1
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
2
|
Awadh AA. The Role of Cytosolic Lipid Droplets in Hepatitis C Virus Replication, Assembly, and Release. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5156601. [PMID: 37090186 PMCID: PMC10121354 DOI: 10.1155/2023/5156601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023]
Abstract
The hepatitis C virus (HCV) causes chronic hepatitis by establishing a persistent infection. Patients with chronic hepatitis frequently develop hepatic cirrhosis, which can lead to liver cancer-the progressive liver damage results from the host's immune response to the unresolved infection. The HCV replication process, including the entry, replication, assembly, and release stages, while the virus circulates in the bloodstream, it is intricately linked to the host's lipid metabolism, including the dynamic of the cytosolic lipid droplets (cLDs). This review article depicts how this interaction regulates viral cell tropism and aids immune evasion by coining viral particle characteristics. cLDs are intracellular organelles that store most of the cytoplasmic components of neutral lipids and are assumed to play an increasingly important role in the pathophysiology of lipid metabolism and host-virus interactions. cLDs are involved in the replication of several clinically significant viruses, where viruses alter the lipidomic profiles of host cells to improve viral life cycles. cLDs are involved in almost every phase of the HCV life cycle. Indeed, pharmacological modulators of cholesterol synthesis and intracellular trafficking, lipoprotein maturation, and lipid signaling molecules inhibit the assembly of HCV virions. Likewise, small-molecule inhibitors of cLD-regulating proteins inhibit HCV replication. Thus, addressing the molecular architecture of HCV replication will aid in elucidating its pathogenesis and devising preventive interventions that impede persistent infection and prevent disease progression. This is possible via repurposing the available therapeutic agents that alter cLDs metabolism. This review highlights the role of cLD in HCV replication.
Collapse
Affiliation(s)
- Abdullah A. Awadh
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| |
Collapse
|
3
|
Luo Q, Zhu H, Wang C, Li Y, Zou X, Hu Z. A U-Box Type E3 Ubiquitin Ligase Prp19-Like Protein Negatively Regulates Lipid Accumulation and Cell Size in Chlamydomonas reinhardtii. Front Microbiol 2022; 13:860024. [PMID: 35464935 PMCID: PMC9019728 DOI: 10.3389/fmicb.2022.860024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgae lipid triacylglycerol is considered as a promising feedstock for national production of biofuels. A hotspot issue in the biodiesel study is to increase TAG content and productivity of microalgae. Precursor RNA processing protein (Prp19), which is the core component of eukaryotic RNA splice NTC (nineteen associated complex), plays important roles in the mRNA maturation process in eukaryotic cells, has a variety of functions in cell development, and is even directly involved in the biosynthesis of oil bodies in mouse. Nevertheless, its function in Chlamydomonas reinhardtii remains unknown. Here, transcriptional level of CrPrp19 under nutrition deprivation was analyzed, and both its RNA interference and overexpressed transformants were constructed. The expression level of CrPrp19 was suppressed by nitrogen or sulfur deficiency. Cell densities of CrPrp19 RNAi lines decreased, and their neutral lipid contents increased 1.33 and 1.34 times over those of controls. The cells of CrPrp19 RNAi lines were larger and more resistant to sodium acetate than control. Considerably none of the alterations in growth or neutral lipid contents was found in the CrPrp19 overexpression transformants than wild type. Fatty acids were also significantly increased in CrPrp19 RNAi transformants. Subcellular localization and yeast two-hybrid analysis showed that CrPrp19 was a nuclear protein, which might be involved in cell cycle regulation. In conclusion, CrPrp19 protein was necessary for negatively regulating lipid enrichment and cell size, but not stimulatory for lipid storage.
Collapse
Affiliation(s)
- Qiulan Luo
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Chaogang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, China
| | - Yajun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xianghui Zou
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
5
|
Mura A, Moriel-Carretero M. Lack of evidence for condensin or cohesin sequestration on lipid droplets with packing defects. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34746685 PMCID: PMC8569452 DOI: 10.17912/micropub.biology.000497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/06/2022]
Abstract
Lipid droplets (LD) are organelles born from the endoplasmic reticulum that store fats and sterols in an apolar manner both as an energy reservoir and for protective purposes. The LD is delimited by a phospholipid monolayer covered by a rich proteome that dynamically evolves depending on the nutritional, genetic, pharmacological and environmental cues. Some of these contexts lead to discontinuities in the phospholipid monolayer, termed "packing defects", that expose LD hydrophobic contents to the surrounding water environment. This triggers the unscheduled binding of proteins with affinity for hydrophobic surfaces, a thermodynamically favorable reaction. We have raised in the past the concern that this titration includes proteins with important roles in the nucleus, which entails a risk of genome instability. Analysis of previously published LD proteomes isolated from cells lacking the transcription factor Ino2p, a prototype of LD bearing packing defects, made us concentrate on two subunits of the cohesin (Smc1p and Smc3p) and one of the condensin (Smc2p) complexes, both essential to promote genome integrity by structuring chromosomes. We report that, in disagreement with the proteomic data, we find no evidence of titration of condensin or cohesin subunits onto LD in ino2∆ cells. Importantly, during our analysis to label LD, we discovered that the addition of the widely used vital dye AUTODOTTM, which emits in the blue range of the spectrum, leads, specifically in ino2∆, to the artefactual emission of signals in the green channel. We therefore take the opportunity to warn the community of this undesirable aspect when using this dye.
Collapse
Affiliation(s)
- Anaïs Mura
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| |
Collapse
|
6
|
Kumanski S, Viart BT, Kossida S, Moriel-Carretero M. Lipid Droplets Are a Physiological Nucleoporin Reservoir. Cells 2021; 10:472. [PMID: 33671805 PMCID: PMC7926788 DOI: 10.3390/cells10020472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid Droplets (LD) are dynamic organelles that originate in the Endoplasmic Reticulum and mostly bud off toward the cytoplasm, where they store neutral lipids for energy and protection purposes. LD also have diverse proteins on their surface, many of which are necessary for the their correct homeostasis. However, these organelles also act as reservoirs of proteins that can be made available elsewhere in the cell. In this sense, they act as sinks that titrate key regulators of many cellular processes. Among the specialized factors that reside on cytoplasmic LD are proteins destined for functions in the nucleus, but little is known about them and their impact on nuclear processes. By screening for nuclear proteins in publicly available LD proteomes, we found that they contain a subset of nucleoporins from the Nuclear Pore Complex (NPC). Exploring this, we demonstrate that LD act as a physiological reservoir, for nucleoporins, that impacts the conformation of NPCs and hence their function in nucleo-cytoplasmic transport, chromatin configuration, and genome stability. Furthermore, our in silico modeling predicts a role for LD-released fatty acids in regulating the transit of nucleoporins from LD through the cytoplasm and to nuclear pores.
Collapse
Affiliation(s)
- Sylvain Kumanski
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France;
| | - Benjamin T. Viart
- International ImMunoGeneTics Information System (IMGT®), Institut de Génétique Humaine (IGH), Université de Montpellier, Centre National de la Recherche Scientifique, 34396 Montpellier CEDEX 05, France; (B.T.V.); (S.K.)
| | - Sofia Kossida
- International ImMunoGeneTics Information System (IMGT®), Institut de Génétique Humaine (IGH), Université de Montpellier, Centre National de la Recherche Scientifique, 34396 Montpellier CEDEX 05, France; (B.T.V.); (S.K.)
