1
|
Fremuth LE, Hu H, van de Vlekkert D, Annunziata I, Weesner JA, Alessandra d'Azzo. Neuraminidase 1 regulates neuropathogenesis by governing the cellular state of microglia via modulation of Trem2 sialylation. Cell Rep 2025; 44:115204. [PMID: 39817909 PMCID: PMC11874873 DOI: 10.1016/j.celrep.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production. When Neu1 is deficient/downregulated, Trem2-FL remains sialylated, accumulates intracellularly, and is excessively cleaved into a C-terminal fragment (Trem2-CTF) and an extracellular soluble domain (sTrem2), enhancing their signaling capacities. Sialylated Trem2-FL (Sia-Trem2-FL) does not hinder Trem2-FL-DAP12-Syk complex assembly but impairs signal transduction through Syk, ultimately abolishing Trem2-dependent phagocytosis. Concurrently, Trem2-CTF-DAP12 complexes dampen NF-κB signaling, while sTrem2 propagates Akt-dependent cell survival and NFAT1-mediated production of TNF-α and CCL3. Because NEU1 and Trem2 are implicated in neurodegenerative/neuroinflammatory diseases, including Alzheimer disease and sialidosis, modulating NEU1 activity represents a therapeutic approach to broadly regulate microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Leigh Ellen Fremuth
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Huimin Hu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Compliance Office, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jason Andrew Weesner
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
2
|
Escalona E, Olate-Briones A, Albornoz-Muñoz S, Bonacic-Doric E, Rodríguez-Arriaza F, Herrada AA, Escobedo N. Neu1 deficiency and fibrotic lymph node microenvironment lead to imbalance in M1/M2 macrophage polarization. Front Immunol 2024; 15:1462853. [PMID: 39346907 PMCID: PMC11427323 DOI: 10.3389/fimmu.2024.1462853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Macrophages play a pivotal role in tissue homeostasis, pathogen defense, and inflammation resolution. M1 and M2 macrophage phenotypes represent two faces in a spectrum of responses to microenvironmental changes, crucial in both physiological and pathological conditions. Neuraminidase 1 (Neu1), a lysosomal and cell surface sialidase responsible for removing terminal sialic acid residues from glycoconjugates, modulates several macrophage functions, including phagocytosis and Toll-like receptor (TLR) signaling. Current evidence suggests that Neu1 expression influences M1/M2 macrophage phenotype alterations in the context of cardiovascular diseases, indicating a potential role for Neu1 in macrophage polarization. For this reason, we investigated the impact of Neu1 deficiency on macrophage polarization in vitro and in vivo. Using bone marrow-derived macrophages (BMDMs) and peritoneal macrophages from Neu1 knockout (Neu1-/- ) mice and wild-type (WT) littermate controls, we demonstrated that Neu1-deficient macrophages exhibit an aberrant M2-like phenotype, characterized by elevated macrophage mannose receptor 1 (MMR/CD206) expression and reduced responsiveness to M1 stimuli. This M2-like phenotype was also observed in vivo in peritoneal and splenic macrophages. However, lymph node (LN) macrophages from Neu1-/- mice exhibited phenotypic alterations with reduced CD206 expression. Further analysis revealed that peripheral LNs from Neu1-/- mice were highly fibrotic, with overexpression of transforming growth factor-beta 1 (TGF-β1) and hyperactivated TGF-β signaling in LN macrophages. Consistently, TGF-β1 was found to alter M1/M2 macrophage polarization in vitro. Our findings showed that Neu1 deficiency prompts macrophages towards an M2 phenotype and that microenvironmental changes, particularly increased TGF-β1 in fibrotic tissues such as peripheral LNs in Neu1-/- mice, further influence M1/M2 macrophage polarization, highlighting its sensitivity to the local microenvironment. Therapeutic interventions targeting Neu1 or TGF-β signaling pathways may offer the potential to regulate macrophage behavior across different diseases.
Collapse
MESH Headings
- Animals
- Mice, Knockout
- Mice
- Macrophages/immunology
- Macrophages/metabolism
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Neuraminidase/deficiency
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Fibrosis
- Cellular Microenvironment
- Mice, Inbred C57BL
- Macrophage Activation
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/deficiency
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Cells, Cultured
- Signal Transduction
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/deficiency
- Mannose Receptor
- Phenotype
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Emilia Escalona
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Alexandra Olate-Briones
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Sofía Albornoz-Muñoz
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Enzo Bonacic-Doric
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Francisca Rodríguez-Arriaza
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Andrés A Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
3
|
Aljohani MA, Sasaki H, Sun XL. Cellular translocation and secretion of sialidases. J Biol Chem 2024; 300:107671. [PMID: 39128726 PMCID: PMC11416241 DOI: 10.1016/j.jbc.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Sialidases (or neuraminidases) catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly the removal of the terminal Sia on glycans (desialylation) of either glycoproteins or glycolipids. Therefore, sialidases can modulate the functionality of the target glycoprotein or glycolipid and are involved in various biological pathways in health and disease. In mammalian cells, there are four kinds of sialidase, which are Neu1, Neu2, Neu3, and Neu4, based on their subcellular locations and substrate specificities. Neu1 is the lysosomal sialidase, Neu2 is the cytosolic sialidase, Neu3 is the plasma membrane-associated sialidase, and Neu4 is found in the lysosome, mitochondria, and endoplasmic reticulum. In addition to specific subcellular locations, sialidases can translocate to different subcellular localizations within particular cell conditions and stimuli, thereby participating in different cellular functions depending on their loci. Lysosomal sialidase Neu1 can translocate to the cell surface upon cell activation in several cell types, including immune cells, platelets, endothelial cells, and epithelial cells, where it desialylates receptors and thus impacts receptor activation and signaling. On the other hand, cells secrete sialidases upon activation. Secreted sialidases can serve as extracellular sialidases and cause the desialylation of both extracellular glycoproteins or glycolipids and cell surface glycoproteins or glycolipids on their own and other cells, thus playing roles in various biological pathways as well. This review discusses the recent advances and understanding of sialidase translocation in different cells and secretion from different cells under different conditions and their involvement in physiological and pathological pathways.
Collapse
Affiliation(s)
- Majdi A Aljohani
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Hiroaki Sasaki
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo, Japan
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Schuurmans F, Wagemans KE, Adema GJ, Cornelissen LAM. Tumor glucose metabolism and the T cell glycocalyx: implication for T cell function. Front Immunol 2024; 15:1409238. [PMID: 38881904 PMCID: PMC11176483 DOI: 10.3389/fimmu.2024.1409238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The T cell is an immune cell subset highly effective in eliminating cancer cells. Cancer immunotherapy empowers T cells and occupies a solid position in cancer treatment. The response rate, however, remains relatively low (<30%). The efficacy of immunotherapy is highly dependent on T cell infiltration into the tumor microenvironment (TME) and the ability of these infiltrated T cells to sustain their function within the TME. A better understanding of the inhibitory impact of the TME on T cells is crucial to improve cancer immunotherapy. Tumor cells are well described for their switch into aerobic glycolysis (Warburg effect), resulting in high glucose consumption and a metabolically distinct TME. Conversely, glycosylation, a predominant posttranslational modification of proteins, also relies on glucose molecules. Proper glycosylation of T cell receptors influences the immunological synapse between T cells and tumor cells, thereby affecting T cell effector functions including their cytolytic and cytostatic activities. This review delves into the complex interplay between tumor glucose metabolism and the glycocalyx of T cells, shedding light on how the TME can induce alterations in the T cell glycocalyx, which can subsequently influence the T cell's ability to target and eliminate tumor cells.
Collapse
Affiliation(s)
| | | | | | - Lenneke A. M. Cornelissen
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Fremuth LE, Hu H, van de Vlekkert D, Annunziata I, Weesner JA, Gomero E, d'Azzo A. Neuraminidase 1 regulates the cellular state of microglia by modulating the sialylation of Trem2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595036. [PMID: 38826426 PMCID: PMC11142087 DOI: 10.1101/2024.05.20.595036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neuraminidase 1 (Neu1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, Neu1 regulates immune cells, primarily those of the monocytic lineage. Here we examined how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production. When Neu1 was deficient/downregulated, Trem2-FL remained sialylated, accumulated intracellularly, and was excessively cleaved into a C-terminal fragment (Trem2-CTF) and an extracellular soluble domain (sTrem2), enhancing their signaling capacities. Sialylated Trem2-FL (Sia-Trem2-FL) did not hinder Trem2-FL-DAP12-Syk complex assembly but impaired signal transduction through Syk, ultimately abolishing Trem2-dependent phagocytosis. Concurrently, Trem2-CTF-DAP12 complexes dampened NFκB signaling, while sTrem2 propagated Akt-dependent cell survival and NFAT1-mediated production of TNFα and CCL3. Because Neu1 and Trem2 are implicated in neurodegenerative/neuroinflammatory diseases, including Alzheimer disease (AD) and sialidosis, modulating Neu1 activity represents a therapeutic approach to broadly regulate microglia-mediated neuroinflammation.
Collapse
|
6
|
Hwu WL, Chang K, Liu YH, Wang HC, Lee NC, Chien YH. Gene therapy corrects the neurological deficits of mice with sialidosis. Gene Ther 2024; 31:263-272. [PMID: 38321198 DOI: 10.1038/s41434-024-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where β-Gal binds to this complex to form a multienzyme complex in order to execute its function.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC.
- Precision Medical Center, China Medical University Hospital, Taichung City, Taiwan, ROC.
| | - Karine Chang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yu-Han Liu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hao-Chun Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
7
|
Mei S, Li D, Wang A, Zhu G, Zhou B, Li N, Qin Y, Zhang Y, Jiang S. The role of sialidase Neu1 in respiratory diseases. Respir Res 2024; 25:134. [PMID: 38500102 PMCID: PMC10949680 DOI: 10.1186/s12931-024-02763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
Neu1 is a sialidase enzyme that plays a crucial role in the regulation of glycosylation in a variety of cellular processes, including cellular signaling and inflammation. In recent years, numerous evidence has suggested that human NEU1 is also involved in the pathogenesis of various respiratory diseases, including lung infection, chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis. This review paper aims to provide an overview of the current research on human NEU1 and respiratory diseases.
