosis factor (TNF)-α signaling pathways are inhibited by some compounds, thus attenuating the inflammatory response and protecting neurons from cell death. As to autophagy regulation, herbal compounds show opposite regulatory effects in different neurodegenerative models. Herbal compounds that inhibit ER stress prevent neuronal death in neurodegenerative diseases. Moreover, there are compounds that protect against neuronal death by affecting glucose metabolism and synaptic function. Since the progression of neurodegenerative diseases is complicated, and compound-related mechanisms for neuroprotection differ, therapeutic strategies may need to involve multiple compounds and consider the type and stage of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hsiao-Chien Ting
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
| | - Chia-Yu Chang
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Kang-Yun Lu
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Hong-Meng Chuang
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Agricultural Biotechnology Center, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Sheng-Feng Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Mao-Hsuan Huang
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Ching-Ann Liu
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Horng-Jyh Harn
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Pathology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
21
|
SOD1 Mutations Causing Familial Amyotrophic Lateral Sclerosis Induce Toxicity in Astrocytes: Evidence for Bystander Effects in a Continuum of Astrogliosis. Neurochem Res 2018; 43:166-179. [DOI: 10.1007/s11064-017-2385-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022]
|
22
|
Goutman SA, Chen KS, Paez-Colasante X, Feldman EL. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:603-623. [PMID: 29478603 DOI: 10.1016/b978-0-444-64076-5.00039-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, noncurable neurodegenerative disorder of the upper and lower motor neurons causing weakness and death within a few years of symptom onset. About 10% of patients with ALS have a family history of the disease; however, ALS-associated genetic mutations are also found in sporadic cases. There are over 100 ALS-associated mutations, and importantly, several genetic mutations, including C9ORF72, SOD1, and TARDBP, have led to mechanistic insight into this complex disease. In the clinical realm, knowledge of ALS genetics can also help explain phenotypic heterogeneity, aid in genetic counseling, and in the future may help direct treatment efforts.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
23
|
Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol 2017; 158:45-68. [DOI: 10.1016/j.pneurobio.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
24
|
The Emerging Role of the Major Histocompatibility Complex Class I in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2017; 18:ijms18112298. [PMID: 29104236 PMCID: PMC5713268 DOI: 10.3390/ijms18112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motoneurons (MNs). The etiology of the disease is still unknown for most patients with sporadic ALS, while in 5–10% of the familial cases, several gene mutations have been linked to the disease. Mutations in the gene encoding Cu, Zn superoxide dismutase (SOD1), reproducing in animal models a pathological scenario similar to that found in ALS patients, have allowed for the identification of mechanisms relevant to the ALS pathogenesis. Among them, neuroinflammation mediated by glial cells and systemic immune activation play a key role in the progression of the disease, through mechanisms that can be either neuroprotective or neurodetrimental depending on the type of cells and the MN compartment involved. In this review, we will examine and discuss the involvement of major histocompatibility complex class I (MHCI) in ALS concerning its function in the adaptive immunity and its role in modulating the neural plasticity in the central and peripheral nervous system. The evidence indicates that the overexpression of MHCI into MNs protect them from astrocytes’ toxicity in the central nervous system (CNS) and promote the removal of degenerating motor axons accelerating collateral reinnervation of muscles.
Collapse
|
25
|
Zeineddine R, Farrawell NE, Lambert-Smith IA, Yerbury JJ. Addition of exogenous SOD1 aggregates causes TDP-43 mislocalisation and aggregation. Cell Stress Chaperones 2017; 22:893-902. [PMID: 28560609 PMCID: PMC5655364 DOI: 10.1007/s12192-017-0804-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/11/2022] Open
Abstract
ALS is characterised by a focal onset of motor neuron loss, followed by contiguous outward spreading of pathology throughout the nervous system, resulting in paralysis and death generally within a few years after diagnosis. The aberrant release and uptake of toxic proteins including SOD1 and TDP-43 and their subsequent propagation, accumulation and deposition in motor neurons may explain such a pattern of pathology. Previous work has suggested that the internalization of aggregates triggers stress granule formation. Given the close association of stress granules and TDP-43, we wondered whether internalisation of SOD1 aggregates stimulated TDP-43 cytosolic aggregate structures. Addition of recombinant mutant G93A SOD1 aggregates to NSC-34 cells was found to trigger a rapid shift of TDP-43 to the cytoplasm where it was still accumulated after 48 h. In addition, SOD1 aggregates also triggered cleavage of TDP-43 into fragments including a 25 kDa fragment. Collectively, this study suggests a role for protein aggregate uptake in TDP-43 pathology.