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France;
| |
Collapse
|
7
|
Pleiotropic genomic variants at 17q21.31 associated with bone mineral density and body fat mass: a bivariate genome-wide association analysis. Eur J Hum Genet 2020; 29:553-563. [PMID: 32963334 DOI: 10.1038/s41431-020-00727-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis and obesity are two severe complex diseases threatening public health worldwide. Both diseases are under strong genetic determinants as well as genetically correlated. Aiming to identify pleiotropic genes underlying obesity and osteoporosis, we performed a bivariate genome-wide association (GWA) meta-analysis of hip bone mineral density (BMD) and total body fat mass (TBFM) in 12,981 participants from seven samples, and followed by in silico replication in the UK biobank (UKB) cohort sample (N = 217,822). Combining the results from discovery meta-analysis and replication sample, we identified one novel locus, 17q21.31 (lead SNP rs12150327, NC_000017.11:g.44956910G > A, discovery bivariate P = 4.83 × 10-9, replication P = 5.75 × 10-5) at the genome-wide significance level (ɑ = 5.0 × 10-8), which may have pleiotropic effects to both hip BMD and TBFM. Functional annotations highlighted several candidate genes, including KIF18B, C1QL1, and PRPF19 that may exert pleiotropic effects to the development of both body mass and bone mass. Our findings can improve our understanding of the etiology of osteoporosis and obesity, as well as shed light on potential new therapies.
Collapse
|
8
|
Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig. Sci Rep 2020; 10:13962. [PMID: 32811870 PMCID: PMC7435270 DOI: 10.1038/s41598-020-70894-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Meat quality has an important genetic component and can be modified by the fatty acid (FA) composition and the amount of fat contained in adipose tissue and muscle. The present study aimed to find genomic regions associated with the FA composition in backfat and muscle (longissimus dorsi) in 439 pigs with three different genetic backgrounds but having the Iberian breed in common. Genome-wide association studies (GWAS) were performed between 38,424 single-nucleotide polymorphisms (SNPs) covering the pig genome and 60 phenotypic traits related to backfat and muscle FA composition. Nine significant associated regions were found in backfat on the Sus scrofa chromosomes (SSC): SSC1, SSC2, SSC4, SSC6, SSC8, SSC10, SSC12, and SSC16. For the intramuscular fat, six significant associated regions were identified on SSC4, SSC13, SSC14, and SSC17. A total of 52 candidate genes were proposed to explain the variation in backfat and muscle FA composition traits. GWAS were also reanalysed including SNPs on five candidate genes (ELOVL6, ELOVL7, FADS2, FASN, and SCD). Regions and molecular markers described in our study may be useful for meat quality selection of commercial pig breeds, although several polymorphisms were breed-specific, and further analysis would be needed to evaluate possible causal mutations.
Collapse
|
9
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
10
|
Brandt C, McFie PJ, Vu H, Chumala P, Katselis GS, Stone SJ. Identification of calnexin as a diacylglycerol acyltransferase-2 interacting protein. PLoS One 2019; 14:e0210396. [PMID: 30615684 PMCID: PMC6322727 DOI: 10.1371/journal.pone.0210396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/21/2018] [Indexed: 11/26/2022] Open
Abstract
Triacylglycerol synthesis is catalyzed by acyl CoA:diacylglycerol acyltransferase-2 (DGAT2). DGAT2 is an integral membrane protein that is localized to the endoplasmic reticulum and interacts with lipid droplets. Using BioId, a method to detect proximal and interacting proteins, we identified calnexin as a DGAT2-interacting protein. Co-immunoprecipitation and proximity ligation assays confirmed this finding. We found that calnexin-deficient mouse embryonic fibroblasts had reduced intracellular triacylglycerol levels and fewer large lipid droplets (>1.0 μm2 area). Despite the alterations in triacylglycerol metabolism, in vitro DGAT2 activity, localization and protein stability were not affected by the absence of calnexin.
Collapse
Affiliation(s)
- Curtis Brandt
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pamela J. McFie
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Huyen Vu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paulos Chumala
- Department of Medicine and the Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George S. Katselis
- Department of Medicine and the Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scot J. Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
11
|
Dropping in on lipid droplets: insights into cellular stress and cancer. Biosci Rep 2018; 38:BSR20180764. [PMID: 30111611 PMCID: PMC6146295 DOI: 10.1042/bsr20180764] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets (LD) have increasingly become a major topic of research in recent years following its establishment as a highly dynamic organelle. Contrary to the initial view of LDs being passive cytoplasmic structures for lipid storage, studies have provided support on how they act in concert with different organelles to exert functions in various cellular processes. Although lipid dysregulation resulting from aberrant LD homeostasis has been well characterised, how this translates and contributes to cancer progression is poorly understood. This review summarises the different paradigms on how LDs function in the regulation of cellular stress as a contributing factor to cancer progression. Mechanisms employed by a broad range of cancer cell types in differentially utilising LDs for tumourigenesis will also be highlighted. Finally, we discuss the potential of targeting LDs in the context of cancer therapeutics.
Collapse
|
12
|
de Moura TR, Mozaffari-Jovin S, Szabó CZK, Schmitzová J, Dybkov O, Cretu C, Kachala M, Svergun D, Urlaub H, Lührmann R, Pena V. Prp19/Pso4 Is an Autoinhibited Ubiquitin Ligase Activated by Stepwise Assembly of Three Splicing Factors. Mol Cell 2018; 69:979-992.e6. [DOI: 10.1016/j.molcel.2018.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/22/2017] [Accepted: 02/15/2018] [Indexed: 01/24/2023]
|
13
|
Onal G, Kutlu O, Gozuacik D, Dokmeci Emre S. Lipid Droplets in Health and Disease. Lipids Health Dis 2017; 16:128. [PMID: 28662670 PMCID: PMC5492776 DOI: 10.1186/s12944-017-0521-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Lipids are essential building blocks synthesized by complex molecular pathways and deposited as lipid droplets (LDs) in cells. LDs are evolutionary conserved organelles found in almost all organisms, from bacteria to mammals. They are composed of a hydrophobic neutral lipid core surrounding by a phospholipid monolayer membrane with various decorating proteins. Degradation of LDs provide metabolic energy for divergent cellular processes such as membrane synthesis and molecular signaling. Lipolysis and autophagy are two main catabolic pathways of LDs, which regulate lipid metabolism and, thereby, closely engaged in many pathological conditons. In this review, we first provide an overview of the current knowledge on the structural properties and the biogenesis of LDs. We further focus on the recent findings of their catabolic mechanism by lipolysis and autophagy as well as their connection ragarding the regulation and function. Moreover, we discuss the relevance of LDs and their catabolism-dependent pathophysiological conditions.