Collapse
Affiliation(s)
- Shiran Mei
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Dingding Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Aoyi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingwen Zhou
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Nian Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Qin
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Drzewicka K, Zasłona Z. Metabolism-driven glycosylation represents therapeutic opportunities in interstitial lung diseases. Front Immunol 2024; 15:1328781. [PMID: 38550597 PMCID: PMC10973144 DOI: 10.3389/fimmu.2024.1328781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Metabolic changes are coupled with alteration in protein glycosylation. In this review, we will focus on macrophages that are pivotal in the pathogenesis of pulmonary fibrosis and sarcoidosis and thanks to their adaptable metabolism are an attractive therapeutic target. Examples presented in this review demonstrate that protein glycosylation regulates metabolism-driven immune responses in macrophages, with implications for fibrotic processes and granuloma formation. Targeting proteins that regulate glycosylation, such as fucosyltransferases, neuraminidase 1 and chitinase 1 could effectively block immunometabolic changes driving inflammation and fibrosis, providing novel avenues for therapeutic interventions.
Collapse
|
9
|
Suzzi S, Croese T, Ravid A, Gold O, Clark AR, Medina S, Kitsberg D, Adam M, Vernon KA, Kohnert E, Shapira I, Malitsky S, Itkin M, Brandis A, Mehlman T, Salame TM, Colaiuta SP, Cahalon L, Slyper M, Greka A, Habib N, Schwartz M. N-acetylneuraminic acid links immune exhaustion and accelerated memory deficit in diet-induced obese Alzheimer's disease mouse model. Nat Commun 2023; 14:1293. [PMID: 36894557 PMCID: PMC9998639 DOI: 10.1038/s41467-023-36759-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Systemic immunity supports lifelong brain function. Obesity posits a chronic burden on systemic immunity. Independently, obesity was shown as a risk factor for Alzheimer's disease (AD). Here we show that high-fat obesogenic diet accelerated recognition-memory impairment in an AD mouse model (5xFAD). In obese 5xFAD mice, hippocampal cells displayed only minor diet-related transcriptional changes, whereas the splenic immune landscape exhibited aging-like CD4+ T-cell deregulation. Following plasma metabolite profiling, we identified free N-acetylneuraminic acid (NANA), the predominant sialic acid, as the metabolite linking recognition-memory impairment to increased splenic immune-suppressive cells in mice. Single-nucleus RNA-sequencing revealed mouse visceral adipose macrophages as a potential source of NANA. In vitro, NANA reduced CD4+ T-cell proliferation, tested in both mouse and human. In vivo, NANA administration to standard diet-fed mice recapitulated high-fat diet effects on CD4+ T cells and accelerated recognition-memory impairment in 5xFAD mice. We suggest that obesity accelerates disease manifestation in a mouse model of AD via systemic immune exhaustion.
Collapse
Grants
- R01 DK095045 NIDDK NIH HHS
- R01 DK099465 NIDDK NIH HHS
- the Vera and John Schwartz Family Center for Metabolic Biology.
- the National Institutes of Health (NIH) grants DK095045 and DK099465, the Cure Alzheimer’s Fund, the Chan Zuckerberg Foundation, and the Carlos Slim Foundation.
- the Israel Science Foundation (ISF) research grant no. 1709/19, the European Research Council grant 853409, the MOST-IL-China research grant no. 3-15687, and the Myers Foundation. N.H. holds the Goren-Khazzam chair in neuroscience.
- the Advanced European Research Council grants 232835 and 741744, the European Seventh Framework Program HEALTH-2011 (279017), the Israel Science Foundation (ISF)-research grant no. 991/16, the ISF-Legacy Heritage Bio-medical Science Partnership research grant no. 1354/15, and the Thompson Foundation and Adelis Foundation.
Collapse
Affiliation(s)
- Stefano Suzzi
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel.
| | - Tommaso Croese
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Adi Ravid
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Or Gold
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Abbe R Clark
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sedi Medina
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Daniel Kitsberg
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Miriam Adam
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Katherine A Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eva Kohnert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Inbar Shapira
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Sergey Malitsky
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Maxim Itkin
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Alexander Brandis
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Tevie Mehlman
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Tomer M Salame
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot, Israel
| | - Sarah P Colaiuta
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Liora Cahalon
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Naomi Habib
- The Hebrew University of Jerusalem, Edmond & Lily Safra Center for Brain Sciences, Jerusalem, Israel.
| | - Michal Schwartz
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel.
| |
Collapse
|
10
|
Yang D, Wu Y, Turan I, Keil J, Li K, Chen MH, Liu R, Wang L, Sun XL, Chen GY. Targeting intracellular Neu1 for coronavirus infection treatment. iScience 2023; 26:106037. [PMID: 36714013 PMCID: PMC9870608 DOI: 10.1016/j.isci.2023.106037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/03/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
There are currently no effective therapies for COVID-19 or antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and vaccines appear less effective against new SARS-CoV-2 variants; thus, there is an urgent need to understand better the virulence mechanisms of SARS-CoV-2 and the host response to develop therapeutic agents. Herein, we show that host Neu1 regulates coronavirus replication by controlling sialylation on coronavirus nucleocapsid protein. Coronavirus nucleocapsid proteins in COVID-19 patients and in coronavirus HCoV-OC43-infected cells were heavily sialylated; this sialylation controlled the RNA-binding activity and replication of coronavirus. Neu1 overexpression increased HCoV-OC43 replication, whereas Neu1 knockdown reduced HCoV-OC43 replication. Moreover, a newly developed Neu1 inhibitor, Neu5Ac2en-OAcOMe, selectively targeted intracellular sialidase, which dramatically reduced HCoV-OC43 and SARS-CoV-2 replication in vitro and rescued mice from HCoV-OC43 infection-induced death. Our findings suggest Neu1 inhibitors could be used to limit SARS-CoV-2 replication in patients with COVID-19, making Neu1 a potential therapeutic target for COVID-19 and future coronavirus pandemics.
Collapse
Affiliation(s)
- Darong Yang
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yin Wu
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Isaac Turan
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Joseph Keil
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Michael H. Chen
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Guo-Yun Chen
- Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
11
|
Cannabinoids Transmogrify Cancer Metabolic Phenotype via Epigenetic Reprogramming and a Novel CBD Biased G Protein-Coupled Receptor Signaling Platform. Cancers (Basel) 2023; 15:cancers15041030. [PMID: 36831374 PMCID: PMC9954791 DOI: 10.3390/cancers15041030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The concept of epigenetic reprogramming predicts long-term functional health effects. This reprogramming can be activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The exogenous or endogenous changes that involve developing a roadmap of epigenetic networking, such as drug components on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, are paramount to establishing youthful cell type and health. This epigenetic landscape is considered one of the hallmarks of cancer. The initiation and progression of cancer are considered to involve epigenetic abnormalities and genetic alterations. Cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer development, including DNA methylation, histone modifications, nucleosome positioning, non-coding RNAs, and microRNA expression. Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two primary cannabinoid receptors, type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes, form the endocannabinoid system. This review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in activating numerous receptor tyrosine kinases and Toll-like receptors in the induction of epigenetic landscape alterations in cancer cells, which might transmogrify cancer metabolism and epigenetic reprogramming to a metastatic phenotype. Strategies applied from conception could represent an innovative epigenetic target for preventing and treating human cancer. Here, we describe novel cannabinoid-biased G protein-coupled receptor signaling platforms (GPCR), highlighting putative future perspectives in this field.
Collapse
|
12
|
Aureli M, Mauri L, Carsana EV, Dobi D, Breviario S, Lunghi G, Sonnino S. Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:305-332. [DOI: 10.1007/978-3-031-12390-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Karhadkar TR, Chen W, Pilling D, Gomer RH. Inhibitors of the Sialidase NEU3 as Potential Therapeutics for Fibrosis. Int J Mol Sci 2022; 24:239. [PMID: 36613682 PMCID: PMC9820515 DOI: 10.3390/ijms24010239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Fibrosing diseases are a major medical problem, and are associated with more deaths per year than cancer in the US. Sialidases are enzymes that remove the sugar sialic acid from glycoconjugates. In this review, we describe efforts to inhibit fibrosis by inhibiting sialidases, and describe the following rationale for considering sialidases to be a potential target to inhibit fibrosis. First, sialidases are upregulated in fibrotic lesions in humans and in a mouse model of pulmonary fibrosis. Second, the extracellular sialidase NEU3 appears to be both necessary and sufficient for pulmonary fibrosis in mice. Third, there exist at least three mechanistic ways in which NEU3 potentiates fibrosis, with two of them being positive feedback loops where a profibrotic cytokine upregulates NEU3, and the upregulated NEU3 then upregulates the profibrotic cytokine. Fourth, a variety of NEU3 inhibitors block pulmonary fibrosis in a mouse model. Finally, the high sialidase levels in a fibrotic lesion cause an easily observed desialylation of serum proteins, and in a mouse model, sialidase inhibitors that stop fibrosis reverse the serum protein desialylation. This then indicates that serum protein sialylation is a potential surrogate biomarker for the effect of sialidase inhibitors, which would facilitate clinical trials to test the exciting possibility that sialidase inhibitors could be used as therapeutics for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
14
|
Kirolos SA, Pilling D, Gomer RH. The extracellular sialidase NEU3 primes neutrophils. J Leukoc Biol 2022; 112:1399-1411. [PMID: 35899930 PMCID: PMC9701152 DOI: 10.1002/jlb.3a0422-217rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/28/2022] [Indexed: 01/04/2023] Open
Abstract
Some extracellular glycoconjugates have sialic acid as the terminal sugar, and sialidases are enzymes that remove this sugar. Mammals have 4 sialidases and can be elevated in inflammation and fibrosis. In this report, we show that incubation of human neutrophils with the extracellular human sialidase NEU3, but not NEU1, NEU2 or NEU4, induces human male and female neutrophils to change from a round to a more amoeboid morphology, causes the primed human neutrophil markers CD11b, CD18, and CD66a to localize to the cell cortex, and decreases the localization of the unprimed human neutrophil markers CD43 and CD62-L at the cell cortex. NEU3, but not the other 3 sialidases, also causes human male and female neutrophils to increase their F-actin content. Human neutrophils treated with NEU3 show a decrease in cortical levels of Sambucus nigra lectin staining and an increase in cortical levels of peanut agglutinin staining, indicating a NEU3-induced desialylation. The inhibition of NEU3 by the NEU3 inhibitor 2-acetylpyridine attenuated the NEU3 effect on neutrophil morphology, indicating that the effect of NEU3 is dependent on its enzymatic activity. Together, these results indicate that NEU3 can prime human male and female neutrophils, and that NEU3 is a potential regulator of inflammation.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Keil J, Rafn GR, Turan IM, Aljohani MA, Sahebjam-Atabaki R, Sun XL. Sialidase Inhibitors with Different Mechanisms. J Med Chem 2022; 65:13574-13593. [PMID: 36252951 PMCID: PMC9620260 DOI: 10.1021/acs.jmedchem.2c01258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases, are enzymes that catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly removal of the terminal Sia (desialylation). By desialylation, sialidase can modulate the functionality of the target compound and is thus often involved in biological pathways. Inhibition of sialidases with inhibitors is an important approach for understanding sialidase function and the underlying mechanisms and could serve as a therapeutic approach as well. Transition-state analogues, such as anti-influenza drugs oseltamivir and zanamivir, are major sialidase inhibitors. In addition, difluoro-sialic acids were developed as mechanism-based sialidase inhibitors. Further, fluorinated quinone methide-based suicide substrates were reported. Sialidase product analogue inhibitors were also explored. Finally, natural products have shown competitive inhibiton against viral, bacterial, and human sialidases. This Perspective describes sialidase inhibitors with different mechanisms and their activities and future potential, which include transition-state analogue inhibitors, mechanism-based inhibitors, suicide substrate inhibitors, product analogue inhibitors, and natural product inhibitors.