Collapse
Affiliation(s)
- Rafaa Zeineddine
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia
| | - Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia
| | - Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
26
|
Zacchi LF, Dittmar JC, Mihalevic MJ, Shewan AM, Schulz BL, Brodsky JL, Bernstein KA. Early-onset torsion dystonia: a novel high-throughput yeast genetic screen for factors modifying protein levels of torsinAΔE. Dis Model Mech 2017; 10:1129-1140. [PMID: 28768697 PMCID: PMC5611967 DOI: 10.1242/dmm.029926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
Dystonia is the third most common movement disorder, but its diagnosis and treatment remain challenging. One of the most severe types of dystonia is early-onset torsion dystonia (EOTD). The best studied and validated EOTD-associated mutation, torsinAΔE, is a deletion of a C-terminal glutamate residue in the AAA+ ATPase torsinA. TorsinA appears to be an endoplasmic reticulum (ER)/nuclear envelope chaperone with multiple roles in the secretory pathway and in determining subcellular architecture. Many functions are disabled in the torsinAΔE variant, and torsinAΔE is also less stable than wild-type torsinA and is a substrate for ER-associated degradation. Nevertheless, the molecular factors involved in the biogenesis and degradation of torsinA and torsinAΔE have not been fully explored. To identify conserved cellular factors that can alter torsinAΔE protein levels, we designed a new high-throughput, automated, genome-wide screen utilizing our validated Saccharomyces cerevisiae torsinA expression system. By analyzing the yeast non-essential gene deletion collection, we identified 365 deletion strains with altered torsinAΔE steady-state levels. One notable hit was EUG1, which encodes a member of the protein disulfide isomerase family (PDIs). PDIs reside in the ER and catalyze the formation of disulfide bonds, mediate protein quality control and aid in nascent protein folding. We validated the role of select human PDIs in torsinA biogenesis in mammalian cells and found that overexpression of PDIs reduced the levels of torsinA and torsinAΔE. Together, our data report the first genome-wide screen to identify cellular factors that alter expression levels of the EOTD-associated protein torsinAΔE. More generally, the identified hits help in dissecting the cellular machinery involved in folding and degrading a torsinA variant, and constitute potential therapeutic factors for EOTD. This screen can also be readily adapted to identify factors impacting the levels of any protein of interest, considerably expanding the applicability of yeast in both basic and applied research.
Collapse
Affiliation(s)
- Lucía F Zacchi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - John C Dittmar
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Michael J Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, 2.42e, Pittsburgh, PA 15213, USA
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, 2.42e, Pittsburgh, PA 15213, USA
| |
Collapse
|
27
|
Ramesh N, Pandey UB. Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand. Front Mol Neurosci 2017; 10:263. [PMID: 28878620 PMCID: PMC5572252 DOI: 10.3389/fnmol.2017.00263] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that results from the loss of upper and lower motor neurons. One of the key pathological hallmarks in diseased neurons is the mislocalization of disease-associated proteins and the formation of cytoplasmic aggregates of these proteins and their interactors due to defective protein quality control. This apparent imbalance in the cellular protein homeostasis could be a crucial factor in causing motor neuron death in the later stages of the disease in patients. Autophagy is a major protein degradation pathway that is involved in the clearance of protein aggregates and damaged organelles. Abnormalities in autophagy have been observed in numerous neurodegenerative disorders, including ALS. In this review, we discuss the contribution of autophagy dysfunction in various in vitro and in vivo models of ALS. Furthermore, we examine the crosstalk between autophagy and other cellular stresses implicated in ALS pathogenesis and the therapeutic implications of regulating autophagy in ALS.
