1
|
Dai X, Henderson M, Yoo S, Liu Q. Predicting Metal-binding Proteins and Structures Through Integration of Evolutionary-scale and Physics-based Modeling. J Mol Biol 2025; 437:168962. [PMID: 39864615 DOI: 10.1016/j.jmb.2025.168962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Metals are essential elements in all living organisms, binding to approximately 50% of proteins. They serve to stabilize proteins, catalyze reactions, regulate activities, and fulfill various physiological and pathological functions. While there have been many advancements in determining the structures of protein-metal complexes, numerous metal-binding proteins still need to be identified through computational methods and validated through experiments. To address this need, we have developed the ESMBind workflow, which combines evolutionary scale modeling (ESM) for metal-binding prediction and physics-based protein-metal modeling. Our approach utilizes the ESM-2 and ESM-IF models to predict metal-binding probability at the residue level. In addition, we have designed a metal-placement method and energy minimization technique to generate detailed 3D structures of protein-metal complexes. Our workflow outperforms other models in terms of residue and 3D-level predictions. To demonstrate its effectiveness, we applied the workflow to 142 uncharacterized fungal pathogen proteins and predicted metal-binding proteins involved in fungal infection and virulence.
Collapse
Affiliation(s)
- Xin Dai
- Computational Science Initiative, Brookhaven National Laboratory Upton NY USA.
| | - Max Henderson
- Department of Biochemistry and Cell Biology Stony Brook University Stony Brook NY USA
| | - Shinjae Yoo
- Computational Science Initiative, Brookhaven National Laboratory Upton NY USA
| | - Qun Liu
- Department of Biochemistry and Cell Biology Stony Brook University Stony Brook NY USA; Biology Department, Brookhaven National Laboratory, Upton NY USA.
| |
Collapse
|
2
|
Schaeffer RD, Pei J, Zhang J, Cong Q, Grishin NV. Refinement and curation of homologous groups facilitated by structure prediction. Protein Sci 2025; 34:e70074. [PMID: 39968854 PMCID: PMC11836899 DOI: 10.1002/pro.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Domain classification of protein predictions released in the AlphaFold Database (AFDB) has been a recent focus of the Evolutionary Classification of protein Domains (ECOD). Although a primary focus of our recent work has been the partition and assignment of domains from these predictions, we here show how these diverse predictions can be used to examine the reference domain set more closely. Using results from DPAM, our AlphaFold-specific domain parsing algorithm, we examine hierarchical groupings that share significant levels of homologous links, both between groups that were not previously assessed to be definitively homologous and between groups that were not previously observed to share significant homologous links. Combined with manual analysis, these large datasets of structural and sequence similarities allow us to merge homologous groups in multiple cases which we detail within. These domains tend to be families of domains from families that are either small, previously had few experimental representatives, or had unknown function. The exception to this is the chromodomains, a large homologous group which were increased from "possibly homologous" to "definitely homologous" to increase the consistency of ECOD based their strong homologous links to the SH3 domains.
Collapse
Affiliation(s)
| | - Jimin Pei
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Nick V. Grishin
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
3
|
Lv Z, Guan L, Yao R, Chen H, Wang H, Li X, Xu X, Peng L, Wang Y, Chen P. AtTRM11 as a tRNA 2-methylguanosine methyltransferase modulates flowering and bacterial resistance via translational regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112368. [PMID: 39716634 DOI: 10.1016/j.plantsci.2024.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
2-methylguanosine is an eukaryote-specific modified nucleoside in transfer RNAs, and m2G10 is catalyzed by Trm11-Trm112 protein complex in eukaryotic tRNAs. Here, we show that loss-of-function mutation of the Arabidopsis Trm11 homolog AtTRM11 resulted in m2G deficiency associated with disturbed ribosome assembly and overall transcriptome changes, including genes involved in flowering regulation and plant-pathogen interaction. The attrm11 mutant showed phenotypes of enlarged rosette leaves and early flowering, as well as enhanced resistance to Pseudomonas bacterial infection. AtTRM11 could partially rescue the m2G nucleoside level in yeast trm11 mutant, and AtTRM11 protein mostly resided in cytosol and physically interacted with AtTRM112b in planta. AtTRM11 was mostly expressed in shoot apex, root tip, and distal end of rosette leaves. KEGG enrichment analysis of differentially expressed genes between trm11 mutant and wild type indicated changes in pathways including phenopropanoid biosynthesis, plant-pathogen interaction, plant hormone signal transduction and MAPK signaling, suggesting that the pleiotropic phenotypes of the attrm11 mutant can be ascribed to translational and transcriptional changes.
Collapse
Affiliation(s)
- Zhengyi Lv
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China.
| | - Lun Guan
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China.
| | - Ruixuan Yao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China.
| | - Hanchen Chen
- Yazhouwan National Labratory, Sanya, Hainan Province 572025, China.
| | - Hailang Wang
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei Province 430068, China.
| | - Xukai Li
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi Province 030031, China.
| | - Xiaodong Xu
- School of Life Science, Henan University, Kaifeng, Henan Province 475004, China.
| | - Liangcai Peng
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei Province 430068, China.
| | - Youmei Wang
- Houji Laboratory in Shanxi Province, College of Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi Province 030031, China.
| | - Peng Chen
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China.
| |
Collapse
|
4
|
Xu F, Suyama R, Inada T, Kawaguchi S, Kai T. HemK2 functions for sufficient protein synthesis and RNA stability through eRF1 methylation during Drosophila oogenesis. Development 2024; 151:dev202795. [PMID: 38881530 DOI: 10.1242/dev.202795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
HemK2 is a highly conserved methyltransferase, but the identification of its genuine substrates has been controversial, and its biological importance in higher organisms remains unclear. We elucidate the role of HemK2 in the methylation of eukaryotic Release Factor 1 (eRF1), a process that is essential for female germline development in Drosophila melanogaster. Knockdown of hemK2 in the germline cells (hemK2-GLKD) induces apoptosis, accompanied by a pronounced decrease in both eRF1 methylation and protein synthesis. Overexpression of a methylation-deficient eRF1 variant recapitulates the defects observed in hemK2-GLKD, suggesting that eRF1 is a primary methylation target of HemK2. Furthermore, hemK2-GLKD leads to a significant reduction in mRNA levels in germline cell. These defects in oogenesis and protein synthesis can be partially restored by inhibiting the No-Go Decay pathway. In addition, hemK2 knockdown is associated with increased disome formation, suggesting that disruptions in eRF1 methylation may provoke ribosomal stalling, which subsequently activates translation-coupled mRNA surveillance mechanisms that degrade actively translated mRNAs. We propose that HemK2-mediated methylation of eRF1 is crucial for ensuring efficient protein production and mRNA stability, which are vital for the generation of high-quality eggs.