Collapse
Affiliation(s)
- Gizem Onal
- Department of Medical Biology, Hacettepe University, 06100, Ankara, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM) & Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Molecular Biology, Genetics, and Bioengineering Program & Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, 34956, Istanbul, Turkey
| | - Serap Dokmeci Emre
- Department of Medical Biology, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
14
|
SNEV hPrp19/hPso4 Regulates Adipogenesis of Human Adipose Stromal Cells. Stem Cell Reports 2016; 8:21-29. [PMID: 28041875 PMCID: PMC5233435 DOI: 10.1016/j.stemcr.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022] Open
Abstract
Aging is accompanied by loss of subcutaneous adipose tissue. This may be due to reduced differentiation capacity or deficiency in DNA damage repair (DDR) factors. Here we investigated the role of SNEVhPrp19/hPso4, which was implicated in DDR and senescence evasion, in adipogenic differentiation of human adipose stromal cells (hASCs). We showed that SNEV is induced during adipogenesis and localized both in the nucleus and in the cytoplasm. Knockdown of SNEV perturbed adipogenic differentiation and led to accumulation of DNA damage in hASCs upon oxidative stress. In addition, we demonstrated that SNEV is required for fat deposition in Caenorhabditis elegans. Consequently, we tested other DDR factors and found that WRN is also required for adipogenesis in both models. These results demonstrate that SNEV regulates adipogenesis in hASCs and indicate that DDR capacity in general might be a pre-requisite for this process. SNEV is required for adipogenic differentiation of human adipose stromal cells SNEV modulates pro- and anti-adipogenic signaling pathways SNEV regulates DNA repair capacity of human adipose stromal cells SNEV modulates organismal fat deposition in Caenorhabditis elegans
Collapse
|
15
|
Chen Y, Frost S, Byrne JA. Dropping in on the lipid droplet- tumor protein D52 (TPD52) as a new regulator and resident protein. Adipocyte 2016; 5:326-32. [PMID: 27617178 DOI: 10.1080/21623945.2016.1148835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets are essential for both the storage and retrieval of excess cellular nutrients, and their biology is regulated by a diverse range of cellular proteins, some of which function at the lipid droplet. Numerous studies have characterized lipid droplet proteomes in different organisms and cell types, and RNAi whole genome screening studies have examined the genetic regulation of lipid storage in C. elegans and D. melanogaster. While tumor protein D52 (TPD52) did not emerge from earlier studies as a strong candidate, exogenous expression of human TPD52 in cultured cells resulted in significantly increased numbers of lipid droplets, and oleic acid supplementation increased TPD52 detection at both lipid droplets and the Golgi apparatus. These results suggest that direct testing of proteins that are infrequently but recurrently identified in proteomic and RNAi screening studies may identify novel lipid droplet regulators. While the analysis of these possibly lower-abundance or itinerant lipid droplet proteins may be more technically challenging, such proteins could facilitate a more detailed interrogation of emerging aspects of lipid droplet biology.
Collapse
|
16
|
Abstract
Lipid droplets are the intracellular sites for neutral lipid storage. They are critical for lipid metabolism and energy homeostasis, and their dysfunction has been linked to many diseases. Accumulating evidence suggests that the roles lipid droplets play in biology are significantly broader than previously anticipated. Lipid droplets are the source of molecules important in the nucleus: they can sequester transcription factors and chromatin components and generate the lipid ligands for certain nuclear receptors. Lipid droplets have also emerged as important nodes for fatty acid trafficking, both inside the cell and between cells. In immunity, new roles for droplets, not directly linked to lipid metabolism, have been uncovered, with evidence that they act as assembly platforms for specific viruses and as reservoirs for proteins that fight intracellular pathogens. Until recently, knowledge about droplets in the nervous system has been minimal, but now there are multiple links between lipid droplets and neurodegeneration: many candidate genes for hereditary spastic paraplegia also have central roles in lipid-droplet formation and maintenance, and mitochondrial dysfunction in neurons can lead to transient accumulation of lipid droplets in neighboring glial cells, an event that may, in turn, contribute to neuronal damage. As the cell biology and biochemistry of lipid droplets become increasingly well understood, the next few years should yield many new mechanistic insights into these novel functions of lipid droplets.
Collapse
|
17
|
Monteforte R, Beilhack GF, Grausenburger R, Mayerhofer B, Bittner R, Grillari‐Voglauer R, Sibilia M, Dellago H, Tschachler E, Gruber F, Grillari J. SNEV(Prp19/PSO4) deficiency increases PUVA-induced senescence in mouse skin. Exp Dermatol 2016; 25:212-7. [PMID: 26663487 PMCID: PMC4832318 DOI: 10.1111/exd.12910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 12/14/2022]
Abstract
Senescent cells accumulate during ageing in various tissues and contribute to organismal ageing. However, factors that are involved in the induction of senescence in vivo are still not well understood. SNEV(P) (rp19/) (PSO) (4) is a multifaceted protein, known to be involved in DNA damage repair and senescence, albeit only in vitro. In this study, we used heterozygous SNEV(+/-) mice (SNEV-knockout results in early embryonic lethality) and wild-type littermate controls as a model to elucidate the role of SNEV(P) (rp19/) (PSO) (4) in DNA damage repair and senescence in vivo. We performed PUVA treatment as model system for potently inducing cellular senescence, consisting of 8-methoxypsoralen in combination with UVA on mouse skin to induce DNA damage and premature skin ageing. We show that SNEV(P) (rp19/) (PSO) (4) expression decreases during organismal ageing, while p16, a marker of ageing in vivo, increases. In response to PUVA treatment, we observed in the skin of both SNEV(P) (rp19/) (PSO) (4) and wild-type mice an increase in γ-H2AX levels, a DNA damage marker. In old SNEV(P) (rp19/) (PSO) (4) mice, this increase is accompanied by reduced epidermis thickening and increase in p16 and collagenase levels. Thus, the DNA damage response occurring in the mouse skin upon PUVA treatment is dependent on SNEV(P) (rp19/) (PSO) (4) expression and lower levels of SNEV(P) (rp19/) (PSO) (4) , as in old SNEV(+/-) mice, result in increase in cellular senescence and acceleration of premature skin ageing.
Collapse
Affiliation(s)
- Rossella Monteforte
- Department of BiotechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
- Christian Doppler Laboratory on Biotechnology of Skin AgingViennaAustria
| | - Georg F. Beilhack
- Division of Nephrology & DialysisInternal Medicine IIIMedical University of ViennaViennaAustria
| | - Reinhard Grausenburger
- Department of BiotechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
- Christian Doppler Laboratory on Biotechnology of Skin AgingViennaAustria
| | - Benjamin Mayerhofer
- Neuromuscular Research DepartmentCenter of Anatomy & Cell BiologyMedical University of ViennaViennaAustria
| | - Reginald Bittner
- Neuromuscular Research DepartmentCenter of Anatomy & Cell BiologyMedical University of ViennaViennaAustria
| | - Regina Grillari‐Voglauer
- Department of BiotechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
- Evercyte GmbHViennaAustria
| | - Maria Sibilia
- Institute for Cancer ResearchMedical University of ViennaViennaAustria
| | - Hanna Dellago
- Department of BiotechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
- Christian Doppler Laboratory on Biotechnology of Skin AgingViennaAustria
| | - Erwin Tschachler
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Florian Gruber
- Christian Doppler Laboratory on Biotechnology of Skin AgingViennaAustria
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Johannes Grillari
- Department of BiotechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
- Christian Doppler Laboratory on Biotechnology of Skin AgingViennaAustria
- Evercyte GmbHViennaAustria
| |
Collapse
|
18
|
Gao Q, Goodman JM. The lipid droplet-a well-connected organelle. Front Cell Dev Biol 2015; 3:49. [PMID: 26322308 PMCID: PMC4533013 DOI: 10.3389/fcell.2015.00049] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of inter-organellar communication has grown exponentially in recent years. This review focuses on the interactions that cytoplasmic lipid droplets have with other organelles. Twenty-five years ago droplets were considered simply particles of coalesced fat. Ten years ago there were hints from proteomics studies that droplets might interact with other structures to share lipids and proteins. Now it is clear that the droplets interact with many if not most cellular structures to maintain cellular homeostasis and to buffer against insults such as starvation. The evidence for this statement, as well as probes to understand the nature and results of droplet interactions, are presented.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
19
|
Kamili A, Roslan N, Frost S, Cantrill LC, Wang D, Della-Franca A, Bright RK, Groblewski GE, Straub BK, Hoy AJ, Chen Y, Byrne JA. TPD52 expression increases neutral lipid storage within cultured cells. J Cell Sci 2015; 128:3223-38. [PMID: 26183179 DOI: 10.1242/jcs.167692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 07/10/2015] [Indexed: 12/12/2022] Open
Abstract
Tumor protein D52 (TPD52) is amplified and/or overexpressed in cancers of diverse cellular origins. Altered cellular metabolism (including lipogenesis) is a hallmark of cancer development, and protein-protein associations between TPD52 and known regulators of lipid storage, and differential TPD52 expression in obese versus non-obese adipose tissue, suggest that TPD52 might regulate cellular lipid metabolism. We found increased lipid droplet numbers in BALB/c 3T3 cell lines stably expressing TPD52, compared with control and TPD52L1-expressing cell lines. TPD52-expressing 3T3 cells showed increased fatty acid storage in triglyceride (from both de novo synthesis and uptake) and formed greater numbers of lipid droplets upon oleic acid supplementation than control cells. TPD52 colocalised with Golgi, but not endoplasmic reticulum (ER), markers and also showed partial colocalisation with lipid droplets coated with ADRP (also known as PLIN2), with a proportion of TPD52 being detected in the lipid droplet fraction. Direct interactions between ADRP and TPD52, but not TPD52L1, were demonstrated using the yeast two-hybrid system, with ADRP-TPD52 interactions confirmed using GST pulldown assays. Our findings uncover a new isoform-specific role for TPD52 in promoting intracellular lipid storage, which might be relevant to TPD52 overexpression in cancer.