Collapse
Affiliation(s)
- Nandini Ramesh
- Department of Human Genetics, University of Pittsburgh Graduate School of Public HealthPittsburgh, PA, United States.,Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburgh, PA, United States
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public HealthPittsburgh, PA, United States.,Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of MedicinePittsburgh, PA, United States
| |
Collapse
|
28
|
Abstract
The clinical manifestation of neurodegenerative diseases is initiated by the selective alteration in the functionality of distinct neuronal populations. The pathology of many neurodegenerative diseases includes accumulation of misfolded proteins in the brain. In physiological conditions, the proteostasis network maintains normal protein folding, trafficking and degradation; alterations in this network - particularly disturbances to the function of endoplasmic reticulum (ER) - are thought to contribute to abnormal protein aggregation. ER stress triggers a signalling reaction known as the unfolded protein response (UPR), which induces adaptive programmes that improve protein folding and promote quality control mechanisms and degradative pathways or can activate apoptosis when damage is irreversible. In this Review, we discuss the latest advances in defining the functional contribution of ER stress to brain diseases, including novel evidence that relates the UPR to synaptic function, which has implications for cognition and memory. A complex concept is emerging wherein the consequences of ER stress can differ drastically depending on the disease context and the UPR signalling pathway that is altered. Strategies to target specific components of the UPR using small molecules and gene therapy are in development, and promise interesting avenues for future interventions to delay or stop neurodegeneration.
Collapse
|
29
|
Kurita H, Inden M, Hozumi I. Review of relevance between metal homeostasis and neurodegenerative disease. Nihon Yakurigaku Zasshi 2017; 150:29-35. [PMID: 28690272 DOI: 10.1254/fpj.150.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Barra NG, Lisyansky M, Vanduzer TA, Raha S, Holloway AC, Hardy DB. Maternal nicotine exposure leads to decreased cardiac protein disulfide isomerase and impaired mitochondrial function in male rat offspring. J Appl Toxicol 2017; 37:1517-1526. [PMID: 28681937 DOI: 10.1002/jat.3503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022]
Abstract
Smoking throughout pregnancy can lead to complications during gestation, parturition and neonatal development. Thus, nicotine replacement therapies are a popular alternative thought to be safer than cigarettes. However, recent studies in rodents suggest that fetal and neonatal nicotine exposure alone results in cardiac dysfunction and high blood pressure. While it is well known that perinatal nicotine exposure causes increased congenital abnormalities, the mechanisms underlying longer-term deficits in cardiac function are not completely understood. Recently, our laboratory demonstrated that nicotine impairs placental protein disulfide isomerase (PDI) triggering an increase in endoplasmic reticulum stress, leading us to hypothesize that this may also occur in the heart. At 3 months of age, nicotine-exposed offspring had 45% decreased PDI levels in the absence of endoplasmic reticulum stress. Given the association of PDI and superoxide dismutase enzymes, we further observed that antioxidant superoxide dismutase-2 levels were reduced by 32% in these offspring concomitant with a 26-49% decrease in mitochondrial complex proteins (I, II, IV and V) and tissue inhibitor of metalloproteinase-4, a critical matrix metalloprotease for cardiac contractility and health. Collectively, this study suggests that perinatal nicotine exposure decreases PDI, which can promote oxidative damage and mitochondrial damage, associated with a premature decline in cardiac function.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Maria Lisyansky
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Taylor A Vanduzer
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Daniel B Hardy
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Departments of Obstetrics and Gynecology, Children's Health Research Institute, Lawson, Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
31
|
Medinas DB, González JV, Falcon P, Hetz C. Fine-Tuning ER Stress Signal Transducers to Treat Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:216. [PMID: 28725179 PMCID: PMC5496948 DOI: 10.3389/fnmol.2017.00216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motoneurons and paralysis. The mechanisms underlying neuronal degeneration in ALS are starting to be elucidated, highlighting disturbances in motoneuron proteostasis. Endoplasmic reticulum (ER) stress has emerged as an early pathogenic event underlying motoneuron vulnerability and denervation in ALS. Maintenance of ER proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). Inositol-requiring enzyme 1 (IRE1) is an ER-located kinase and endoribonuclease that operates as a major ER stress transducer, mediating the establishment of adaptive and pro-apoptotic programs. Here we discuss current evidence supporting the role of ER stress in motoneuron demise in ALS and build the rational to target IRE1 to ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Danilo B Medinas
