1
|
Hermansen JU, Yin Y, Urban A, Myklebust CV, Karlsen L, Melvold K, Tveita AA, Taskén K, Munthe LA, Tjønnfjord GE, Skånland SS. A tumor microenvironment model of chronic lymphocytic leukemia enables drug sensitivity testing to guide precision medicine. Cell Death Discov 2023; 9:125. [PMID: 37055391 PMCID: PMC10101987 DOI: 10.1038/s41420-023-01426-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
The microenvironment of chronic lymphocytic leukemia (CLL) cells in lymph nodes, spleen, and bone marrow provides survival, proliferation, and drug resistance signals. Therapies need to be effective in these compartments, and pre-clinical models of CLL that are used to test drug sensitivity must mimic the tumor microenvironment to reflect clinical responses. Ex vivo models have been developed that capture individual or multiple aspects of the CLL microenvironment, but they are not necessarily compatible with high-throughput drug screens. Here, we report on a model that has reasonable associated costs, can be handled in a regularly equipped cell lab, and is compatible with ex vivo functional assays including drug sensitivity screens. The CLL cells are cultured with fibroblasts that express the ligands APRIL, BAFF and CD40L for 24 h. The transient co-culture was shown to support survival of primary CLL cells for at least 13 days, and mimic in vivo drug resistance signals. Ex vivo sensitivity and resistance to the Bcl-2 antagonist venetoclax correlated with in vivo responses. The assay was used to identify treatment vulnerabilities and guide precision medicine for a patient with relapsed CLL. Taken together, the presented CLL microenvironment model enables clinical implementation of functional precision medicine in CLL.
Collapse
Affiliation(s)
- Johanne U Hermansen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yanping Yin
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Aleksandra Urban
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Camilla V Myklebust
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Linda Karlsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katrine Melvold
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders A Tveita
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ludvig A Munthe
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Geir E Tjønnfjord
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Sigrid S Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Ratra Y, Kumar N, Saha MK, Bharadwaj C, Chongtham C, Bais SS, Medigeshi G, Arimbasseri GA, Basak S. A Vitamin D-RelB/NF-κB Pathway Limits Chandipura Virus Multiplication by Rewiring the Homeostatic State of Autoregulatory Type 1 IFN-IRF7 Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:559-568. [PMID: 35851541 DOI: 10.4049/jimmunol.2101054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/20/2022] [Indexed: 10/17/2023]
Abstract
Besides its functions in the skeletomuscular system, vitamin D is known to alleviate viral-inflicted pathologies. However, the mechanism underlying protective vitamin D function remains unclear. We examined the role of vitamin D in controlling cellular infections by Chandipura virus, an RNA virus implicated in human epidemics. How immune signaling pathways, including those regulating NF-κB and IFN regulatory factors (IRFs), are activated in virus-infected cells has been well studied. Our investigation involving human- and mouse-derived cells revealed that vitamin D instructs the homeostatic state of these antiviral pathways, leading to cellular resilience to subsequent viral infections. In particular, vitamin D provoked autoregulatory type 1 IFN-IRF7 signaling even in the absence of virus infection by downmodulating the expression of the IFN-inhibitory NF-κB subunit RelB. Indeed, RelB deficiency rendered vitamin D treatment redundant, whereas IRF7 depletion abrogated antiviral vitamin D action. In sum, immune signaling homeostasis appears to connect micronutrients to antiviral immunity at the cellular level. The proposed link may have a bearing on shaping public health policy during an outbreak.
Collapse
Affiliation(s)
- Yashika Ratra
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Manti K Saha
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Chandrima Bharadwaj
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Chen Chongtham
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India; and
| | - Sachendra S Bais
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | | | | | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
3
|
Simultaneous Inhibition of PD-1 and Stimulation of CD40 Signaling Pathways by Anti-PD-L1/CD40L Bispecific Fusion Protein Synergistically Activate Target and Effector Cells. Int J Mol Sci 2021; 22:ijms222111302. [PMID: 34768776 PMCID: PMC8583728 DOI: 10.3390/ijms222111302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies (BsAbs) or fusion proteins (BsAbFPs) present a promising strategy for cancer immunotherapy. Numerous BsAbs targeting coinhibitory and costimulatory pathways have been developed for retargeting T cells and antigen presenting cells (APCs). It is challenging to assess the potency of BsAb that engages two different signaling pathways simultaneously in a single assay format, especially when the two antigen targets are expressed on different cells. To explore the potency of anti-PD-L1/CD40L BsAbFP, a fusion protein that binds to human CD40 and PD-L1, we engineered CHO cells as surrogate APCs that express T cell receptor activator and PD-L1, Jurkat cells with PD-1 and NFAT-luciferase reporter as effector T cells, and Raji cell with NFkB-luciferase that endogenously expresses CD40 as accessory B cells. A novel reporter gene bioassay was developed using these cell lines that allows anti-PD-L1/CD40L BsAbFP to engages both PD-1/PD-L1 and CD40/CD40L signaling pathways in one assay. As both reporters use firefly luciferase, the effects of activating both signaling pathways is observed as an increase in luminescence, either as a higher upper asymptote, a lower EC50, or both. This dual target reporter gene bioassay system reflects potential mechanism of action and demonstrated the ability of anti-PD-L1/CD40L BsAbFP to synergistically induce biological response compared to the combination of anti-PD-L1 monovalent monoclonal antibody and agonist CD40L fusion protein, or either treatment alone. The results also showed a strong correlation between the drug dose and biological response within the tested potency range with good linearity, accuracy, precision, specificity and stability indicating properties, suggesting that this “three-cell-in-one” dual target reporter gene bioassay is suitable for assessing potency, structure-function and critical quality attributes of anti-PD-L1/CD40L BsAbFP. This approach could be used for developing dual target bioassays for other BsAbs and antibodies used for combination therapy.
Collapse
|
4
|
Gadeyne L, Van Herck Y, Milli G, Atak ZK, Bolognesi MM, Wouters J, Marcelis L, Minia A, Pliaka V, Roznac J, Alexopoulos LG, Cattoretti G, Bechter O, Oord JVD, De Smet F, Antoranz A, Bosisio FM. A Multi-Omics Analysis of Metastatic Melanoma Identifies a Germinal Center-Like Tumor Microenvironment in HLA-DR-Positive Tumor Areas. Front Oncol 2021; 11:636057. [PMID: 33842341 PMCID: PMC8029980 DOI: 10.3389/fonc.2021.636057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
The emergence of immune checkpoint inhibitors has dramatically changed the therapeutic landscape for patients with advanced melanoma. However, relatively low response rates and a high incidence of severe immune-related adverse events have prompted the search for predictive biomarkers. A positive predictive value has been attributed to the aberrant expression of Human Leukocyte Antigen-DR (HLA-DR) by melanoma cells, but it remains unknown why this is the case. In this study, we have examined the microenvironment of HLA-DR positive metastatic melanoma samples using a multi-omics approach. First, using spatial, single-cell mapping by multiplexed immunohistochemistry, we found that the microenvironment of HLA-DR positive melanoma regions was enriched by professional antigen presenting cells, including classical dendritic cells and macrophages, while a more general cytotoxic T cell exhaustion phenotype was present in these regions. In parallel, transcriptomic analysis on micro dissected tissue from HLA-DR positive and HLA-DR negative areas showed increased IFNγ signaling, enhanced leukocyte adhesion and mononuclear cell proliferation in HLA-DR positive areas. Finally, multiplexed cytokine profiling identified an increased expression of germinal center cytokines CXCL12, CXCL13 and CCL19 in HLA-DR positive metastatic lesions, which, together with IFNγ and IL4 could serve as biomarkers to discriminate tumor samples containing HLA-DR overexpressing tumor cells from HLA-DR negative samples. Overall, this suggests that HLA-DR positive areas in melanoma attract the anti-tumor immune cell infiltration by creating a dystrophic germinal center-like microenvironment where an enhanced antigen presentation leads to an exhausted microenvironment, nevertheless representing a fertile ground for a better efficacy of anti-PD-1 inhibitors due to simultaneous higher levels of PD-1 in the immune cells and PD-L1 in the HLA-DR positive melanoma cells.