Collapse
Affiliation(s)
- Fengmei Xu
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Ritsuko Suyama
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Toshifumi Inada
- Division of RNA and Gene regulation, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shinichi Kawaguchi
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Toshie Kai
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Totonji S, Ramos-Triguero A, Willmann D, Sum M, Urban S, Bauer H, Rieder A, Wang S, Greschik H, Metzger E, Schüle R. Lysine Methyltransferase 9 (KMT9) Is an Actionable Target in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2024; 16:1532. [PMID: 38672614 PMCID: PMC11049522 DOI: 10.3390/cancers16081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Novel treatment modalities are imperative for the challenging management of muscle-invasive and metastatic BC to improve patient survival rates. The recently identified KMT9, an obligate heterodimer composed of KMT9α and KMT9β, regulates the growth of various types of tumors such as prostate, lung, and colon cancer. While the overexpression of KMT9α was previously observed to be associated with aggressive basal-like MIBC in an analysis of patients' tissue samples, a potential functional role of KMT9 in this type of cancer has not been investigated to date. In this study, we show that KMT9 regulates proliferation, migration, and invasion of various MIBC cell lines with different genetic mutations. KMT9α depletion results in the differential expression of genes regulating the cell cycle, cell adhesion, and migration. Differentially expressed genes include oncogenes such as EGFR and AKT1 as well as mediators of cell adhesion or migration such as DAG1 and ITGA6. Reduced cell proliferation upon KMT9α depletion is also observed in Pten/Trp53 knockout bladder tumor organoids, which cannot be rescued with an enzymatically inactive KMT9α mutant. In accordance with the idea that the catalytic activity of KMT9 is required for the control of cellular processes in MIBC, a recently developed small-molecule inhibitor of KMT9 (KMI169) also impairs cancer cell proliferation. Since KMT9α depletion also restricts the growth of xenografts in mice, our data suggest that KMT9 is an actionable novel therapeutic target for the treatment of MIBC.
Collapse
Affiliation(s)
- Sainab Totonji
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Anna Ramos-Triguero
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Dominica Willmann
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Manuela Sum
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Helena Bauer
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Astrid Rieder
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Sheng Wang
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Holger Greschik
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Wang S, Klein SO, Urban S, Staudt M, Barthes NPF, Willmann D, Bacher J, Sum M, Bauer H, Peng L, Rennar GA, Gratzke C, Schüle KM, Zhang L, Einsle O, Greschik H, MacLeod C, Thomson CG, Jung M, Metzger E, Schüle R. Structure-guided design of a selective inhibitor of the methyltransferase KMT9 with cellular activity. Nat Commun 2024; 15:43. [PMID: 38167811 PMCID: PMC10762027 DOI: 10.1038/s41467-023-44243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Inhibition of epigenetic regulators by small molecules is an attractive strategy for cancer treatment. Recently, we characterised the role of lysine methyltransferase 9 (KMT9) in prostate, lung, and colon cancer. Our observation that the enzymatic activity was required for tumour cell proliferation identified KMT9 as a potential therapeutic target. Here, we report the development of a potent and selective KMT9 inhibitor (compound 4, KMI169) with cellular activity through structure-based drug design. KMI169 functions as a bi-substrate inhibitor targeting the SAM and substrate binding pockets of KMT9 and exhibits high potency, selectivity, and cellular target engagement. KMT9 inhibition selectively downregulates target genes involved in cell cycle regulation and impairs proliferation of tumours cells including castration- and enzalutamide-resistant prostate cancer cells. KMI169 represents a valuable tool to probe cellular KMT9 functions and paves the way for the development of clinical candidate inhibitors as therapeutic options to treat malignancies such as therapy-resistant prostate cancer.
Collapse
Affiliation(s)
- Sheng Wang
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Sebastian O Klein
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Maximilian Staudt
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Nicolas P F Barthes
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dominica Willmann
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Johannes Bacher
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Manuela Sum
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Helena Bauer
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Ling Peng
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Georg A Rennar
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Katrin M Schüle
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Holger Greschik
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Calum MacLeod
- Drug Discovery, Pharmaron UK Ltd, Hoddesdon, United Kingdom
| | | | - Manfred Jung
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany.
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Wang C, Ulryck N, Herzel L, Pythoud N, Kleiber N, Guérineau V, Jactel V, Moritz C, Bohnsack M, Carapito C, Touboul D, Bohnsack K, Graille M. N 2-methylguanosine modifications on human tRNAs and snRNA U6 are important for cell proliferation, protein translation and pre-mRNA splicing. Nucleic Acids Res 2023; 51:7496-7519. [PMID: 37283053 PMCID: PMC10415138 DOI: 10.1093/nar/gkad487] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Modified nucleotides in non-coding RNAs, such as tRNAs and snRNAs, represent an important layer of gene expression regulation through their ability to fine-tune mRNA maturation and translation. Dysregulation of such modifications and the enzymes installing them have been linked to various human pathologies including neurodevelopmental disorders and cancers. Several methyltransferases (MTases) are regulated allosterically by human TRMT112 (Trm112 in Saccharomyces cerevisiae), but the interactome of this regulator and targets of its interacting MTases remain incompletely characterized. Here, we have investigated the interaction network of human TRMT112 in intact cells and identify three poorly characterized putative MTases (TRMT11, THUMPD3 and THUMPD2) as direct partners. We demonstrate that these three proteins are active N2-methylguanosine (m2G) MTases and that TRMT11 and THUMPD3 methylate positions 10 and 6 of tRNAs, respectively. For THUMPD2, we discovered that it directly associates with the U6 snRNA, a core component of the catalytic spliceosome, and is required for the formation of m2G, the last 'orphan' modification in U6 snRNA. Furthermore, our data reveal the combined importance of TRMT11 and THUMPD3 for optimal protein synthesis and cell proliferation as well as a role for THUMPD2 in fine-tuning pre-mRNA splicing.