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile
| | - Jose V González
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile
| | - Paulina Falcon
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of ChileSantiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute, University of ChileSantiago, Chile.,Center for Geroscience, Brain Health and MetabolismSantiago, Chile.,Buck Institute for Research on AgingNovato, CA, United States.,Department of Immunology and Infectious Diseases, Harvard School of Public HealthBoston, MA, United States
| |
Collapse
|
32
|
Kishino A, Hayashi K, Hidai C, Masuda T, Nomura Y, Oshima T. XBP1-FoxO1 interaction regulates ER stress-induced autophagy in auditory cells. Sci Rep 2017; 7:4442. [PMID: 28667325 PMCID: PMC5493624 DOI: 10.1038/s41598-017-02960-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/21/2017] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to clarify the relationship among X-box-binding protein 1 unspliced, spliced (XBP1u, s), Forkhead box O1 (FoxO1) and autophagy in the auditory cells under endoplasmic reticulum (ER) stress. In addition, the relationship between ER stress that causes unfolded protein response (UPR) and autophagy was also investigated. The present study reported ER stress induction by tunicamycin treatment that resulted in IRE1α-mediated XBP1 mRNA splicing and autophagy. XBP1 mRNA splicing and FoxO1 were found to be involved in ER stress-induced autophagy. This inference was based on the observation that the expression of LC3-II was suppressed by knockdown of IRE1α, XBP1 or FoxO1. In addition, XBP1u was found to interact with XBP1s in auditory cells under ER stress, functioning as a negative feedback regulator that was based on two important findings. Firstly, there was a significant inverse correlation between XBP1u and XBP1s expressions, and secondly, the expression of XBP1 protein showed different dynamics compared to the XBP1 mRNA level. Furthermore, our results regarding the relationship between XBP1 and FoxO1 by small interfering RNA (siRNA) paradoxically showed negative regulation of FoxO1 expression by XBP1. Our findings revealed that the XBP1-FoxO1 interaction regulated the ER stress-induced autophagy in auditory cells.
Collapse
Affiliation(s)
- Akihiro Kishino
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Ken Hayashi
- Department of Otolaryngology, Kamio Memorial Hospital, Tokyo, 101-0063, Japan
| | - Chiaki Hidai
- Department of Physiology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Takeshi Masuda
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Yasuyuki Nomura
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Takeshi Oshima
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan.
| |
Collapse
|
33
|
Park JH, Jang HR, Lee IY, Oh HK, Choi EJ, Rhim H, Kang S. Amyotrophic lateral sclerosis-related mutant superoxide dismutase 1 aggregates inhibit 14-3-3-mediated cell survival by sequestration into the JUNQ compartment. Hum Mol Genet 2017; 26:3615-3629. [DOI: 10.1093/hmg/ddx250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
|
34
|
Remondelli P, Renna M. The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance. Front Mol Neurosci 2017; 10:187. [PMID: 28670265 PMCID: PMC5472670 DOI: 10.3389/fnmol.2017.00187] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the cell compartment involved in secretory protein translocation and quality control of secretory protein folding. Different conditions can alter ER function, resulting in the accumulation of unfolded or misfolded proteins within the ER lumen. Such a condition, known as ER stress, elicits an integrated adaptive response known as the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway. Conversely, in prolonged cell stress or insufficient adaptive response, UPR signaling causes cell death. ER dysfunctions are involved and contribute to neuronal degeneration in several human diseases, including Alzheimer, Parkinson and Huntington disease and amyotrophic lateral sclerosis. The correlations between ER stress and its signal transduction pathway known as the UPR with neuropathological changes are well established. In addition, much evidence suggests that genetic or pharmacological modulation of UPR could represent an effective strategy for minimizing the progressive neuronal loss in neurodegenerative diseases. Here, we review recent results describing the main cellular mechanisms linking ER stress and UPR to neurodegeneration. Furthermore, we provide an up-to-date panoramic view of the currently pursued strategies for ameliorating the toxic effects of protein unfolding in disease by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Paolo Remondelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di SalernoSalerno, Italy
| | - Maurizio Renna