Collapse
Affiliation(s)
| | - Yannick Van Herck
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Giorgia Milli
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | - Jasper Wouters
- Laboratory of Computational Biology, KU Leuven, Leuven, Belgium
| | - Lukas Marcelis
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | - Jan Roznac
- ProtATonce Ltd, Athens, Greece.,Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Leonidas G Alexopoulos
- ProtATonce Ltd, Athens, Greece.,Biomedical Systems Laboratory, Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece
| | - Giorgio Cattoretti
- Pathology, Department of Medicine & Surgery, University of Milano-Bicocca, Milan, Italy
| | - Oliver Bechter
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Joost Van Den Oord
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Asier Antoranz
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Francesca Maria Bosisio
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Cho S, Lee HM, Yu IS, Choi YS, Huang HY, Hashemifar SS, Lin LL, Chen MC, Afanasiev ND, Khan AA, Lin SW, Rudensky AY, Crotty S, Lu LF. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun 2018; 9:2757. [PMID: 30013024 PMCID: PMC6048122 DOI: 10.1038/s41467-018-05196-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
Reciprocal interactions between B and follicular T helper (Tfh) cells orchestrate the germinal center (GC) reaction, a hallmark of humoral immunity. Abnormal GC responses could lead to the production of pathogenic autoantibodies and the development of autoimmunity. Here we show that miR-146a controls GC responses by targeting multiple CD40 signaling pathway components in B cells; by contrast, loss of miR-146a in T cells does not alter humoral responses. However, specific deletion of both miR-146a and its paralog, miR-146b, in T cells increases Tfh cell numbers and enhanced GC reactions. Thus, our data reveal differential cell-intrinsic regulations of GC B and Tfh cells by miR-146a and miR-146b. Together, members of the miR-146 family serve as crucial molecular brakes to coordinately control GC reactions to generate protective humoral responses without eliciting unwanted autoimmunity. In the germinal center (GC), B and T cells interact to induce the production of protective antibodies against threats. Here the authors show that microRNA miR-146a modulates CD40 signaling in GC B cells, while both miR-146a and miR-146b synergize to control GC T cell responses, thereby implicating intricate controls of GC response by miR-146.
Collapse
Affiliation(s)
- Sunglim Cho
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Hyang-Mi Lee
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Department of Medicine, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Hsi-Yuan Huang
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | - Ling-Li Lin
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Mei-Chi Chen
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Nikita D Afanasiev
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | | | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Division of Infectious Diseases, Department of Medicine, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA. .,Moores Cancer Center, University of California, La Jolla, San Diego, CA, 92093, USA. .,Center for Microbiome Innovation, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
6
|
Roy P, Sarkar UA, Basak S. The NF-κB Activating Pathways in Multiple Myeloma. Biomedicines 2018; 6:biomedicines6020059. [PMID: 29772694 PMCID: PMC6027071 DOI: 10.3390/biomedicines6020059] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma(MM), an incurable plasma cell cancer, represents the second most prevalent hematological malignancy. Deregulated activity of the nuclear factor kappaB (NF-κB) family of transcription factors has been implicated in the pathogenesis of multiple myeloma. Tumor microenvironment-derived cytokines and cancer-associated genetic mutations signal through the canonical as well as the non-canonical arms to activate the NF-κB system in myeloma cells. In fact, frequent engagement of both the NF-κB pathways constitutes a distinguishing characteristic of myeloma. In turn, NF-κB signaling promotes proliferation, survival and drug-resistance of myeloma cells. In this review article, we catalog NF-κB activating genetic mutations and microenvironmental cues associated with multiple myeloma. We then describe how the individual canonical and non-canonical pathways transduce signals and contribute towards NF-κB -driven gene-expressions in healthy and malignant cells. Furthermore, we discuss signaling crosstalk between concomitantly triggered NF-κB pathways, and its plausible implication for anomalous NF-κB activation and NF-κB driven pro-survival gene-expressions in multiple myeloma. Finally, we propose that mechanistic understanding of NF-κB deregulations may provide for improved therapeutic and prognostic tools in multiple myeloma.
Collapse
Affiliation(s)
- Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
7
|
Zaczyńska E, Kochanowska I, Kruzel M, Zimecki M. Lactoferrin Prevents Susceptibility of WEHI 231 Cells to Anti-Ig-Induced Cell Death Promoting Cell Differentiation. Folia Biol (Praha) 2018; 64:16-22. [PMID: 29871734 DOI: 10.14712/fb2018064010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Immature B cells are susceptible to apoptosis due to ligation of surface immunoglobulin receptors. The WEHI 231 cell line represents a useful model to study the mode of action of factors preventing apoptosis. In this work we investigated the protective effects of multi-species lactoferrins in anti-mouse Ig-induced WEHI 231 cell death. Bovine milk-derived lactoferrin (bLF), recombinant human lactoferrin expressed in Chinese hamster ovary cells - rhLF(CHO) or in human endothelial kidney cells - rhLF(HEK), and recombinant mouse lactoferrin expressed in Chinese hamster ovary cells - rmLF(CHO), were used. Goat-anti-mouse Ig antibodies were used to induce cell apoptosis. Survival of WEHI 231 cells in culture was measured using the colorimetric MTT method. Expression of signalling molecules and subunits of interleukin 2 receptor was determined by the RT PCR method. The results showed that anti-mouse Ig antibodies inhibited cell growth in a dose-dependent manner. The lactoferrins alone had no effect on the cell survival. The cells exposed to LFs, prior to anti-Ig treatment, were rescued to a significant degree from cell death. Determination of the signalling molecule expression revealed almost complete suppression of caspase-3 and NF-κB1 by bLF in untreated cells, as well as deep suppression of caspase-3, block of Fas, and 4-fold increase of NF-κB1 in cells incubated with bLF prior to anti-Ig treatment. In addition, differential changes in the expression of interleukin 2 subunits upon bLF treatment were found, indicating a process of cell differentiation. In conclusion, we showed that LF-induced cell differentiation in immature B-cell line WEHI 231 was correlated with partial protection of the cells from anti-Ig-induced cell death.
Collapse
Affiliation(s)
- E Zaczyńska
- Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - I Kochanowska
- Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - M Kruzel
- McGovern Medical School, University of Texas, Health Science Center, Houston, Texas, USA
| | - M Zimecki
- Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
8
|
S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression. Blood 2017; 130:777-788. [DOI: 10.1182/blood-2017-02-769851] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
Key Points
Plasma-derived exosomes from patients with CLL exhibit different protein cargo compositions depending on disease status and progression. S100-A9 protein is overexpressed and S100-A9 cargo in exosomes activates NF-κB pathway in patients with CLL during disease progression.
