1
|
Gombeau K, Hoffmann SA, Cai Y. A new set of mutations in the second transmembrane helix of the Cox2p-W56R substantially improves its allotopic expression in Saccharomyces cerevisiae. Genetics 2025; 229:iyaf037. [PMID: 40178993 PMCID: PMC12005268 DOI: 10.1093/genetics/iyaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
The dual genetic control of mitochondrial respiratory function, combined with the high mutation rate of the mitochondrial genome (mtDNA), makes mitochondrial diseases among the most frequent genetic diseases in humans (1 in 5,000 in adults). With no effective treatments available, gene therapy approaches have been proposed. Notably, several studies have demonstrated the potential for nuclear expression of a healthy copy of a dysfunctional mitochondrial gene, referred to as allotopic expression, to help recover respiratory function. However, allotopic expression conditions require significant optimization. We harnessed engineering biology tools to improve the allotopic expression of the COX2-W56R gene in the budding yeast Saccharomyces cerevisiae. Through conducting random mutagenesis and screening of the impact of vector copy number, promoter, and mitochondrial targeting sequence, we substantially increased the mitochondrial incorporation of the allotopic protein and significantly increased recovery of mitochondrial respiration. Moreover, CN-PAGE analyses revealed that our optimized allotopic protein does not impact cytochrome c oxidase assembly, or the biogenesis of respiratory chain supercomplexes. Importantly, the most beneficial amino acid substitutions found in the second transmembrane helix (L93S and I102K) are conserved residues in the corresponding positions of human MT-CO2 (L73 and L75), and we propose that mirroring these changes could potentially help improve allotopic Cox2p expression in human cells. To conclude, this study demonstrates the effectiveness of using engineering biology approaches to optimise allotopic expression of mitochondrial genes in the baker's yeast.
Collapse
Affiliation(s)
- Kewin Gombeau
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, Netherlands
| | - Yizhi Cai
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
2
|
Juszkiewicz S, Peak-Chew SY, Hegde RS. Mechanism of chaperone recruitment and retention on mitochondrial precursors. Mol Biol Cell 2025; 36:ar39. [PMID: 39878680 PMCID: PMC7617541 DOI: 10.1091/mbc.e25-01-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Nearly all mitochondrial proteins are imported into mitochondria from the cytosol. How nascent mitochondrial precursors acquire and sustain import competence in the cytosol under normal and stress conditions is incompletely understood. Here, we show that under normal conditions, the Hsc70 and Hsp90 systems interact with and redundantly minimize precursor degradation. During acute import stress, Hsp90 buffers precursor degradation, preserving proteins in an import-competent state until stress resolution. Unexpectedly, buffering by Hsp90 relies critically on a mitochondrial targeting signal (MTS), the absence of which greatly decreases precursor-Hsp90 interaction. Site-specific photo-cross-linking and biochemical reconstitution showed how the MTS directly engages co-chaperones of Hsc70 (St13 and Stip1) and Hsp90 (p23 and Cdc37) to facilitate chaperone retention on the mature domain. Thus, the MTS has a previously unappreciated role in regulating chaperone dynamics on mitochondrial precursors to buffer their degradation and maintain import competence, functions that may facilitate restoration of mitochondrial homeostasis after acute import stress.
Collapse
Affiliation(s)
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | | |
Collapse
|
3
|
Gu J, He Y, He C, Zhang Q, Huang Q, Bai S, Wang R, You Q, Wang L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct Target Ther 2025; 10:84. [PMID: 40069202 PMCID: PMC11897415 DOI: 10.1038/s41392-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Molecular chaperones, a class of complex client regulatory systems, play significant roles in the prevention of protein misfolding and abnormal aggregation, the modulation of protein homeostasis, and the protection of cells from damage under constantly changing environmental conditions. As the understanding of the biological mechanisms of molecular chaperones has increased, their link with the occurrence and progression of disease has suggested that these proteins are promising targets for therapeutic intervention, drawing intensive interest. Here, we review recent advances in determining the structures of molecular chaperones and heat shock protein 90 (HSP90) chaperone system complexes. We also describe the features of molecular chaperones and shed light on the complicated regulatory mechanism that operates through interactions with various co-chaperones in molecular chaperone cycles. In addition, how molecular chaperones affect diseases by regulating pathogenic proteins has been thoroughly analyzed. Furthermore, we focus on molecular chaperones to systematically discuss recent clinical advances and various drug design strategies in the preclinical stage. Recent studies have identified a variety of novel regulatory strategies targeting molecular chaperone systems with compounds that act through different mechanisms from those of traditional inhibitors. Therefore, as more novel design strategies are developed, targeting molecular chaperones will significantly contribute to the discovery of new potential drugs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qifei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shangjun Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial TCM Engineering Technology Research Center of Highly Efficient Drug Delivery Systems (DDSs), Nanjing, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Logan IE, Nguyen KT, Chatterjee T, Manivannan B, Paul NP, Kim SR, Sixta EM, Bastian LP, Marean-Reardon C, Karajannis MA, Fernández-Valle C, Estevez AG, Franco MC. Selective nitration of Hsp90 acts as a metabolic switch promoting tumor cell proliferation. Redox Biol 2024; 75:103249. [PMID: 38945076 PMCID: PMC11261529 DOI: 10.1016/j.redox.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Tumors develop in an oxidative environment characterized by peroxynitrite production and downstream protein tyrosine (Y) nitration. We showed that tyrosine nitration supports schwannoma cell proliferation and regulates cell metabolism in the inheritable tumor disorder NF2-related Schwannomatosis (NF2-SWN). Here, we identified the chaperone Heat shock protein 90 (Hsp90) as the first nitrated protein that acts as a metabolic switch to promote schwannoma cell proliferation. Doubling the endogenous levels of nitrated Hsp90 in schwannoma cells or supplementing nitrated Hsp90 into normal Schwann cells increased their proliferation. Metabolically, nitration on either Y33 or Y56 conferred Hsp90 distinct functions; nitration at Y33 (Hsp90NY33) down-regulated mitochondrial oxidative phosphorylation, while nitration at Y56 (Hsp90NY56) increased glycolysis by activating the purinergic receptor P2X7 in both schwannoma and normal Schwann cells. Hsp90NY33 and Hsp90NY56 showed differential subcellular and spatial distribution corresponding with their metabolic and proliferative functions in schwannoma three-dimensional cell culture models. Collectively, these results underscore the role of tyrosine nitration as a post-translational modification regulating critical cellular processes. Nitrated proteins, particularly nitrated Hsp90, emerge as a novel category of tumor-directed therapeutic targets.
Collapse
Affiliation(s)
- Isabelle E Logan
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Center for Translational Science, Florida International University, Florida, 34987, USA
| | - Kyle T Nguyen
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Tilottama Chatterjee
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Ngozi P Paul
- Center for Translational Science, Florida International University, Florida, 34987, USA
| | - Sharon R Kim
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Evelyn M Sixta
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Lydia P Bastian
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Carrie Marean-Reardon
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Alvaro G Estevez
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Florida, 33199, USA
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Center for Translational Science, Florida International University, Florida, 34987, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Florida, 33199, USA.
| |
Collapse
|
5
|
Muthukumar G, Stevens TA, Inglis AJ, Esantsi TK, Saunders RA, Schulte F, Voorhees RM, Guna A, Weissman JS. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology. Mol Cell 2024; 84:1101-1119.e9. [PMID: 38428433 DOI: 10.1016/j.molcel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
Mitochondrial outer membrane ⍺-helical proteins play critical roles in mitochondrial-cytoplasmic communication, but the rules governing the targeting and insertion of these biophysically diverse proteins remain unknown. Here, we first defined the complement of required mammalian biogenesis machinery through genome-wide CRISPRi screens using topologically distinct membrane proteins. Systematic analysis of nine identified factors across 21 diverse ⍺-helical substrates reveals that these components are organized into distinct targeting pathways that act on substrates based on their topology. NAC is required for the efficient targeting of polytopic proteins, whereas signal-anchored proteins require TTC1, a cytosolic chaperone that physically engages substrates. Biochemical and mutational studies reveal that TTC1 employs a conserved TPR domain and a hydrophobic groove in its C-terminal domain to support substrate solubilization and insertion into mitochondria. Thus, the targeting of diverse mitochondrial membrane proteins is achieved through topological triaging in the cytosol using principles with similarities to ER membrane protein biogenesis systems.
Collapse
Affiliation(s)
- Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alina Guna
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA.
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Pal R, Hui D, Menchen H, Zhao H, Mozziconacci O, Wilkins H, Blagg BSJ, Schöneich C, Swerdlow RH, Michaelis ML, Michaelis EK. Protection against Aβ-induced neuronal damage by KU-32: PDHK1 inhibition as important target. Front Aging Neurosci 2023; 15:1282855. [PMID: 38035268 PMCID: PMC10682733 DOI: 10.3389/fnagi.2023.1282855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
A feature of most neurodegenerative diseases is the presence of "mis-folded proteins" that form aggregates, suggesting suboptimal activity of neuronal molecular chaperones. Heat shock protein 90 (Hsp90) is the master regulator of cell responses to "proteotoxic" stresses. Some Hsp90 modulators activate cascades leading to upregulation of additional chaperones. Novobiocin is a modulator at the C-terminal ATP-binding site of Hsp90. Of several novobiocin analogs synthesized and tested for protection against amyloid beta (Aβ)-induced neuronal death, "KU-32" was the most potent in protecting primary neurons, but did not increase expression of other chaperones believed to help clear misfolded proteins. However, KU-32 reversed Aβ-induced superoxide formation, activated Complex I of the electron transfer chain in mitochondria, and blocked the Aβ-induced inhibition of Complex I in neuroblastoma cells. A mechanism for these effects of KU-32 on mitochondrial metabolism appeared to be the inhibition of pyruvate dehydrogenase kinase (PDHK), both in isolated brain mitochondria and in SH-SY5Y cells. PDHK inhibition by the classic enzyme inhibitor, dichloroacetate, led to neuroprotection from Aβ25-35-induced cell injury similarly to KU-32. Inhibition of PDHK in neurons would lead to activation of the PDH complex, increased acetyl-CoA generation, stimulation of the tricarboxylic acid cycle and Complex I in the electron transfer chain, and enhanced oxidative phosphorylation. A focus of future studies may be on the potential value of PDHK as a target in AD therapy.