- Cambridge Institute for Medical Research, Department of Medical Genetics, Wellcome Trust, Addenbrooke's Hospital, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
35
|
|
36
|
Sprenkle NT, Sims SG, Sánchez CL, Meares GP. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener 2017; 12:42. [PMID: 28545479 PMCID: PMC5445486 DOI: 10.1186/s13024-017-0183-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Persistent endoplasmic reticulum (ER) stress is thought to drive the pathology of many chronic disorders due to its potential to elicit aberrant inflammatory signaling and facilitate cell death. In neurodegenerative diseases, the accumulation of misfolded proteins and concomitant induction of ER stress in neurons contributes to neuronal dysfunction. In addition, ER stress responses induced in the surrounding neuroglia may promote disease progression by coordinating damaging inflammatory responses, which help fuel a neurotoxic milieu. Nevertheless, there still remains a gap in knowledge regarding the cell-specific mechanisms by which ER stress mediates neuroinflammation. In this review, we will discuss recently uncovered inflammatory pathways linked to the ER stress response. Moreover, we will summarize the present literature delineating how ER stress is generated in Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis, and highlight how ER stress and neuroinflammation intersect mechanistically within the central nervous system. The mechanisms by which stress-induced inflammation contributes to the pathogenesis and progression of neurodegenerative diseases remain poorly understood. Further examination of this interplay could present unappreciated insights into the development of neurodegenerative diseases, and reveal new therapeutic targets.
Collapse
Affiliation(s)
- Neil T Sprenkle
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Savannah G Sims
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Cristina L Sánchez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA. .,Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
37
|
Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol Neurosci 2017; 10:119. [PMID: 28539871 PMCID: PMC5423993 DOI: 10.3389/fnmol.2017.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Reka P Toth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Cyril J Jagaraj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Emma R Perri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
38
|
Webster CP, Smith EF, Shaw PJ, De Vos KJ. Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities? Front Mol Neurosci 2017; 10:123. [PMID: 28512398 PMCID: PMC5411428 DOI: 10.3389/fnmol.2017.00123] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis), the correct balance between production and degradation of proteins, is essential for the health and survival of cells. Proteostasis requires an intricate network of protein quality control pathways (the proteostasis network) that work to prevent protein aggregation and maintain proteome health throughout the lifespan of the cell. Collapse of proteostasis has been implicated in the etiology of a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disorder. Here, we review the evidence linking dysfunctional proteostasis to the etiology of ALS and discuss how ALS-associated insults affect the proteostasis network. Finally, we discuss the potential therapeutic benefit of proteostasis network modulation in ALS.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
39
|
Bose S, Cho J. Targeting chaperones, heat shock factor-1, and unfolded protein response: Promising therapeutic approaches for neurodegenerative disorders. Ageing Res Rev 2017; 35:155-175. [PMID: 27702699 DOI: 10.1016/j.arr.2016.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Protein misfolding, which is known to cause several serious diseases, is an emerging field that addresses multiple therapeutic areas. Misfolding of a disease-specific protein in the central nervous system ultimately results in the formation of toxic aggregates that may accumulate in the brain, leading to neuronal cell death and dysfunction, and associated clinical manifestations. A large number of neurodegenerative diseases in humans, including Alzheimer's, Parkinson's, Huntington's, and prion diseases, are primarily caused by protein misfolding and aggregation. Notably, the cellular system is equipped with a protein quality control system encompassing chaperones, ubiquitin proteasome system, and autophagy, as a defense mechanism that monitors protein folding and eliminates inappropriately folded proteins. As the intrinsic molecular mechanisms of protein misfolding become more clearly understood, the novel therapeutic approaches in this arena are gaining considerable interest. The present review will describe the chaperones network and different approaches as the therapeutic targets for neurodegenerative diseases. Current and emerging therapeutic approaches to combat neurodegenerative diseases, addressing the roles of molecular, chemical, and pharmacological chaperones, as well as heat shock factor-1 and the unfolded protein response, are also discussed in detail.