Collapse
|
9
|
Iu M, Zago M, Rico de Souza A, Bouttier M, Pareek S, White JH, Hamid Q, Eidelman DH, Baglole CJ. RelB attenuates cigarette smoke extract-induced apoptosis in association with transcriptional regulation of the aryl hydrocarbon receptor. Free Radic Biol Med 2017; 108:19-31. [PMID: 28254546 DOI: 10.1016/j.freeradbiomed.2017.02.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic and prevalent respiratory disease caused primarily by long term inhalation of cigarette smoke. A major hallmark of COPD is elevated apoptosis of structural lung cells including fibroblasts. The NF-κB member RelB may suppress apoptosis in response to cigarette smoke, but its role in lung cell survival is not known. RelB may act as a pro-survival factor by controlling the expression of superoxide dismutase 2 (SOD2). SOD2 is also regulated by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that suppresses cigarette smoke-induced apoptosis. As the AhR is also a binding partner for RelB, we speculate that RelB suppresses cigarette smoke-induced apoptosis by regulating the AhR. Using an in vitro model of cigarette smoke exposure (cigarette smoke extract [CSE]), we found that CSE down-regulated RelB expression in mouse lung fibroblasts, which was associated with elevated levels of cleaved PARP. Genetic ablation of RelB elevated CSE-induced apoptosis, including chromatin condensation, and reduced mitochondrial function. There was also more reactive oxygen species production in RelB-/- cells exposed to CSE. While there was no alteration in Nrf2 expression or localization between RelB-/- and wild type cells in response to CSE, RelB-/- cells displayed significantly decreased AhR mRNA and protein expression, concomitant with loss of AhR target gene expression (Cyp1a1, Cyp1b1, Nqo1). Finally, we found that RelB binds to the Ahr gene at 3 sites to potentially increase its expression via transcriptional induction. These data support that RelB suppresses cigarette smoke-induced apoptosis, potentially by increasing the AhR. Together, these two proteins may comprise an important cell survival signaling pathway that reduces apoptosis upon cigarette smoke exposure.
Collapse
Affiliation(s)
- Matthew Iu
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Michela Zago
- Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| | - Manuella Bouttier
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Swati Pareek
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - John H White
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Qutayba Hamid
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pathology, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pathology, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre (RI MUHC), Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Hahn M, Bürckert JP, Luttenberger CA, Klebow S, Hess M, Al-Maarri M, Vogt M, Reißig S, Hallek M, Wienecke-Baldacchino A, Buch T, Muller CP, Pallasch CP, Wunderlich FT, Waisman A, Hövelmeyer N. Aberrant splicing of the tumor suppressor CYLD promotes the development of chronic lymphocytic leukemia via sustained NF-κB signaling. Leukemia 2017; 32:72-82. [DOI: 10.1038/leu.2017.168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022]
|
11
|
Clapes T, Lefkopoulos S, Trompouki E. Stress and Non-Stress Roles of Inflammatory Signals during HSC Emergence and Maintenance. Front Immunol 2016; 7:487. [PMID: 27872627 PMCID: PMC5098161 DOI: 10.3389/fimmu.2016.00487] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare population that gives rise to almost all cells of the hematopoietic system, including immune cells. Until recently, it was thought that immune cells sense inflammatory signaling and HSCs respond only secondarily to these signals. However, it was later shown that adult HSCs could directly sense and respond to inflammatory signals, resulting in a higher output of immune cells. Recent studies demonstrated that inflammatory signaling is also vital for HSC ontogeny. These signals are thought to arise in the absence of pathogens, are active during development, and indispensable for HSC formation. In contrast, during times of stress and disease, inflammatory responses can be activated and can have devastating effects on HSCs. In this review, we summarize the current knowledge about inflammatory signaling in HSC development and maintenance, as well as the endogenous molecular cues that can trigger inflammatory pathway activation. Finally, we comment of the role of inflammatory signaling in hematopoietic diseases.
Collapse
Affiliation(s)
- Thomas Clapes
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics , Freiburg , Germany
| | - Stylianos Lefkopoulos
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics , Freiburg , Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics , Freiburg , Germany
| |
Collapse
|
12
|
Crassini K, Shen Y, Mulligan S, Giles Best O. Modeling the chronic lymphocytic leukemia microenvironment in vitro. Leuk Lymphoma 2016; 58:266-279. [PMID: 27756161 DOI: 10.1080/10428194.2016.1204654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microenvironments within the lymph node and bone marrow promote proliferation and drug resistance in chronic lymphocytic leukemia (CLL). Successful treatment of CLL must therefore target the leukemic cells within these compartments. A better understanding of the interaction between CLL cells and the tumor microenvironment has led to the development of in vitro models that mimic the mechanisms that support leukemic cell survival and proliferation in vivo. Employing these models as part of the pre-clinical evaluation of novel therapeutic agents enables a better approximation of their potential clinical efficacy. In this review we summarize the current literature describing how different aspects of the tumor microenvironment have been modeled in vitro and detail how these models have been employed to study the biology of the disease and potential efficacy of novel therapeutic agents.
Collapse
Affiliation(s)
- Kyle Crassini
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital , Sydney , Australia
| | - Yandong Shen
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital , Sydney , Australia
| | - Stephen Mulligan
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital , Sydney , Australia.,b Chronic Lymphocytic Leukemia Research Consortium (CLLARC) , Australia
| | - O Giles Best
- a Northern Blood Research Centre , Kolling Institute of Medical Research, Royal North Shore Hospital , Sydney , Australia.,b Chronic Lymphocytic Leukemia Research Consortium (CLLARC) , Australia
| |
Collapse
|
13
|
Matthews GM, de Matos Simoes R, Dhimolea E, Sheffer M, Gandolfi S, Dashevsky O, Sorrell JD, Mitsiades CS. NF-κB dysregulation in multiple myeloma. Semin Cancer Biol 2016; 39:68-76. [PMID: 27544796 DOI: 10.1016/j.semcancer.2016.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022]
Abstract
The nuclear factor-κB (NF-κB) transcription factor family plays critical roles in the pathophysiology of hematologic neoplasias, including multiple myeloma. The current review examines the roles that this transcription factor system plays in multiple myeloma cells and the nonmalignant accessory cells of the local microenvironment; as well as the evidence indicating that a large proportion of myeloma patients harbor genomic lesions which perturb diverse genes regulating the activity of NF-κB. This article also discusses the therapeutic targeting of the NF-κB pathway using proteasome inhibitors, a pharmacological class that has become a cornerstone in the therapeutic management of myeloma; and reviews some of the future challenges and opportunities for NF-κB-related research in myeloma.
Collapse
Affiliation(s)
- Geoffrey M Matthews
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Ricardo de Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Jeffrey D Sorrell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, United States.
| |
Collapse
|
14
|
Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies. Cell Mol Life Sci 2014; 71:2083-102. [PMID: 24419302 PMCID: PMC11113378 DOI: 10.1007/s00018-013-1545-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/22/2022]
Abstract
The nuclear factor κB or NF-κB transcription factor family plays a key role in several cellular functions, i.e. inflammation, apoptosis, cell survival, proliferation, angiogenesis, and innate and acquired immunity. The constitutive activation of NF-κB is typical of most malignancies and plays a major role in tumorigenesis. In this review, we describe NF-κB and its two pathways: the canonical pathway (RelA/p50) and the non-canonical pathway (RelB/p50 or RelB/p52). We then consider the role of the NF-κB subunits in the development and functional activity of B cells, T cells, macrophages and dendritic cells, which are the targets of hematological malignancies. The relevance of the two pathways is described in normal B and T cells and in hematological malignancies, acute and chronic leukemias (ALL, AML, CLL, CML), B lymphomas (DLBCLs, Hodgkin's lymphoma), T lymphomas (ATLL, ALCL) and multiple myeloma. We describe the interaction of NF-κB with the apoptotic pathways induced by TRAIL and the transcription factor p53. Finally, we discuss therapeutic anti-tumoral approaches as mono-therapies or combination therapies aimed to block NF-κB activity and to induce apoptosis (PARAs and Nutlin-3).