Collapse
Affiliation(s)
- Ranu Pal
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
| | - Dongwei Hui
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Heather Menchen
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
| | - Huiping Zhao
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States
| | - Olivier Mozziconacci
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather Wilkins
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brian S. J. Blagg
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mary L. Michaelis
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Elias K. Michaelis
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- University of Kansas Alzheimer’s Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
7
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
8
|
Binder MJ, Pedley AM. The roles of molecular chaperones in regulating cell metabolism. FEBS Lett 2023; 597:1681-1701. [PMID: 37287189 PMCID: PMC10984649 DOI: 10.1002/1873-3468.14682] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Fluctuations in nutrient and biomass availability, often as a result of disease, impart metabolic challenges that must be overcome in order to sustain cell survival and promote proliferation. Cells adapt to these environmental changes and stresses by adjusting their metabolic networks through a series of regulatory mechanisms. Our understanding of these rewiring events has largely been focused on those genetic transformations that alter protein expression and the biochemical mechanisms that change protein behavior, such as post-translational modifications and metabolite-based allosteric modulators. Mounting evidence suggests that a class of proteome surveillance proteins called molecular chaperones also can influence metabolic processes. Here, we summarize several ways the Hsp90 and Hsp70 chaperone families act on human metabolic enzymes and their supramolecular assemblies to change enzymatic activities and metabolite flux. We further highlight how these chaperones can assist in the translocation and degradation of metabolic enzymes. Collectively, these studies provide a new view for how metabolic processes are regulated to meet cellular demand and inspire new avenues for therapeutic intervention.
Collapse
|
9
|
Samant RS, Batista S, Larance M, Ozer B, Milton CI, Bludau I, Wu E, Biggins L, Andrews S, Hervieu A, Johnston HE, Al-Lazikhani B, Lamond AI, Clarke PA, Workman P. Native Size-Exclusion Chromatography-Based Mass Spectrometry Reveals New Components of the Early Heat Shock Protein 90 Inhibition Response Among Limited Global Changes. Mol Cell Proteomics 2023; 22:100485. [PMID: 36549590 PMCID: PMC9898794 DOI: 10.1016/j.mcpro.2022.100485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (HSP90) works in concert with co-chaperones to stabilize its client proteins, which include multiple drivers of oncogenesis and malignant progression. Pharmacologic inhibitors of HSP90 have been observed to exert a wide range of effects on the proteome, including depletion of client proteins, induction of heat shock proteins, dissociation of co-chaperones from HSP90, disruption of client protein signaling networks, and recruitment of the protein ubiquitylation and degradation machinery-suggesting widespread remodeling of cellular protein complexes. However, proteomics studies to date have focused on inhibitor-induced changes in total protein levels, often overlooking protein complex alterations. Here, we use size-exclusion chromatography in combination with mass spectrometry (SEC-MS) to characterize the early changes in native protein complexes following treatment with the HSP90 inhibitor tanespimycin (17-AAG) for 8 h in the HT29 colon adenocarcinoma cell line. After confirming the signature cellular response to HSP90 inhibition (e.g., induction of heat shock proteins, decreased total levels of client proteins), we were surprised to find only modest perturbations to the global distribution of protein elution profiles in inhibitor-treated HT29 cells at this relatively early time-point. Similarly, co-chaperones that co-eluted with HSP90 displayed no clear difference between control and treated conditions. However, two distinct analysis strategies identified multiple inhibitor-induced changes, including known and unknown components of the HSP90-dependent proteome. We validate two of these-the actin-binding protein Anillin and the mitochondrial isocitrate dehydrogenase 3 complex-as novel HSP90 inhibitor-modulated proteins. We present this dataset as a resource for the HSP90, proteostasis, and cancer communities (https://www.bioinformatics.babraham.ac.uk/shiny/HSP90/SEC-MS/), laying the groundwork for future mechanistic and therapeutic studies related to HSP90 pharmacology. Data are available via ProteomeXchange with identifier PXD033459.
Collapse
Affiliation(s)
- Rahul S Samant
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom; Signalling Programme, The Babraham Institute, Cambridge, United Kingdom.
| | - Silvia Batista
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Mark Larance
- Centre for Gene Regulation & Expression, University of Dundee, Dundee, United Kingdom
| | - Bugra Ozer
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Christopher I Milton
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Estelle Wu
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Laura Biggins
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, United Kingdom
| | - Alexia Hervieu
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Harvey E Johnston
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Bissan Al-Lazikhani
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, University of Dundee, Dundee, United Kingdom
| | - Paul A Clarke
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom
| | - Paul Workman
- Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
10
|
Sehgal SA, Wu H, Sajid M, Sohail S, Ahsan M, Parveen G, Riaz M, Khan MS, Iqbal MN, Malik A. Pharmacological Progress of Mitophagy Regulation. Curr Neuropharmacol 2023; 21:1026-1041. [PMID: 36918785 PMCID: PMC10286582 DOI: 10.2174/1570159x21666230314140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/16/2023] Open
Abstract
With the advancement in novel drug discovery, biologically active compounds are considered pharmacological tools to understand complex biological mechanisms and the identification of potent therapeutic agents. Mitochondria boast a central role in different integral biological processes and mitochondrial dysfunction is associated with multiple pathologies. It is, therefore, prudent to target mitochondrial quality control mechanisms by using pharmacological approaches. However, there is a scarcity of biologically active molecules, which can interact with mitochondria directly. Currently, the chemical compounds used to induce mitophagy include oligomycin and antimycin A for impaired respiration and acute dissipation of mitochondrial membrane potential by using CCCP/FCCP, the mitochondrial uncouplers. These chemical probes alter the homeostasis of the mitochondria and limit our understanding of the energy regulatory mechanisms. Efforts are underway to find molecules that can bring about selective removal of defective mitochondria without compromising normal mitochondrial respiration. In this report, we have tried to summarize and status of the recently reported modulators of mitophagy.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Pakistan
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Summar Sohail
- Department of Forestry, Kohsar University Murree, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Punjab, Pakistan
| | | | - Mehreen Riaz
- Department of Zoology, Women University, Swabi, Pakistan
| | | | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Abbeha Malik
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
11
|
Bayne AN, Dong J, Amiri S, Farhan SMK, Trempe JF. MTSviewer: A database to visualize mitochondrial targeting sequences, cleavage sites, and mutations on protein structures. PLoS One 2023; 18:e0284541. [PMID: 37093842 PMCID: PMC10124841 DOI: 10.1371/journal.pone.0284541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023] Open
Abstract
Mitochondrial dysfunction is implicated in a wide array of human diseases ranging from neurodegenerative disorders to cardiovascular defects. The coordinated localization and import of proteins into mitochondria are essential processes that ensure mitochondrial homeostasis. The localization and import of most mitochondrial proteins are driven by N-terminal mitochondrial targeting sequences (MTS's), which interact with import machinery and are removed by the mitochondrial processing peptidase (MPP). The recent discovery of internal MTS's-those which are distributed throughout a protein and act as import regulators or secondary MPP cleavage sites-has expanded the role of both MTS's and MPP beyond conventional N-terminal regulatory pathways. Still, the global mutational landscape of MTS's remains poorly characterized, both from genetic and structural perspectives. To this end, we have integrated a variety of tools into one harmonized R/Shiny database called MTSviewer (https://neurobioinfo.github.io/MTSvieweR/), which combines MTS predictions, cleavage sites, genetic variants, pathogenicity predictions, and N-terminomics data with structural visualization using AlphaFold models of human and yeast mitochondrial proteomes. Using MTSviewer, we profiled all MTS-containing proteins across human and yeast mitochondrial proteomes and provide multiple case studies to highlight the utility of this database.
Collapse
Affiliation(s)
- Andrew N Bayne
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Jing Dong
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Saeid Amiri
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Sali M K Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
12
|
Soldatov VO, Kubekina MV, Skorkina MY, Belykh AE, Egorova TV, Korokin MV, Pokrovskiy MV, Deykin AV, Angelova PR. Current advances in gene therapy of mitochondrial diseases. J Transl Med 2022; 20:562. [PMID: 36471396 PMCID: PMC9724384 DOI: 10.1186/s12967-022-03685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.
Collapse
Affiliation(s)
- Vladislav O Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia.
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia.
| | - Marina V Kubekina
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Skorkina
- Department of Biochemistry, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
13
|
Ayinde KS, Pinheiro GM, Ramos CH. Binding of SARS-CoV-2 protein ORF9b to mitochondrial translocase TOM70 prevents its interaction with chaperone HSP90. Biochimie 2022; 200:99-106. [PMID: 35643212 PMCID: PMC9132681 DOI: 10.1016/j.biochi.2022.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023]
Abstract
The emergence of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a great threat to global health. ORF9b, an important accessory protein of SARS-CoV-2, plays a critical role in the viral host interaction, targeting TOM70, a member of the mitochondrial translocase of the outer membrane complex. The assembly between ORF9b and TOM70 is implicated in disrupting mitochondrial antiviral signaling, leading to immune evasion. We describe the expression, purification, and characterization of ORF9b alone or coexpressed with the cytosolic domain of human TOM70 in E. coli. ORF9b has 97 residues and was purified as a homodimer with an molecular mass of 22 kDa as determined by SEC-MALS. Circular dichroism experiments showed that Orf9b alone exhibits a random conformation. The ORF9b-TOM70 complex characterized by CD and differential scanning calorimetry showed that the complex is folded and more thermally stable than free TOM70, indicating strong binding. Importantly, protein-protein interaction assays demonstrated that full-length human Hsp90 is capable of binding to free TOM70 but not to the ORF9b-TOM70 complex. To narrow down the nature of this inhibition, the isolated C-terminal domain of Hsp90 was also tested. These results were used to build a model of the mechanism of inhibition, in which ORF9b efficiently targets two sites of interaction between TOM70 and Hsp90. The findings showed that ORF9b complexed with TOM70 prevents the interaction with Hsp90, and this is one major explanation for SARS-CoV-2 evasion of host innate immunity via the inhibition of the interferon activation pathway.