Collapse
Affiliation(s)
- Can Wang
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Lydia Herzel
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - Nicole Kleiber
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Vincent Jactel
- Laboratoire de Synthèse Organique (LSO), CNRS, École polytechnique, ENSTA, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Chloé Moritz
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI, FR2048 Strasbourg, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
8
|
Guo Z, Wang X, Li Y, Xing A, Wu C, Li D, Wang C, de Bures A, Zhang Y, Guo S, Sáez-Vasquez J, Shen Z, Hu Z. Arabidopsis SMO2 modulates ribosome biogenesis by maintaining the RID2 abundance during organ growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:96-109. [PMID: 36705084 DOI: 10.1111/tpj.16121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Ribosome biogenesis is a process of making ribosomes that is tightly linked with plant growth and development. Here, through a suppressor screen for the smo2 mutant, we found that lack of a ribosomal stress response mediator, ANAC082 partially restored growth defects of the smo2 mutant, indicating SMO2 is required for the repression of nucleolar stress. Consistently, the smo2 knock-out mutant exhibited typical phenotypes characteristic of ribosome biogenesis mutants, such as pointed leaves, aberrant leaf venation, disrupted nucleolar structure, abnormal distribution of rRNA precursors, and enhanced tolerance to aminoglycoside antibiotics that target ribosomes. SMO2 interacted with ROOT INITIATION DEFECTIVE 2 (RID2), a methyltransferase-like protein required for pre-rRNA processing. SMO2 enhanced RID2 solubility in Escherichia coli and the loss of function of SMO2 in plant cells reduced RID2 abundance, which may result in abnormal accumulation of FIBRILLARIN 1 (FIB1) and NOP56, two key nucleolar proteins, in high-molecular-weight protein complex. Taken together, our results characterized a novel plant ribosome biogenesis factor, SMO2 that maintains the abundance of RID2, thereby sustaining ribosome biogenesis during plant organ growth.
Collapse
Affiliation(s)
- Zhengfei Guo
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Xiaoyu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Yan Li
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Aiming Xing
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Chengyun Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
- Sanya Institute of Henan University, 572025, Hainan, Sanya, China
| | - Daojun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Chunfei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Anne de Bures
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5096, 66860, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Universite Perpignan Via Domitia, 66860, Perpignan, Unité Mixte de Recherche 5096, France
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, School of Basic Medicine, Hubei University of Medicine, 442000, Shiyan, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
- Sanya Institute of Henan University, 572025, Hainan, Sanya, China
| | - Julio Sáez-Vasquez
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5096, 66860, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Universite Perpignan Via Domitia, 66860, Perpignan, Unité Mixte de Recherche 5096, France
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, 475004, Kaifeng, China
- Sanya Institute of Henan University, 572025, Hainan, Sanya, China
| |
Collapse
|
9
|
Biziaev NS, Shuvalov AV, Alkalaeva EZ. HEMK-Like Methyltransferases in the Regulation of Cellular Processes. Mol Biol 2022. [DOI: 10.1134/s0026893322030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Oerum S, Meynier V, Catala M, Tisné C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res 2021; 49:7239-7255. [PMID: 34023900 PMCID: PMC8287941 DOI: 10.1093/nar/gkab378] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Gene expression is regulated at many levels including co- or post-transcriptionally, where chemical modifications are added to RNA on riboses and bases. Expression control via RNA modifications has been termed 'epitranscriptomics' to keep with the related 'epigenomics' for DNA modification. One such RNA modification is the N6-methylation found on adenosine (m6A) and 2'-O-methyladenosine (m6Am) in most types of RNA. The N6-methylation can affect the fold, stability, degradation and cellular interaction(s) of the modified RNA, implicating it in processes such as splicing, translation, export and decay. The multiple roles played by this modification explains why m6A misregulation is connected to multiple human cancers. The m6A/m6Am writer enzymes are RNA methyltransferases (MTases). Structures are available for functionally characterized m6A RNA MTases from human (m6A mRNA, m6A snRNA, m6A rRNA and m6Am mRNA MTases), zebrafish (m6Am mRNA MTase) and bacteria (m6A rRNA MTase). For each of these MTases, we describe their overall domain organization, the active site architecture and the substrate binding. We identify areas that remain to be investigated, propose yet unexplored routes for structural characterization of MTase:substrate complexes, and highlight common structural elements that should be described for future m6A/m6Am RNA MTase structures.
Collapse
Affiliation(s)
- Stephanie Oerum
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France
| | - Vincent Meynier
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France
| | - Marjorie Catala
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France
| | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France
| |
Collapse
|
11
|
Graille M. Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric RNA methyltransferases? WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1673. [PMID: 34044474 DOI: 10.1002/wrna.1673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The translation of an mRNA template into the corresponding protein is a highly complex and regulated choreography performed by ribosomes, tRNAs, and translation factors. Most RNAs involved in this process are decorated by multiple chemical modifications (known as epitranscriptomic marks) contributing to the efficiency, the fidelity, and the regulation of the mRNA translation process. Many of these epitranscriptomic marks are written by holoenzymes made of a catalytic subunit associated with an activating subunit. These holoenzymes play critical roles in cell development. Indeed, several mutations being identified in the genes encoding for those proteins are linked to human pathologies such as cancers and intellectual disorders for instance. This review describes the structural and functional properties of RNA methyltransferase holoenzymes, which when mutated often result in brain development pathologies. It illustrates how structurally different activating subunits contribute to the catalytic activity of these holoenzymes through common mechanistic trends that most likely apply to other classes of holoenzymes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| |
Collapse
|
12
|
Lacoux C, Wacheul L, Saraf K, Pythoud N, Huvelle E, Figaro S, Graille M, Carapito C, Lafontaine DLJ, Heurgué-Hamard V. The catalytic activity of the translation termination factor methyltransferase Mtq2-Trm112 complex is required for large ribosomal subunit biogenesis. Nucleic Acids Res 2020; 48:12310-12325. [PMID: 33166396 PMCID: PMC7708063 DOI: 10.1093/nar/gkaa972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.