Collapse
Affiliation(s)
- Shambhunath Bose
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
40
|
Kim JE, Hong YH, Kim JY, Jeon GS, Jung JH, Yoon BN, Son SY, Lee KW, Kim JI, Sung JJ. Altered nucleocytoplasmic proteome and transcriptome distributions in an in vitro model of amyotrophic lateral sclerosis. PLoS One 2017; 12:e0176462. [PMID: 28453527 PMCID: PMC5409181 DOI: 10.1371/journal.pone.0176462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
Aberrant nucleocytoplasmic localization of proteins has been implicated in many neurodegenerative diseases. Evidence suggests that cytoplasmic mislocalization of nuclear proteins such as transactive response DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) may be associated with neurotoxicity in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. This study investigated the changes in nucleocytoplasmic distributions of the proteome and transcriptome in an in vitro model of ALS. After subcellular fractionation of motor neuron-like cell lines expressing wild-type or G93A mutant hSOD1, quantitative mass spectrometry and next-generation RNA sequencing (RNA-seq) were performed for the nuclear and cytoplasmic compartments. A subset of the results was validated via immunoblotting. A total of 1,925 proteins were identified in either the nuclear or cytoplasmic fractions, and 32% of these proteins were quantified in both fractions. The nucleocytoplasmic distribution of 37 proteins was significantly changed in mutant cells with nuclear and cytoplasmic shifts in 13 and 24 proteins, respectively (p<0.05). The proteins shifted towards the nucleus were enriched regarding pathways of RNA transport and processing (Dhx9, Fmr1, Srsf3, Srsf6, Tra2b), whereas protein folding (Cct5, Cct7, Cct8), aminoacyl-tRNA biosynthesis (Farsb, Nars, Txnrd1), synaptic vesicle cycle (Cltc, Nsf), Wnt signalling (Cltc, Plcb3, Plec, Psmd3, Ruvbl1) and Hippo signalling (Camk2d, Plcb3, Ruvbl1) pathways were over-represented in the proteins shifted to the cytoplasm. A weak correlation between the changes in protein and mRNA levels was found only in the nucleus, where mRNA was relatively abundant in mutant cells. This study provides a comprehensive dataset of the nucleocytoplasmic distribution of the proteome and transcriptome in an in vitro model of ALS. An integrated analysis of the nucleocytoplasmic distribution of the proteome and transcriptome demonstrated multiple candidate pathways including RNA processing/transport and protein synthesis and folding that may be relevant to the pathomechanism of ALS.
Collapse
Affiliation(s)
- Jee-Eun Kim
- Department of Neurology, Seoul Medical Center, Seoul, Republic of Korea
| | - Yoon Ho Hong
- Department of Neurology, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Jin Young Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Daejun, Korea
- * E-mail: (JYK); (JIK); (JJS)
| | - Gye Sun Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | | | - Byung-Nam Yoon
- Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Sung-Yeon Son
- Department of Neurology, Eulji University Hospital, Daejun, Korea
| | - Kwang-Woo Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (JYK); (JIK); (JJS)
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- * E-mail: (JYK); (JIK); (JJS)
| |
Collapse
|
41
|
Valle C, Carrì MT. Cysteine Modifications in the Pathogenesis of ALS. Front Mol Neurosci 2017; 10:5. [PMID: 28167899 PMCID: PMC5253364 DOI: 10.3389/fnmol.2017.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Several proteins are found misfolded and aggregated in sporadic and genetic forms of amyotrophic lateral sclerosis (ALS). These include superoxide dismutase (SOD1), transactive response DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma protein (FUS/TLS), p62, vasolin-containing protein (VCP), Ubiquilin-2 and dipeptide repeats produced by unconventional RAN-translation of the GGGGCC expansion in C9ORF72. Up to date, functional studies have not yet revealed a common mechanism for the formation of such diverse protein inclusions. Consolidated studies have demonstrated a fundamental role of cysteine residues in the aggregation process of SOD1 and TDP43, but disturbance of protein thiols homeostatic factors such as protein disulfide isomerases (PDI), glutathione, cysteine oxidation or palmitoylation might contribute to a general aberration of cysteine residues proteostasis in ALS. In this article we review the evidence that cysteine modifications may have a central role in many, if not all, forms of this disease.