Collapse
Affiliation(s)
- Kehinde S. Ayinde
- Institute of Chemistry, University of Campinas UNICAMP, 13083-970, Campinas, SP, Brazil,Institute of Biology, University of Campinas (UNICAMP), SP, Brazil
| | - Glaucia M.S. Pinheiro
- Institute of Chemistry, University of Campinas UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Carlos H.I. Ramos
- Institute of Chemistry, University of Campinas UNICAMP, 13083-970, Campinas, SP, Brazil,Corresponding author
| |
Collapse
|
14
|
Mankovich AG, Freeman BC. Regulation of Protein Transport Pathways by the Cytosolic Hsp90s. Biomolecules 2022; 12:biom12081077. [PMID: 36008972 PMCID: PMC9406046 DOI: 10.3390/biom12081077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The highly conserved molecular chaperone heat shock protein 90 (Hsp90) is well-known for maintaining metastable proteins and mediating various aspects of intracellular protein dynamics. Intriguingly, high-throughput interactome studies suggest that Hsp90 is associated with a variety of other pathways. Here, we will highlight the potential impact of Hsp90 in protein transport. Currently, a limited number of studies have defined a few mechanistic contributions of Hsp90 to protein transport, yet the relevance of hundreds of additional connections between Hsp90 and factors known to aide this process remains unresolved. These interactors broadly support transport pathways including endocytic and exocytic vesicular transport, the transfer of polypeptides across membranes, or unconventional protein secretion. In resolving how Hsp90 contributes to the protein transport process, new therapeutic targets will likely be obtained for the treatment of numerous human health issues, including bacterial infection, cancer metastasis, and neurodegeneration.
Collapse
|
15
|
Asih PR, Poljak A, Kassiou M, Ke YD, Ittner LM. Differential mitochondrial protein interaction profile between human translocator protein and its A147T polymorphism variant. PLoS One 2022; 17:e0254296. [PMID: 35522669 PMCID: PMC9075623 DOI: 10.1371/journal.pone.0254296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
The translocator protein (TSPO) has been implicated in mitochondrial transmembrane cholesterol transport, brain inflammation, and other mitochondrial functions. It is upregulated in glial cells during neuroinflammation in Alzheimer’s disease. High affinity TSPO imaging radioligands are utilized to visualize neuroinflammation. However, this is hampered by the common A147T polymorphism which compromises ligand binding. Furthermore, this polymorphism has been linked to increased risk of neuropsychiatric disorders, and possibly reduces TSPO protein stability. Here, we used immunoprecipitation coupled to mass-spectrometry (IP-MS) to establish a mitochondrial protein binding profile of wild-type (WT) TSPO and the A147T polymorphism variant. Using mitochondria from human glial cells expressing either WT or A147T TSPO, we identified 30 WT TSPO binding partners, yet only 23 for A147T TSPO. Confirming that A147T polymorphism of the TSPO might confer loss of function, we found that one of the identified interactors of WT TSPO, 14-3-3 theta (YWHAQ), a protein involved in regulating mitochondrial membrane proteins, interacts much less with A147T TSPO. Our data presents a network of mitochondrial interactions of TSPO and its A147T polymorphism variant in human glial cells and indicate functional relevance of A147T in mitochondrial protein networks.
Collapse
Affiliation(s)
- Prita R. Asih
- Dementia Research Centre, Faculty of Health and Medical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Yazi D. Ke
- Dementia Research Centre, Faculty of Health and Medical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M. Ittner
- Dementia Research Centre, Faculty of Health and Medical Sciences, Macquarie University, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
16
|
Activated Brown Adipose Tissue Releases Exosomes Containing Mitochondrial Methylene Tetrahydrofolate Dehydrogenase (NADP-dependent) 1-Like Protein (MTHFD1L). Biosci Rep 2022; 42:231255. [PMID: 35502767 PMCID: PMC9142831 DOI: 10.1042/bsr20212543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Brown adipose tissue (BAT) is a promising weapon to combat obesity and metabolic disease. BAT is thermogenic and consumes substantial amounts of glucose and fatty acids as fuel for thermogenesis and energy expenditure. To study BAT function in large human longitudinal cohorts, safe and precise detection methodologies are needed. Although regarded a gold standard, the foray of PET-CT into BAT research and clinical applications is limited by its high ionizing radiation doses. Here, we show that brown adipocytes release exosomes in blood plasma that can be utilized to assess BAT activity. In the present study, we investigated circulating protein biomarkers that can accurately and reliably reflect BAT activation triggered by cold exposure, capsinoids ingestion and thyroid hormone excess in humans. We discovered an exosomal protein, methylene tetrahydrofolate dehydrogenase (NADP+ dependent) 1-like (MTHFD1L), to be overexpressed and detectable in plasma for all three modes of BAT activation in human subjects. This mitochondrial protein is packaged as a cargo within multivesicular bodies of the endosomal compartment and secreted as exosomes via exocytosis from activated brown adipocytes into the circulation. To support MTHFD1L as a conserved BAT activation response in other vertebrates, we examined a rodent model and also proved its presence in blood of rats following BAT activation by cold exposure. Plasma concentration of exosomal MTHFD1L correlated with human BAT activity as confirmed by PET-MR in humans and supported by data from rats. Thus, we deduce that MTHFD1L appears to be overexpressed in activated BAT compared to BAT in the basal nonstimulated state.
Collapse
|
17
|
Li X, Straub J, Medeiros TC, Mehra C, den Brave F, Peker E, Atanassov I, Stillger K, Michaelis JB, Burbridge E, Adrain C, Münch C, Riemer J, Becker T, Pernas LF. Mitochondria shed their outer membrane in response to infection-induced stress. Science 2022; 375:eabi4343. [PMID: 35025629 DOI: 10.1126/science.abi4343] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xianhe Li
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Julian Straub
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Chahat Mehra
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Esra Peker
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ilian Atanassov
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Jonas Benjamin Michaelis
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Emma Burbridge
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Colin Adrain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Jan Riemer
- Institute of Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lena F Pernas
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis. Int J Mol Sci 2021; 23:ijms23010007. [PMID: 35008433 PMCID: PMC8745001 DOI: 10.3390/ijms23010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.
Collapse
|
19
|
Choi M, Bonanno JA. Mitochondrial Targeting of the Ammonia-Sensitive Uncoupler SLC4A11 by the Chaperone-Mediated Carrier Pathway in Corneal Endothelium. Invest Ophthalmol Vis Sci 2021; 62:4. [PMID: 34499705 PMCID: PMC8434753 DOI: 10.1167/iovs.62.12.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose SLC4A11, an electrogenic H+ transporter, is found in the plasma membrane and mitochondria of corneal endothelium. However, the underlying mechanism of SLC4A11 targeting to mitochondria is unknown. Methods The presence of mitochondrial targeting sequences was examined using in silico mitochondrial proteomic analyses. Thiol crosslinked peptide binding to SLC4A11 was screened by untargeted liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis. Direct protein interactions between SLC4A11 and chaperones were examined using coimmunoprecipitation analysis and proximity ligation assay. Knockdown or pharmacologic inhibition of chaperones in human corneal endothelial cells (HCECs) or mouse corneal endothelial cells (MCECs), ex vivo kidney, or HA-SLC4A11–transfected fibroblasts was performed to investigate the functional consequences of interfering with mitochondrial SLC4A11 trafficking. Results SLC4A11 does not contain canonical N-terminal mitochondrial targeting sequences. LC-MS/MS analysis showed that HSC70 and/or HSP90 are bound to HA-SLC4A11–transfected PS120 fibroblast whole-cell lysates or isolated mitochondria, suggesting trafficking through the chaperone-mediated carrier pathway. SLC4A11 and either HSP90 or HSC70 complexes are directly bound to the mitochondrial surface receptor, TOM70. Interference with this trafficking leads to dysfunctional mitochondrial glutamine catabolism and increased reactive oxygen species production. In addition, glutamine (Gln) use upregulated SLC4A11, HSP70, and HSP90 expression in whole-cell lysates or purified mitochondria of HCECs and HA-SLC4A11–transfected fibroblasts. Conclusions HSP90 and HSC70 are critical in mediating mitochondrial SLC4A11 translocation in corneal endothelial cells and kidney. Gln promotes SLC4A11 import to the mitochondria, and the continuous oxidative stress derived from Gln catabolism induced HSP70 and HSP90, protecting cells against oxidative stress.