Collapse
Affiliation(s)
- Caroline Lacoux
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Kritika Saraf
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Emmeline Huvelle
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sabine Figaro
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), UMR 7178, IPHC, Université de Strasbourg, CNRS, Strasbourg, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles Cancer Research Center (U-CRC), Center for Microscopy and Molecular Imaging (CMMI), Gosselies, Belgium
| | - Valérie Heurgué-Hamard
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
13
|
Wang C, van Tran N, Jactel V, Guérineau V, Graille M. Structural and functional insights into Archaeoglobus fulgidus m2G10 tRNA methyltransferase Trm11 and its Trm112 activator. Nucleic Acids Res 2020; 48:11068-11082. [PMID: 33035335 PMCID: PMC7641767 DOI: 10.1093/nar/gkaa830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/20/2023] Open
Abstract
tRNAs play a central role during the translation process and are heavily post-transcriptionally modified to ensure optimal and faithful mRNA decoding. These epitranscriptomics marks are added by largely conserved proteins and defects in the function of some of these enzymes are responsible for neurodevelopmental disorders and cancers. Here, we focus on the Trm11 enzyme, which forms N2-methylguanosine (m2G) at position 10 of several tRNAs in both archaea and eukaryotes. While eukaryotic Trm11 enzyme is only active as a complex with Trm112, an allosteric activator of methyltransferases modifying factors (RNAs and proteins) involved in mRNA translation, former studies have shown that some archaeal Trm11 proteins are active on their own. As these studies were performed on Trm11 enzymes originating from archaeal organisms lacking TRM112 gene, we have characterized Trm11 (AfTrm11) from the Archaeoglobus fulgidus archaeon, which genome encodes for a Trm112 protein (AfTrm112). We show that AfTrm11 interacts directly with AfTrm112 similarly to eukaryotic enzymes and that although AfTrm11 is active as a single protein, its enzymatic activity is strongly enhanced by AfTrm112. We finally describe the first crystal structures of the AfTrm11-Trm112 complex and of Trm11, alone or bound to the methyltransferase inhibitor sinefungin.
Collapse
Affiliation(s)
- Can Wang
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Nhan van Tran
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Vincent Jactel
- Laboratoire de Synthèse Organique (LSO), CNRS, Ecole polytechnique, ENSTA, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| |
Collapse
|
14
|
Meyer B, Immer C, Kaiser S, Sharma S, Yang J, Watzinger P, Weiß L, Kotter A, Helm M, Seitz HM, Kötter P, Kellner S, Entian KD, Wöhnert J. Identification of the 3-amino-3-carboxypropyl (acp) transferase enzyme responsible for acp3U formation at position 47 in Escherichia coli tRNAs. Nucleic Acids Res 2020; 48:1435-1450. [PMID: 31863583 PMCID: PMC7026641 DOI: 10.1093/nar/gkz1191] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
tRNAs from all domains of life contain modified nucleotides. However, even for the experimentally most thoroughly characterized model organism Escherichia coli not all tRNA modification enzymes are known. In particular, no enzyme has been found yet for introducing the acp3U modification at position 47 in the variable loop of eight E. coli tRNAs. Here we identify the so far functionally uncharacterized YfiP protein as the SAM-dependent 3-amino-3-carboxypropyl transferase catalyzing this modification and thereby extend the list of known tRNA modification enzymes in E. coli. Similar to the Tsr3 enzymes that introduce acp modifications at U or m1Ψ nucleotides in rRNAs this protein contains a DTW domain suggesting that acp transfer reactions to RNA nucleotides are a general function of DTW domain containing proteins. The introduction of the acp3U-47 modification in E. coli tRNAs is promoted by the presence of the m7G-46 modification as well as by growth in rich medium. However, a deletion of the enzymes responsible for the modifications at position 46 and 47 in the variable loop of E. coli tRNAs did not lead to a clearly discernible phenotype suggesting that these two modifications play only a minor role in ensuring the proper function of tRNAs in E. coli.
Collapse
Affiliation(s)
- Britta Meyer
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Carina Immer
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Steffen Kaiser
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Sunny Sharma
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Jun Yang
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Department of Cell Biology and Neurosciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Peter Watzinger
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Lena Weiß
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes-Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Hans-Michael Seitz
- Institute for Geosciences, Research Unit Mineralogy, and Frankfurt Isotope and Element Research Center (FIERCE), Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt/M., Germany
| | - Peter Kötter
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| |
Collapse
|
15
|
van Tran N, Ernst FG, Hawley BR, Zorbas C, Ulryck N, Hackert P, Bohnsack KE, Bohnsack MT, Jaffrey SR, Graille M, Lafontaine DL. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res 2019; 47:7719-7733. [PMID: 31328227 PMCID: PMC6735865 DOI: 10.1093/nar/gkz619] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/14/2019] [Accepted: 07/12/2019] [Indexed: 12/29/2022] Open
Abstract
N6-methyladenosine (m6A) has recently been found abundantly on messenger RNA and shown to regulate most steps of mRNA metabolism. Several important m6A methyltransferases have been described functionally and structurally, but the enzymes responsible for installing one m6A residue on each subunit of human ribosomes at functionally important sites have eluded identification for over 30 years. Here, we identify METTL5 as the enzyme responsible for 18S rRNA m6A modification and confirm ZCCHC4 as the 28S rRNA modification enzyme. We show that METTL5 must form a heterodimeric complex with TRMT112, a known methyltransferase activator, to gain metabolic stability in cells. We provide the first atomic resolution structure of METTL5-TRMT112, supporting that its RNA-binding mode differs distinctly from that of other m6A RNA methyltransferases. On the basis of similarities with a DNA methyltransferase, we propose that METTL5-TRMT112 acts by extruding the adenosine to be modified from a double-stranded nucleic acid.