Collapse
Affiliation(s)
- Joseph
M. Keil
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Garrett R. Rafn
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Isaac M. Turan
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Majdi A. Aljohani
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Reza Sahebjam-Atabaki
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| |
Collapse
|
16
|
Heimerl M, Gausepohl T, Mueller JH, Ricke-Hoch M. Neuraminidases-Key Players in the Inflammatory Response after Pathophysiological Cardiac Stress and Potential New Therapeutic Targets in Cardiac Disease. BIOLOGY 2022; 11:biology11081229. [PMID: 36009856 PMCID: PMC9405403 DOI: 10.3390/biology11081229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 05/24/2023]
Abstract
Glycoproteins and glycolipids on the cell surfaces of vertebrates and higher invertebrates contain α-keto acid sugars called sialic acids, terminally attached to their glycan structures. The actual level of sialylation, regulated through enzymatic removal of the latter ones by NEU enzymes, highly affects protein-protein, cell-matrix and cell-cell interactions. Thus, their regulatory features affect a large number of different cell types, including those of the immune system. Research regarding NEUs within heart and vessels provides new insights of their involvement in the development of cardiovascular pathologies and identifies mechanisms on how inhibiting NEU enzymes can have a beneficial effect on cardiac remodelling and on a number of different cardiac diseases including CMs and atherosclerosis. In this regard, a multitude of clinical studies demonstrated the potential of N-acetylneuraminic acid (Neu5Ac) to serve as a biomarker following cardiac diseases. Anti-influenza drugs i.e., zanamivir and oseltamivir are viral NEU inhibitors, thus, they block the enzymatic activity of NEUs. When considering the improvement in cardiac function in several different cardiac disease animal models, which results from NEU reduction, the inhibition of NEU enzymes provides a new potential therapeutic treatment strategy to treat cardiac inflammatory pathologies, and thus, administrate cardioprotection.
Collapse
|
17
|
YILMAZ NB, ERTAN P, YÜKSEL S, NEŞE N, DİNÇ HORASAN G, BERDELİ AH. Investigation of neuraminidase 1 gene association in Henoch-Schönlein Purpura (HSP) with renal involvement. PAMUKKALE MEDICAL JOURNAL 2022:14-14. [DOI: 10.31362/patd.1021975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
|
18
|
Khan A, Sergi CM. NEU1-A Unique Therapeutic Target for Alzheimer's Disease. Front Pharmacol 2022; 13:902259. [PMID: 35847014 PMCID: PMC9277458 DOI: 10.3389/fphar.2022.902259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Neuraminidase 1 (NEU1) is considered to be the most abundant and ubiquitous mammalian enzyme, with a broad tissue distribution. It plays a crucial role in a variety of cellular mechanisms. The deficiency of NEU1 has been implicated in various pathological manifestations of sialidosis and neurodegeneration. Thus, it is a novel therapeutic target for neurodegenerative changes in the Alzheimer's brain. However, to manipulate NEU1 as a therapeutic target, it is imperative to understand that, although NEU1 is commonly known for its lysosomal catabolic function, it is also involved in other pathways. NEU1 is involved in immune response modulation, elastic fiber assembly modulation, insulin signaling, and cell proliferation. In recent years, our knowledge of NEU1 has continued to grow, yet, at the present moment, current data is still limited. In addition, the unique biochemical properties of NEU1 make it challenging to target it as an effective therapeutic option for sialidosis, which is a rare disease but has an enormous patient burden. However, the fact that NEU1 has been linked to the pathology of Alzheimer's disease, which is rapidly growing worldwide, makes it more relevant to be studied and explored. In the present study, the authors have discussed various cellular mechanisms involving NEU1 and how they are relevant to sialidosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Aiza Khan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Consolato M. Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Division of Anatomic Pathology, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Allendorf DH, Brown GC. Neu1 Is Released From Activated Microglia, Stimulating Microglial Phagocytosis and Sensitizing Neurons to Glutamate. Front Cell Neurosci 2022; 16:917884. [PMID: 35693885 PMCID: PMC9178234 DOI: 10.3389/fncel.2022.917884] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 02/02/2023] Open
Abstract
Neuraminidase 1 (Neu1) hydrolyses terminal sialic acid residues from glycoproteins and glycolipids, and is normally located in lysosomes, but can be released onto the surface of activated myeloid cells and microglia. We report that endotoxin/lipopolysaccharide-activated microglia released Neu1 into culture medium, and knockdown of Neu1 in microglia reduced both Neu1 protein and neuraminidase activity in the culture medium. Release of Neu1 was reduced by inhibitors of lysosomal exocytosis, and accompanied by other lysosomal proteins, including protective protein/cathepsin A, known to keep Neu1 active. Extracellular neuraminidase or over-expression of Neu1 increased microglial phagocytosis, while knockdown of Neu1 decreased phagocytosis. Microglial activation caused desialylation of microglial phagocytic receptors Trem2 and MerTK, and increased binding to Trem2 ligand galectin-3. Culture media from activated microglia contained Neu1, and when incubated with neurons induced their desialylation, and increased the neuronal death induced by low levels of glutamate. Direct desialylation of neurons by adding sialidase or inhibiting sialyltransferases also increased glutamate-induced neuronal death. We conclude that activated microglia can release active Neu1, possibly by lysosomal exocytosis, and this can both increase microglial phagocytosis and sensitize neurons to glutamate, thus potentiating neuronal death.
Collapse
|
20
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Howlader MA, Demina EP, Samarani S, Guo T, Caillon A, Ahmad A, Pshezhetsky AV, Cairo CW. The Janus-like role of neuraminidase isoenzymes in inflammation. FASEB J 2022; 36:e22285. [PMID: 35363389 PMCID: PMC9323473 DOI: 10.1096/fj.202101218r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 01/13/2023]
Abstract
The processes of activation, extravasation, and migration of immune cells to a site are early and essential steps in the induction of an acute inflammatory response. These events are an essential part of the inflammatory cascade, which involves multiple regulatory steps. Using a murine air pouch model of inflammation with LPS as an inflammation inducer, we demonstrate that isoenzymes of the neuraminidase family (NEU1, 3, and 4) play essential roles in these processes by acting as positive or negative regulators of leukocyte infiltration. In genetically knocked‐out (KO) mice for different NEU genes (Neu1 KO, Neu3 KO, Neu4 KO, and Neu3/4 double KO mice) with LPS‐induced air pouch inflammation, leukocytes at the site of inflammation were counted, and the inflamed tissue was analyzed using immunohistochemistry. Our data show that leukocyte recruitment was decreased in NEU1‐ and NEU3‐deficient mice, while it was increased in NEU4‐deficient animals. Consistent with these results, systemic as well as pouch exudate levels of pro‐inflammatory cytokines were reduced in Neu1 and increased in Neu4 KO mice. Pharmacological inhibitors specific for NEU1, NEU3, and NEU4 isoforms also affected leukocyte recruitment. Together our data demonstrate that NEU isoenzymes have distinct—and even opposing—effects on leukocyte recruitment, and therefore warrant further investigation to determine their mechanisms and importance as regulators of the inflammatory cascade.
Collapse
Affiliation(s)
- Md Amran Howlader
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ekaterina P Demina
- Division of Medical Genetics, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Suzanne Samarani
- Department of Microbiology, Infectious Diseases & Immunology, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Tianlin Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Antoine Caillon
- Division of Medical Genetics, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Ali Ahmad
- Department of Microbiology, Infectious Diseases & Immunology, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
22
|
Wang Y, Pan P, Khan A, Çil Ç, Pineda MA. Synovial Fibroblast Sialylation Regulates Cell Migration and Activation of Inflammatory Pathways in Arthritogenesis. Front Immunol 2022; 13:847581. [PMID: 35371069 PMCID: PMC8971784 DOI: 10.3389/fimmu.2022.847581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022] Open
Abstract
Synovial fibroblasts have emerged as critical underlying factors to perpetuate chronic joint inflammation in Rheumatoid Arthritis. Like any other cell, synovial fibroblasts are covered with a complex layer of glycans that can change in response to extracellular signals, such as inflammation. We have previously shown that inflammatory synovial fibroblasts show decreased levels of sialic acid, but our understanding of sialic acid-dependent pathophysiological pathways in these stromal cells is still very limited. In this report, we used in vivo and in vitro studies with exogenous sialidases and RNA sequencing to investigate the responses of murine synovial fibroblasts upon desialylation. Our results show that hyposialylated fibroblasts present a dysregulated migratory ability and an activated phenotype characterized by the expression of inflammatory mediators, such as cytokines and chemokines, and anti-viral related mechanisms. Removal of surface sialic acid also affected the expression of sialyltransferases, revealing the existence of a positive feedback to sustain reduced sialylation. Moreover, we demonstrate that synovial fibroblasts subsets have distinct sialyltransferase expression profiles, both in healthy and arthritic mice. These findings underline the ability of sialic acid to modulate homeostatic and inflammatory responses in non-immune synovial fibroblasts, suggesting that sialylation plays a key role in perpetuating local inflammation in the arthritic joint.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Piaopiao Pan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Aneesah Khan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Çağlar Çil
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A. Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom,Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom,*Correspondence: Miguel A. Pineda,
| |
Collapse
|
23
|
Hyun SW, Imamura A, Ishida H, Piepenbrink KH, Goldblum SE, Lillehoj EP. The sialidase NEU1 directly interacts with the juxtamembranous segment of the cytoplasmic domain of mucin-1 to inhibit downstream PI3K-Akt signaling. J Biol Chem 2021; 297:101337. [PMID: 34688655 PMCID: PMC8591358 DOI: 10.1016/j.jbc.2021.101337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/04/2022] Open
Abstract
The extracellular domain (ED) of the membrane-spanning sialoglycoprotein, mucin-1 (MUC1), is an in vivo substrate for the lysosomal sialidase, neuraminidase-1 (NEU1). Engagement of the MUC1-ED by its cognate ligand, Pseudomonas aeruginosa-expressed flagellin, increases NEU1-MUC1 association and NEU1-mediated MUC1-ED desialylation to unmask cryptic binding sites for its ligand. However, the mechanism(s) through which intracellular NEU1 might physically interact with its surface-expressed MUC1-ED substrate are unclear. Using reciprocal coimmunoprecipitation and in vitro binding assays in a human airway epithelial cell system, we show here that NEU1 associates with the MUC1-cytoplasmic domain (CD) but not with the MUC1-ED. Prior pharmacologic inhibition of the NEU1 catalytic activity using the NEU1-selective sialidase inhibitor, C9-butyl amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid, did not diminish NEU1-MUC1-CD association. In addition, glutathione-S-transferase (GST) pull-down assays using the deletion mutants of the MUC1-CD mapped the NEU1-binding site to the membrane-proximal 36 aa of the MUC1-CD. In a cell-free system, we found that the purified NEU1 interacted with the immobilized GST-MUC1-CD and the purified MUC1-CD associated with the immobilized 6XHis-NEU1, indicating that the NEU1-MUC1-CD interaction was direct and independent of its chaperone protein, protective protein/cathepsin A. However, the NEU1-MUC1-CD interaction was not required for the NEU1-mediated MUC1-ED desialylation. Finally, we demonstrated that overexpression of either WT NEU1 or a catalytically dead NEU1 G68V mutant diminished the association of the established MUC1-CD binding partner, PI3K, to MUC1-CD and reduced downstream Akt kinase phosphorylation. These results indicate that NEU1 associates with the juxtamembranous region of the MUC1-CD to inhibit PI3K-Akt signaling independent of NEU1 catalytic activity.