Collapse
Affiliation(s)
- Moonjung Choi
- Vision Science Program, Indiana University, School of Optometry, Bloomington, Indiana, United States
| | - Joseph A Bonanno
- Vision Science Program, Indiana University, School of Optometry, Bloomington, Indiana, United States
| |
Collapse
|
20
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
21
|
Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, Jureka AS, Obernier K, Guo JZ, Batra J, Kaake RM, Weckstein AR, Owens TW, Gupta M, Pourmal S, Titus EW, Cakir M, Soucheray M, McGregor M, Cakir Z, Jang G, O'Meara MJ, Tummino TA, Zhang Z, Foussard H, Rojc A, Zhou Y, Kuchenov D, Hüttenhain R, Xu J, Eckhardt M, Swaney DL, Fabius JM, Ummadi M, Tutuncuoglu B, Rathore U, Modak M, Haas P, Haas KM, Naing ZZC, Pulido EH, Shi Y, Barrio-Hernandez I, Memon D, Petsalaki E, Dunham A, Marrero MC, Burke D, Koh C, Vallet T, Silvas JA, Azumaya CM, Billesbølle C, Brilot AF, Campbell MG, Diallo A, Dickinson MS, Diwanji D, Herrera N, Hoppe N, Kratochvil HT, Liu Y, Merz GE, Moritz M, Nguyen HC, Nowotny C, Puchades C, Rizo AN, Schulze-Gahmen U, Smith AM, Sun M, Young ID, Zhao J, Asarnow D, Biel J, Bowen A, Braxton JR, Chen J, Chio CM, Chio US, Deshpande I, Doan L, Faust B, Flores S, Jin M, Kim K, Lam VL, Li F, Li J, Li YL, Li Y, Liu X, Lo M, Lopez KE, Melo AA, Moss FR, Nguyen P, Paulino J, Pawar KI, Peters JK, et alGordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, Jureka AS, Obernier K, Guo JZ, Batra J, Kaake RM, Weckstein AR, Owens TW, Gupta M, Pourmal S, Titus EW, Cakir M, Soucheray M, McGregor M, Cakir Z, Jang G, O'Meara MJ, Tummino TA, Zhang Z, Foussard H, Rojc A, Zhou Y, Kuchenov D, Hüttenhain R, Xu J, Eckhardt M, Swaney DL, Fabius JM, Ummadi M, Tutuncuoglu B, Rathore U, Modak M, Haas P, Haas KM, Naing ZZC, Pulido EH, Shi Y, Barrio-Hernandez I, Memon D, Petsalaki E, Dunham A, Marrero MC, Burke D, Koh C, Vallet T, Silvas JA, Azumaya CM, Billesbølle C, Brilot AF, Campbell MG, Diallo A, Dickinson MS, Diwanji D, Herrera N, Hoppe N, Kratochvil HT, Liu Y, Merz GE, Moritz M, Nguyen HC, Nowotny C, Puchades C, Rizo AN, Schulze-Gahmen U, Smith AM, Sun M, Young ID, Zhao J, Asarnow D, Biel J, Bowen A, Braxton JR, Chen J, Chio CM, Chio US, Deshpande I, Doan L, Faust B, Flores S, Jin M, Kim K, Lam VL, Li F, Li J, Li YL, Li Y, Liu X, Lo M, Lopez KE, Melo AA, Moss FR, Nguyen P, Paulino J, Pawar KI, Peters JK, Pospiech TH, Safari M, Sangwan S, Schaefer K, Thomas PV, Thwin AC, Trenker R, Tse E, Tsui TKM, Wang F, Whitis N, Yu Z, Zhang K, Zhang Y, Zhou F, Saltzberg D, Hodder AJ, Shun-Shion AS, Williams DM, White KM, Rosales R, Kehrer T, Miorin L, Moreno E, Patel AH, Rihn S, Khalid MM, Vallejo-Gracia A, Fozouni P, Simoneau CR, Roth TL, Wu D, Karim MA, Ghoussaini M, Dunham I, Berardi F, Weigang S, Chazal M, Park J, Logue J, McGrath M, Weston S, Haupt R, Hastie CJ, Elliott M, Brown F, Burness KA, Reid E, Dorward M, Johnson C, Wilkinson SG, Geyer A, Giesel DM, Baillie C, Raggett S, Leech H, Toth R, Goodman N, Keough KC, Lind AL, Klesh RJ, Hemphill KR, Carlson-Stevermer J, Oki J, Holden K, Maures T, Pollard KS, Sali A, Agard DA, Cheng Y, Fraser JS, Frost A, Jura N, Kortemme T, Manglik A, Southworth DR, Stroud RM, Alessi DR, Davies P, Frieman MB, Ideker T, Abate C, Jouvenet N, Kochs G, Shoichet B, Ott M, Palmarini M, Shokat KM, García-Sastre A, Rassen JA, Grosse R, Rosenberg OS, Verba KA, Basler CF, Vignuzzi M, Peden AA, Beltrao P, Krogan NJ. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science 2020; 370:eabe9403. [PMID: 33060197 PMCID: PMC7808408 DOI: 10.1126/science.abe9403] [Show More Authors] [Citation(s) in RCA: 494] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a grave threat to public health and the global economy. SARS-CoV-2 is closely related to the more lethal but less transmissible coronaviruses SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have carried out comparative viral-human protein-protein interaction and viral protein localization analyses for all three viruses. Subsequent functional genetic screening identified host factors that functionally impinge on coronavirus proliferation, including Tom70, a mitochondrial chaperone protein that interacts with both SARS-CoV-1 and SARS-CoV-2 ORF9b, an interaction we structurally characterized using cryo-electron microscopy. Combining genetically validated host factors with both COVID-19 patient genetic data and medical billing records identified molecular mechanisms and potential drug treatments that merit further molecular and clinical study.
Collapse
Affiliation(s)
- David E Gordon
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724, Paris, cedex 15, France
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology I, University of Freiburg, 79104 Freiburg, Germany
| | - Hannes Braberg
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Alexander S Jureka
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jyoti Batra
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Robyn M Kaake
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Tristan W Owens
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Meghna Gupta
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Sergei Pourmal
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Erron W Titus
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Merve Cakir
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael McGregor
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zeynep Cakir
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tia A Tummino
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Ziyang Zhang
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ajda Rojc
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Dmitry Kuchenov
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
| | - Manisha Ummadi
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ujjwal Rathore
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Maya Modak
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Paige Haas
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kelsey M Haas
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zun Zar Chi Naing
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ernst H Pulido
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ying Shi
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Danish Memon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Eirini Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - David Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724, Paris, cedex 15, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724, Paris, cedex 15, France
| | - Jesus A Silvas
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Caleigh M Azumaya
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Christian Billesbølle
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Axel F Brilot
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Melody G Campbell
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Amy Diallo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Miles Sasha Dickinson
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Devan Diwanji
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Nadia Herrera
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Nick Hoppe
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Huong T Kratochvil
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yanxin Liu
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Gregory E Merz
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Michelle Moritz
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Henry C Nguyen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Carlos Nowotny
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Cristina Puchades
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Alexandrea N Rizo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Ursula Schulze-Gahmen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Amber M Smith
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Ming Sun
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Beam Therapeutics, Cambridge, MA 02139, USA
| | - Iris D Young
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Jianhua Zhao
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Daniel Asarnow
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Justin Biel
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Alisa Bowen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Julian R Braxton
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Jen Chen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Cynthia M Chio
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Un Seng Chio
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Ishan Deshpande
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Loan Doan
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Bryan Faust
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Sebastian Flores
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Mingliang Jin
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kate Kim
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Victor L Lam
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Fei Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Junrui Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yen-Li Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yang Li
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Xi Liu
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Megan Lo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kyle E Lopez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Arthur A Melo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Frank R Moss
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Phuong Nguyen
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Joana Paulino
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Komal Ishwar Pawar
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Jessica K Peters
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Thomas H Pospiech
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Maliheh Safari
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Smriti Sangwan
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kaitlin Schaefer
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Paul V Thomas
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Aye C Thwin
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Raphael Trenker
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Eric Tse
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Tsz Kin Martin Tsui
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Feng Wang
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Natalie Whitis
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Zanlin Yu
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Kaihua Zhang
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Yang Zhang
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Fengbo Zhou
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
| | - Daniel Saltzberg
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Anthony J Hodder
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Amber S Shun-Shion
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Daniel M Williams
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Suzannah Rihn
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Mir M Khalid
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Parinaz Fozouni
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Camille R Simoneau
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Theodore L Roth
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - David Wu
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Mohd Anisul Karim
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Maya Ghoussaini
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Ian Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari 'ALDO MORO', Via Orabona, 4 70125, Bari, Italy
| | - Sebastian Weigang
- Institute of Virology, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | - Maxime Chazal
- Département de Virologie, CNRS UMR 3569, Institut Pasteur, Paris 75015, France
| | - Jisoo Park
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marisa McGrath
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Robert Haupt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Matthew Elliott
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Fiona Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kerry A Burness
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Elaine Reid
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mark Dorward
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Stuart G Wilkinson
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Anna Geyer
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daniel M Giesel
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Carla Baillie
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Samantha Raggett
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Hannah Leech
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola Goodman
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | - Abigail L Lind
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Kafi R Hemphill
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | | | - Jennifer Oki
- Synthego Corporation, Redwood City, CA 94063, USA
| | - Kevin Holden
- Synthego Corporation, Redwood City, CA 94063, USA
| | | | - Katherine S Pollard
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Andrej Sali
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - David A Agard
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Yifan Cheng
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - James S Fraser
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Adam Frost
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Natalia Jura
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- The University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, CA 94158, USA
| | - Aashish Manglik
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Daniel R Southworth
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Robert M Stroud
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paul Davies
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, CA 92093, USA
- Department to Bioengineering, University of California, San Diego, CA 92093, USA
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari 'ALDO MORO', Via Orabona, 4 70125, Bari, Italy
| | - Nolwenn Jouvenet
- Institute of Virology, Medical Center-University of Freiburg, 79104 Freiburg, Germany
- Département de Virologie, CNRS UMR 3569, Institut Pasteur, Paris 75015, France
| | - Georg Kochs
- Institute of Virology, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | - Brian Shoichet
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Kevan M Shokat
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology I, University of Freiburg, 79104 Freiburg, Germany.
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Oren S Rosenberg
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA.
- QBI, University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Kliment A Verba
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA.
- QBI, University of California, San Francisco, CA 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724, Paris, cedex 15, France.
| | - Andrew A Peden
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK.