Collapse
MESH Headings
- Adenosine/chemistry
- Adenosine/genetics
- Adenosine/metabolism
- Base Sequence
- Binding Sites
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- CRISPR-Cas Systems
- Cell Line, Tumor
- Crystallography, X-Ray
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- HCT116 Cells
- Humans
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Stability
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Signal Transduction
- Substrate Specificity
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Nhan van Tran
- BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Felix G M Ernst
- RNA Molecular Biology, ULB Cancer Research Center (U-CRC), Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Ben R Hawley
- Department of Pharmacology, Weill Medical College, Cornell University, NY 10065, New York, USA
| | - Christiane Zorbas
- RNA Molecular Biology, ULB Cancer Research Center (U-CRC), Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Nathalie Ulryck
- BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, NY 10065, New York, USA
| | - Marc Graille
- BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, ULB Cancer Research Center (U-CRC), Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
16
|
KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nat Struct Mol Biol 2019; 26:361-371. [PMID: 31061526 DOI: 10.1038/s41594-019-0219-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022]
Abstract
Histone lysine methylation is generally performed by SET domain methyltransferases and regulates chromatin structure and gene expression. Here, we identify human C21orf127 (HEMK2, N6AMT1, PrmC), a member of the seven-β-strand family of putative methyltransferases, as a novel histone lysine methyltransferase. C21orf127 functions as an obligate heterodimer with TRMT112, writing the methylation mark on lysine 12 of histone H4 (H4K12) in vitro and in vivo. We characterized H4K12 recognition by solving the crystal structure of human C21orf127-TRMT112, hereafter termed 'lysine methyltransferase 9' (KMT9), in complex with S-adenosyl-homocysteine and H4K12me1 peptide. Additional analyses revealed enrichment for KMT9 and H4K12me1 at the promoters of numerous genes encoding cell cycle regulators and control of cell cycle progression by KMT9. Importantly, KMT9 depletion severely affects the proliferation of androgen receptor-dependent, as well as that of castration- and enzalutamide-resistant prostate cancer cells and xenograft tumors. Our data link H4K12 methylation with KMT9-dependent regulation of androgen-independent prostate tumor cell proliferation, thereby providing a promising paradigm for the treatment of castration-resistant prostate cancer.
Collapse
|
17
|
Vasilieva EN, Laptev IG, Sergiev PV, Dontsova OA. The Common Partner of Several Methyltransferases Modifying the Components of The Eukaryotic Translation Apparatus. Mol Biol 2018. [DOI: 10.1134/s0026893318060171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
van Tran N, Muller L, Ross RL, Lestini R, Létoquart J, Ulryck N, Limbach PA, de Crécy-Lagard V, Cianférani S, Graille M. Evolutionary insights into Trm112-methyltransferase holoenzymes involved in translation between archaea and eukaryotes. Nucleic Acids Res 2018; 46:8483-8499. [PMID: 30010922 PMCID: PMC6144793 DOI: 10.1093/nar/gky638] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis is a complex and highly coordinated process requiring many different protein factors as well as various types of nucleic acids. All translation machinery components require multiple maturation events to be functional. These include post-transcriptional and post-translational modification steps and methylations are the most frequent among these events. In eukaryotes, Trm112, a small protein (COG2835) conserved in all three domains of life, interacts and activates four methyltransferases (Bud23, Trm9, Trm11 and Mtq2) that target different components of the translation machinery (rRNA, tRNAs, release factors). To clarify the function of Trm112 in archaea, we have characterized functionally and structurally its interaction network using Haloferax volcanii as model system. This led us to unravel that methyltransferases are also privileged Trm112 partners in archaea and that this Trm112 network is much more complex than anticipated from eukaryotic studies. Interestingly, among the identified enzymes, some are functionally orthologous to eukaryotic Trm112 partners, emphasizing again the similarity between eukaryotic and archaeal translation machineries. Other partners display some similarities with bacterial methyltransferases, suggesting that Trm112 is a general partner for methyltransferases in all living organisms.
Collapse
Affiliation(s)
- Nhan van Tran
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Leslie Muller
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Robert L Ross
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA
| | - Roxane Lestini
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645-INSERM U1182 91128, Palaiseau Cedex, France
| | - Juliette Létoquart
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Nathalie Ulryck
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| |
Collapse
|
19
|
Lee J, Levin DE. Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1. Mol Biol Cell 2018; 29:1904-1915. [PMID: 29846136 PMCID: PMC6085820 DOI: 10.1091/mbc.e18-03-0185] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stress-activated MAPKs (SAPKs) respond to a wide variety of stressors. In most cases, the pathways through which specific stress signals are transmitted to the SAPKs are not known. In this study, we delineate the intracellular signaling pathway by which the trivalent toxic metalloid arsenite [As(III)] activates the yeast SAPK Hog1. We demonstrate that, to activate Hog1, As(III) must enter the cell through the glycerol channel Fps1 and must be metabolized to methyl arsenite [MAs(III)] by the dimeric methyltransferase Mtq2:Trm112. We found that Mtq2:Trm1 displays SAM-dependent methyltransferase activity toward both As(III) and MAs(III). Additionally, we present genetic and biochemical evidence that MAs(III), but not As(III), is a potent inhibitor of the protein tyrosine phosphatases (Ptp2 and Ptp3) that normally maintain Hog1 in an inactive state. Inhibition of Ptp2 and Ptp3 by MAs(III) results in elevated Hog1 phosphorylation without activation of the protein kinases that act upstream of the SAPK and raises the possibility that other Hog1-activating stressors act intracellularly at different points along the canonical Hog1 activation pathway. Finally, we show that arsenate [As(V)], a pentavalent form of arsenic, also activates Hog1, but through a pathway that is distinct from that of As(III) and involves activation of the Hog1 MEK Pbs2.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118
| | - David E Levin
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118.,Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
20
|
Systematic Functional Characterization of Human 21st Chromosome Orthologs in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2018; 8:967-979. [PMID: 29367452 PMCID: PMC5844316 DOI: 10.1534/g3.118.200019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Individuals with Down syndrome have neurological and muscle impairments due to an additional copy of the human 21st chromosome (HSA21). Only a few of ∼200 HSA21 genes encoding proteins have been linked to specific Down syndrome phenotypes, while the remainder are understudied. To identify poorly characterized HSA21 genes required for nervous system function, we studied behavioral phenotypes caused by loss-of-function mutations in conserved HSA21 orthologs in the nematode Caenorhabditis elegans. We identified 10 HSA21 orthologs that are required for neuromuscular behaviors: cle-1 (COL18A1), cysl-2 (CBS), dnsn-1 (DONSON), eva-1 (EVA1C), mtq-2 (N6ATM1), ncam-1 (NCAM2), pad-2 (POFUT2), pdxk-1 (PDXK), rnt-1 (RUNX1), and unc-26 (SYNJ1). We also found that three of these genes are required for normal release of the neurotransmitter acetylcholine. This includes a known synaptic gene unc-26 (SYNJ1), as well as uncharacterized genes pdxk-1 (PDXK) and mtq-2 (N6ATM1). As the first systematic functional analysis of HSA21 orthologs, this study may serve as a platform to understand genes that underlie phenotypes associated with Down syndrome.