Collapse
Affiliation(s)
- Alvin Kamili
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Nuruliza Roslan
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia Discipline of Paediatrics and Child Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Sarah Frost
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia Discipline of Paediatrics and Child Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Laurence C Cantrill
- Discipline of Paediatrics and Child Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia Kids Research Institute Microscope Facility, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Dongwei Wang
- Kids Research Institute Microscope Facility, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Austin Della-Franca
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia Discipline of Paediatrics and Child Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology and TTUHSC Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guy E Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Beate K Straub
- Department of General Pathology, Institute of Pathology, Heidelberg 69120, Germany
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences and Bosch Institute and Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yuyan Chen
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia Discipline of Paediatrics and Child Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| | - Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia Discipline of Paediatrics and Child Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia
| |
Collapse
|
20
|
Proteomic analysis of murine testes lipid droplets. Sci Rep 2015; 5:12070. [PMID: 26159641 PMCID: PMC4498221 DOI: 10.1038/srep12070] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/10/2015] [Indexed: 01/12/2023] Open
Abstract
Testicular Leydig cells contain abundant cytoplasmic lipid droplets (LDs) as a cholesteryl-ester store for releasing cholesterols as the precursor substrate for testosterone biosynthesis. Here, we identified the protein composition of testicular LDs purified from adult mice by using mass spectrometry and immunodetection. Among 337 proteins identified, 144 were previously detected in LD proteomes; 44 were confirmed by microscopy. Testicular LDs contained multiple Rab GTPases, chaperones, and proteins involved in glucuronidation, ubiquination and transport, many known to modulate LD formation and LD-related cellular functions. In particular, testicular LDs contained many members of both the perilipin family and classical lipase/esterase superfamily assembled predominately in adipocyte LDs. Thus, testicular LDs might be regulated similar to adipocyte LDs. Remarkably, testicular LDs contained a large number of classical enzymes for biosynthesis and metabolism of cholesterol and hormonal steroids, so steroidogenic reactions might occur on testicular LDs or the steroidogenic enzymes and products could be transferred through testicular LDs. These characteristics differ from the LDs in most other types of cells, so testicular LDs could be an active organelle functionally involved in steroidogenesis.
Collapse
|
21
|
Welte MA. As the fat flies: The dynamic lipid droplets of Drosophila embryos. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1156-85. [PMID: 25882628 DOI: 10.1016/j.bbalip.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/09/2023]
Abstract
Research into lipid droplets is rapidly expanding, and new cellular and organismal roles for these lipid-storage organelles are continually being discovered. The early Drosophila embryo is particularly well suited for addressing certain questions in lipid-droplet biology and combines technical advantages with unique biological phenomena. This review summarizes key features of this experimental system and the techniques available to study it, in order to make it accessible to researchers outside this field. It then describes the two topics most heavily studied in this system, lipid-droplet motility and protein sequestration on droplets, discusses what is known about the molecular players involved, points to open questions, and compares the results from Drosophila embryo studies to what it is known about lipid droplets in other systems.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology University of Rochester, RC Box 270211, 317 Hutchison Hall, Rochester, NY 14627, USA.
| |
Collapse
|
22
|
Dahlhoff M, Fröhlich T, Arnold GJ, Müller U, Leonhardt H, Zouboulis CC, Schneider MR. Characterization of the sebocyte lipid droplet proteome reveals novel potential regulators of sebaceous lipogenesis. Exp Cell Res 2014; 332:146-55. [PMID: 25523620 DOI: 10.1016/j.yexcr.2014.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/06/2023]
Abstract
Lipid metabolism depends on lipid droplets (LD), cytoplasmic structures surrounded by a protein-rich phospholipid monolayer. Although lipid synthesis is the hallmark of sebaceous gland cell differentiation, the LD-associated proteins of sebocytes have not been evaluated systematically. The LD fraction of SZ95 sebocytes was collected by density gradient centrifugation and associated proteins were analyzed by nanoliquid chromatography/tandem mass spectrometry. 54 proteins were significantly enriched in LD fractions, and 6 of them have not been detected previously in LDs. LD fractions contained high levels of typical LD-associated proteins as PLIN2/PLIN3, and most proteins belonged to functional categories characteristic for LD-associated proteins, indicating a reliable dataset. After confirming expression of transcripts encoding the six previously unidentified proteins by qRT-PCR in SZ95 sebocytes and in another sebocyte line (SebE6E7), we focused on two of these proteins, ALDH1A3 and EPHX4. While EPHX4 was localized almost exclusively on the surface of LDs, ALDH1A3 showed a more widespread localization that included additional cytoplasmic structures. siRNA-mediated downregulation revealed that depletion of EPHX4 increases LD size and sebaceous lipogenesis. Further studies on the roles of these proteins in sebocyte physiology and sebaceous lipogenesis may indicate novel strategies for the therapy of sebaceous gland-associated diseases such as acne.
Collapse
Affiliation(s)
- Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU Munich, Germany
| | - Udo Müller
- Human Biology and BioImaging, Department of Biology II, LMU Munich, Germany
| | - Heinrich Leonhardt
- Human Biology and BioImaging, Department of Biology II, LMU Munich, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Germany.
| |
Collapse
|
23
|
Tuohetahuntila M, Spee B, Kruitwagen HS, Wubbolts R, Brouwers JF, van de Lest CH, Molenaar MR, Houweling M, Helms JB, Vaandrager AB. Role of long-chain acyl-CoA synthetase 4 in formation of polyunsaturated lipid species in hepatic stellate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:220-30. [PMID: 25500141 DOI: 10.1016/j.bbalip.2014.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 02/02/2023]
Abstract
Hepatic stellate cell (HSC) activation is a critical step in the development of chronic liver disease. We previously observed that the levels of triacylglycerol (TAG) species containing long polyunsaturated fatty acids (PUFAs) are increased in in vitro activated HSCs. Here we investigated the cause and consequences of the rise in PUFA-TAGs by profiling enzymes involved in PUFA incorporation. We report that acyl CoA synthetase (ACSL) type 4, which has a preference for PUFAs, is the only upregulated ACSL family member in activated HSCs. Inhibition of the activity of ACSL4 by siRNA-mediated knockdown or addition of rosiglitazone specifically inhibited the incorporation of deuterated arachidonic acid (AA-d8) into TAG in HSCs. In agreement with this, ACSL4 was found to be partially localized around lipid droplets (LDs) in HSCs. Inhibition of ACSL4 also prevented the large increase in PUFA-TAGs in HSCs upon activation and to a lesser extent the increase of arachidonate-containing phosphatidylcholine species. Inhibition of ACSL4 by rosiglitazone was associated with an inhibition of HSC activation and prostaglandin secretion. Our combined data show that upregulation of ACSL4 is responsible for the increase in PUFA-TAG species during activation of HSCs, which may serve to protect cells against a shortage of PUFAs required for eicosanoid secretion.