Collapse
Affiliation(s)
- Sang W Hyun
- US Department of Veterans Affairs, Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Akihiro Imamura
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan
| | - Kurt H Piepenbrink
- Food Science and Technology Department, University of Nebraska, Lincoln, Nebraska, USA
| | - Simeon E Goldblum
- US Department of Veterans Affairs, Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
24
|
Cavalcante T, Medeiros MM, Mule SN, Palmisano G, Stolf BS. The Role of Sialic Acids in the Establishment of Infections by Pathogens, With Special Focus on Leishmania. Front Cell Infect Microbiol 2021; 11:671913. [PMID: 34055669 PMCID: PMC8155805 DOI: 10.3389/fcimb.2021.671913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Carbohydrates or glycans are ubiquitous components of the cell surface which play crucial biological and structural roles. Sialic acids (Sias) are nine-carbon atoms sugars usually present as terminal residues of glycoproteins and glycolipids on the cell surface or secreted. They have important roles in cellular communication and also in infection and survival of pathogens. More than 20 pathogens can synthesize or capture Sias from their hosts and incorporate them into their own glycoconjugates and derivatives. Sialylation of pathogens’ glycoconjugates may be crucial for survival inside the host for numerous reasons. The role of Sias in protozoa such as Trypanosoma and Leishmania was demonstrated in previous studies. This review highlights the importance of Sias in several pathogenic infections, focusing on Leishmania. We describe in detail the contributions of Sias, Siglecs (sialic acid binding Ig-like lectins) and Neuraminidase 1 (NEU 1) in the course of Leishmania infection. A detailed view on the structural and functional diversity of Leishmania-related Sias and host-cell receptors will be provided, as well as the results of functional studies performed with different Leishmania species.
Collapse
Affiliation(s)
- Tainá Cavalcante
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana Medina Medeiros
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
25
|
Rawal P, Zhao L. Sialometabolism in Brain Health and Alzheimer's Disease. Front Neurosci 2021; 15:648617. [PMID: 33867926 PMCID: PMC8044809 DOI: 10.3389/fnins.2021.648617] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acids refer to a unique family of acidic sugars with a 9-carbon backbone that are mostly found as terminal residues in glycan structures of glycoconjugates including both glycoproteins and glycolipids. The highest levels of sialic acids are expressed in the brain where they regulate neuronal sprouting and plasticity, axon myelination and myelin stability, as well as remodeling of mature neuronal connections. Moreover, sialic acids are the sole ligands for microglial Siglecs (sialic acid-binding immunoglobulin-type lectins), and sialic acid-Siglec interactions have been indicated to play a critical role in the regulation of microglial homeostasis in a healthy brain. The recent discovery of CD33, a microglial Siglec, as a novel genetic risk factor for late-onset Alzheimer's disease (AD), highlights the potential role of sialic acids in the development of microglial dysfunction and neuroinflammation in AD. Apart from microglia, sialic acids have been found to be involved in several other major changes associated with AD. Elevated levels of serum sialic acids have been reported in AD patients. Alterations in ganglioside (major sialic acid carrier) metabolism have been demonstrated as an aggravating factor in the formation of amyloid pathology in AD. Polysialic acids are linear homopolymers of sialic acids and have been implicated to be an important regulator of neurogenesis that contributes to neuronal repair and recovery from neurodegeneration such as in AD. In summary, this article reviews current understanding of neural functions of sialic acids and alterations of sialometabolism in aging and AD brains. Furthermore, we discuss the possibility of looking at sialic acids as a promising novel therapeutic target for AD intervention.
Collapse
Affiliation(s)
- Punam Rawal
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
26
|
Demina EP, Smutova V, Pan X, Fougerat A, Guo T, Zou C, Chakraberty R, Snarr BD, Shiao TC, Roy R, Orekhov AN, Miyagi T, Laffargue M, Sheppard DC, Cairo CW, Pshezhetsky AV. Neuraminidases 1 and 3 Trigger Atherosclerosis by Desialylating Low-Density Lipoproteins and Increasing Their Uptake by Macrophages. J Am Heart Assoc 2021; 10:e018756. [PMID: 33554615 PMCID: PMC7955353 DOI: 10.1161/jaha.120.018756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Chronic vascular disease atherosclerosis starts with an uptake of atherogenic modified low-density lipoproteins (LDLs) by resident macrophages, resulting in formation of arterial fatty streaks and eventually atheromatous plaques. Increased plasma sialic acid levels, increased neuraminidase activity, and reduced sialic acid LDL content have been previously associated with atherosclerosis and coronary artery disease in human patients, but the mechanism underlying this association has not been explored. Methods and Results We tested the hypothesis that neuraminidases contribute to development of atherosclerosis by removing sialic acid residues from glycan chains of the LDL glycoprotein and glycolipids. Atherosclerosis progression was investigated in apolipoprotein E and LDL receptor knockout mice with genetic deficiency of neuraminidases 1, 3, and 4 or those treated with specific neuraminidase inhibitors. We show that desialylation of the LDL glycoprotein, apolipoprotein B 100, by human neuraminidases 1 and 3 increases the uptake of human LDL by human cultured macrophages and by macrophages in aortic root lesions in Apoe-/- mice via asialoglycoprotein receptor 1. Genetic inactivation or pharmacological inhibition of neuraminidases 1 and 3 significantly delays formation of fatty streaks in the aortic root without affecting the plasma cholesterol and LDL levels in Apoe-/- and Ldlr-/- mouse models of atherosclerosis. Conclusions Together, our results suggest that neuraminidases 1 and 3 trigger the initial phase of atherosclerosis and formation of aortic fatty streaks by desialylating LDL and increasing their uptake by resident macrophages.
Collapse
Affiliation(s)
- Ekaterina P Demina
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Victoria Smutova
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Xuefang Pan
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Anne Fougerat
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Tianlin Guo
- Department of Chemistry University of Alberta Edmonton Alberta Canada
| | - Chunxia Zou
- Department of Chemistry University of Alberta Edmonton Alberta Canada
| | | | - Brendan D Snarr
- Departments of Medicine, Microbiology and Immunology McGill University Montreal Quebec Canada
| | - Tze C Shiao
- Department of Chemistry Université du Québec à Montréal Montreal Quebec Canada
| | - Rene Roy
- Department of Chemistry Université du Québec à Montréal Montreal Quebec Canada
| | | | - Taeko Miyagi
- Miyagi Cancer Center Research Institute Natori Miyagi Japan
| | - Muriel Laffargue
- Institut National de la Santé et de la Recherche MédicaleUMR 1048Institute of Metabolic and Cardiovascular Diseases Toulouse France
| | - Donald C Sheppard
- Departments of Medicine, Microbiology and Immunology McGill University Montreal Quebec Canada
| | | | - Alexey V Pshezhetsky
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| |
Collapse
|
27
|
Sundararaj K, Rodgers J, Angel P, Wolf B, Nowling TK. The role of neuraminidase in TLR4-MAPK signalling and the release of cytokines by lupus serum-stimulated mesangial cells. Immunology 2021; 162:418-433. [PMID: 33314123 DOI: 10.1111/imm.13294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Previously, we demonstrated neuraminidase (NEU) activity or NEU1 expression, specifically, is increased in the kidneys of lupus mice and urine of human patients with nephritis. Additionally, NEU activity mediates IL-6 secretion from lupus-prone MRL/lpr primary mouse mesangial cells (MCs) in response to an IgG mimic. IL-6 mediates glomerular inflammation and promotes tissue damage in patients and mouse strains with lupus nephritis. This study further elucidates the mechanisms by which NEU activity and NEU1 specifically mediates the release of IL-6 and other cytokines from lupus-prone MCs. We demonstrate significantly increased release of multiple cytokines and NEU activity in MRL/lpr MCs in response to serum from MRL/lpr mice (lupus serum). Inhibiting NEU activity significantly reduced secretion of three of those cytokines: IL-6, GM-CSF and MIP1α. Message levels of Il-6 and Gm-csf were also increased in response to lupus serum and reduced when NEU activity was inhibited. Neutralizing antibodies to cell-surface receptors and MAPK inhibitors in lupus serum- or LPS-stimulated MCs indicate TLR4 and p38 or ERK MAP kinase signalling play key roles in the NEU-mediated secretion of IL-6. Significantly reduced IL-6 release was observed in C57BL/6 (B6) Neu1+/+ primary MCs compared with wild-type (Neu1+/+) B6 MCs in response to lupus serum. Additional results show inhibiting NEU activity significantly increases sialic acid-containing N-glycan levels. Together, our novel observations support a role for NEU activity, and specifically NEU1, in mediating release of IL-6 from lupus-prone MCs in response to lupus serum through a TLR4-p38/ERK MAPK signalling pathway that likely includes desialylation of glycoproteins.