Collapse
Affiliation(s)
- Cristiana Valle
- Institute for Cell Biology and Neurobiology, CNRRome, Italy
- Fondazione Santa Lucia IRCCSRome, Italy
| | - Maria Teresa Carrì
- Fondazione Santa Lucia IRCCSRome, Italy
- Department of Biology, University of Rome Tor VergataRome, Italy
| |
Collapse
|
42
|
Pajares M, Cuadrado A, Rojo AI. Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biol 2017; 11:543-553. [PMID: 28104575 PMCID: PMC5239825 DOI: 10.1016/j.redox.2017.01.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases are linked to the accumulation of specific protein aggregates, suggesting an intimate connection between injured brain and loss of proteostasis. Proteostasis refers to all the processes by which cells control the abundance and folding of the proteome thanks to a wide network that integrates the regulation of signaling pathways, gene expression and protein degradation systems. This review attempts to summarize the most relevant findings about the transcriptional modulation of proteostasis exerted by the transcription factor NRF2 (nuclear factor (erythroid-derived 2)-like 2). NRF2 has been classically considered as the master regulator of the antioxidant cell response, although it is currently emerging as a key component of the transduction machinery to maintain proteostasis. As we will discuss, NRF2 could be envisioned as a hub that compiles emergency signals derived from misfolded protein accumulation in order to build a coordinated and perdurable transcriptional response. This is achieved by functions of NRF2 related to the control of genes involved in the maintenance of the endoplasmic reticulum physiology, the proteasome and autophagy.
Collapse
Affiliation(s)
- Marta Pajares
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Madrid, Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Madrid, Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Ana I Rojo
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Madrid, Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
43
|
Rozas P, Bargsted L, Martínez F, Hetz C, Medinas DB. The ER proteostasis network in ALS: Determining the differential motoneuron vulnerability. Neurosci Lett 2017; 636:9-15. [DOI: 10.1016/j.neulet.2016.04.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/17/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
|
44
|
Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Curr Top Dev Biol 2017; 121:111-171. [DOI: 10.1016/bs.ctdb.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Cabral-Miranda F, Hetz C. ER Stress and Neurodegenerative Disease: A Cause or Effect Relationship? Curr Top Microbiol Immunol 2017; 414:131-157. [PMID: 28864830 DOI: 10.1007/82_2017_52] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of protein aggregates has a fundamental role in the patophysiology of distinct neurodegenerative diseases. This phenomenon may have a common origin, where disruption of intracellular mechanisms related to protein homeostasis (here termed proteostasis) control during aging may result in abnormal protein aggregation. The unfolded protein response (UPR) embodies a major element of the proteostasis network triggered by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as possible mechanism of neurodegenerative and synaptic dysfunction, and in addition contribute to the abnormal aggregation of key disease-related proteins. In this article we overview the most recent findings suggesting a causal role of ER stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Felipe Cabral-Miranda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile. .,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, 94945, USA. .,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Mancuso R, Navarro X. Sigma-1 Receptor in Motoneuron Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:235-254. [PMID: 28315275 DOI: 10.1007/978-3-319-50174-1_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS ) is a neurodegenerative disease affecting spinal cord and brain motoneurons , leading to paralysis and early death. Multiple etiopathogenic mechanisms appear to contribute in the development of ALS , including glutamate excitotoxicity, oxidative stress , protein misfolding, mitochondrial defects, impaired axonal transport, inflammation and glial cell alterations. The Sigma-1 receptor is highly expressed in motoneurons of the spinal cord, particularly enriched in the endoplasmic reticulum (ER) at postsynaptic cisternae of cholinergic C-terminals. Several evidences point to participation of Sigma-1R alterations in motoneuron degeneration. Thus, mutations of the transmembrane domain of the Sigma-1R have been described in familial ALS cases. Interestingly, Sigma-1R KO mice display muscle weakness and motoneuron loss. On the other hand, Sigma-1R agonists promote neuroprotection and neurite elongation through activation of protein kinase C on motoneurons in vitro and in vivo after ventral root avulsion. Remarkably, treatment of SOD1 mice, the most usual animal model of ALS , with Sigma-1R agonists resulted in significantly enhanced motoneuron function and preservation, and increased animal survival. Sigma-1R activation also reduced microglial reactivity and increased the glial expression of neurotrophic factors. Two main interconnected mechanisms seem to underlie the effects of Sigma-1R manipulation on motoneurons: modulation of neuronal excitability and regulation of calcium homeostasis. In addition, Sigma-1R also contributes to regulating protein degradation, and reducing oxidative stress. Therefore, the multi-functional nature of the Sigma-1R represents an attractive target for treating aspects of ALS and other motoneuron diseases .