Collapse
Affiliation(s)
- Chiara Gasparini
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy,
| | | | | | | |
Collapse
|
15
|
Woetzel D, Huber R, Kupfer P, Pohlers D, Pfaff M, Driesch D, Häupl T, Koczan D, Stiehl P, Guthke R, Kinne RW. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res Ther 2014; 16:R84. [PMID: 24690414 PMCID: PMC4060460 DOI: 10.1186/ar4526] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Discrimination of rheumatoid arthritis (RA) patients from patients with other inflammatory or degenerative joint diseases or healthy individuals purely on the basis of genes differentially expressed in high-throughput data has proven very difficult. Thus, the present study sought to achieve such discrimination by employing a novel unbiased approach using rule-based classifiers. METHODS Three multi-center genome-wide transcriptomic data sets (Affymetrix HG-U133 A/B) from a total of 79 individuals, including 20 healthy controls (control group - CG), as well as 26 osteoarthritis (OA) and 33 RA patients, were used to infer rule-based classifiers to discriminate the disease groups. The rules were ranked with respect to Kiendl's statistical relevance index, and the resulting rule set was optimized by pruning. The rule sets were inferred separately from data of one of three centers and applied to the two remaining centers for validation. All rules from the optimized rule sets of all centers were used to analyze their biological relevance applying the software Pathway Studio. RESULTS The optimized rule sets for the three centers contained a total of 29, 20, and 8 rules (including 10, 8, and 4 rules for 'RA'), respectively. The mean sensitivity for the prediction of RA based on six center-to-center tests was 96% (range 90% to 100%), that for OA 86% (range 40% to 100%). The mean specificity for RA prediction was 94% (range 80% to 100%), that for OA 96% (range 83.3% to 100%). The average overall accuracy of the three different rule-based classifiers was 91% (range 80% to 100%). Unbiased analyses by Pathway Studio of the gene sets obtained by discrimination of RA from OA and CG with rule-based classifiers resulted in the identification of the pathogenetically and/or therapeutically relevant interferon-gamma and GM-CSF pathways. CONCLUSION First-time application of rule-based classifiers for the discrimination of RA resulted in high performance, with means for all assessment parameters close to or higher than 90%. In addition, this unbiased, new approach resulted in the identification not only of pathways known to be critical to RA, but also of novel molecules such as serine/threonine kinase 10.
Collapse
Affiliation(s)
- Dirk Woetzel
- BioControl Jena GmbH, Wildenbruchstraße 15, 07745 Jena, Germany
| | - Rene Huber
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus Rudolf Elle, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Peter Kupfer
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Dirk Pohlers
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus Rudolf Elle, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany
- Present address: Center of Diagnostics GmbH, Chemnitz Hospital, Flemmingstr. 2, 09116 Chemnitz, Germany
| | - Michael Pfaff
- BioControl Jena GmbH, Wildenbruchstraße 15, 07745 Jena, Germany
- Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Dominik Driesch
- BioControl Jena GmbH, Wildenbruchstraße 15, 07745 Jena, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Schillingallee 68, 18057 Rostock, Germany
| | - Peter Stiehl
- Institute of Pathology, University of Leipzig, Liebigstraße 24, 04103 Leipzig, Germany
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Raimund W Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus Rudolf Elle, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany
| |
Collapse
|
16
|
Zhu L, Zhu B, Yang L, Zhao X, Jiang H, Ma F. RelB regulates Bcl-xl expression and the irradiation-induced apoptosis of murine prostate cancer cells. Biomed Rep 2014; 2:354-358. [PMID: 24839547 PMCID: PMC4022971 DOI: 10.3892/br.2014.250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/27/2014] [Indexed: 12/17/2022] Open
Abstract
Apoptosis in prostate cancer (PCa) induced by ionizing radiation (IR) is believed to play a critical role in radioresistance. Bcl-xl, an important member of the anti-apoptotic Bcl-2 family, has critical roles in tumor progression and development. The aim of the present study was to investigate the association of Bcl-xl expression and radiosensitivity from murine PCa RM-1 cells. An adenovirus-mediated RNA interference technique was employed to inhibit the expression of the RelB gene. RelB proteins were detected upon irradiation following transfection with small interfering (si)RelB, as shown by western blot analysis. The radiosensitivity of the RM-1 cells was determined by clonogenic assays. The apoptosis of the RM-1 cells were detected by flow cytometry assay, then quantitative polymerase chain reaction assays were performed to determine the expression level of Bcl-xl mRNA in the RM-1 cells. Radiation treatment increased the RelB protein levels from the cytosol and nucleus in the RM-1 cells. The protein expression levels of RelB in the pLentilox-sh-RelB-transfected RM-1 cells were significantly lower than in the negative interference group following radiation treatment. The percentage of cells undergoing apoptosis in the siRelB-RM-1 group was significantly higher than that in the control group following radiation treatment. Finally, a positive link between Bcl-xl expression and RelB activity was established in the RM-1 cells. Inhibition of RelB correlates with a decrease in expression of Bcl-xl. In conclusion, adenovirus-mediated siRNA targeting RelB inhibits Bcl-xl expression, enhances radiosensitivity and regulates the irradiation-induced apoptosis of the murine PCa RM-1 cell line.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Bin Zhu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Luoyan Yang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiaokun Zhao
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Honhyi Jiang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Fang Ma
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
17
|
Abstract
RelB is one of the more unusual members of the NF-κB family. This family, arguably the best known group of transcription regulators, regulates an astonishing array of cell types and biological processes. This includes regulation of cell growth, differentiation and death by apoptosis, and the development and function of the innate and adaptive-immune system. RelB is best known for its roles in lymphoid development, DC biology, and noncanonical signaling. Within the last few years, however, surprising functions of RelB have emerged. The N-terminal leucine zipper motif of RelB, a motif unique among the NF-κB family, may associate with more diverse DNA sequences than other NF-κB members. RelB is capable of direct binding to the AhR that supports the xenobiotic-detoxifying pathway. RelB can regulate the circadian rhythm by directly binding to the BMAL partner of CLOCK. Finally, RelB also couples with bioenergy NAD(+) sensor SIRT1 to integrate acute inflammation with changes in metabolism and mitochondrial bioenergetics. In this review, we will explore these unique aspects of RelB, specifically with regard to its role in immunity.
Collapse
Affiliation(s)
- Patrick Millet
- 1.Wake Forest University Health Sciences, Wake Forest University, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
18
|
Benedetti G, Fokkelman M, Yan K, Fredriksson L, Herpers B, Meerman J, van de Water B, de Graauw M. The nuclear factor κB family member RelB facilitates apoptosis of renal epithelial cells caused by cisplatin/tumor necrosis factor α synergy by suppressing an epithelial to mesenchymal transition-like phenotypic switch. Mol Pharmacol 2013; 84:128-38. [PMID: 23625948 DOI: 10.1124/mol.112.084053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cis-diamminedichloroplatinum(II) (cisplatin)-induced renal proximal tubular apoptosis is known to be preceded by actin cytoskeleton reorganization, in conjunction with disruption of cell-matrix and cell-cell adhesion. In the present study, we show that the proinflammatory cytokine tumor necrosis factor α (TNF-α) aggravated these cisplatin-induced F-actin and cell adhesion changes, which was associated with enhanced cisplatin-induced apoptosis of immortalized proximal tubular epithelial cells. TNF-α-induced RelB expression and lentiviral small hairpin RNA (shRNA)-mediated knockdown of RelB, but not other nuclear factor κB members, abrogated the synergistic apoptosis observed with cisplatin/TNF-α treatment to the level of cisplatin-induced apoptosis. This protective effect was associated with increased stress fiber formation, cell-matrix, and cell-cell adhesion in the shRNARelB (shRelB) cells during cisplatin/TNF-α treatment, mimicking an epithelial-to-mesenchymal phenotypic switch. Indeed, gene array analysis revealed that knockdown of RelB was associated with upregulation of several actin regulatory genes, including Snai2 and the Rho GTPase proteins Rhophilin and Rho guanine nucleotide exchange factor 3 (ARHGEF3). Pharmacological inhibition of Rho kinase signaling re-established the synergistic apoptosis induced by combined cisplatin/TNF-α treatment of shRelB cells. In conclusion, our study shows for the first time that RelB is required for the cisplatin/TNF-α-induced cytoskeletal reorganization and apoptosis in renal cells by controlling a Rho kinase-dependent signaling network.