Collapse
Affiliation(s)
- Kamala Sundararaj
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Jessalyn Rodgers
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
28
|
Khan A, Das S, Sergi C. Therapeutic Potential of Neu1 in Alzheimer's Disease Via the Immune System. Am J Alzheimers Dis Other Demen 2021; 36:1533317521996147. [PMID: 33719595 PMCID: PMC10624071 DOI: 10.1177/1533317521996147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's Disease (AD) is pathologically characterized by the accumulation of soluble oligomers causing extracellular beta-amyloid deposits in form of neuritic plaques and tau-containing intraneuronal neurofibrillary tangles in brain. One proposed mechanism explaining the formation of these proteins is impaired phagocytosis by microglia/macrophages resulting in defective clearance of soluble oligomers of beta-amyloid stimulating aggregation of amyloid plaques subsequently causing AD. However, research indicates that activating macrophages in M2 state may reduce toxic oligomers. NEU1 mutation is associated with a rare disease, sialidosis. NEU1 deficiency may also cause AD-like amyloidogenic process. Amyloid plaques have successfully been reduced using NEU1.Thus, NEU1 is suggested to have therapeutic potential for AD, with lysosomal exocytosis being suggested as underlying mechanism. Studies however demonstrate that NEU1 may activate macrophages in M2 state, which as noted earlier, is crucial to reducing toxic oligomers. In this review, authors discuss the potential therapeutic role of NEU1 in AD via immune system.
Collapse
Affiliation(s)
- Aiza Khan
- Section of Pediatric Pathology, Department of Laboratory Medicine and Pathology, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Sumit Das
- Section of Neuropathology, Department of Laboratory Medicine and Pathology, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato Sergi
- Section of Pediatric Pathology, Department of Laboratory Medicine and Pathology, University of Alberta and Stollery Children’s Hospital, Edmonton, Alberta, Canada
- Department of Pediatrics, Stollery Children’s Hospital, University of Alberta Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Pilling D, Karhadkar TR, Gomer RH. A CD209 ligand and a sialidase inhibitor differentially modulate adipose tissue and liver macrophage populations and steatosis in mice on the Methionine and Choline-Deficient (MCD) diet. PLoS One 2020; 15:e0244762. [PMID: 33378413 PMCID: PMC7773271 DOI: 10.1371/journal.pone.0244762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and type 2 diabetes and is characterized by the accumulation of fat in the liver (steatosis). NAFLD can transition into non-alcoholic steatohepatitis (NASH), with liver cell injury, inflammation, and an increased risk of fibrosis. We previously found that injections of either 1866, a synthetic ligand for the lectin receptor CD209, or DANA, a sialidase inhibitor, can inhibit inflammation and fibrosis in multiple animal models. The methionine and choline-deficient (MCD) diet is a model of NASH which results in the rapid induction of liver steatosis and inflammation. In this report, we show that for C57BL/6 mice on a MCD diet, injections of both 1866 and DANA reversed MCD diet-induced decreases in white fat, decreases in adipocyte size, and white fat inflammation. However, these effects were not observed in type 2 diabetic db/db mice on a MCD diet. In db/db mice on a MCD diet, 1866 decreased liver steatosis, but these effects were not observed in C57BL/6 mice. There was no correlation between the ability of 1866 or DANA to affect steatosis and the effects of these compounds on the density of liver macrophage cells expressing CLEC4F, CD64, F4/80, or Mac2. Together these results indicate that 1866 and DANA modulate adipocyte size and adipose tissue macrophage populations, that 1866 could be useful for modulating steatosis, and that changes in the local density of 4 different liver macrophages cell types do not correlate with effects on liver steatosis.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| | - Tejas R Karhadkar
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
30
|
Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol 2020; 10:601072. [PMID: 33344265 PMCID: PMC7746538 DOI: 10.3389/fcimb.2020.601072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are the first encounters of invading bacteria and are responsible for engulfing and digesting pathogens through phagocytosis leading to initiation of the innate inflammatory response. Intracellular digestion occurs through a close relationship between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes, such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal compartment permits direct interaction with and killing of bacteria, and may contribute to processing of bacterial antigens for presentation, an event necessary for the induction of antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can control the expression and proteolytic activity of cathepsins, including their inhibitors – cystatins, to favor their own intracellular survival in macrophages. In this review, we summarize recent developments in defining the role of cathepsins in bacteria-macrophage interaction and describe important strategies engaged by bacteria to manipulate cathepsin expression and activity in macrophages. Particularly, we focus on specific bacterial species due to their clinical relevance to humans and animal health, i.e., Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella, Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
31
|
Heimerl M, Sieve I, Ricke-Hoch M, Erschow S, Battmer K, Scherr M, Hilfiker-Kleiner D. Neuraminidase-1 promotes heart failure after ischemia/reperfusion injury by affecting cardiomyocytes and invading monocytes/macrophages. Basic Res Cardiol 2020; 115:62. [PMID: 32975669 PMCID: PMC7519006 DOI: 10.1007/s00395-020-00821-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
Neuraminidase (NEU)1 forms a multienzyme complex with beta-galactosidase (β-GAL) and protective-protein/cathepsin (PPC) A, which cleaves sialic-acids from cell surface glycoconjugates. We investigated the role of NEU1 in the myocardium after ischemia/reperfusion (I/R). Three days after inducing I/R, left ventricles (LV) of male mice (3 months-old) displayed upregulated neuraminidase activity and increased NEU1, β-GAL and PPCA expression. Mice hypomorphic for neu1 (hNEU1) had less neuraminidase activity, fewer pro-inflammatory (Lin−CD11b+F4/80+Ly-6Chigh), and more anti-inflammatory macrophages (Lin−CD11b+F4/80+Ly-6Clow) 3 days after I/R, and less LV dysfunction 14 days after I/R. WT mice transplanted with hNEU1-bone marrow (BM) and hNEU1 mice with WT-BM showed significantly better LV function 14 days after I/R compared with WT mice with WT-BM. Mice with a cardiomyocyte-specific NEU1 overexpression displayed no difference in inflammation 3 days after I/R, but showed increased cardiomyocyte hypertrophy, reduced expression and mislocalization of Connexin-43 in gap junctions, and LV dysfunction despite a similar infarct scar size to WT mice 14 days after I/R. The upregulation of NEU1 after I/R contributes to heart failure by promoting inflammation in invading monocytes/macrophages, enhancing cardiomyocyte hypertrophy, and impairing gap junction function, suggesting that systemic NEU1 inhibition may reduce heart failure after I/R.
Collapse
Affiliation(s)
- Maren Heimerl
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Irina Sieve
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Melanie Ricke-Hoch
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Sergej Erschow
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Karin Battmer
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
32
|
Yuan L, Zhao Y, Sun XL. Sialidase substrates for Sialdiase assays - activity, specificity, quantification and inhibition. Glycoconj J 2020; 37:513-531. [PMID: 32813176 DOI: 10.1007/s10719-020-09940-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/06/2020] [Indexed: 12/01/2022]
Abstract
Sialidases are glycosidases responsible for the removal of sialic acid (Sia) residues (desialylation) from glycan portions of either glycoproteins or glycolipids. By desialylation, sialidases are able to modulate the functionality and stability of the Sia-containing molecules and are involved in both physiological and pathological pathways. Therefore, evaluation of sialidase activity and specificity is important for understanding the biological significance of desialylation by sialidases and its function and the related molecular mechanisms of the physiological and pathological pathways. In addition, it is essential for developing novel mechanisms and approaches for disease treatment and diagnosis and pathogen detection as well. This review summarizes the most recent sialidase substrates for evaluating sialidase activity and specificity and screening sialidase inhibitors, including (i) general sialidase substrates, (ii) specific sialidase substrates, (iii) native sialidase substrates and (iv) cellular sialidase substrates. This review also provides a brief introduction of recent instrumental methods for quantifying the sialidase activity, such as UV, fluorescence, HPLC and LC-MS methods.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yu Zhao
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA.
| |
Collapse
|
33
|
Allendorf DH, Franssen EH, Brown GC. Lipopolysaccharide activates microglia via neuraminidase 1 desialylation of Toll‐like Receptor 4. J Neurochem 2020; 155:403-416. [DOI: 10.1111/jnc.15024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
|
34
|
Allendorf DH, Puigdellívol M, Brown GC. Activated microglia desialylate their surface, stimulating complement receptor 3-mediated phagocytosis of neurons. Glia 2019; 68:989-998. [PMID: 31774586 PMCID: PMC7079032 DOI: 10.1002/glia.23757] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022]
Abstract
The glycoproteins and glycolipids of the cell surface have sugar chains that normally terminate in a sialic acid residue, but inflammatory activation of myeloid cells can cause sialidase enzymes to remove these residues, resulting in desialylation and altered activity of surface receptors, such as the phagocytic complement receptor 3 (CR3). We found that activation of microglia with lipopolysaccharide (LPS), fibrillar amyloid beta (Aβ), Tau or phorbol myristate acetate resulted in increased surface sialidase activity and desialylation of the microglial surface. Desialylation of microglia by adding sialidase, stimulated microglial phagocytosis of beads, but this was prevented by siRNA knockdown of CD11b or a blocking antibody to CD11b (a component of CR3). Desialylation of microglia by a sialyl-transferase inhibitor (3FAx-peracetyl-Neu5Ac) also stimulated microglial phagocytosis of beads. Desialylation of primary glial-neuronal co-cultures by adding sialidase or the sialyl-transferase inhibitor resulted in neuronal loss that was prevented by inhibiting phagocytosis with cytochalasin D or the blocking antibody to CD11b. Adding desialylated microglia to glial-neuronal cultures, in the absence of neuronal desialylation, also caused neuronal loss prevented by CD11b blocking antibody. Adding LPS or Aβ to primary glial-neuronal co-cultures caused neuronal loss, and this was prevented by inhibiting endogenous sialidase activity with N-acetyl-2,3-dehydro-2-deoxyneuraminic acid or blockage of CD11b. Thus, activated microglia release a sialidase activity that desialylates the cell surface, stimulating CR3-mediated phagocytosis of neurons, making extracellular sialidase and CR3 potential treatment targets to prevent inflammatory loss of neurons.