Collapse
Affiliation(s)
- Maidina Tuohetahuntila
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| | - Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| | - Richard Wubbolts
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Chris H van de Lest
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Martijn R Molenaar
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Martin Houweling
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Arie B Vaandrager
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
24
|
Wilfling F, Haas JT, Walther TC, Farese RV. Lipid droplet biogenesis. Curr Opin Cell Biol 2014; 29:39-45. [PMID: 24736091 DOI: 10.1016/j.ceb.2014.03.008] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Abstract
Lipid droplets (LDs) are found in most cells, where they play central roles in energy and membrane lipid metabolism. The de novo biogenesis of LDs is a fascinating, yet poorly understood process involving the formation of a monolayer bound organelle from a bilayer membrane. Additionally, large LDs can form either by growth of existing LDs or by the combination of smaller LDs through several distinct mechanisms. Here, we review recent insights into the molecular process governing LD biogenesis and highlight areas of incomplete knowledge.
Collapse
Affiliation(s)
- Florian Wilfling
- Yale School of Medicine, Department of Cell Biology, New Haven, CT, USA
| | - Joel T Haas
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California-San Francisco, CA, USA
| | - Tobias C Walther
- Yale School of Medicine, Department of Cell Biology, New Haven, CT, USA.
| | - Robert V Farese
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California-San Francisco, CA, USA; Department of Medicine, University of California-San Francisco, CA, USA.
| |
Collapse
|
25
|
Mannik J, Meyers A, Dalhaimer P. Isolation of cellular lipid droplets: two purification techniques starting from yeast cells and human placentas. J Vis Exp 2014:50981. [PMID: 24747783 PMCID: PMC4160924 DOI: 10.3791/50981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Lipid droplets are dynamic organelles that can be found in most eukaryotic and certain prokaryotic cells. Structurally, the droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer. One of the most useful techniques in determining the cellular roles of droplets has been proteomic identification of bound proteins, which can be isolated along with the droplets. Here, two methods are described to isolate lipid droplets and their bound proteins from two wide-ranging eukaryotes: fission yeast and human placental villous cells. Although both techniques have differences, the main method-- density gradient centrifugation--is shared by both preparations. This shows the wide applicability of the presented droplet isolation techniques. In the first protocol, yeast cells are converted into spheroplasts by enzymatic digestion of their cell walls. The resulting spheroplasts are then gently lysed in a loose-fitting homogenizer. Ficoll is added to the lysate to provide a density gradient, and the mixture is centrifuged three times. After the first spin, the lipid droplets are localized to the white-colored floating layer of the centrifuge tubes along with the endoplasmic reticulum (ER), the plasma membrane, and vacuoles. Two subsequent spins are used to remove these other three organelles. The result is a layer that has only droplets and bound proteins. In the second protocol, placental villous cells are isolated from human term placentas by enzymatic digestion with trypsin and DNase I. The cells are homogenized in a loose-fitting homogenizer. Low-speed and medium-speed centrifugation steps are used to remove unbroken cells, cellular debris, nuclei, and mitochondria. Sucrose is added to the homogenate to provide a density gradient and the mixture is centrifuged to separate the lipid droplets from the other cellular fractions. The purity of the lipid droplets in both protocols is confirmed by Western Blot analysis. The droplet fractions from both preps are suitable for subsequent proteomic and lipidomic analysis.
Collapse
Affiliation(s)
- Jaana Mannik
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee
| | - Alex Meyers
- Department of Chemical and Biomolecular Engineering, University of Tennessee
| | - Paul Dalhaimer
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee; Department of Chemical and Biomolecular Engineering, University of Tennessee;
| |
Collapse
|
26
|
Barber E, Sinclair AJ, Cameron-Smith D. Comparative actions of omega-3 fatty acids on in-vitro lipid droplet formation. Prostaglandins Leukot Essent Fatty Acids 2013; 89:359-66. [PMID: 24012207 DOI: 10.1016/j.plefa.2013.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 01/24/2023]
Abstract
Storage of fat into lipid droplets (LDs) is the key step in adipogenesis. Previously the omega-3 polyunsaturated fatty acid (n-3PUFA) eicosapentaenoic acid (EPA; C20:5n-3) has been shown to suppress LD formation, yet the actions of other n-3PUFA is unknown. Here, we examined the impact of the three major long chain n-3PUFA; EPA, docosapentaenoic acid (DPA; C22:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) on LD formation in 3T3-L1 adipocytes. Cells were supplemented with 100µM fatty acid during differentiation. All n-3PUFA significantly reduced LD formation and the metabolic disorder marker, SCD1, in comparison to stearic acid (STA; C18:0). This action was more potent for DHA than either EPA or DPA. Furthermore, DHA significantly increased lipolysis and ATGL gene and protein expression but reduced the gene expression of three proteins related to LD formation (Perilipin A, Caveolin-1 and Cidea), compared with other n-3PUFA. Thus, DHA, above EPA and DPA, markedly suppressed fat storage in LDs in in-vitro adipocytes.
Collapse
Affiliation(s)
- Elizabeth Barber
- Department of Nutrition and Dietetics, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3800, Victoria, Australia.
| | | | | |
Collapse
|
27
|
Yamada T, Urano-Tashiro Y, Hashi Y, Sakumoto M, Akiyama H, Tashiro F. The U-box-type ubiquitin ligase PRP19β regulates astrocyte differentiation via ubiquitination of PTP1B. Brain Res 2013; 1524:12-25. [DOI: 10.1016/j.brainres.2013.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 06/01/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022]
|
28
|
Crunk AE, Monks J, Murakami A, Jackman M, MacLean PS, Ladinsky M, Bales ES, Cain S, Orlicky DJ, McManaman JL. Dynamic regulation of hepatic lipid droplet properties by diet. PLoS One 2013; 8:e67631. [PMID: 23874434 PMCID: PMC3708958 DOI: 10.1371/journal.pone.0067631] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/20/2013] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands.
Collapse
Affiliation(s)
- Amanda E. Crunk
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jenifer Monks
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Aya Murakami
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Matthew Jackman
- Division of Endocrinology and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Paul S. MacLean
- Division of Endocrinology and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Mark Ladinsky
- The Boulder Laboratory for 3D Electron Microscopy, University of Colorado Boulder, Boulder Colorado, United States of America
| | - Elise S. Bales
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Shannon Cain
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - James L. McManaman
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
29
|
Chanarat S, Sträßer K. Splicing and beyond: the many faces of the Prp19 complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2126-34. [PMID: 23742842 DOI: 10.1016/j.bbamcr.2013.05.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/18/2022]
Abstract
The conserved Prp19 complex (Prp19C) - also known as NineTeen Complex (NTC) - functions in several processes of paramount importance for cellular homeostasis. NTC/Prp19C was discovered as a complex that functions in splicing and more specifically during the catalytic activation of the spliceosome. More recent work revealed that NTC/Prp19C plays a role in transcription elongation in Saccharomyces cerevisiae and in genome maintenance in higher eukaryotes. In addition, mouse PRP19 might ubiquity late proteins targeted for degradation and guide them to the proteasome. Furthermore, NTC/Prp19C has been implicated in lipid droplet biogenesis. In the future, the molecular function of NTC/Prp19C in all of these processes needs to be refined or elucidated. Most of NTC/Prp19C's functions have been shown in only one or few organisms. However, since this complex is highly conserved it is likely that it has the same functions across all species. Moreover, one NTC/Prp19C or different subcomplexes could function in the above-mentioned processes. Intriguingly, NTC/Prp19C might link these different processes to ensure an optimal coordination of cellular processes. Thus, many important questions about the functions of this interesting complex remain to be investigated. In this review we discuss the different functions of NTC/Prp19C focusing on the novel and emerging ones as well as open questions.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
30
|
Konige M, Wang H, Sztalryd C. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. Biochim Biophys Acta Mol Basis Dis 2013; 1842:393-401. [PMID: 23688782 DOI: 10.1016/j.bbadis.2013.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/10/2013] [Accepted: 05/03/2013] [Indexed: 12/15/2022]
Abstract
Excess or insufficient lipid storage in white adipose tissue lipid droplets is associated with dyslipidemia, insulin resistance and increased risk for diabetes type 2. Thus, maintenance of adipose lipid droplet growth and function is critical to preserve whole body insulin sensitivity and energy homeostasis. Progress in understanding biology of lipid droplets has underscored the role of proteins that interact with lipid droplets. Here, we review the current knowledge of adipose specific lipid droplet proteins, which share unique functions controlling adipocyte lipid storage, limiting lipid spill-over and lipotoxic effects thought to contribute to disease. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Manige Konige
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hong Wang
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Carole Sztalryd
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Geriatric Research, Education, and Clinical Center, Baltimore Veterans Affairs Health Care Center, Baltimore, MD 21201, USA.