Collapse
|
21
|
Bourgeois G, Marcoux J, Saliou JM, Cianférani S, Graille M. Activation mode of the eukaryotic m2G10 tRNA methyltransferase Trm11 by its partner protein Trm112. Nucleic Acids Res 2017; 45:1971-1982. [PMID: 27986851 PMCID: PMC5389515 DOI: 10.1093/nar/gkw1271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022] Open
Abstract
Post-transcriptional and post-translational modifications of factors involved in translation are very important for the control and accuracy of protein biosynthesis. Among these factors, tRNAs harbor the largest variety of grafted chemical structures, which participate in tRNA stability or mRNA decoding. Here, we focused on Trm112 protein, which associates with four different eukaryotic methyltransferases modifying tRNAs (Trm9 and Trm11) but also 18S-rRNA (Bud23) and translation termination factor eRF1 (Mtq2). In particular, we have investigated the role of Trm112 in the Trm11–Trm112 complex, which forms 2-methylguanosine at position 10 on several tRNAs and thereby is assumed to stabilize tRNA structure. We show that Trm112 is important for Trm11 enzymatic activity by influencing S-adenosyl-L-methionine binding and by contributing to tRNA binding. Using hydrogen-deuterium eXchange coupled to mass spectrometry, we obtained experimental evidences that the Trm11–Trm112 interaction relies on the same molecular bases as those described for other Trm112–methyltransferases complexes. Hence, all Trm112-dependent methyltransferases compete to interact with this partner.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Julien Marcoux
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Jean-Michel Saliou
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| |
Collapse
|
22
|
Bourgeois G, Létoquart J, van Tran N, Graille M. Trm112, a Protein Activator of Methyltransferases Modifying Actors of the Eukaryotic Translational Apparatus. Biomolecules 2017; 7:biom7010007. [PMID: 28134793 PMCID: PMC5372719 DOI: 10.3390/biom7010007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional and post-translational modifications are very important for the control and optimal efficiency of messenger RNA (mRNA) translation. Among these, methylation is the most widespread modification, as it is found in all domains of life. These methyl groups can be grafted either on nucleic acids (transfer RNA (tRNA), ribosomal RNA (rRNA), mRNA, etc.) or on protein translation factors. This review focuses on Trm112, a small protein interacting with and activating at least four different eukaryotic methyltransferase (MTase) enzymes modifying factors involved in translation. The Trm112-Trm9 and Trm112-Trm11 complexes modify tRNAs, while the Trm112-Mtq2 complex targets translation termination factor eRF1, which is a tRNA mimic. The last complex formed between Trm112 and Bud23 proteins modifies 18S rRNA and participates in the 40S biogenesis pathway. In this review, we present the functions of these eukaryotic Trm112-MTase complexes, the molecular bases responsible for complex formation and substrate recognition, as well as their implications in human diseases. Moreover, as Trm112 orthologs are found in bacterial and archaeal genomes, the conservation of this Trm112 network beyond eukaryotic organisms is also discussed.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| | - Juliette Létoquart
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
- De Duve Institute, Université Catholique de Louvain, avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Nhan van Tran
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau CEDEX, France.
| |
Collapse
|
23
|
Kusevic D, Kudithipudi S, Jeltsch A. Substrate Specificity of the HEMK2 Protein Glutamine Methyltransferase and Identification of Novel Substrates. J Biol Chem 2016; 291:6124-33. [PMID: 26797129 DOI: 10.1074/jbc.m115.711952] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/06/2022] Open
Abstract
Bacterial HEMK2 homologs initially had been proposed to be involved in heme biogenesis or to function as adenine DNA methyltransferase. Later it was shown that this family of enzymes has protein glutamine methyltransferase activity, and they methylate the glutamine residue in the GGQ motif of ribosomal translation termination factors. The murine HEMK2 enzyme methylates Gln(185) of the eukaryotic translation termination factor eRF1. We have employed peptide array libraries to investigate the peptide sequence recognition specificity of murine HEMK2. Our data show that HEMK2 requires a GQX3R motif for methylation activity. In addition, amino acid preferences were observed between the -3 and +7 positions of the peptide substrate (considering the target glutamine as 0), including a preference for Ser, Arg, and Gly at the +1 and a preference for Arg at the +7 position. Based on our specificity profile, we identified several human proteins that contain putative HEMK2 methylation sites and show that HEMK2 methylates 58 novel peptide substrates. After cloning, expression, and purification of the corresponding protein domains, we confirmed methylation for 11 of them at the protein level. Transfected CHD5 (chromodomain helicase DNA-binding protein 5) and NUT (nuclear protein in testis) were also demonstrated to be methylated by HEMK2 in human HEK293 cells. Our data expand the range of proteins potentially subjected to glutamine methylation significantly, but further investigation will be required to understand the function of HEMK2-mediated methylation in proteins other than eRF1.