Collapse
Affiliation(s)
| | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Javaheri A, Bajpai G, Picataggi A, Mani S, Foroughi L, Evie H, Kovacs A, Weinheimer CJ, Hyrc K, Xiao Q, Ballabio A, Lee JM, Matkovich SJ, Razani B, Schilling JD, Lavine KJ, Diwan A. TFEB activation in macrophages attenuates postmyocardial infarction ventricular dysfunction independently of ATG5-mediated autophagy. JCI Insight 2019; 4:127312. [PMID: 31672943 DOI: 10.1172/jci.insight.127312] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Lysosomes are at the epicenter of cellular processes critical for inflammasome activation in macrophages. Inflammasome activation and IL-1β secretion are implicated in myocardial infarction (MI) and resultant heart failure; however, little is known about how macrophage lysosomes regulate these processes. In mice subjected to cardiac ischemia/reperfusion (IR) injury and humans with ischemic cardiomyopathy, we observed evidence of lysosomal impairment in macrophages. Inducible macrophage-specific overexpression of transcription factor EB (TFEB), a master regulator of lysosome biogenesis (Mϕ-TFEB), attenuated postinfarction remodeling, decreased abundance of proinflammatory macrophages, and reduced levels of myocardial IL-1β compared with controls. Surprisingly, neither inflammasome suppression nor Mϕ-TFEB-mediated attenuation of postinfarction myocardial dysfunction required intact ATG5-dependent macroautophagy (hereafter termed "autophagy"). RNA-seq of flow-sorted macrophages postinfarction revealed that Mϕ-TFEB upregulated key targets involved in lysosomal lipid metabolism. Specifically, inhibition of the TFEB target, lysosomal acid lipase, in vivo abrogated the beneficial effect of Mϕ-TFEB on postinfarction ventricular function. Thus, TFEB reprograms macrophage lysosomal lipid metabolism to attenuate remodeling after IR, suggesting an alternative paradigm whereby lysosome function affects inflammation.
Collapse
Affiliation(s)
- Ali Javaheri
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Geetika Bajpai
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Antonino Picataggi
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Smrithi Mani
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Layla Foroughi
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Hosannah Evie
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Attila Kovacs
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Carla J Weinheimer
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | | | - Qingli Xiao
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Medical and Translational Sciences, Federico II University, Naples, Italy.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jin-Moo Lee
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Scot J Matkovich
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Babak Razani
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine.,John Cochran Veterans Affairs Medical Center, Saint Louis, Missouri, USA
| | - Joel D Schilling
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Kory J Lavine
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine
| | - Abhinav Diwan
- Cardiovascular Division and Center for Cardiovascular Research, Department of Medicine.,John Cochran Veterans Affairs Medical Center, Saint Louis, Missouri, USA
| |
Collapse
|
36
|
Karmakar J, Roy S, Mandal C. Modulation of TLR4 Sialylation Mediated by a Sialidase Neu1 and Impairment of Its Signaling in Leishmania donovani Infected Macrophages. Front Immunol 2019; 10:2360. [PMID: 31649671 PMCID: PMC6794462 DOI: 10.3389/fimmu.2019.02360] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Altered sialylation is generally maintained by a fine balance between sialidases and sialyltransferases, which plays an essential role during disease pathogenesis. TLR4 is a membrane-bound highly sialylated glycoprotein predominantly having α2,3-linked sialic acids. It is one of the most important client molecules in the anti-leishmanial innate immune arm. Here, we initiated a comprehensive study on the modulation of TLR4 sialylation in Leishmania donovani (L. d)-infected macrophages by a mammalian sialidase/neuraminidase-1 (Neu1) having substrate specificity toward α2,3-linked sialic acids. We observed reduced membrane-associated Neu1 with its decreased enzyme activity in infected macrophages. Moreover, we demonstrated reduced association of Neu1 with TLR4 leading to enhanced sialylation of TLR4 in these infected cells. Conversely, Neu1 over expression exhibited enhanced association of TLR4 with Neu1 leading to reduced sialylation which possibly linked to increased association of TLR4 with its downstream adaptor protein, MyD88. This, in turn, activated downstream MAP kinase signaling pathway, with enhanced nuclear translocation of NFκB that resulted in increased genetic and protein levels expression of Th1 cytokines and effector molecule nitric oxide secretion which ultimately leads to reduced parasite burden in macrophages. This was further validated by Neu1 silencing in infected macrophages which reversed such a situation. Such events strongly confirm the importance of Neu1 in modulation of TLR4 sialylation during parasite infection resulting in impairment of innate immune response. Furthermore, decreased membrane-bound Neu1 in infected macrophages could be attributed to its reduced tyrosine-phosphorylation as well as diminished association with cathepsin A. Both these phenomenon possibly play significant roles in inhibiting translocation of the sialidase from cytosol to membrane. Taken together, our study first time demonstrated impaired translocation of cytosolic Neu1 to the membrane of L. donovani-infected macrophages due to impaired phosphorylation of this enzyme. This novel finding establishes a link between enhanced α2,3-linked sialic acids on TLR4 and reduced membrane-bound Neu1 which plays a significant role for inhibiting downstream signaling to establish successful infection in the host cells.
Collapse
Affiliation(s)
- Joyshree Karmakar
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saptarshi Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
37
|
Zhao Y, Mahajan G, Kothapalli CR, Sun XL. Sialylation status and mechanical properties of THP-1 macrophages upon LPS stimulation. Biochem Biophys Res Commun 2019; 518:573-578. [PMID: 31445704 DOI: 10.1016/j.bbrc.2019.08.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022]
Abstract
Cell surface receptors are the key contributors of macrophage function. Most macrophage cell surface receptors are glycoproteins with sialic acids at the terminal of their glycans. It is well recognized that lipopolysaccharide (LPS) induces cell surface sialylation changes that may in turn contribute to macrophage functions. In addition, cellular mechanics such as elasticity is also a major determinant of macrophage function, which in turn is modulated by LPS. In this report, we characterized the sialylation status of macrophages upon LPS stimulation and assessed the changes in its mechanical properties and function. Specifically, we confirmed that sialylation status is closely related to macrophage biomechanical characteristics (elastic modulus, tether force, tether radius, adhesion force, and membrane tension) and thus directly involved in macrophage function. Further, we modulated macrophage sialylation status by feeding the cell with exogenous free sialic acid (Neu5Ac, Neu5Gc) and sialidase inhibitors, and examined the resulting effects on cellular mechanics and function. A systematic recognition of sialylation status related to cellular mechanics of macrophages will contribute to defining their phenotypes and elucidate macrophage functional diversity.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Center of Gene Regulation of Health and Disease (GRHD), Cleveland State University, Cleveland, OH, OH 44115, United States
| | - Gautam Mahajan
- Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, OH 44115, United States
| | - Chandrasekhar R Kothapalli
- Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, OH 44115, United States.
| | - Xue-Long Sun
- Department of Chemistry and Center of Gene Regulation of Health and Disease (GRHD), Cleveland State University, Cleveland, OH, OH 44115, United States; Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, OH 44115, United States.
| |
Collapse
|
38
|
van der Wal DE, Davis AM, Mach M, Marks DC. The role of neuraminidase 1 and 2 in glycoprotein Ibα-mediated integrin αIIbβ3 activation. Haematologica 2019; 105:1081-1094. [PMID: 31273092 PMCID: PMC7109719 DOI: 10.3324/haematol.2019.215830] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
Upon vascular injury, platelets adhere to von Willebrand Factor (VWF) via glycoprotein Ibα (GPIbα). GPIbα contains many glycans, capped by sialic acid. Sialic acid cleavage (desialylation) triggers clearance of platelets. Neuraminidases (NEU) are responsible for desialylation and so far, NEU1-4 have been identified. However, the role of NEU in healthy platelets is currently unknown. Aim of the study was to study the role of NEU1 and NEU2 in platelet signalling. Membrane association of platelet attached glycans, NEU1 and NEU2 was measured following activation with agonists using flow cytometry. Adhesion on fibrinogen, aggregation and fibrinogen-binding were assessed with/without the NEU-inhibitor, 2-deoxy-2-3-dide-hydro-N-acetylneuraminic acid. Cellular localisation of NEU1 and NEU2 was examined by fluorescence microscopy. Desialylation occurred following GPIbα-clustering by VWF. Basal levels of membrane NEU1 were low; glycoprotein Ibα-clustering induced a four-fold increase (n=3, P<0.05). Inhibition of αIIbβ3-integrin prevented the increase in NEU1 membrane-association by ~60%. Membrane associated NEU2 increased two-fold (n=3, P<0.05) upon VWF-binding, while inhibition/removal of GPIbα reduced the majority of membrane associated NEU1 and NEU2 (n=3, P<0.05). High shear and addition of fibrinogen increased membrane NEU1 and NEU2. NEU-inhibitior prevented VWF-induced αIIbβ3-integrin activation by 50% (n=3, P<0.05), however, promoted VWF-mediated agglutination, indicating a negative feedback mechanism for NEU activity. NEU1 or NEU2 were partially co-localised with mitochondria and α-granules respectively. Neither NEU1 nor NEU2 co-localised with lysosomal-associated membrane protein 1. These findings demonstrate a previously unrecognised role for NEU1 and NEU2 in GPIbα–mediated and αIIbβ3-integrin signalling.
Collapse
Affiliation(s)
| | - April M Davis
- Australian Red Cross Lifeblood (formerly known as Blood Service)
| | - Melanie Mach
- Australian Red Cross Lifeblood (formerly known as Blood Service)
| | - Denese C Marks
- Australian Red Cross Lifeblood (formerly known as Blood Service).,Sydney Medical School, Uinversity of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Kawecki C, Bocquet O, Schmelzer CEH, Heinz A, Ihling C, Wahart A, Romier B, Bennasroune A, Blaise S, Terryn C, Linton KJ, Martiny L, Duca L, Maurice P. Identification of CD36 as a new interaction partner of membrane NEU1: potential implication in the pro-atherogenic effects of the elastin receptor complex. Cell Mol Life Sci 2019; 76:791-807. [PMID: 30498996 PMCID: PMC6514072 DOI: 10.1007/s00018-018-2978-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/17/2018] [Accepted: 11/22/2018] [Indexed: 11/05/2022]
Abstract
In addition to its critical role in lysosomes for catabolism of sialoglycoconjugates, NEU1 is expressed at the plasma membrane and regulates a myriad of receptors by desialylation, playing a key role in many pathophysiological processes. Here, we developed a proteomic approach dedicated to the purification and identification by LC-MS/MS of plasma membrane NEU1 interaction partners in human macrophages. Already known interaction partners were identified as well as several new candidates such as the class B scavenger receptor CD36. Interaction between NEU1 and CD36 was confirmed by complementary approaches. We showed that elastin-derived peptides (EDP) desialylate CD36 and that this effect was blocked by the V14 peptide, which blocks the interaction between bioactive EDP and the elastin receptor complex (ERC). Importantly, EDP also increased the uptake of oxidized LDL by macrophages that is blocked by both the V14 peptide and the sialidase inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA). These results demonstrate, for the first time, that binding of EDP to the ERC indirectly modulates CD36 sialylation level and regulates oxidized LDL uptake through this sialidase. These effects could contribute to the previously reported proatherogenic role of EDP and add a new dimension in the regulation of biological processes through NEU1.