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA.
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Kreimendahl S, Rassow J. The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. Int J Mol Sci 2020; 21:E7262. [PMID: 33019591 PMCID: PMC7583919 DOI: 10.3390/ijms21197262] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023] Open
Abstract
Tom70 is a versatile adaptor protein of 70 kDa anchored in the outer membrane of mitochondria in metazoa, fungi and amoeba. The tertiary structure was resolved for the Tom70 of yeast, showing 26 α-helices, most of them participating in the formation of 11 tetratricopeptide repeat (TPR) motifs. Tom70 serves as a docking site for cytosolic chaperone proteins and co-chaperones and is thereby involved in the uptake of newly synthesized chaperone-bound proteins in mitochondrial biogenesis. In yeast, Tom70 additionally mediates ER-mitochondria contacts via binding to sterol transporter Lam6/Ltc1. In mammalian cells, TOM70 promotes endoplasmic reticulum (ER) to mitochondria Ca2+ transfer by association with the inositol-1,4,5-triphosphate receptor type 3 (IP3R3). TOM70 is specifically targeted by the Bcl-2-related protein MCL-1 that acts as an anti-apoptotic protein in macrophages infected by intracellular pathogens, but also in many cancer cells. By participating in the recruitment of PINK1 and the E3 ubiquitin ligase Parkin, TOM70 can be implicated in the development of Parkinson's disease. TOM70 acts as receptor of the mitochondrial antiviral-signaling protein (MAVS) and thereby participates in the corresponding system of innate immunity against viral infections. The protein encoded by Orf9b in the genome of SARS-CoV-2 binds to TOM70, probably compromising the synthesis of type I interferons.
Collapse
Affiliation(s)
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
23
|
Cytosolic Events in the Biogenesis of Mitochondrial Proteins. Trends Biochem Sci 2020; 45:650-667. [DOI: 10.1016/j.tibs.2020.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023]
|
24
|
Qiu ZK, Liu X, Chen Y, Wu RJ, Guan SF, Pan YY, Wang QB, Tang D, Zhu T, Chen JS. Translocator protein 18 kDa: a potential therapeutic biomarker for post traumatic stress disorder. Metab Brain Dis 2020; 35:695-707. [PMID: 32172519 DOI: 10.1007/s11011-020-00548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/10/2020] [Indexed: 11/11/2022]
Abstract
Post traumatic stress disorder (PTSD) is widely regarded as a stress-related and trauma disorder. The symptoms of PTSD are characterized as a spectrum of vulnerabilities after the exposure to an extremely traumatic stressor. Considering as one of complex mental disorders, little progress has been made toward its diagnostic biomarkers, despite the involvement of PTSD has been studied. Many studies into the underlying neurobiology of PTSD implicated the dysfunction of neurosteroids biosynthesis and neuorinflammatory processes. Translocator protein 18 kDa (TSPO) has been considered as one of the promising therapeutic biomarkers for neurological stress disorders (like PTSD, depression, anxiety, et al) without the benzodiazepine-like side effects. This protein participates in the formation of neurosteroids and modulation of neuroinflammation. The review outlines current knowledge involving the role of TSPO in the neuropathology of PTSD and the anti-PTSD-like effects of TSPO ligands.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Xu Liu
- Pharmacy Department of Medical Supplies Center of General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, People's Republic of China
| | - Yong Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Rong-Jia Wu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Shi-Feng Guan
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Yun-Yun Pan
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Qian-Bo Wang
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Dan Tang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Tao Zhu
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
25
|
Avendaño-Monsalve MC, Ponce-Rojas JC, Funes S. From cytosol to mitochondria: the beginning of a protein journey. Biol Chem 2020; 401:645-661. [DOI: 10.1515/hsz-2020-0110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/24/2020] [Indexed: 01/18/2023]
Abstract
AbstractMitochondrial protein import is one of the key processes during mitochondrial biogenesis that involves a series of events necessary for recognition and delivery of nucleus-encoded/cytosol-synthesized mitochondrial proteins into the organelle. The past research efforts have mainly unraveled how membrane translocases ensure the correct protein sorting within the different mitochondrial subcompartments. However, early steps of recognition and delivery remain relatively uncharacterized. In this review, we discuss our current understanding about the signals on mitochondrial proteins, as well as in the mRNAs encoding them, which with the help of cytosolic chaperones and membrane receptors support protein targeting to the organelle in order to avoid improper localization. In addition, we discuss recent findings that illustrate how mistargeting of mitochondrial proteins triggers stress responses, aiming to restore cellular homeostasis.
Collapse
Affiliation(s)
- Maria Clara Avendaño-Monsalve
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria Coyoacán, México, Cd.Mx. 04510, Mexico
| | - José Carlos Ponce-Rojas
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria Coyoacán, México, Cd.Mx. 04510, Mexico
| |
Collapse
|
26
|
Zhang XH, Wu JX, Sha JZ, Yang B, Sun JR, Bao ED. Heat shock protein 90 relieves heat stress damage of myocardial cells by regulating Akt and PKM2 signaling in vivo. Int J Mol Med 2020; 45:1888-1908. [PMID: 32236591 PMCID: PMC7169958 DOI: 10.3892/ijmm.2020.4560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is associated with resisting heat-stress injury to the heart, particularly in myocardial mitochondria. However, the mechanism underlying this effect remains unclear. The present study was based on the high expression of Hsp90 during heat stress (HS) and involved inducing higher expression of Hsp90 using aspirin in mouse hearts. Higher Hsp90 levels inhibited HS-induced myocardial damage and apoptosis, and mitochondrial dysfunction, by stimulating Akt (protein kinase B) activation and PKM2 (pyruvate kinase M2) signaling, and subsequently increasing mitochondrial Bcl-2 (B-cell lymphoma 2) levels and its phosphorylation. Functional inhibition of Hsp90 using geldanamycin verified that reducing the association of Hsp90 with Akt and PKM2 caused the functional decline of phosphorylated (p)-Akt and PKM2 that initiate Bcl-2 to move into mitochondria, where it is phosphorylated. Protection by Hsp90 was weakened by blocking Akt activation using Triciribine, which could not be recovered by normal initiation of the PKM2 pathway. Furthermore, increased Hsp70 levels induced by Akt activation in myocardial cells may flow into the blood to resist heat stress. The results provided in vivo mechanistic evidence that in myocardial cells, Hsp90 resists heat stress via separate activation of the Akt-Bcl-2 and PKM2-Bcl-2 signaling pathways, which contribute toward preserving cardiac function and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jia-Xin Wu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jun-Zhou Sha
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Bo Yang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jia-Rui Sun
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - En-Dong Bao
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
27
|
Hossain MG, Akter S, Ohsaki E, Ueda K. Impact of the Interaction of Hepatitis B Virus with Mitochondria and Associated Proteins. Viruses 2020; 12:v12020175. [PMID: 32033216 PMCID: PMC7077294 DOI: 10.3390/v12020175] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Around 350 million people are living with hepatitis B virus (HBV), which can lead to death due to liver cirrhosis and hepatocellular carcinoma (HCC). Various antiviral drugs/nucleot(s)ide analogues are currently used to reduce or arrest the replication of this virus. However, many studies have reported that nucleot(s)ide analogue-resistant HBV is circulating. Cellular signaling pathways could be one of the targets against the viral replication. Several studies reported that viral proteins interacted with mitochondrial proteins and localized in the mitochondria, the powerhouse of the cell. And a recent study showed that mitochondrial turnover induced by thyroid hormones protected hepatocytes from hepatocarcinogenesis mediated by HBV. Strong downregulation of numerous cellular signaling pathways has also been reported to be accompanied by profound mitochondrial alteration, as confirmed by transcriptome profiling of HBV-specific CD8 T cells from chronic and acute HBV patients. In this review, we summarize the ongoing research into mitochondrial proteins and/or signaling involved with HBV proteins, which will continue to provide insight into the relationship between mitochondria and HBV and ultimately lead to advances in viral pathobiology and mitochondria-targeted antiviral therapy.
Collapse
Affiliation(s)
- Md. Golzar Hossain
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence: (M.G.H.); (K.U.)
| | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Eriko Ohsaki
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
- Correspondence: (M.G.H.); (K.U.)
| |
Collapse
|
28
|
Becker T, Song J, Pfanner N. Versatility of Preprotein Transfer from the Cytosol to Mitochondria. Trends Cell Biol 2019; 29:534-548. [PMID: 31030976 DOI: 10.1016/j.tcb.2019.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
Mitochondrial biogenesis requires the import of a large number of precursor proteins from the cytosol. Although specific membrane-bound preprotein translocases have been characterized in detail, it was assumed that protein transfer from the cytosol to mitochondria mainly involved unselective binding to molecular chaperones. Recent findings suggest an unexpected versatility of protein transfer to mitochondria. Cytosolic factors have been identified that bind to selected subsets of preproteins and guide them to mitochondrial receptors in a post-translational manner. Cotranslational import processes are emerging. Mechanisms for crosstalk between protein targeting to mitochondria and other cell organelles, in particular the endoplasmic reticulum (ER) and peroxisomes, have been uncovered. We discuss how a network of cytosolic machineries and targeting pathways promote and regulate preprotein transfer into mitochondria.
Collapse
Affiliation(s)
- Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
29
|
Graham JB, Canniff NP, Hebert DN. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2019; 54:103-118. [PMID: 31023093 DOI: 10.1080/10409238.2019.1590305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into a number of functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein-protein interactions, supporting interactions with a wide range of ligands or substrates. Seven TPR-containing proteins have thus far been shown to localize to the ER and control protein organization and homeostasis within this multifunctional organelle. Here, we discuss the roles of these proteins in controlling ER processes and organization. The crucial roles that TPR-containing proteins play in the ER are highlighted by diseases or defects associated with their mutation or disruption.