Collapse
Affiliation(s)
- Giulia Benedetti
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratory, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhao Y, Lu ZP, Cao JF, Chen WC. Significance of expression of CD40 in ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2012; 20:3801-3803. [DOI: 10.11569/wcjd.v20.i36.3801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of CD40 in ulcerative colitis.
METHODS: The expression of CD40 protein was detected by immunohistochemistry in 56 cases of human ulcerative colitis and 10 case of normal colon tissue.
RESULTS: The positive rate of CD40 expression in active ulcerative colitis was significantly higher than that in normal colon tissue (62.50% vs 20.00%, χ2 = 6.2217, P < 0.05). The positive rate of CD40 expression was significantly higher in moderately than in mildly active ulcerative colitis (P < 0.05).
CONCLUSION: CD40 is abnormally expressed in colon tissue of patients with ulcerative colitis.
Collapse
|
20
|
Kaposi's sarcoma-associated herpesvirus oncoprotein K13 protects against B cell receptor-induced growth arrest and apoptosis through NF-κB activation. J Virol 2012; 87:2242-52. [PMID: 23236068 DOI: 10.1128/jvi.01393-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) has been linked to the development of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease (MCD). We have characterized the role of KSHV-encoded viral FLICE inhibitory protein (vFLIP) K13 in the modulation of anti-IgM-induced growth arrest and apoptosis in B cells. We demonstrate that K13 protects WEHI 231, an immature B-cell line, against anti-IgM-induced growth arrest and apoptosis. The protective effect of K13 was associated with the activation of the NF-κB pathway and was deficient in a mutant K13 with three alanine substitutions at positions 58 to 60 (K13-58AAA) and a structural homolog, vFLIP E8, both of which lack NF-κB activity. K13 upregulated the expression of NF-κB subunit RelB and blocked the anti-IgM-induced decline in c-Myc and rise in p27(Kip1) that have been associated with growth arrest and apoptosis. K13 also upregulated the expression of Mcl-1, an antiapoptotic member of the Bcl2 family. Finally, K13 protected the mature B-cell line Ramos against anti-IgM-induced apoptosis through NF-κB activation. Inhibition of anti-IgM-induced apoptosis by K13 may contribute to the development of KSHV-associated lymphoproliferative disorders.
Collapse
|
21
|
Shanmugam R, Gade P, Wilson-Weekes A, Sayar H, Suvannasankha A, Goswami C, Li L, Gupta S, Cardoso AA, Baghdadi TA, Sargent KJ, Cripe LD, Kalvakolanu DV, Boswell HS. A noncanonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia. Clin Cancer Res 2011; 18:360-369. [PMID: 22096027 DOI: 10.1158/1078-0432.ccr-10-3022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Death-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis. EXPERIMENTAL DESIGN Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. RESULTS AMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB. CONCLUSIONS Flt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML.
Collapse
Affiliation(s)
- Rajasubramaniam Shanmugam
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| | - Padmaja Gade
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - Annique Wilson-Weekes
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| | - Hamid Sayar
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Attaya Suvannasankha
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| | - Chirayu Goswami
- Biostatistics and Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lang Li
- Biostatistics and Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sushil Gupta
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Angelo A Cardoso
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Tareq Al Baghdadi
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Larry D Cripe
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - H Scott Boswell
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| |
Collapse
|
22
|
Acquati F, Monti L, Lualdi M, Fabbri M, Sacco MG, Gribaldo L, Taramelli R. Molecular signature induced by RNASET2, a tumor antagonizing gene, in ovarian cancer cells. Oncotarget 2011; 2:477-84. [PMID: 21646684 PMCID: PMC3248199 DOI: 10.18632/oncotarget.274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Using the Hey3Met2 human ovarian cancer cell line, we previously found the RNASET2 gene to possess a remarkable in vivo tumor suppressor activity, although no in vitro features such as inhibition of cell proliferation, clonogenic potential, impaired growth in soft agar and increase in apoptotic rate could be detected. This is reminiscent of the behavior of genes belonging to the class of tumor antagonizing genes (TAG) which act mainly within the context of the microenvironment. Here we present transcriptional profiles analysis which indicates that investigations of the mechanisms of TAG biological functions require a comparison between the in vitro and in vivo expression patterns. Indeed several genes displaying a biological function potentially related to tumor suppression could not be validated by subsequent in vivo expression analysis. On the other hand the fact that we could find congruency for three genes both in vivo and in vitro adds a warning to a too much stringent categorization of this class of genes which relies on the sensitivity of the methodological approaches.
Collapse
Affiliation(s)
- Francesco Acquati
- Dipartimento di Biotecnologie e Scienze Molecolari, Università degli Studi dell'Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lafarge S, Hamzeh-Cognasse H, Richard Y, Pozzetto B, Cogné M, Cognasse F, Garraud O. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells. Clin Exp Immunol 2011; 166:171-183. [PMID: 21985363 PMCID: PMC3219892 DOI: 10.1111/j.1365-2249.2011.04465.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2011] [Indexed: 01/05/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces.
Collapse
Affiliation(s)
- S Lafarge
- EFS Auvergne-Loire, Saint-Etienne, France
| | | | | | | | | | | | | |
Collapse
|
24
|
King RG, Herrin BR, Justement LB. Differential expression of the adaptor protein HSH2 controls the quantitative and qualitative nature of the humoral response. THE JOURNAL OF IMMUNOLOGY 2011; 187:3565-77. [PMID: 21873522 DOI: 10.4049/jimmunol.1101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Endogenous expression of the adaptor protein hematopoietic Src homology 2-containing adaptor protein (HSH2) is regulated in a dynamic manner during B cell maturation and differentiation. Developing B cells lack detectable HSH2, whereas transitional 1 and 2 B cells in the periphery exhibit increasing levels of expression. Mature follicular B cells exhibit decreased expression of HSH2 compared with transitional 2 B cells, and expression is further downregulated in germinal center B cells. In contrast, marginal zone B cells and B1a/b B cells exhibit high-level HSH2 expression. Regulation of HSH2 expression plays a critical role in determining the outcome of the humoral immune response as demonstrated using HSH2 transgenic (Tg) mice. Constitutive expression of HSH2 in the B lineage at levels comparable to B1a/b B cells results in decreased serum Ig titers for all subclasses with the exception of IgA. HSH2 Tg mice immunized with T-dependent or T-independent Ags exhibit a moderate decrease in the production of Ag-specific IgM, whereas class-switched isotypes are decreased by ∼80-90% compared with control mice. Analysis of HSH2 Tg B cell activation in vitro demonstrated that HSH2 selectively regulates the B cell response to TNF family receptors (i.e., CD40 and BAFF-R), but not BCR- or TLR-dependent signals. These data demonstrate that changes in HSH2 expression have profound effects on the humoral immune response.