Collapse
Affiliation(s)
- Charlotte Kawecki
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP1039, 51687, Reims Cedex 2, France
| | - Olivier Bocquet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP1039, 51687, Reims Cedex 2, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Heinz
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ihling
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Amandine Wahart
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP1039, 51687, Reims Cedex 2, France
| | - Béatrice Romier
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP1039, 51687, Reims Cedex 2, France
| | - Amar Bennasroune
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP1039, 51687, Reims Cedex 2, France
| | - Sébastien Blaise
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP1039, 51687, Reims Cedex 2, France
| | - Christine Terryn
- PICT Platform, Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Kenneth J Linton
- Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Laurent Martiny
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP1039, 51687, Reims Cedex 2, France
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP1039, 51687, Reims Cedex 2, France
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP1039, 51687, Reims Cedex 2, France.
| |
Collapse
|
40
|
Kijimoto-Ochiai S, Kamimura K, Koda T. Neu-medullocytes, sialidase-positive B cells in the thymus, express autoimmune regulator (AIRE). Sci Rep 2019; 9:858. [PMID: 30696872 PMCID: PMC6351566 DOI: 10.1038/s41598-018-37225-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/04/2018] [Indexed: 01/18/2023] Open
Abstract
Neu-medullocytes, which were previously identified and named by our group, are sialidase (neuraminidase)-positive B cells that express immunoglobulin and Mac-1 in the mouse thymus. Recently, B cells that migrated into the thymus were reported to express autoimmune regulator (AIRE) and to contribute to self-tolerance. We sought to determine whether Neu-medullocytes also express AIRE. We obtained positive results by triple staining Neu-medullocytes for in situ sialidase activity, anti-AIRE, and either anti-IgG or anti-IgM antibodies and observing the staining with confocal microscopy. Additional molecules including CD5, IgM, major histocompatibility complex (MHC) Class II, and neuraminidase 1 (NEU1) were found in sialidase-positive cells independently. The real-time PCR results suggest that the primary sialidase in AIRE-positive cells is neuraminidase 2 (NEU2). Furthermore, some of the AIRE-positive medullary thymic epithelial cells also clearly showed sialidase activity when a triple staining of sialidase activity, anti-AIRE, and Ulex europaeus agglutinin-1 (UEA-1) was performed. Neu-medullocytes may present Aire-dependent antigens for negative selection. We discuss the negative selection steps in consideration of sialidases and sialic acids.
Collapse
Affiliation(s)
- Shigeko Kijimoto-Ochiai
- Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kitaku, Sapporo, 001-0021, Japan.
- Life Space COSMOS, Hirosaki, 036-8222, Japan.
| | - Keiko Kamimura
- Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kitaku, Sapporo, 001-0021, Japan
| | - Toshiaki Koda
- Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kitaku, Sapporo, 001-0021, Japan.
| |
Collapse
|
41
|
Zhang T, de Waard AA, Wuhrer M, Spaapen RM. The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol 2019; 10:90. [PMID: 30761148 PMCID: PMC6361815 DOI: 10.3389/fimmu.2019.00090] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and interaction. Also, they are known to play a role as receptors in pathogen invasion. A less well-explored feature is the role of GSLs in immune cell function which is the subject of this review article. Here we summarize knowledge on GSL expression patterns in different immune cells. We review the changes in GSL expression during immune cell development and differentiation, maturation, and activation. Furthermore, we review how immune cell GSLs impact membrane organization, molecular signaling, and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs as targets of antibody-based immunity in cancer. We expect that recent advances in analytical and genome editing technologies will help in the coming years to further our knowledge on the role of GSLs as modulators of immune cell function.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
42
|
Wei M, Wang PG. Desialylation in physiological and pathological processes: New target for diagnostic and therapeutic development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:25-57. [PMID: 30905454 DOI: 10.1016/bs.pmbts.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Desialylation is a pivotal part of sialic acid metabolism, which initiates the catabolism of glycans by removing the terminal sialic acid residues on glycans, thereby modulating the structure and functions of glycans, glycoproteins, or glycolipids. The functions of sialic acids have been well recognized, whereas the function of desialylation process is underappreciated or largely ignored. However, accumulating evidence demonstrates that desialylation plays an important role in a variety of physiological and pathological processes. This chapter summarizes the current knowledge pertaining to desialylation in a variety of physiological and pathological processes, with a focus on the underlying molecular mechanisms. The potential of targeting desialylation process for diagnostic and therapeutic development is also discussed.
Collapse
Affiliation(s)
- Mohui Wei
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Peng George Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
43
|
Lillehoj EP, Guang W, Hyun SW, Liu A, Hegerle N, Simon R, Cross AS, Ishida H, Luzina IG, Atamas SP, Goldblum SE. Neuraminidase 1-mediated desialylation of the mucin 1 ectodomain releases a decoy receptor that protects against Pseudomonas aeruginosa lung infection. J Biol Chem 2018; 294:662-678. [PMID: 30429216 DOI: 10.1074/jbc.ra118.006022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/13/2018] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) expresses an adhesin, flagellin, that engages the mucin 1 (MUC1) ectodomain (ED) expressed on airway epithelia, increasing association of MUC1-ED with neuraminidase 1 (NEU1) and MUC1-ED desialylation. The MUC1-ED desialylation unmasks both cryptic binding sites for Pa and a protease recognition site, permitting its proteolytic release as a hyperadhesive decoy receptor for Pa. We found here that intranasal administration of Pa strain K (PAK) to BALB/c mice increases MUC1-ED shedding into the bronchoalveolar compartment. MUC1-ED levels increased as early as 12 h, peaked at 24-48 h with a 7.8-fold increase, and decreased by 72 h. The a-type flagellin-expressing PAK strain and the b-type flagellin-expressing PAO1 strain stimulated comparable levels of MUC1-ED shedding. A flagellin-deficient PAK mutant provoked dramatically reduced MUC1-ED shedding compared with the WT strain, and purified flagellin recapitulated the WT effect. In lung tissues, Pa increased association of NEU1 and protective protein/cathepsin A with MUC1-ED in reciprocal co-immunoprecipitation assays and stimulated MUC1-ED desialylation. NEU1-selective sialidase inhibition protected against Pa-induced MUC1-ED desialylation and shedding. In Pa-challenged mice, MUC1-ED-enriched bronchoalveolar lavage fluid (BALF) inhibited flagellin binding and Pa adhesion to human airway epithelia by up to 44% and flagellin-driven motility by >30%. Finally, Pa co-administration with recombinant human MUC1-ED dramatically diminished lung and BALF bacterial burden, proinflammatory cytokine levels, and pulmonary leukostasis and increased 5-day survival from 0% to 75%. We conclude that Pa flagellin provokes NEU1-mediated airway shedding of MUC1-ED, which functions as a decoy receptor protecting against lethal Pa lung infection.
Collapse
Affiliation(s)
| | | | - Sang W Hyun
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Anguo Liu
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Nicolas Hegerle
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Raphael Simon
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Alan S Cross
- Medicine, and.,Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland 20201
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu 501-1193 Japan
| | - Irina G Luzina
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Sergei P Atamas
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and
| | - Simeon E Goldblum
- Medicine, and.,U.S. Department of Veterans Affairs, Veterans Affairs Medical Center, Baltimore, Maryland 20201, and.,Pathology and
| |
Collapse
|
44
|
Qorri B, Kalaydina RV, Velickovic A, Kaplya Y, Decarlo A, Szewczuk MR. Agonist-Biased Signaling via Matrix Metalloproteinase-9 Promotes Extracellular Matrix Remodeling. Cells 2018; 7:cells7090117. [PMID: 30149671 PMCID: PMC6162445 DOI: 10.3390/cells7090117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/12/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic noncellular structure that is crucial for maintaining tissue architecture and homeostasis. The dynamic nature of the ECM undergoes constant remodeling in response to stressors, tissue needs, and biochemical signals that are mediated primarily by matrix metalloproteinases (MMPs), which work to degrade and build up the ECM. Research on MMP-9 has demonstrated that this proteinase exists on the cell surface of many cell types in complex with G protein-coupled receptors (GPCRs), and receptor tyrosine kinases (RTKs) or Toll-like receptors (TLRs). Through a novel yet ubiquitous signaling platform, MMP-9 is found to play a crucial role not only in the direct remodeling of the ECM but also in the transactivation of associated receptors to mediate and recruit additional remodeling proteins. Here, we summarize the role of MMP-9 as it exists in a tripartite complex on the cell surface and discuss how its association with each of the TrkA receptor, Toll-like receptors, epidermal growth factor receptor, and the insulin receptor contributes to various aspects of ECM remodeling.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | | - Aleksandra Velickovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Yekatrina Kaplya
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Alexandria Decarlo
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
45
|
White EJ, Gyulay G, Lhoták Š, Szewczyk MM, Chong T, Fuller MT, Dadoo O, Fox-Robichaud AE, Austin RC, Trigatti BL, Igdoura SA. Sialidase down-regulation reduces non-HDL cholesterol, inhibits leukocyte transmigration, and attenuates atherosclerosis in ApoE knockout mice. J Biol Chem 2018; 293:14689-14706. [PMID: 30097518 DOI: 10.1074/jbc.ra118.004589] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/01/2018] [Indexed: 01/01/2023] Open
Abstract
Atherosclerosis is a complex disease that involves alterations in lipoprotein metabolism and inflammation. Protein and lipid glycosylation events, such as sialylation, contribute to the development of atherosclerosis and are regulated by specific glycosidases, including sialidases. To evaluate the effect of the sialidase neuraminidase 1 (NEU1) on atherogenesis, here we generated apolipoprotein E (ApoE)-deficient mice that express hypomorphic levels of NEU1 (Neu1hypoApoe-/-). We found that the hypomorphic NEU1 expression in male Apoe-/- mice reduces serum levels of very-low-density lipoprotein (VLDL) and LDL cholesterol, diminishes infiltration of inflammatory cells into lesions, and decreases aortic sinus atherosclerosis. Transplantation of Apoe-/- bone marrow (BM) into Neu1hypoApoe-/- mice significantly increased atherosclerotic lesion development and had no effect on serum lipoprotein levels. Moreover, Neu1hypoApoe-/- mice exhibited a reduction in circulating monocyte and neutrophil levels and had reduced hyaluronic acid and P-selectin adhesion capability on monocytes/neutrophils and T cells. Consistent with these findings, administration of a sialidase inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, had a significant anti-atherogenic effect in the Apoe-/- mice. In summary, the reduction in NEU1 expression or function decreases atherosclerosis in mice via its significant effects on lipid metabolism and inflammatory processes. We conclude that NEU1 may represent a promising target for managing atherosclerosis.