Collapse
Affiliation(s)
- Jill B Graham
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Nathan P Canniff
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Daniel N Hebert
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| |
Collapse
|
30
|
Jiménez-Morales S, Pérez-Amado CJ, Langley E, Hidalgo-Miranda A. Overview of mitochondrial germline variants and mutations in human disease: Focus on breast cancer (Review). Int J Oncol 2018; 53:923-936. [PMID: 30015870 DOI: 10.3892/ijo.2018.4468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
High lactate production in cells during growth under oxygen-rich conditions (aerobic glycolysis) is a hallmark of tumor cells, indicating the role of mitochondrial function in tumorigenesis. In fact, enhanced mitochondrial biogenesis and impaired quality control are frequently observed in cancer cells. Mitochondrial DNA (mtDNA) encodes 13 subunits of oxidative phosphorylation (OXPHOS), is present in thousands of copies per cell, and has a very high mutation rate. Mutations in mtDNA and nuclear DNA (nDNA) genes encoding proteins that are important players in mitochondrial biogenesis and function are involved in oncogenic processes. A wide range of germline mtDNA polymorphisms, as well as tumor mtDNA somatic mutations have been identified in diverse cancer types. Approximately 72% of supposed tumor-specific somatic mtDNA mutations reported, have also been found as polymorphisms in the general population. The ATPase 6 and NADH dehydrogenase subunit genes of mtDNA are the most commonly mutated genes in breast cancer (BC). Furthermore, nuclear genes playing a role in mitochondrial biogenesis and function, such as peroxisome proliferators-activated receptor gamma coactivator-1 (PGC-1), fumarate hydratase (FH) and succinate dehydrogenase (SDH) are frequently mutated in cancer. In this review, we provide an overview of the mitochondrial germline variants and mutations in cancer, with particular focus on those found in BC.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratory of Cancer Genomics, National Institute of Genomic Medicine, 14610 Mexico City, Mexico
| | - Carlos J Pérez-Amado
- Biochemistry Sciences Program, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Elizabeth Langley
- Department of Basic Research, National Cancer Institute, 14080 Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratory of Cancer Genomics, National Institute of Genomic Medicine, 14610 Mexico City, Mexico
| |
Collapse
|
31
|
Koike N, Hatano Y, Ushimaru T. Heat shock transcriptional factor mediates mitochondrial unfolded protein response. Curr Genet 2018; 64:907-917. [PMID: 29423676 DOI: 10.1007/s00294-018-0809-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
For maintenance of cytoplasmic protein quality control (PQC), cytoplasmic heat shock proteins (HSPs) negatively control heat shock transcriptional factor (HSF) in a negative feedback loop. However, how mitochondrial protein quality control (mtPQC) is maintained is largely unknown. Here we present evidence that HSF directly monitors mtPQC in the budding yeast Saccharomyces cerevisiae. Mitochondrial HSP70 (Ssc1) negatively regulated HSF activity. Importantly, HSF was localized not only in the nucleus but also on mitochondria. The mitochondrial localization of HSF was increased by heat shock and compromised by SSC1 overexpression. Furthermore, the mitochondrial protein translocation system downregulated HSF activity. Finally, mtPQC modulated the mtHSP genes SSC1 and MDJ1 via HSF, and SSC1 overexpression compromised mitochondrial function. These findings illustrate a model in which HSF directly monitors mtPQC.
Collapse
Affiliation(s)
- Naoki Koike
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan
| | - Yuuki Hatano
- Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka, 422-8529, Japan
| | - Takashi Ushimaru
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. .,Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka, 422-8529, Japan.
| |
Collapse
|
32
|
Castro JP, Wardelmann K, Grune T, Kleinridders A. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism? Front Endocrinol (Lausanne) 2018; 9:196. [PMID: 29755410 PMCID: PMC5932182 DOI: 10.3389/fendo.2018.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.
Collapse
Affiliation(s)
- José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| | - Kristina Wardelmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| |
Collapse
|
33
|
TrkAIII signals endoplasmic reticulum stress to the mitochondria in neuroblastoma cells, resulting in glycolytic metabolic adaptation. Oncotarget 2017; 9:8368-8390. [PMID: 29492201 PMCID: PMC5823587 DOI: 10.18632/oncotarget.23618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Alternative TrkAIII splicing characterises advanced stage metastatic disease and post-therapeutic relapse in neuroblastoma (NB), and in NB models TrkAIII exhibits oncogenic activity. In this study, we report a novel role for TrkAIII in signaling ER stress to the mitochondria in SH-SY5Y NB cells that results in glycolytic metabolic adaptation. The ER stress-inducing agents DTT, A23187 and thapsigargin activated the ER stress-response in control pcDNA SH-SY5Y and TrkAIII expressing SH-SY5Y cells and in TrkAIII SH-SY5Y cells increased TrkAIII targeting to mitochondria and internalisation into inner-mitochondrial membranes. Within inner-mitochondrial membranes, TrkAIII was subjected to Omi/HtrA2-dependent cleavage to tyrosine phosphorylated 45–48kDa carboxyl terminal active fragments, localised predominantly in tyrosine kinase-domain mitochondrial matrix orientation. This stress-induced activation of mitochondrial TrkAIII was associated with increased ROS production, prevented by the ROS scavenger Resveratrol and underpinned by changes in Ca2+ movement, implicating ROS/Ca2+ interplay in overcoming the mitochondrial TrkAIII activation threshold. Stress-induced, cleavage-activation of mitochondrial TrkAIII resulted in mitochondrial PDHK1 tyrosine phosphorylation, leading to glycolytic metabolic adaptation. This novel mitochondrial role for TrkAIII provides a potential self-perpetuating, drug reversible way through which tumour microenvironmental stress may maintain the metastasis promoting “Warburg effect” in TrkAIII expressing NBs.
Collapse
|
34
|
Jung JU, Ravi S, Lee DW, McFadden K, Kamradt ML, Toussaint LG, Sitcheran R. NIK/MAP3K14 Regulates Mitochondrial Dynamics and Trafficking to Promote Cell Invasion. Curr Biol 2016; 26:3288-3302. [PMID: 27889261 PMCID: PMC5702063 DOI: 10.1016/j.cub.2016.10.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/15/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022]
Abstract
Although the role of NF-κB-inducing kinase (NIK) in immunity is well established, its relevance in cancer is just emerging. Here we describe novel functions for NIK in regulating mitochondrial dynamics and motility to promote cell invasion. We show that NIK is localized to mitochondria in cancer cell lines, ex vivo tumor tissue, and mouse embryonic fibroblasts (MEFs). NIK promotes mitochondrial fission, velocity, and directional migration, resulting in subcellular distribution of mitochondria to the periphery of migrating cells. Moreover, NIK is required for recruitment of Drp1 to mitochondria, forms a complex with Drp1, and regulates Drp1 phosphorylation at Ser-616 and dephosphorylation at Ser-637. Consistent with a role for NIK in regulating mitochondrial dynamics, we demonstrate that Drp1 is required for NIK-dependent, cytokine-induced invasion. Importantly, using MEFs, we demonstrate that the established downstream mediators of NIK signaling, IκB kinase α/β (IKKα/β) and NF-κB, are not required for NIK to regulate cell invasion, Drp1 mitochondrial localization, or mitochondrial fission. Our results establish a new paradigm for IKK-independent NIK signaling and significantly expand the current dogma that NIK is predominantly cytosolic and exclusively regulates NF-κB activity. Overall, these findings highlight the importance of NIK in tumor pathogenesis and invite new therapeutic strategies that attenuate mitochondrial dysfunction through inhibition of NIK and Drp1.
Collapse
Affiliation(s)
- Ji-Ung Jung
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Sowndharya Ravi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Dong W Lee
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Kassandra McFadden
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Michael L Kamradt
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - L Gerard Toussaint
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College Station, TX 77807-3260, USA; The Texas Brain and Spine Institute, Bryan, TX 77807, USA
| | - Raquel Sitcheran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA; The Texas Brain and Spine Institute, Bryan, TX 77807, USA.
| |
Collapse
|
35
|
Memme JM, Oliveira AN, Hood DA. Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity. Am J Physiol Cell Physiol 2016; 310:C1024-36. [PMID: 27122157 DOI: 10.1152/ajpcell.00009.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/27/2016] [Indexed: 12/29/2022]
Abstract
The mitochondrial and endoplasmic reticulum unfolded protein responses (UPR(mt) and UPR(ER)) are important for cellular homeostasis during stimulus-induced increases in protein synthesis. Exercise triggers the synthesis of mitochondrial proteins, regulated in part by peroxisome proliferator activator receptor-γ coactivator 1α (PGC-1α). To investigate the role of the UPR in exercise-induced adaptations, we subjected rats to 3 h of chronic contractile activity (CCA) for 1, 2, 3, 5, or 7 days followed by 3 h of recovery. Mitochondrial biogenesis signaling, through PGC-1α mRNA, increased 14-fold after 1 day of CCA. This resulted in 10-32% increases in cytochrome c oxidase activity, indicative of mitochondrial content, between days 3 and 7, as well as increases in the autophagic degradation of p62 and microtubule-associated proteins 1A/1B light chain 3A (LC3)-II protein. Before these adaptations, the UPR(ER) transcripts activating transcription factor-4, spliced X-box-binding protein 1, and binding immunoglobulin protein were elevated (1.3- to 3.8-fold) at days 1-3, while CCAAT/enhancer-binding protein homologous protein (CHOP) and chaperones binding immunoglobulin protein and heat shock protein (HSP) 70 were elevated at mRNA and protein levels (1.5- to 3.9-fold) at days 1-7 of CCA. The mitochondrial chaperones 10-kDa chaperonin, HSP60, and 75-kDa mitochondrial HSP, the protease ATP-dependent Clp protease proteolytic subunit, and the regulatory protein sirtuin-3 of the UPR(mt) were concurrently induced 10-80% between days 1 and 7 To test the role of the UPR in CCA-induced remodeling, we treated animals with the endoplasmic reticulum stress suppressor tauroursodeoxycholic acid and subjected them to 2 or 7 days of CCA. Tauroursodeoxycholic acid attenuated CHOP and HSP70 protein induction; however, this failed to impact mitochondrial remodeling. Our data indicate that signaling to the UPR is rapidly activated following acute contractile activity, that this is attenuated with repeated bouts, and that the UPR is involved in chronic adaptations to CCA; however, this appears to be independent of CHOP signaling.