Collapse
Affiliation(s)
- R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
25
|
Nguyen YH, Lee KY, Kim TJ, Kim SJ, Kang TM. CD40 Co-stimulation Inhibits Sustained BCR-induced Ca Signaling in Response to Long-term Antigenic Stimulation of Immature B Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:179-87. [PMID: 21860597 DOI: 10.4196/kjpp.2011.15.3.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 01/05/2023]
Abstract
Regulation of B cell receptor (BCR)-induced Ca(2+) signaling by CD40 co-stimulation was compared in long-term BCR-stimulated immature (WEHI-231) and mature (Bal-17) B cells. In response to long-term pre-stimulation of immature WEHI-231 cells to α-IgM antibody (0.5~48 hr), the initial transient decrease in BCR-induced [Ca(2+)](i) was followed by spontaneous recovery to control level within 24 hr. The recovery of Ca(2+) signaling in WEHI-231 cells was not due to restoration of internalized receptor but instead to an increase in the levels of PLCγ2 and IP(3)R-3. CD40 co-stimulation of WEHI-231 cells prevented BCR-induced cell cycle arrest and apoptosis, and it strongly inhibited the recovery of BCR-induced Ca(2+) signaling. CD40 co-stimulation also enhanced BCR internalization and reduced expression of PLCγ2 and IP(3)R-3. Pre-treatment of WEHI-231 cells with the antioxidant N-acetyl-L-cysteine (NAC) strongly inhibited CD40-mediated prevention of the recovery of Ca(2+) signaling. In contrast to immature WEHI-231 cells, identical long-term α-IgM pre-stimulation of mature Bal-17 cells abolished the increase in BCR-induced [Ca(2+)](i), regardless of CD40 co-stimulation. These results suggest that CD40-mediated signaling prevents antigen-induced cell cycle arrest and apoptosis of immature B cells through inhibition of sustained BCR-induced Ca(2+) signaling.
Collapse
Affiliation(s)
- Yen Hoang Nguyen
- Department of Physiology, SBRI, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | | | |
Collapse
|
26
|
Vogel CFA, Li W, Wu D, Miller JK, Sweeney C, Lazennec G, Fujisawa Y, Matsumura F. Interaction of aryl hydrocarbon receptor and NF-κB subunit RelB in breast cancer is associated with interleukin-8 overexpression. Arch Biochem Biophys 2011; 512:78-86. [PMID: 21640702 DOI: 10.1016/j.abb.2011.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/07/2011] [Accepted: 05/17/2011] [Indexed: 11/29/2022]
Abstract
The aryl hydrocarbon receptor (AhR) has been best known for its role in mediating the toxicity of dioxin. Here we show that AhR overexpression is found among estrogen receptor (ER)α-negative human breast tumors and that its overexpression is positively correlated to that of the NF-κB subunit RelB and Interleukin (IL)-8. Increased DNA binding activity of the AhR and RelB is coupled to IL-8 overexpression in primary breast cancer tissue, which was also supported by in situ hybridization. Activation of AhR in vitro by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced IL-8 expression in MDA-MB 436 and MCF-7 cells in an AhR and RelB dependent manner. Consistently, downregulation of RelB or AhR by small interfering RNAs (siRNA) decreased the level of IL-8 but increased expression of ERα in vitro in MCF-7 cells. Our results strongly suggest that RelB and AhR have a critical role in the regulation of IL-8 and reveal a supportive role of RelB and AhR in the anti-apoptotic response in human breast cancer cells. AhR and RelB may present a novel therapeutic target for inflammatory driven breast carcinogenesis and tumor progression. Overexpression of pro-survival factors AhR and RelB may explain the process of the development of environmentally-induced type of breast cancers.
Collapse
Affiliation(s)
- Christoph Franz Adam Vogel
- Department of Environmental Toxicology, University of California Davis, One Shields Avenue, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Amrein PC. The potential for dasatinib in treating chronic lymphocytic leukemia, acute myeloid leukemia, and myeloproliferative neoplasms. Leuk Lymphoma 2011; 52:754-63. [PMID: 21463117 DOI: 10.3109/10428194.2011.555890] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dasatinib is a kinase inhibitor that inhibits BCR-ABL, Src family kinases, c-Kit, and platelet-derived growth factor receptor kinase. It is licensed for the first- and second-line treatment of chronic myeloid leukemia and second-line treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia on the basis of BCR-ABL inhibition, but the activity of dasatinib against additional molecular targets may enable treatment of other hematologic disorders. Potential targets for dasatinib in chronic lymphocytic leukemia (CLL) include Lyn (a Src family kinase), ABL, and the associated CD40 pathway. Although dasatinib monotherapy has modest clinical activity in CLL, ongoing studies are evaluating combination treatment. In acute myeloid leukemia (AML), FLT3, Lyn, c-Kit, and BCR-ABL are expressed in a subpopulation of patients. To date, clinical responses to dasatinib in patients with unselected AML have been mixed and larger studies are needed, particularly correlating clinical response to molecular markers. Imatinib has been used successfully to treat patients with chronic eosinophilic disorders with the FIP1L1-PDGFRA fusion kinase; limited clinical data indicate that dasatinib could be active in imatinib-resistant disease. Ongoing clinical studies should further define the value of dasatinib in these disorders.
Collapse
Affiliation(s)
- Philip C Amrein
- Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Activation of the NF-kappaB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy. Proc Natl Acad Sci U S A 2011; 108:3743-8. [PMID: 21321191 DOI: 10.1073/pnas.1012753108] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Because our in silico analysis with a human transcription factor database demonstrated the presence of several binding sites for NF-κB, a central regulator of cellular immune and inflammatory responses, in the adeno-associated virus (AAV) genome, we investigated whether AAV uses NF-κB during its life cycle. We used small molecule modulators of NF-κB in HeLa cells transduced with recombinant AAV vectors. VP16, an NF-κB activator, augmented AAV vector-mediated transgene expression up to 25-fold. Of the two NF-κB inhibitors, Bay11, which blocks both the canonical and the alternative NF-κB pathways, totally ablated transgene expression, whereas pyrrolidone dithiocarbamate, which interferes with the classical NF-κB pathway, had no effect. Western blot analyses confirmed the abundance of the nuclear p52 protein component of the alternative NF-κB pathway in the presence of VP16, which was ablated by Bay11, suggesting that AAV transduction activates the alternative NF-κB pathway. In vivo, hepatic AAV gene transfer activated the canonical NF-κB pathway within 2 h, resulting in expression of proinflammatory cytokines and chemokines (likely reflecting the sensing of viral particles by antigen-presenting cells), whereas the alternative pathway was activated by 9 h. Bay11 effectively blocked activation of both pathways without interfering with long-term transgene expression while eliminating proinflammatory cytokine expression. These studies suggest that transient immunosuppression with NF-κB inhibitors before transduction with AAV vectors should lead to a dampened immune response, which has significant implications in the optimal use of AAV vectors in human gene therapy.
Collapse
|
29
|
Holley AK, Xu Y, St Clair DK, St Clair WH. RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. Ann N Y Acad Sci 2010; 1201:129-36. [PMID: 20649549 PMCID: PMC3107504 DOI: 10.1111/j.1749-6632.2010.05613.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Radiation therapy is in the front line for treatment of localized prostate cancer. However, a significant percentage of patients have radiation-resistant disease. The NF-kappaB pathway is an important factor for radiation resistance, and the classical (canonical) pathway is thought to confer protection of prostate cancer cells from ionizing radiation. Recently, the alternative (non-canonical) pathway, which is involved in prostate cancer aggressiveness, has also been shown to be important for radiation resistance in prostate cancer. The alternative NF-kappaB pathway component RelB protects prostate cancer cells from the detrimental effects of ionizing radiation, in part, by stimulating expression of the mitochondria-localized antioxidant enzyme manganese superoxide dismutase (MnSOD). Blocking RelB activation suppresses MnSOD expression and sensitizes prostate cancer cells to radiation. These results suggest that RelB-mediated modulation of the antioxidant capacity of prostate cancer cells is an important mechanism of radiation resistance. Therefore, targeting RelB activation may prove to be a valuable weapon in the oncologist's arsenal to defeat aggressive and radiation-resistant prostate cancer.