| |
Collapse
|
31
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
32
|
Soulages JL, Firdaus SJ, Hartson S, Chen X, Howard AD, Arrese EL. Developmental changes in the protein composition of Manduca sexta lipid droplets. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:305-320. [PMID: 22245367 PMCID: PMC3299933 DOI: 10.1016/j.ibmb.2012.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/22/2011] [Accepted: 01/02/2012] [Indexed: 05/31/2023]
Abstract
The lipid droplets (LDs) are intracellular organelles mainly dedicated to the storage and provision of fatty acids. To accomplish these functions the LDs interact with other organelles and cytosolic proteins. In order to explore possible correlations between the physiological states of cells and the protein composition of LDs we have determined and compared the proteomic profiles of lipid droplets isolated from the fat bodies of 5th-instar larvae and adult Manduca sexta insects and from ovaries. These LD-rich tissues represent three clearly distinct metabolic states in regard to lipid metabolism: 1) Larval fat body synthesizes fatty acids (FA) and accumulates large amounts as triglyceride (TG); 2) Fat body from adult insects provides FA to support reproduction and flight; 3) Ovaries do not synthesize FA, but accumulate considerable amounts of TG in LDs. Major qualitative and semi-quantitative variations in the protein compositions of the LDs isolated from these three tissues were observed by MS/MS and partially validated by immuno-blotting. The differences observed included changes in the abundance of lipid droplet specific proteins, cytosolic proteins, mitochondrial proteins and also proteins associated with the machinery of protein synthesis. These results suggest that changes in the interaction of LDs with other organelles and cytosolic proteins are tightly related to the physiological state of cells. Herein, we summarize and compare the protein compositions of three subtypes of LDs and also describe for the first time the proteomic profile of LDs from an insect ovary. The compositions and compositional differences found among the LDs are discussed to provide a platform for future studies on the role of LDs, and their associated proteins, in cellular metabolism.
Collapse
Affiliation(s)
- Jose L Soulages
- Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, OK 74074, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ding Y, Wu Y, Zeng R, Liao K. Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse. Acta Biochim Biophys Sin (Shanghai) 2012; 44:394-406. [PMID: 22343379 DOI: 10.1093/abbs/gms008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Lipid droplets in adipocytes serve as the principal long-term energy storage depot of animals. There is increasing recognition that lipid droplets are not merely a static neutral lipid storage site, but in fact dynamic and multi-functional organelles. Structurally, lipid droplet consists of a neutral lipid core surrounded by a phospholipid monolayer and proteins embedded in or bound to the phospholipid layer. Proteins on the surface of lipid droplets are crucial to droplet structure and dynamics. To understand the lipid droplet-associated proteome of primary adipocyte with a large central lipid droplet, lipid droplets of white adipose tissue from C57BL/6 mice were isolated. And the proteins were extracted and analyzed by liquid chromatography coupled with tandem mass spectrometry. A total of 193 proteins including 73 previously unreported proteins were identified. Furthermore, the isotope-coded affinity tags (ICAT) was used to compare the difference of lipid droplet-associated proteomes between the normal lean and the high-fat diet-induced obese C57BL/6 mice. Of 23 proteins quantified by ICAT analysis, 3 proteins were up-regulated and 4 proteins were down-regulated in the lipid droplets of adipose tissue from the obese mice. Importantly, two structural proteins of lipid droplets, perilipin A and vimentin, were greatly reduced in the lipid droplets of the adipose tissue from the obese mice, implicating reduced protein machinery for lipid droplet stability.
Collapse
Affiliation(s)
- Yubo Ding
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
34
|
Ding Y, Yang L, Zhang S, Wang Y, Du Y, Pu J, Peng G, Chen Y, Zhang H, Yu J, Hang H, Wu P, Yang F, Yang H, Steinbüchel A, Liu P. Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res 2012; 53:399-411. [PMID: 22180631 PMCID: PMC3276463 DOI: 10.1194/jlr.m021899] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/15/2011] [Indexed: 11/20/2022] Open
Abstract
Storage of cellular triacylglycerols (TAGs) in lipid droplets (LDs) has been linked to the progression of many metabolic diseases in humans, and to the development of biofuels from plants and microorganisms. However, the biogenesis and dynamics of LDs are poorly understood. Compared with other organisms, bacteria seem to be a better model system for studying LD biology, because they are relatively simple and are highly efficient in converting biomass to TAG. We obtained highly purified LDs from Rhodococcus sp. RHA1, a bacterium that can produce TAG from many carbon sources, and then comprehensively characterized the LD proteome. Of the 228 LD-associated proteins identified, two major proteins, ro02104 and PspA, constituted about 15% of the total LD protein. The structure predicted for ro02104 resembles that of apolipoproteins, the structural proteins of plasma lipoproteins in mammals. Deletion of ro02104 resulted in the formation of supersized LDs, indicating that ro02104 plays a critical role in cellular LD dynamics. The putative α helix of the ro02104 LD-targeting domain (amino acids 83-146) is also similar to that of apolipoproteins. We report the identification of 228 proteins in the proteome of prokaryotic LDs, identify a putative structural protein of this organelle, and suggest that apolipoproteins may have an evolutionarily conserved role in the storage and trafficking of neutral lipids.
Collapse
Affiliation(s)
- Yunfeng Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China; National Laboratory of Biomacromolecules, Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Li Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China; National Laboratory of Biomacromolecules, Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China
| | - Yang Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China; National Laboratory of Biomacromolecules, Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yalan Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China; National Laboratory of Biomacromolecules, Department of Histology and Embryology, University of South China, Hengyang, Hunan Province, China
| | - Jing Pu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China; National Laboratory of Biomacromolecules, Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Gong Peng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China; National Laboratory of Biomacromolecules, Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China
| | - Huina Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China
| | - Jinhai Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China; National Laboratory of Biomacromolecules, Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Hang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China
| | - Peng Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China
| | - Fuquan Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China
| | - Hongyuan Yang
- National Laboratory of Biomacromolecules, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Alexander Steinbüchel
- National Laboratory of Biomacromolecules, Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany, and King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, China.
| |
Collapse
|
35
|
Larsson S, Resjö S, Gomez MF, James P, Holm C. Characterization of the lipid droplet proteome of a clonal insulin-producing β-cell line (INS-1 832/13). J Proteome Res 2012; 11:1264-73. [PMID: 22268682 DOI: 10.1021/pr200957p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipids are known to play a crucial role both in the normal control of insulin release and in the deterioration of β-cell function, as observed in type 2 diabetes. Despite this established dual role of lipids, little is known about lipid storage and handling in β-cells. Here, we isolated lipid droplets from oleate-incubated INS-1 832/13 cells and characterized the lipid droplet proteome. In a total of four rounds of droplet isolation and proteomic analysis by HPLC-MS/MS, we identified 96 proteins that were specific to droplets. The proteins fall into six categories based on function or previously observed localization: metabolism, endoplasmic reticulum/ribosomes, mitochondria, vesicle formation and transport, signaling, and miscellaneous. The protein profile reinforces the emerging picture of the lipid droplet as an active and dynamic organelle involved in lipid homeostasis and intracellular trafficking. Proteins belonging to the category mitochondria were highly represented, suggesting that the β-cell mitochondria and lipid droplets form a metabolic unit of potential relevance for insulin secretion.