Collapse
Affiliation(s)
- Jonathan M Memme
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Lin PH, Lin HY, Kuo CC, Yang LT. N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting. J Biomed Sci 2015; 22:44. [PMID: 26100518 PMCID: PMC4477613 DOI: 10.1186/s12929-015-0152-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/27/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The epidermis forms a critical barrier that is maintained by orchestrated programs of proliferation, differentiation, and cell death. Gene mutations that disturb this turnover process may cause skin diseases. Human GASDERMIN A (GSDMA) is frequently silenced in gastric cancer cell lines and its overexpression has been reported to induce apoptosis. GSDMA has also been linked with airway hyperresponsiveness in genetic association studies. The function of GSDMA in the skin was deduced by dominant mutations in mouse gasdermin A3 (Gsdma3), which caused skin inflammation and hair loss. However, the mechanism for the autosomal dominance of Gsdma3 mutations and the mode of Gsdma3's action remain unanswered. RESULTS We demonstrated a novel function of Gsdma3 in modulating mitochondrial oxidative stress. We showed that Gsdma3 is regulated by intramolecular fold-back inhibition, which is disrupted by dominant mutations in the C-terminal domain. The unmasked N-terminal domain of Gsdma3 associates with Hsp90 and is delivered to mitochondrial via mitochondrial importer receptor Tom70, where it interacts with the mitochondrial chaperone Trap1 and causes increased production of mitochondrial reactive oxygen species (ROS), dissipation of mitochondrial membrane potential, and mitochondrial permeability transition (MPT). Overexpression of the C-terminal domain of Gsdma3 as well as pharmacological interventions of mitochondrial translocation, ROS production, and MPT pore opening alleviate the cell death induced by Gsdma3 mutants. CONCLUSIONS Our results indicate that the genetic mutations in the C-terminal domain of Gsdma3 are gain-of-function mutations which unmask the N-terminal functional domain of Gsdma3. Gsdma3 regulates mitochondrial oxidative stress through mitochondrial targeting. Since mitochondrial ROS has been shown to promote epidermal differentiation, we hypothesize that Gsdma3 regulates context-dependent response of keratinocytes to differentiation and cell death signals by impinging on mitochondria.
Collapse
Affiliation(s)
- Pei-Hsuan Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Rd., Zhunan, Miaoli County, 35053, Taiwan.
| | - Hsien-Yi Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Rd., Zhunan, Miaoli County, 35053, Taiwan.
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Rd., Zhunan, Miaoli County, 35053, Taiwan.
| | - Liang-Tung Yang
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Rd., Zhunan, Miaoli County, 35053, Taiwan. .,Graduate Institute of Molecular Systems Biomedicine, China Medical University, 91 Hsueh-Shih Rd, Taichung, 40402, Taiwan.
| |
Collapse
|
37
|
Cooperation of protein machineries in mitochondrial protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1119-29. [DOI: 10.1016/j.bbamcr.2015.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
|
38
|
Bohovych I, Chan SS, Khalimonchuk O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid Redox Signal 2015; 22:977-94. [PMID: 25546710 PMCID: PMC4390190 DOI: 10.1089/ars.2014.6199] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/20/2014] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria are complex dynamic organelles pivotal for cellular physiology and human health. Failure to maintain mitochondrial health leads to numerous maladies that include late-onset neurodegenerative diseases and cardiovascular disorders. Furthermore, a decline in mitochondrial health is prevalent with aging. A set of evolutionary conserved mechanisms known as mitochondrial quality control (MQC) is involved in recognition and correction of the mitochondrial proteome. RECENT ADVANCES Here, we review current knowledge and latest developments in MQC. We particularly focus on the proteolytic aspect of MQC and its impact on health and aging. CRITICAL ISSUES While our knowledge about MQC is steadily growing, critical gaps remain in the mechanistic understanding of how MQC modules sense damage and preserve mitochondrial welfare, particularly in higher organisms. FUTURE DIRECTIONS Delineating how coordinated action of the MQC modules orchestrates physiological responses on both organellar and cellular levels will further elucidate the current picture of MQC's role and function in health, cellular stress, and degenerative diseases.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Sherine S.L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
39
|
Aghazadeh Y, Zirkin BR, Papadopoulos V. Pharmacological regulation of the cholesterol transport machinery in steroidogenic cells of the testis. VITAMINS AND HORMONES 2015; 98:189-227. [PMID: 25817870 DOI: 10.1016/bs.vh.2014.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reduced serum testosterone (T), or hypogonadism, is estimated to affect about 5 million American men, including both aging and young men. Low serum T has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass and bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Administering exogenous T, known as T-replacement therapy (TRT), reverses many of the symptoms of low T levels. However, this treatment can result in luteinizing hormone suppression which, in turn, can lead to reduced sperm numbers and infertility, making TRT inappropriate for men who wish to father children. Additionally, TRT may result in supraphysiologic T levels, skin irritation, and T transfer to others upon contact; and there may be increased risk of prostate cancer and cardiovascular disease, particularly in aging men. Therefore, the development of alternate therapies for treating hypogonadism would be highly desirable. To do so requires greater understanding of the series of steps leading to T formation and how they are regulated, and the identification of key steps that are amenable to pharmacological modulation so as to induce T production. We review herein our current understanding of mechanisms underlying the pharmacological induction of T formation in hypogonadal testis.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
40
|
Rasola A, Neckers L, Picard D. Mitochondrial oxidative phosphorylation TRAP(1)ped in tumor cells. Trends Cell Biol 2014; 24:455-63. [PMID: 24731398 DOI: 10.1016/j.tcb.2014.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
Many tumors undergo a dramatic metabolic shift known as the Warburg effect in which glucose utilization is favored and oxidative phosphorylation is downregulated, even when oxygen availability is plentiful. However, the mechanistic basis for this switch has remained unclear. Recently several independent groups identified tumor necrosis factor receptor-associated protein 1 (TRAP1), a mitochondrial molecular chaperone of the heat shock protein 90 (Hsp90) family, as a key modulator of mitochondrial respiration. Although all reports agree that this activity of TRAP1 has important implications for neoplastic progression, data from the different groups only partially overlap, suggesting that TRAP1 may have complex and possibly contextual effects on tumorigenesis. In this review we analyze these recent findings and attempt to reconcile these observations.
Collapse
Affiliation(s)
- Andrea Rasola
- CNR Institute of Neuroscience, University of Padova, 35121 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy.
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Didier Picard
- Department of Cell Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
41
|
Sequence and domain conservation of the coelacanth Hsp40 and Hsp90 chaperones suggests conservation of function. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:359-78. [DOI: 10.1002/jez.b.22541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/13/2013] [Accepted: 08/16/2013] [Indexed: 01/17/2023]
|
42
|
Schweiger R, Soll J, Jung K, Heermann R, Schwenkert S. Quantification of interaction strengths between chaperones and tetratricopeptide repeat domain-containing membrane proteins. J Biol Chem 2013; 288:30614-30625. [PMID: 24036116 DOI: 10.1074/jbc.m113.493015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three tetratricopeptide repeat domain-containing docking proteins Toc64, OM64, and AtTPR7 reside in the chloroplast, mitochondrion, and endoplasmic reticulum of Arabidopsis thaliana, respectively. They are suggested to act during post-translational protein import by association with chaperone-bound preprotein complexes. Here, we performed a detailed biochemical, biophysical, and computational analysis of the interaction between Toc64, OM64, and AtTPR7 and the five cytosolic chaperones HSP70.1, HSP90.1, HSP90.2, HSP90.3, and HSP90.4. We used surface plasmon resonance spectroscopy in combination with Interaction Map® analysis to distinguish between chaperone oligomerization and docking protein-chaperone interactions and to calculate binding affinities for all tested interactions. Complementary to this, we applied pulldown assays as well as microscale thermophoresis as surface immobilization independent techniques. The data revealed that OM64 prefers HSP70 over HSP90, whereas Toc64 binds all chaperones with comparable affinities. We could further show that AtTPR7 is able to bind HSP90 in addition to HSP70. Moreover, differences between the HSP90 isoforms were detected and revealed a weaker binding for HSP90.1 to AtTPR7 and OM64, showing that slight differences in the amino acid composition or structure of the chaperones influence binding to the tetratricopeptide repeat domain. The combinatory approach of several methods provided a powerful toolkit to determine binding affinities of similar interaction partners in a highly quantitative manner.
Collapse
Affiliation(s)
| | - Jürgen Soll
- From the Departments of Biology I, Botany, and
| | - Kirsten Jung
- Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | - Ralf Heermann
- Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
43
|
Jin SM, Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 2013; 9:1750-7. [PMID: 24149988 DOI: 10.4161/auto.26122] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Defective mitochondria exert deleterious effects on host cells. To manage this risk, mitochondria display several lines of quality control mechanisms: mitochondria-specific chaperones and proteases protect against misfolded proteins at the molecular level, and fission/fusion and mitophagy segregate and eliminate damage at the organelle level. An increase in unfolded proteins in mitochondria activates a mitochondrial unfolded protein response (UPR(mt)) to increase chaperone production, while the mitochondrial kinase PINK1 and the E3 ubiquitin ligase PARK2/Parkin, whose mutations cause familial Parkinson disease, remove depolarized mitochondria through mitophagy. It is unclear, however, if there is a connection between those different levels of quality control (QC). Here, we show that the expression of unfolded proteins in the matrix causes the accumulation of PINK1 on energetically healthy mitochondria, resulting in mitochondrial translocation of PARK2, mitophagy and subsequent reduction of unfolded protein load. Also, PINK1 accumulation is greatly enhanced by the knockdown of the LONP1 protease. We suggest that the accumulation of unfolded proteins in mitochondria is a physiological trigger of mitophagy.