Collapse
Affiliation(s)
- Denis Kusevic
- From the Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Srikanth Kudithipudi
- From the Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- From the Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
24
|
Abstract
tRNA molecules undergo extensive post-transcriptional processing to generate the mature functional tRNA species that are essential for translation in all organisms. These processing steps include the introduction of numerous specific chemical modifications to nucleotide bases and sugars; among these modifications, methylation reactions are by far the most abundant. The tRNA methyltransferases comprise a diverse enzyme superfamily, including members of multiple structural classes that appear to have arisen independently during evolution. Even among closely related family members, examples of unusual substrate specificity and chemistry have been observed. Here we review recent advances in tRNA methyltransferase mechanism and function with a particular emphasis on discoveries of alternative substrate specificities and chemistry associated with some methyltransferases. Although the molecular function for a specific tRNA methylation may not always be clear, mutations in tRNA methyltransferases have been increasingly associated with human disease. The impact of tRNA methylation on human biology is also discussed.
Collapse
Affiliation(s)
- William E Swinehart
- a Center for RNA Biology and Department of Chemistry and Biochemistry ; Ohio State University ; Columbus , OH USA
| | | |
Collapse
|
25
|
Abstract
tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.
Collapse
Affiliation(s)
- Michael P Guy
- a Department of Biochemistry and Biophysics; Center for RNA Biology ; University of Rochester School of Medicine ; Rochester , NY USA
| | | |
Collapse
|
26
|
Karlsborn T, Tükenmez H, Mahmud AKMF, Xu F, Xu H, Byström AS. Elongator, a conserved complex required for wobble uridine modifications in eukaryotes. RNA Biol 2015; 11:1519-28. [PMID: 25607684 DOI: 10.4161/15476286.2014.992276] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Elongator is a 6 subunit protein complex highly conserved in eukaryotes. The role of this complex has been controversial as the pleiotropic phenotypes of Elongator mutants have implicated the complex in several cellular processes. However, in yeast there is convincing evidence that the primary and probably only role of this complex is in formation of the 5-methoxycarbonylmethyl (mcm(5)) and 5-carbamoylmethyl (ncm(5)) side chains on uridines at wobble position in tRNA. In this review we summarize the cellular processes that have been linked to the Elongator complex and discuss its role in tRNA modification and regulation of translation. We also describe additional gene products essential for formation of ncm(5) and mcm(5) side chains at U34 and their influence on Elongator activity.
Collapse
Affiliation(s)
- Tony Karlsborn
- a Department of Molecular Biology ; Umeå University; Umeå , Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Létoquart J, van Tran N, Caroline V, Aleksandrov A, Lazar N, van Tilbeurgh H, Liger D, Graille M. Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure. Nucleic Acids Res 2015; 43:10989-1002. [PMID: 26438534 PMCID: PMC4678810 DOI: 10.1093/nar/gkv1009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/24/2015] [Indexed: 11/15/2022] Open
Abstract
Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm5U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity.
Collapse
Affiliation(s)
- Juliette Létoquart
- Laboratoire de Biochimie, CNRS, UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France Fonction et Architecture des Assemblages Macromoléculaires, Département B3S, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, CEA, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Nhan van Tran
- Laboratoire de Biochimie, CNRS, UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Vonny Caroline
- Laboratoire de Biochimie, CNRS, UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Alexey Aleksandrov
- Laboratoire de Biochimie, CNRS, UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Noureddine Lazar
- Fonction et Architecture des Assemblages Macromoléculaires, Département B3S, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, CEA, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Herman van Tilbeurgh
- Fonction et Architecture des Assemblages Macromoléculaires, Département B3S, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, CEA, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Dominique Liger
- Fonction et Architecture des Assemblages Macromoléculaires, Département B3S, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, CEA, Université Paris Sud, F-91405 Orsay Cedex, France
| | - Marc Graille
- Laboratoire de Biochimie, CNRS, UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France Fonction et Architecture des Assemblages Macromoléculaires, Département B3S, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, UMR 9198, CEA, Université Paris Sud, F-91405 Orsay Cedex, France
| |
Collapse
|
28
|
Zorbas C, Nicolas E, Wacheul L, Huvelle E, Heurgué-Hamard V, Lafontaine DLJ. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol Biol Cell 2015; 26:2080-95. [PMID: 25851604 PMCID: PMC4472018 DOI: 10.1091/mbc.e15-02-0073] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/02/2015] [Indexed: 01/07/2023] Open
Abstract
An evolutionarily conserved quality control in ribosome biogenesis reveals that two human rRNA base methyltransferases associated with cell differentiation and cancer but, surprisingly, not their RNA-modifying activity are required for small ribosomal subunit biogenesis. At the heart of the ribosome lie rRNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N6-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N7-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to human by which binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features.
Collapse
Affiliation(s)
- Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Emilien Nicolas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Emmeline Huvelle
- Centre National de la Recherche Scientifique FRE3630, Institut de Biologie Physico-Chimique, Paris F-75005, France
| | - Valérie Heurgué-Hamard
- Centre National de la Recherche Scientifique FRE3630, Institut de Biologie Physico-Chimique, Paris F-75005, France
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
29
|
Létoquart J, Huvelle E, Wacheul L, Bourgeois G, Zorbas C, Graille M, Heurgué-Hamard V, Lafontaine DLJ. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40S precursor ribosomes. Proc Natl Acad Sci U S A 2014; 111:E5518-26. [PMID: 25489090 PMCID: PMC4280632 DOI: 10.1073/pnas.1413089111] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic small ribosomal subunit carries only four ribosomal (r) RNA methylated bases, all close to important functional sites. N(7)-methylguanosine (m(7)G) introduced at position 1575 on 18S rRNA by Bud23-Trm112 is at a ridge forming a steric block between P- and E-site tRNAs. Here we report atomic resolution structures of Bud23-Trm112 in the apo and S-adenosyl-L-methionine (SAM)-bound forms. Bud23 and Trm112 interact through formation of a β-zipper involving main-chain atoms, burying an important hydrophobic surface and stabilizing the complex. The structures revealed that the coactivator Trm112 undergoes an induced fit to accommodate its methyltransferase (MTase) partner. We report important structural similarity between the active sites of Bud23 and Coffea canephora xanthosine MTase, leading us to propose and validate experimentally a model for G1575 coordination. We identify Bud23 residues important for Bud23-Trm112 complex formation and recruitment to pre-ribosomes. We report that though Bud23-Trm112 binds precursor ribosomes at an early nucleolar stage, m(7)G methylation occurs at a late step of small subunit biogenesis, implying specifically delayed catalytic activation. Finally, we show that Bud23-Trm112 interacts directly with the box C/D snoRNA U3-associated DEAH RNA helicase Dhr1 supposedly involved in central pseudoknot formation; this suggests that Bud23-Trm112 might also contribute to controlling formation of this irreversible and dramatic structural reorganization essential to overall folding of small subunit rRNA. Our study contributes important new elements to our understanding of key molecular aspects of human ribosomopathy syndromes associated with WBSCR22 (human Bud23) malfunction.