Collapse
Affiliation(s)
- Aaron K Holley
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
30
|
Bhattacharya N, Sarno A, Idler IS, Führer M, Zenz T, Döhner H, Stilgenbauer S, Mertens D. High-throughput detection of nuclear factor-kappaB activity using a sensitive oligo-based chemiluminescent enzyme-linked immunosorbent assay. Int J Cancer 2010; 127:404-11. [PMID: 19924814 DOI: 10.1002/ijc.25054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Contemporary research on cellular signaling has undergone a shift of focus from qualitative measurements of single signaling pathways to high-throughput quantitation of comprehensive signaling networks. Notably, nuclear factor-kappaB (NFkappaB) is a family of transcription factors involved in immune and inflammatory responses, developmental processes, cellular growth and apoptosis and is deregulated in a number of disease states. We have established a chemiluminescent oligonucleotide-based enzyme-linked immunosorbent assay (co-ELISA) that is simple and quantitative. In contrast to currently used assays, it allows quantitation of all NFkappaB components (i.e., RelA, p50, p52, RelB and c-Rel). In addition, it can make use of whole extract and does not require cumbersome nuclear/cytosolic fractionation, saving time and resources. Co-ELISA has a 3.5- to 43-fold higher signal-over-noise ratio than currently available assays, whereas the percent relative standard deviation is 3- to 6-fold lower. Furthermore, the novel method is faster than electrophoretic mobility shift assay, not restricted to transfectable cells as is the case for luciferase reporter assays and 10 times more cost efficient than commercially available ELISA assays. Co-ELISA is a sensitive, fast and cost-efficient quantitation method for all DNA-binding NFkappaB proteins that can be used in high-throughput experimentation.
Collapse
Affiliation(s)
- Nupur Bhattacharya
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Huang Q, Qu QX, Xie F, Hu JM, Chen YG, Zhang XG. Sensitization of SiHa cell to gemcitabine by CD40 activation and its overexpression in cervical carcinoma. Med Oncol 2010; 28:781-8. [PMID: 20467921 DOI: 10.1007/s12032-010-9538-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 11/30/2022]
Abstract
CD40, a member of the tumor necrosis factor receptor superfamily, is widely expressed on various cell types. Some studies show that CD40 expression is related to several carcinomas, where its function remains largely unknown. This study investigated the expression of CD40 on cervical carcinoma and evaluated the effect of agnostic anti-CD40 mAb (5C11) on tumor cell line (SiHa). CD40 expression on the primary cervical carcinoma samples was detected by immunohistochemistry. Results showed that CD40 is commonly expressed in human cervical carcinoma, which is higher than that of normal cervix, cervical precancerous tissue and chronic cervicitis. Treatment of the SiHa cell with the agonistic anti-CD40 monoclonal antibody or Gemcitabine alone did not inhibit the proliferation of the SiHa cell in vitro, but the activation of CD40 on SiHa could enhance its sensitivity to Gemcitabine. Furthermore, CD40 activation blocked SiHa in the S phase, stimulated proapoptotic Bax and inhibited antiapoptotic Bcl-XL mRNA synthesis in the SiHa cell. Apoptosis in SiHa was associated with an increasing ratio of Bax to Bcl-XL in mRNA levels. It is concluded that use of the anti-CD40 mAb 5C11 in combination with chemotherapy may have significant therapeutic potential.
Collapse
Affiliation(s)
- Qin Huang
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, 188# Shizi Street, 215006, Suzhou, China
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|
33
|
Zhang X, Voskens CJ, Sallin M, Maniar A, Montes CL, Zhang Y, Lin W, Li G, Burch E, Tan M, Hertzano R, Chapoval AI, Tamada K, Gastman BR, Schulze DH, Strome SE. CD137 Promotes Proliferation and Survival of Human B Cells. THE JOURNAL OF IMMUNOLOGY 2009; 184:787-95. [DOI: 10.4049/jimmunol.0901619] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Mineva ND, Wang X, Yang S, Ying H, Xiao ZXJ, Holick MF, Sonenshein GE. Inhibition of RelB by 1,25-dihydroxyvitamin D3 promotes sensitivity of breast cancer cells to radiation. J Cell Physiol 2009; 220:593-9. [PMID: 19373868 DOI: 10.1002/jcp.21765] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aberrant constitutive expression of the NF-kappaB c-Rel and RelA subunits in breast cancer cells was shown to promote their survival. Recently, we demonstrated that aggressive breast cancers constitutively express high levels of the RelB subunit, which promotes their more invasive phenotype via induction of the BCL2 gene. As these cancers are frequently resistant to therapy, here we tested the hypothesis that RelB promotes their survival. High RelB expressing Hs578T and MDA-MB-231 breast cancer cells were more resistant to gamma-radiation than MCF7 and ZR-75 cells, which express lower RelB levels. Knockdown of RelB in Hs578T led to decreased survival in response to gamma-irradiation, while conversely ectopic expression of RelB in MCF7 cells protected these cells from radiation. Similar data were obtained upon treatment of Hs578T or MCF7 cells with the chemotherapeutic agent doxorubicin. High serum levels of 25-hydroxyvitamin D are associated with decreased breast cancer risk and mortality, although, the mechanisms of its protective actions have not been fully elucidated. Treatment of Hs578T and Her-2/neu-driven NF639 cells with 1,25-dihydroxyvitamin D3 decreased RelB/RELB gene expression and levels of pro-survival targets Survivin, MnSOD and Bcl-2, while increasing their sensitivity to gamma-irradiation. Thus, RelB, which promotes survival and a more highly invasive phenotype of breast cancer cells, is a target of 1,25-dihydroxyvitamin D3, providing one mechanism for the observed protective role of 25-hydroxyvitamin D in patients with breast cancer.
Collapse
Affiliation(s)
- Nora D Mineva
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Tian W, Liou HC. RNAi-mediated c-Rel silencing leads to apoptosis of B cell tumor cells and suppresses antigenic immune response in vivo. PLoS One 2009; 4:e5028. [PMID: 19347041 PMCID: PMC2661141 DOI: 10.1371/journal.pone.0005028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/05/2009] [Indexed: 12/13/2022] Open
Abstract
c-Rel is a member of the Rel/NF-κB transcription factor family and is predominantly expressed in lymphoid and myeloid cells, playing a critical role in lymphocyte proliferation and survival. Persistent activation of the c-Rel signal transduction pathway is associated with allergies, inflammation, autoimmune diseases, and a variety of human malignancies. To explore the potential of targeting c-Rel as a therapeutic agent for these disorders, we designed a small interfering RNA (siRNA) to silence c-Rel expression in vitro and in vivo. C-Rel-siRNA expression via a retroviral vector in a B cell tumor cell line leads to growth arrest and apoptosis of the tumor cells. Silencing c-Rel in primary B cells in vitro compromises their proliferative and survival response to CD40 activation signals, similar to the impaired response of c-Rel knockout B cells. Most important, in vivo silencing of c-Rel results in significant impairment in T cell-mediated immune responses to antigenic stimulation. Our study thus validates the efficacy of c-Rel-siRNA, and suggests the development of siRNA-based therapy, as well as small molecular inhibitors for the treatment of B cell tumors as well as autoimmune diseases.