Collapse
Affiliation(s)
| | | | - Šárka Lhoták
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | | | | | - Mark T Fuller
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Omid Dadoo
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Alison E Fox-Robichaud
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Richard C Austin
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Bernardo L Trigatti
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Suleiman A Igdoura
- From the Departments of Biology, .,Pathology and Molecular Medicine, and
| |
Collapse
|
46
|
Kijimoto-Ochiai S, Matsumoto-Mizuno T, Kamimura D, Murakami M, Kobayashi M, Matsuoka I, Ochiai H, Ishida H, Kiso M, Kamimura K, Koda T. Existence of NEU1 sialidase on mouse thymocytes whose natural substrate is CD5. Glycobiology 2018; 28:306-317. [PMID: 29897583 DOI: 10.1093/glycob/cwy009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/26/2018] [Indexed: 12/17/2022] Open
Abstract
Membrane-bound sialidases in the mouse thymus are unique and mysterious because their activity at pH 6.5 is equal to or higher than that in the acidic region. The pH curve like this has never been reported in membrane-bound form. To clarify this enzyme, we studied the sialidase activities of crude membrane fractions from immature-T, mature-T and non-T cells from C57BL/6 mice and from SM/J mice, a strain with a defect in NEU1 activity. Non-T cells from C57BL/6 mice had high activity at pH 6.5, but those from SM/J mice did not. Neu1 and Neu3 mRNA was shown by real-time PCR to be expressed in T cells and also in non-T cells, whereas Neu2 was expressed mainly in non-T cells and Neu4 was scarcely expressed. However, the in situ hybridization study on the localization of four sialidases in the thymus showed that Neu4 was clearly expressed. We then focused on a sialidase on the thymocyte surface because the possibility of the existence of a sialidase on thymocytes was suggested by peanut agglutinin (PNA) staining after incubation of the cells alone in PBS. This activity was inhibited by NEU1-selective sialidase inhibitor C9-butyl-amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid. The natural substrate for the cell surface sialidase was identified as clustered differentiation 5 (CD5) by PNA-blot analysis of anti-CD5 immunoprecipitate. We conclude that NEU1 exists on the cell surface of mouse thymocytes and CD5 is a natural substrate for it. Although this is not the main reaction of the membrane-bound thymus-sialidases, it must be important for the thymus.
Collapse
Affiliation(s)
| | | | - Daisuke Kamimura
- Institute for Genetic Medicine, Division of Molecular Psychoimmunology
| | - Masaaki Murakami
- Institute for Genetic Medicine, Division of Molecular Psychoimmunology
| | | | | | - Hiroshi Ochiai
- Faculty of Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Hideharu Ishida
- Faculty of Applied Biological Sciences and Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN)
| | - Makoto Kiso
- Organization for Research and Community development, Gifu University, Gifu 501-1193, Japan
| | - Keiko Kamimura
- Faculty of Advanced Life Science, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| | - Toshiaki Koda
- Faculty of Advanced Life Science, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| |
Collapse
|
47
|
Sundararaj K, Rodgers JI, Marimuthu S, Siskind LJ, Bruner E, Nowling TK. Neuraminidase activity mediates IL-6 production by activated lupus-prone mesangial cells. Am J Physiol Renal Physiol 2018; 314:F630-F642. [PMID: 29357434 PMCID: PMC5966761 DOI: 10.1152/ajprenal.00421.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/22/2022] Open
Abstract
The development of nephritis is a leading cause of morbidity and mortality in lupus patients. Although the general pathophysiological progression of lupus nephritis is known, the molecular mediators and mechanisms are incompletely understood. Previously, we demonstrated that the glycosphingolipid (GSL) catabolic pathway is elevated in the kidneys of MRL/lpr lupus mice and human lupus patients with nephritis. Specifically, the activity of neuraminidase (NEU) and expression of Neu1, an enzyme in the GSL catabolic pathway is significantly increased. To better understand the role and mechanisms by which this pathway contributes to the progression of LN, we analyzed the expression and effects of NEU activity on the function of MRL/lpr lupus-prone mesangial cells (MCs). We demonstrate that NEU1 and NEU3 promote IL-6 production in MES13 MCs. Neu1 expression, NEU activity, and IL-6 production are significantly increased in stimulated primary MRL/lpr lupus-prone MCs, and blocking NEU activity inhibits IL-6 production. NEU1 and NEU3 expression overlaps IgG deposits in MCs in vitro and in renal sections from nephritic MRL/lpr mice. Together, our results suggest that NEU activity mediates IL-6 production in lupus-prone MCs possibly through an IgG-receptor complex signaling pathway.
Collapse
Affiliation(s)
- Kamala Sundararaj
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| | - Jessalyn I Rodgers
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| | - Subathra Marimuthu
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky
| | - Evelyn Bruner
- Division of Pathology and Laboratory Medicine, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| | - Tamara K Nowling
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
48
|
Haxho F, Neufeld RJ, Szewczuk MR. Neuraminidase-1: a novel therapeutic target in multistage tumorigenesis. Oncotarget 2018; 7:40860-40881. [PMID: 27029067 PMCID: PMC5130050 DOI: 10.18632/oncotarget.8396] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022] Open
Abstract
Several of the growth factors and their receptor tyrosine kinases (RTK) such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF) and insulin are promising candidate targets for cancer therapy. Indeed, tyrosine kinase inhibitors (TKI) have been developed to target these growth factors and their receptors, and have demonstrated dramatic initial responses in cancer therapy. Yet, most patients ultimately develop TKI drug resistance and relapse. It is essential in the clinical setting that the targeted therapies are to circumvent multistage tumorigenesis, including genetic mutations at the different growth factor receptors, tumor neovascularization, chemoresistance of tumors, immune-mediated tumorigenesis and the development of tissue invasion and metastasis. Here, we identify a novel receptor signaling platform linked to EGF, NGF, insulin and TOLL-like receptor (TLR) activations, all of which are known to play major roles in tumorigenesis. The importance of these findings signify an innovative and promising entirely new targeted therapy for cancer. The role of mammalian neuraminidase-1 (Neu1) in complex with matrix metalloproteinase-9 and G protein-coupled receptor tethered to RTKs and TLRs is identified as a major target in multistage tumorigenesis. Evidence exposing the link connecting growth factor-binding and immune-mediated tumorigenesis to this novel receptor-signaling paradigm will be reviewed in its current relationship to cancer.
Collapse
Affiliation(s)
- Fiona Haxho
- Departments of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Myron R Szewczuk
- Departments of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| |
Collapse
|
49
|
Karhadkar TR, Pilling D, Cox N, Gomer RH. Sialidase inhibitors attenuate pulmonary fibrosis in a mouse model. Sci Rep 2017; 7:15069. [PMID: 29118338 PMCID: PMC5678159 DOI: 10.1038/s41598-017-15198-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/23/2017] [Indexed: 01/14/2023] Open
Abstract
Fibrosis involves increasing amounts of scar tissue appearing in a tissue, but what drives this is unclear. In fibrotic lesions in human and mouse lungs, we found extensive desialylation of glycoconjugates, and upregulation of sialidases. The fibrosis-associated cytokine TGF-β1 upregulates sialidases in human airway epithelium cells, lung fibroblasts, and immune system cells. Conversely, addition of sialidases to human peripheral blood mononuclear cells induces accumulation of extracellular TGF-β1, forming what appears to be a sialidase - TGF-β1 - sialidase positive feedback loop. Monocyte-derived cells called fibrocytes also activate fibroblasts, and we found that sialidases potentiate fibrocyte differentiation. A sialylated glycoprotein called serum amyloid P (SAP) inhibits fibrocyte differentiation, and sialidases attenuate SAP function. Injections of the sialidase inhibitors DANA and oseltamivir (Tamiflu) starting either 1 day or 10 days after bleomycin strongly attenuate pulmonary fibrosis in the mouse bleomycin model, and by breaking the feedback loop, cause a downregulation of sialidase and TGF-β1 accumulation. Together, these results suggest that a positive feedback loop involving sialidases potentiates fibrosis, and suggest that sialidase inhibitors could be useful for the treatment of fibrosis.
Collapse
Affiliation(s)
- Tejas R Karhadkar
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474, USA
| | - Darrell Pilling
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474, USA
| | - Nehemiah Cox
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474, USA.
| |
Collapse
|
50
|
French BM, Sendil S, Pierson RN, Azimzadeh AM. The role of sialic acids in the immune recognition of xenografts. Xenotransplantation 2017; 24. [PMID: 29057592 PMCID: PMC10167934 DOI: 10.1111/xen.12345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Presentation of sialic acid (Sia) varies among different tissues and organs within each species, and between species. This diversity has biologically important consequences regarding the recognition of cells by "xeno" antibodies (Neu5Gc vs Neu5Ac). Sia also plays a central role in inflammation by influencing binding of the asialoglycoprotein receptor 1 (ASGR-1), Siglec-1 (Sialoadhesin), and cellular interactions mediated by the selectin, integrin, and galectin receptor families. This review will focus on what is known about basic Sia structure and function in association with xenotransplantation, how changes in sialylation may occur in this context (through desialylation or changes in sialyltransferases), and how this fundamental pathway modulates adhesive and cell activation pathways that appear to be particularly crucial to homeostasis and inflammation for xenografts.
Collapse
Affiliation(s)
- Beth M French
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| | - Selin Sendil
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| | - Richard N Pierson
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| | - Agnes M Azimzadeh
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| |
Collapse
|