Collapse
Affiliation(s)
- Seok Min Jin
- Biochemistry Section; Surgical Neurology Branch; National Institute of Neurological Disorders and Stroke; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
44
|
Kim Y, Kim HD, Kim J. Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage surveillance. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2943-2952. [PMID: 23911537 DOI: 10.1016/j.bbamcr.2013.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/21/2022]
Abstract
Ribosomal protein S3 (rpS3) is known to play critical roles in ribosome biogenesis and DNA repair. When cellular ROS levels increase, the mitochondrial genes are highly vulnerable to DNA damage. Increased ROS induces rpS3 accumulation in the mitochondria for DNA repair while significantly decreasing the cellular protein synthesis. For the entrance into the mitochondria, the accumulation of rpS3 was regulated by interaction with HSP90, HSP70, and TOM70. Pretreatment with geldanamycin, which binds to the ATP pocket of HSP90, significantly decreased the interaction of rpS3 with HSP90 and stimulated the accumulation of rpS3 in the mitochondria. Furthermore, cellular ROS was decreased and mtDNA damage was rescued when levels of rpS3 were increased in the mitochondria. Therefore, we concluded that when mitochondrial DNA damages accumulate due to increased levels of ROS, rpS3 accumulates in the mitochondria to repair damaged DNA due to the decreased interaction between rpS3 and HSP90 in the cytosol.
Collapse
Affiliation(s)
- YongJoong Kim
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
45
|
Zhang K, Li Z, Jaiswal M, Bayat V, Xiong B, Sandoval H, Charng WL, David G, Haueter C, Yamamoto S, Graham BH, Bellen HJ. The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J Cell Biol 2013; 200:807-820. [PMID: 23509070 PMCID: PMC3601355 DOI: 10.1083/jcb.201208033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/19/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these membrane-associated proteins cope with the hydrophilic cytoplasmic environment before import is unknown. In a forward genetic screen to identify genes that cause neurodegeneration, we identified sicily, the Drosophila melanogaster homologue of human C8ORF38, the loss of which causes Leigh syndrome. We show that in the cytoplasm, Sicily preprotein interacts with cytosolic Hsp90 to chaperone the CI subunit, ND42, before mitochondrial import. Loss of Sicily leads to loss of CI proteins and preproteins in both mitochondria and cytoplasm, respectively, and causes a CI deficiency and neurodegeneration. Our data indicate that cytosolic chaperones are required for the subcellular transport of ND42.
Collapse
Affiliation(s)
- Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Zhihong Li
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Manish Jaiswal
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Vafa Bayat
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Bo Xiong
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Hector Sandoval
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Wu-Lin Charng
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Gabriela David
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Claire Haueter
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Shinya Yamamoto
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Brett H. Graham
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Hugo J. Bellen
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
46
|
Ferramosca A, Zara V. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012. [PMID: 23201437 DOI: 10.1016/j.bbamcr.2012.11.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mitochondrial metabolite carriers are hydrophobic proteins which catalyze the flux of several charged or hydrophilic substrates across the inner membrane of mitochondria. These proteins, like most mitochondrial proteins, are nuclear encoded and after their synthesis in the cytosol are transported into the inner mitochondrial membrane. Most metabolite carriers, differently from other nuclear encoded mitochondrial proteins, are synthesized without a cleavable presequence and contain several, poorly characterized, internal targeting signals. However, an interesting aspect is the presence of a positively charged N-terminal presequence in a limited number of mitochondrial metabolite carriers. Over the last few years the molecular mechanisms of import of metabolite carrier proteins into mitochondria have been thoroughly investigated. This review summarizes the present knowledge and discusses recent advances on the import and sorting of mitochondrial metabolite carriers.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Department of Environmental and Biological Sciences and Technologies, University of Salento, Lecce, Italy
| | | |
Collapse
|
47
|
Schweiger R, Müller NC, Schmitt MJ, Soll J, Schwenkert S. AtTPR7 is a chaperone-docking protein of the Sec translocon in Arabidopsis. J Cell Sci 2012; 125:5196-207. [PMID: 22899711 DOI: 10.1242/jcs.111054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chaperone-assisted sorting of post-translationally imported proteins is a general mechanism among all eukaryotic organisms. Interaction of some preproteins with the organellar membranes is mediated by chaperones, which are recognised by membrane-bound tetratricopeptide repeat (TPR) domain containing proteins. We have characterised AtTPR7 as an endoplasmic reticulum protein in plants and propose a potential function for AtTPR7 in post-translational protein import. Our data demonstrate that AtTPR7 interacts with the heat shock proteins HSP90 and HSP70 via a cytosol-exposed TPR domain. We further show by in vitro and in vivo experiments that AtTPR7 is associated with the Arabidopsis Sec63 homologue, AtERdj2. Interestingly, AtTPR7 can functionally complement a Δsec71 yeast mutant that is impaired in post-translational protein transport. These data strongly suggest that AtTPR7 not only has a role in chaperone binding but also in post-translational protein import into the endoplasmic reticulum, pointing to a general mechanism of chaperone-mediated post-translational sorting between the endoplasmic reticulum, mitochondria and chloroplasts in plant cells.
Collapse
Affiliation(s)
- Regina Schweiger
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
48
|
Nguyen T, Wong R, Wang G, Gucek M, Steenbergen C, Murphy E. Acute inhibition of GSK causes mitochondrial remodeling. Am J Physiol Heart Circ Physiol 2012; 302:H2439-45. [PMID: 22467305 DOI: 10.1152/ajpheart.00033.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent data have shown that cardioprotection can result in the import of specific proteins into the mitochondria in a process that involves heat shock protein 90 (HSP90) and is blocked by geldanamycin (GD), a HSP90 inhibitor. To test the hypothesis that an alteration in mitochondrial import is a more widespread feature of cardioprotection, in this study, we used a broad-based proteomics approach to investigate changes in the mitochondrial proteome following cardioprotection induced by inhibition of glycogen synthase kinase (GSK)-3. Mitochondria were isolated from control hearts, and hearts were perfused with the GSK inhibitor SB 216763 (SB) for 15 min before isolation of mitochondria. Mitochondrial extracts from control and SB-perfused hearts were labeled with isotope tags for relative and absolute quantification (iTRAQ), and differences in mitochondrial protein levels were determined by mass spectrometry. To test for the role of HSP90-mediated protein import, hearts were perfused in the presence and absence of GD for 15 min before perfusion with SB followed by mitochondrial isolation and iTRAQ labeling. We confirmed that treatment with GD blocked the protection afforded by SB treatment in a protocol of 20 min of ischemia and 40 min of reperfusion. We found 16 proteins that showed an apparent increase in the mitochondrial fraction following SB treatment. GD treatment significantly blocked the SB-mediated increase in mitochondrial association for five of these proteins, which included annexin A6, vinculin, and pyruvate kinase. We also found that SB treatment resulted in a decrease in mitochondrial content of eight proteins, of which all but two are established mitochondrial proteins. To confirm a role for mitochondrial import versus a change in protein synthesis and/or degradation, we measured changes in these proteins in whole cell extracts. Taken together, these data show that SB leads to a remodeling of the mitochondrial proteome that is partially GD sensitive.
Collapse
Affiliation(s)
- Tiffany Nguyen
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
49
|
Faou P, Hoogenraad NJ. Tom34: A cytosolic cochaperone of the Hsp90/Hsp70 protein complex involved in mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:348-57. [DOI: 10.1016/j.bbamcr.2011.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/17/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
|
50
|
Kriechbaumer V, von Löffelholz O, Abell BM. Chaperone receptors: guiding proteins to intracellular compartments. PROTOPLASMA 2012; 249:21-30. [PMID: 21461941 DOI: 10.1007/s00709-011-0270-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 05/04/2023]
Abstract
Despite mitochondria and chloroplasts having their own genome, 99% of mitochondrial proteins (Rehling et al., Nat Rev Mol Cell Biol 5:519-530, 2004) and more than 95% of chloroplast proteins (Soll, Curr Opin Plant Biol 5:529-535, 2002) are encoded by nuclear DNA, synthesised in the cytosol and imported post-translationally. Protein targeting to these organelles depends on cytosolic targeting factors, which bind to the precursor, and then interact with membrane receptors to deliver the precursor into a translocase. The molecular chaperones Hsp70 and Hsp90 have been widely implicated in protein targeting to mitochondria and chloroplasts, and receptors capable of recognising these chaperones have been identified at the surface of both these organelles (Schlegel et al., Mol Biol Evol 24:2763-2774, 2007). The role of these chaperone receptors is not fully understood, but they have been shown to increase the efficiency of protein targeting (Young et al., Cell 112:41-50, 2003; Qbadou et al., EMBO J 25:1836-1847, 2006). Whether these receptors contribute to the specificity of targeting is less clear. A class of chaperone receptors bearing tetratricopeptide repeat domains is able to specifically bind the highly conserved C terminus of Hsp70 and/or Hsp90. Interestingly, at least of one these chaperone receptors can be found on each organelle (Schlegel et al., Mol Biol Evol 24:2763-2774, 2007), which suggests a universal role in protein targeting for these chaperone receptors. This review will investigate the role that chaperone receptors play in targeting efficiency and specificity, as well as examining recent in silico approaches to find novel chaperone receptors.
Collapse
|