Collapse
Affiliation(s)
- Sara Larsson
- Department of Experimental Medical Science, Division of Diabetes, Metabolism and Endocrinology, Lund Univeristy , BMC C11, SE-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
36
|
The size and phospholipid composition of lipid droplets can influence their proteome. Biochem Biophys Res Commun 2011; 415:455-62. [DOI: 10.1016/j.bbrc.2011.10.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/19/2011] [Indexed: 02/04/2023]
|
37
|
Ho PC, Chuang YS, Hung CH, Wei LN. Cytoplasmic receptor-interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis. Cell Signal 2011; 23:1396-403. [PMID: 21504789 PMCID: PMC3095660 DOI: 10.1016/j.cellsig.2011.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 01/14/2023]
Abstract
Receptor-interacting protein 140 (RIP140) is abundantly expressed in mature adipocyte and modulates gene expression involved in lipid and glucose metabolism. Protein kinase C epsilon and protein arginine methyltransferase 1 can sequentially stimulate RIP140 phosphorylation and then methylation, thereby promoting its export to the cytoplasm. Here we report a lipid signal triggering cytoplasmic accumulation of RIP140, and a new functional role for cytoplasmic RIP140 in adipocyte to regulate lipolysis. Increased lipid content, particularly an elevation in diacylglycerol levels, promotes RIP140 cytoplasmic accumulation and increased association with lipid droplets (LDs) by its direct interaction with perilipin. By interacting with RIP140, perilipin more efficiently recruits hormone-sensitive lipase (HSL) to LDs and enhances adipose triglyceride lipase (ATGL) forming complex with CGI-58, an activator of ATGL. Consequentially, HSL can more readily access its substrates, and ATGL is activated, ultimately enhancing lipolysis. In adipocytes, blocking cytoplasmic RIP140 accumulation reduces basal and isoproterenol-stimulated lipolysis and the pro-inflammatory potential of their conditioned media (i.e. activating NF-κB and inflammatory genes in macrophages). These results show that in adipocytes with high lipid contents, RIP140 increasingly accumulates in the cytoplasm and enhances triglyceride catabolism by directly interacting with perilipin. The study suggests that reducing nuclear export of RIP140 might be a useful means of controlling adipocyte lipolysis.
Collapse
Affiliation(s)
- Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Lipid droplets are discrete organelles present in most cell types and organisms including bacteria, yeast, plants, insects and animals. Long considered as passive storage deposits, recent cell biology, proteomic and lipidomic analysis show that lipid droplets are dynamic organelles involved in multiple cellular functions. They have a central function in lipid distribution to different membrane-bound organelles and serve not only as main reservoirs of neutral lipids such as triglycerides and cholesterol but in addition, contain structural proteins, proteins involved in lipid synthesis and transmembrane proteins. A detailed model for how transmembrane proteins such as SNARE proteins can exist in lipid droplets is proposed.
Collapse
Affiliation(s)
- Fariba Kalantari
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
39
|
Human PRP19 interacts with prolyl-hydroxylase PHD3 and inhibits cell death in hypoxia. Exp Cell Res 2010; 316:2871-82. [DOI: 10.1016/j.yexcr.2010.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/29/2010] [Accepted: 06/23/2010] [Indexed: 11/22/2022]
|
40
|
Hogg R, McGrail JC, O’Keefe RT. The function of the NineTeen Complex (NTC) in regulating spliceosome conformations and fidelity during pre-mRNA splicing. Biochem Soc Trans 2010; 38:1110-5. [PMID: 20659013 PMCID: PMC4234902 DOI: 10.1042/bst0381110] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The NineTeen Complex (NTC) of proteins associates with the spliceosome during pre-mRNA splicing and is essential for both steps of intron removal. The NTC and other NTC-associated proteins are recruited to the spliceosome where they participate in regulating the formation and progression of essential spliceosome conformations required for the two steps of splicing. It is now clear that the NTC is an integral component of active spliceosomes from yeast to humans and provides essential support for the spliceosomal snRNPs (small nuclear ribonucleoproteins). In the present article, we discuss the identification and characterization of the yeast NTC and review recent work in yeast that supports the essential role for this complex in the regulation and fidelity of splicing.
Collapse
Affiliation(s)
- Rebecca Hogg
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester, M13 9PT, UK
| | - Joanne C. McGrail
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester, M13 9PT, UK
| | - Raymond T. O’Keefe
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
41
|
Takahashi K, Sasabe N, Ohshima K, Kitazato K, Kato R, Masuda Y, Tsurumaki M, Obama T, Okudaira SI, Aoki J, Arai H, Yamaguchi T, Itabe H. Glucagon regulates intracellular distribution of adipose differentiation-related protein during triacylglycerol accumulation in the liver. J Lipid Res 2010; 51:2571-80. [PMID: 20529882 DOI: 10.1194/jlr.m004648] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular lipid droplets (LD) are organelles involved in cellular lipid metabolism. When liver cellular components were fractionated using sucrose density gradient centrifugation, adipose differentiation-related protein (ADRP) was distributed in both the top and bottom fractions, which correspond to the LD and membranous fractions, respectively, in the mouse liver under normal feeding conditions. After overnight fasting, triacylglycerol and ADRP increased nearly 2.5-fold in the mouse liver, and a portion appeared in the intermediate-density LD (iLD) fractions. ADRP in the iLD fractions was also increased in a mouse nonalcoholic steatohepatitis model induced by methione/choline-deficient diet. When HuH-7 human hepatoma cells were incubated with oleic acid for 24 h, the amount of ADRP increased, and it was distributed in both the LD and membrane fractions. However, ADRP appeared in the iLD fractions upon treatment of HuH-7 cells with glucagon. This behavior of ADRP was cAMP-dependent, as the ADRP-positive iLD fractions were induced by dibutylyl cAMP and were blocked by protein kinase A inhibitors. A portion of ADRP colocalized microscopically with calnexin, which is present in the iLD fractions, by treatment of HuH-7 cells or human primary hepatocytes with oleic acid and glucagon, but not by treatment with oleic acid alone. Glucagon has a role in the reorganization of endoplasmic reticulum membranes to generate ADRP-associated lipid-poor particles in hepatic cells, which is related to LD formation during lipid storage.
Collapse
Affiliation(s)
- Katsuhiko Takahashi
- Department of Biological Chemistry, School of Pharmacy, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li LO, Klett EL, Coleman RA. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:246-51. [PMID: 19818872 PMCID: PMC2824076 DOI: 10.1016/j.bbalip.2009.09.024] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/22/2009] [Accepted: 09/25/2009] [Indexed: 12/14/2022]
Abstract
Although the underlying causes of insulin resistance have not been completely delineated, in most analyses, a recurring theme is dysfunctional metabolism of fatty acids. Because the conversion of fatty acids to activated acyl-CoAs is the first and essential step in the metabolism of long-chain fatty acid metabolism, interest has grown in the synthesis of acyl-CoAs, their contribution to the formation of signaling molecules like ceramide and diacylglycerol, and their direct effects on cell function. In this review, we cover the evidence for the involvement of acyl-CoAs in what has been termed lipotoxicity, the regulation of the acyl-CoA synthetases, and the emerging functional roles of acyl-CoAs in the major tissues that contribute to insulin resistance and lipotoxicity, adipose, liver, heart and pancreas.