Collapse
Affiliation(s)
- Wenzhi Tian
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Hsiou-Chi Liou
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
|
37
|
Baglole CJ, Maggirwar SB, Gasiewicz TA, Thatcher TH, Phipps RP, Sime PJ. The aryl hydrocarbon receptor attenuates tobacco smoke-induced cyclooxygenase-2 and prostaglandin production in lung fibroblasts through regulation of the NF-kappaB family member RelB. J Biol Chem 2008; 283:28944-57. [PMID: 18697742 PMCID: PMC2570856 DOI: 10.1074/jbc.m800685200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 08/11/2008] [Indexed: 11/06/2022] Open
Abstract
Diseases such as chronic obstructive pulmonary disease and lung cancer caused by cigarette smoke affect millions of people worldwide. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that influences responses to certain environmental pollutants such as tobacco smoke. However, the physiological function(s) of the AhR is unknown. Herein we propose that the physiologic role of the AhR is to limit inflammation. We show that lung fibroblasts from AhR(-/-) mice produce a heightened inflammatory response to cigarette smoke, typified by increased levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs), when compared with wild type (AhR(+/+)) fibroblasts. This response was dependent on AhR expression as transient transfection of an AhR expression plasmid into AhR(-/-) fibroblasts significantly attenuated the smoke-induced COX-2 and PG production, confirming the anti-inflammatory role of the AhR. The AhR can interact with NF-kappaB. However, the heightened inflammatory response observed in AhR(-/-) fibroblasts was not the result of NF-kappaB (p50/p65) activation. Instead it was coupled with a loss of the NF-kappaB family member RelB in AhR(-/-) fibroblasts. Taken together, these studies provide compelling evidence that AhR expression limits proinflammatory COX-2 and PG production by maintaining RelB expression. The association between RelB and AhR may represent a new therapeutic and more selective target with which to combat inflammation-associated diseases.
Collapse
Affiliation(s)
- Carolyn J Baglole
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
38
|
Min C, Eddy SF, Sherr DH, Sonenshein GE. NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 2008; 104:733-44. [PMID: 18253935 DOI: 10.1002/jcb.21695] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During progression of an in situ to an invasive cancer, epithelial cells lose expression of proteins that promote cell-cell contact, and acquire mesenchymal markers, which promote cell migration and invasion. These events bear extensive similarities to the process of epithelial to mesenchymal transition (EMT), which has been recognized for several decades as critical feature of embryogenesis. The NF-kappaB family of transcription factors plays pivotal roles in both promoting and maintaining an invasive phenotype. After briefly describing the NF-kappaB family and its role in cancer, in this review we will first describe studies elucidating the functions of NF-kappaB in transcription of master regulator genes that repress an epithelial phenotype. In the second half, we discuss the roles of NF-kappaB in control of mesenchymal genes critical for promoting and maintaining an invasive phenotype. Overall, NF-kappaB is identified as a key target in prevention and in the treatment of invasive carcinomas.
Collapse
Affiliation(s)
- Chengyin Min
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA
| | | | | | | |
Collapse
|
39
|
Miah SMS, Hughes TL, Campbell KS. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules. THE JOURNAL OF IMMUNOLOGY 2008; 180:2922-32. [PMID: 18292514 DOI: 10.4049/jimmunol.180.5.2922] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.
Collapse
Affiliation(s)
- S M Shahjahan Miah
- Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
40
|
Belguise K, Sonenshein GE. PKCtheta promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor alpha synthesis. J Clin Invest 2008; 117:4009-21. [PMID: 18037997 DOI: 10.1172/jci32424] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/19/2007] [Indexed: 12/14/2022] Open
Abstract
The vast majority of primary human breast cancer tissues display aberrant nuclear NF-kappaB c-Rel expression. A causal role for c-Rel in mammary tumorigenesis has been demonstrated using a c-Rel transgenic mouse model; however, tumors developed with a long latency, suggesting a second event is needed to trigger tumorigenesis. Here we show that c-Rel activity in the mammary gland is repressed by estrogen receptor alpha (ERalpha) signaling, and we identify an epigenetic mechanism in breast cancer mediated by activation of what we believe is a novel PKCtheta-Akt pathway that leads to downregulation of ERalpha synthesis and derepression of c-Rel. ERalpha levels were lower in c-Rel-induced mammary tumors compared with normal mammary gland tissue. PKCtheta induced c-Rel activity and target gene expression and promoted growth of c-Rel- and c-RelxCK2alpha-driven mouse mammary tumor-derived cell lines. RNA expression levels of PKCtheta and c-Rel target genes were inversely correlated with ERalpha levels in human breast cancer specimens. PKCtheta activated Akt, thereby inactivating forkhead box O protein 3a (FOXO3a) and leading to decreased synthesis of its target genes, ERalpha and p27(Kip1). Thus we have shown that activation of PKCtheta inhibits the FOXO3a/ERalpha/p27(Kip1) axis that normally maintains an epithelial cell phenotype and induces c-Rel target genes, thereby promoting proliferation, survival, and more invasive breast cancer.
Collapse
Affiliation(s)
- Karine Belguise
- Department of Biochemistry and Women's Health Interdisciplinary Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
41
|
Dai Y, Chen S, Kramer LB, Funk VL, Dent P, Grant S. Interactions between bortezomib and romidepsin and belinostat in chronic lymphocytic leukemia cells. Clin Cancer Res 2008; 14:549-558. [PMID: 18223231 DOI: 10.1158/1078-0432.ccr-07-1934] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE The goal of this study was to characterize interactions between the proteasome inhibitor bortezomib and the histone deacetylase (HDAC) inhibitors (HDACI) romidepsin or belinostat in chronic lymphocytic leukemia (CLL) cells. EXPERIMENTAL DESIGN Primary and cultured (JVM-3 and MEC-2) CLL cells were exposed to agents alone or in combination, after which cell death was determined by 7-aminoactinomycin D staining/flow cytometry. Acetylation of target proteins, activation of caspase cascades, and expression of apoptosis-regulatory proteins were monitored by Western blot analysis. Nuclear factor-kappaB (NF-kappaB) activity was determined by luciferase reporter assay. Cells were transiently transfected with wild-type and acetylation site-mutated (inactive) RelA(p65) (e.g., K221R, K310R, or K281/221/310R) and assessed for HDACI sensitivity. RESULTS Combined exposure to very low concentrations of romidepsin or belinostat (i.e., low nanomolar and submicromolar, respectively) in combination with low nanomolar concentrations of bortezomib synergistically induced cell death in primary and cultured CLL cells. These events were likely associated with prevention of HDACI-mediated RelA acetylation and NF-kappaB activation by bortezomib, down-regulation of antiapoptotic proteins (i.e., Bcl-xL, Mcl-1, and XIAP), as well as up-regulation of the proapoptotic protein Bim, resulting in activation of caspase cascade. Finally, CLL cells transfected with inactive RelA displayed a significant increase in HDACI lethality. CONCLUSIONS Coadministration of the clinically relevant HDACIs romidepsin or belinostat with bortezomib synergistically induces cell death in CLL cells, likely through mechanisms involving, among other factors, NF-kappaB inactivation and perturbation in the expression of proapoptotic and antiapoptotic proteins. A strategy combining HDAC with proteasome inhibition warrants further attention in CLL.
Collapse
Affiliation(s)
- Yun Dai
- Department of Medicine, Virginia Commonwealth University/Massey Cancer Center, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
42
|
Expression of CD40 and growth-inhibitory activity of CD40 ligand in colon cancer ex vivo. Cell Immunol 2008; 253:102-9. [DOI: 10.1016/j.cellimm.2008.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/15/2008] [Accepted: 05/20/2008] [Indexed: 12/17/2022]
|