Collapse
Affiliation(s)
- Renzo Mancuso
- Center for Biological Sciences, University of Southampton, Southampton General Hospital, SO16 6YD, Southampton, UK
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
47
|
Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P, Buch S. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 2016; 12:225-44. [PMID: 26902584 DOI: 10.1080/15548627.2015.1121360] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.
Collapse
Affiliation(s)
- Yu Cai
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Jyothi Arikkath
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA.,b Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center , Omaha , NE , USA
| | - Lu Yang
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Ming-Lei Guo
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Palsamy Periyasamy
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Shilpa Buch
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
48
|
Mondola P, Damiano S, Sasso A, Santillo M. The Cu, Zn Superoxide Dismutase: Not Only a Dismutase Enzyme. Front Physiol 2016; 7:594. [PMID: 27965593 PMCID: PMC5126113 DOI: 10.3389/fphys.2016.00594] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023] Open
Abstract
The Cu,Zn superoxide dismutase (SOD1) is an ubiquitary cytosolic dimeric carbohydrate free molecule, belonging to a family of isoenzymes involved in the scavenger of superoxide anions. This effect certainly represents the main and well known function ascribed to this enzyme. Here we highlight new aspects of SOD1 physiology that point out some inedited effects of this enzyme in addition to the canonic role of oxygen radical enzymatic dismutation. In the last two decades our research group produced many data obtained in in vitro studies performed in many cellular lines, mainly neuroblastoma SK-N-BE cells, indicating that this enzyme is secreted either constitutively or after depolarization induced by high extracellular K+ concentration. In addition, we gave many experimental evidences showing that SOD1 is able to stimulate, through muscarinic M1 receptor, pathways involving ERK1/2, and AKT activation. These effects are accompanied with an intracellular calcium increase. In the last part of this review we describe researches that link deficient extracellular secretion of mutant SOD1G93A to its intracellular accumulation and toxicity in NSC-34 cells. Alternatively, SOD1G93A toxicity has been attributed to a decrease of Km for H2O2 with consequent OH radical formation. Interestingly, this last inedited effect of SOD1G93A could represent a gain of function that could be involved in the pathogenesis of familial Amyotrophic Lateral Sclerosis (fALS).
Collapse
Affiliation(s)
- Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Anna Sasso
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Fisiologia Umana, Università degli Studi di Napoli "Federico II," Napoli, Italy
| |
Collapse
|
49
|
Perri E, Parakh S, Atkin J. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opin Ther Targets 2016; 21:37-49. [PMID: 27786579 DOI: 10.1080/14728222.2016.1254197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There is increasing evidence that endoplasmic reticulum (ER) chaperones Protein Disulphide Isomerase (PDI) and ERp57 (endoplasmic reticulum protein 57) are protective against neurodegenerative diseases related to protein misfolding, including Amyotrophic Lateral Sclerosis (ALS). PDI and ERp57 also possess disulphide interchange activity, in which protein disulphide bonds are oxidized, reduced and isomerized, to form their native conformation. Recently, missense and intronic variants of PDI and ERp57 were associated with ALS, implying that PDI proteins are relevant to ALS pathology. Areas covered: Here, we discuss possible implications of the PDI and ERp57 variants, as well as recent studies describing previously unrecognized roles for PDI and ERp57 in the nervous system. Therapeutics based on PDI may therefore be attractive candidates for ALS. However, in addition to its protective functions, aberrant, toxic roles for PDI have recently been described. These functions need to be fully characterized before effective therapeutic strategies can be designed. Expert opinion: These disease-associated variants of PDI and ERp57 provide additional evidence for an important role for PDI proteins in ALS. However, there are many questions remaining unanswered that need to be addressed before the potential of the PDI family in relation to ALS can be fully realized.
Collapse
Affiliation(s)
- Emma Perri
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Sonam Parakh
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Julie Atkin
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
50
|
Soares Moretti AI, Martins Laurindo FR. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Arch Biochem Biophys 2016; 617:106-119. [PMID: 27889386 DOI: 10.1016/j.abb.2016.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de)glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|