Collapse
Affiliation(s)
- Lei O. Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Eric L. Klett
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rosalind A. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
43
|
Hodges BDM, Wu CC. Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets. J Lipid Res 2010; 51:262-73. [PMID: 19965608 PMCID: PMC2803228 DOI: 10.1194/jlr.r003582] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/02/2009] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic lipid droplets (CLDs) are cellular structures composed of a neutral lipid core surrounded by a phospholipid monolayer of amphipathic lipids and a variety of proteins. CLDs have classically been regarded as cellular energy storage structures. However, recent proteomic studies reveal that, although many of the proteins found to associate with CLDs are connected to lipid metabolism, storage, and homeostasis, there are also proteins with no obvious connection to the classical function and typically associated with other cellular compartments. Such proteins are termed refugee proteins, and their presence suggests that CLDs may serve an expanded role as a dynamic protein storage site, providing a novel mechanism for the regulation of protein function and transport.
Collapse
Affiliation(s)
| | - Christine C. Wu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
44
|
Abstract
Long underappreciated as important cellular organelles, lipid droplets are finally being recognized as dynamic structures with a complex and interesting biology. In light of this newfound respect, we discuss emerging views on lipid droplet biology and speculate on the major advances to come.
Collapse
Affiliation(s)
- Robert V Farese
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
| | | |
Collapse
|
45
|
Es-x/Ces1 prevents triacylglycerol accumulation in McArdle-RH7777 hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1133-43. [DOI: 10.1016/j.bbalip.2009.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/25/2009] [Accepted: 07/17/2009] [Indexed: 02/08/2023]
|
46
|
Grillari J, Löscher M, Denegri M, Lee K, Fortschegger K, Eisenhaber F, Ajuh P, Lamond AI, Katinger H, Grillari-Voglauer R. Blom7alpha is a novel heterogeneous nuclear ribonucleoprotein K homology domain protein involved in pre-mRNA splicing that interacts with SNEVPrp19-Pso4. J Biol Chem 2009; 284:29193-204. [PMID: 19641227 PMCID: PMC2781463 DOI: 10.1074/jbc.m109.036632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/28/2009] [Indexed: 02/05/2023] Open
Abstract
The removal of introns from pre-mRNA is performed by the spliceosome that stepwise assembles on the pre-mRNA before performing two catalytic steps. The spliceosome-associated CDC5L-SNEV(Prp19-Pso4) complex is implicated in activation of the second catalytic step of pre-mRNA splicing, and one of its members, SNEV(Prp19-Pso4), is also implicated in spliceosome assembly. To identify interaction partners of SNEVPrp19-Pso4, we have performed yeast two-hybrid screenings. Among the putative binding partners was a so far uncharacterized protein carrying two heterogeneous nuclear ribonucleoprotein K homology domains that we termed Blom7alpha. Blom7alpha is expressed in all tissues tested, and at least three splice variants exist. After confirming direct and physical interaction of SNEV and Blom7alpha, we investigated if it plays a functional role during pre-mRNA splicing. Indeed, Blom7alpha co-localizes and co-precipitates with splicing factors and pre-mRNA and is present in affinity-purified spliceosomes. More importantly, addition of Blom7alpha to HeLa nuclear extracts increased splicing activity in a dose-dependent manner. Furthermore, we tested if Blom7alpha influences splice site selection using two different minigene constructs. Indeed, both 5'- as well as 3'-site selection was altered upon Blom7alpha overexpression. Thus we suggest that Blom7alpha is a novel splicing factor of the K homology domain family that might be implicated in alternative splicing by helping to position the CDC5L-SNEV(Prp19-Pso4) complex at the splice sites.
Collapse
Affiliation(s)
- Johannes Grillari
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna A-1190, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Walther TC, Farese RV. The life of lipid droplets. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:459-66. [PMID: 19041421 PMCID: PMC2782899 DOI: 10.1016/j.bbalip.2008.10.009] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 10/14/2008] [Accepted: 10/28/2008] [Indexed: 12/12/2022]
Abstract
Lipid droplets are the least characterized of cellular organelles. Long considered simple lipid storage depots, these dynamic and remarkable organelles have recently been implicated in many biological processes, and we are only now beginning to gain insights into their fascinating lives in cells. Here we examine what we know of the life of lipid droplets. We review emerging data concerning their cellular biology and present our thoughts on some of the most salient questions for investigation.
Collapse
Affiliation(s)
- Tobias C Walther
- Organelle Architecture and Dynamics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | |
Collapse
|
48
|
Andersen DS, Tapon N. Drosophila MFAP1 is required for pre-mRNA processing and G2/M progression. J Biol Chem 2008; 283:31256-67. [PMID: 18765666 DOI: 10.1074/jbc.m803512200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mammalian spliceosome has mainly been studied using proteomics. The isolation and comparison of different splicing intermediates has revealed the dynamic association of more than 200 splicing factors with the spliceosome, relatively few of which have been studied in detail. Here, we report the characterization of the Drosophila homologue of microfibril-associated protein 1 (dMFAP1), a previously uncharacterized protein found in some human spliceosomal fractions ( Jurica, M. S., and Moore, M. J. (2003) Mol. Cell 12, 5-14 ). We show that dMFAP1 binds directly to the Drosophila homologue of Prp38p (dPrp38), a tri-small nuclear ribonucleoprotein component ( Xie, J., Beickman, K., Otte, E., and Rymond, B. C. (1998) EMBO J. 17, 2938-2946 ), and is required for pre-mRNA processing. dMFAP1, like dPrp38, is essential for viability, and our in vivo data show that cells with reduced levels of dMFAP1 or dPrp38 proliferate more slowly than normal cells and undergo apoptosis. Consistent with this, double-stranded RNA-mediated depletion of dPrp38 or dMFAP1 causes cells to arrest in G(2)/M, and this is paralleled by a reduction in mRNA levels of the mitotic phosphatase string/cdc25. Interestingly double-stranded RNA-mediated depletion of a wide range of core splicing factors elicits a similar phenotype, suggesting that the observed G(2)/M arrest might be a general consequence of interfering with spliceosome function.
Collapse
Affiliation(s)
- Ditte S Andersen
- Cancer Research UK, London Research Institute, London WC2A 3PX, UK
| | | |
Collapse
|
49
|
Thiele C, Spandl J. Cell biology of lipid droplets. Curr Opin Cell Biol 2008; 20:378-85. [PMID: 18606534 DOI: 10.1016/j.ceb.2008.05.009] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 02/01/2023]
Abstract
Lipid storage has attracted much attention in the past years, both by the broader public and the biomedical scientific community. Driven by concerns about the obesity epidemic that affects most industrialized countries and even substantial parts of the population in less and least developed countries, work from researchers of many disciplines has shed light on the genetics, the physiology, and the cellular mechanisms of fat accumulation. This review focuses on the actual organelle of fat deposition, the lipid droplet (LD), and on the recent progress in mechanistic understanding of processes like LD biogenesis, LD growth and degradation, protein targeting to LDs and LD fusion.
Collapse
Affiliation(s)
- Christoph Thiele
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany.
| | | |
Collapse
|
50
|
Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 2008; 130:263-79. [PMID: 18546013 PMCID: PMC2491702 DOI: 10.1007/s00418-008-0449-0] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2008] [Indexed: 12/28/2022]
Abstract
Lipid droplets are depots of neutral lipids that exist virtually in any kind of cell. Recent studies have revealed that the lipid droplet is not a mere lipid blob, but a major contributor not only to lipid homeostasis but also to diverse cellular functions. Because of the unique structure as well as the functional importance in relation to obesity, steatosis, and other prevailing diseases, the lipid droplet is now reborn as a brand new organelle, attracting interests from researchers of many disciplines.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan.
| | | | | | | | | |
Collapse
|