Collapse
Affiliation(s)
- Juliette Létoquart
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Emmeline Huvelle
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris F-75005, France
| | - Ludivine Wacheul
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and
| | - Gabrielle Bourgeois
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | - Christiane Zorbas
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and
| | - Marc Graille
- Laboratoire de Biochimie, CNRS UMR 7654, Ecole Polytechnique, F-91128 Palaiseau Cedex, France;
| | - Valérie Heurgué-Hamard
- CNRS FRE3630 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris F-75005, France;
| | - Denis L J Lafontaine
- Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium; and RNA Molecular Biology, Fonds de la Recherche Scientifique, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
30
|
Huang SY, Yan C, Grinter SZ, Chang S, Jiang L, Zou X. Inclusion of the orientational entropic effect and low-resolution experimental information for protein-protein docking in Critical Assessment of PRedicted Interactions (CAPRI). Proteins 2013; 81:2183-91. [PMID: 24227686 PMCID: PMC3916956 DOI: 10.1002/prot.24435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/20/2023]
Abstract
Inclusion of entropy is important and challenging for protein-protein binding prediction. Here, we present a statistical mechanics-based approach to empirically consider the effect of orientational entropy. Specifically, we globally sample the possible binding orientations based on a simple shape-complementarity scoring function using an FFT-type docking method. Then, for each generated orientation, we calculate the probability through the partition function of the ensemble of accessible states, which are assumed to be represented by the set of nearby binding modes. For each mode, the interaction energy is calculated using our ITScorePP scoring function that was developed in our laboratory based on principles of statistical mechanics. Using the above protocol, we present the results of our participation in Rounds 22-27 of the Critical Assessment of PRedicted Interactions (CAPRI) experiment for 10 targets (T46-T58). Additional experimental information, such as low-resolution small-angle X-ray scattering data, was used when available. In the prediction (or docking) experiments of the 10 target complexes, we achieved correct binding modes for six targets: one with high accuracy (T47), two with medium accuracy (T48 and T57), and three with acceptable accuracy (T49, T50, and T58). In the scoring experiments of seven target complexes, we obtained correct binding modes for six targets: one with high accuracy (T47), two with medium accuracy (T49 and T50), and three with acceptable accuracy (T46, T51, and T53).
Collapse
Affiliation(s)
- Sheng-You Huang
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211
| | | | | | - Shan Chang
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211
| | - Lin Jiang
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211
| | - Xiaoqin Zou
- Department of Physics and Astronomy, Department of Biochemistry, Dalton Cardiovascular Research Center, and Informatics Institute, University of Missouri, Columbia, MO 65211
| |
Collapse
|
31
|
Santos N, Zhu J, Donohue JP, Korostelev AA, Noller HF. Crystal structure of the 70S ribosome bound with the Q253P mutant form of release factor RF2. Structure 2013; 21:1258-63. [PMID: 23769667 DOI: 10.1016/j.str.2013.04.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/26/2013] [Accepted: 04/26/2013] [Indexed: 11/25/2022]
Abstract
Bacterial translation termination is mediated by release factors RF1 and RF2, which recognize stop codons and catalyze hydrolysis of the peptidyl-tRNA ester bond. The catalytic mechanism has been debated. We proposed that the backbone amide NH group, rather than the side chain, of the glutamine of the universally conserved GGQ motif participates in catalysis by H-bonding to the tetrahedral transition-state intermediate and by product stabilization. This was supported by complete loss of RF1 catalytic activity when glutamine is replaced by proline, the only residue that lacks a backbone NH group. Here, we present the 3.4 Å crystal structure of the ribosome complex containing the RF2 Q253P mutant and find that its fold, including the GGP sequence, is virtually identical to that of wild-type RF2. This rules out proline-induced misfolding and further supports the proposal that catalytic activity requires interaction of the Gln-253 backbone amide with the 3' end of peptidyl-tRNA.
Collapse
Affiliation(s)
- Natalia Santos
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
32
|
Sardana R, Johnson AW. The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits. Mol Biol Cell 2012; 23:4313-22. [PMID: 22956767 PMCID: PMC3484107 DOI: 10.1091/mbc.e12-05-0370] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We previously identified Bud23 as the methyltransferase that methylates G1575 of rRNA in the P-site of the small (40S) ribosomal subunit. In this paper, we show that Bud23 requires the methyltransferase adaptor protein Trm112 for stability in vivo. Deletion of Trm112 results in a bud23Δ-like mutant phenotype. Thus Trm112 is required for efficient small-subunit biogenesis. Genetic analysis suggests the slow growth of a trm112Δ mutant is due primarily to the loss of Bud23. Surprisingly, suppression of the bud23Δ-dependent 40S defect revealed a large (60S) biogenesis defect in a trm112Δ mutant. Using sucrose gradient sedimentation analysis and coimmunoprecipitation, we show that Trm112 is also involved in 60S subunit biogenesis. The 60S defect may be dependent on Nop2 and Rcm1, two additional Trm112 interactors that we identify. Our work extends the known range of Trm112 function from modification of tRNAs and translation factors to both ribosomal subunits, showing that its effects span all aspects of the translation machinery. Although Trm112 is required for Bud23 stability, our results suggest that Trm112 is not maintained in a stable complex with Bud23. We suggest that Trm112 stabilizes its free methyltransferase partners not engaged with substrate and/or helps to deliver its methyltransferase partners to their substrates.
Collapse
Affiliation(s)
- Richa Sardana
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
33
|
Gu T, He H, Zhang Y, Han Z, Hou G, Zeng T, Liu Q, Wu Q. Trmt112 gene expression in mouse embryonic development. Acta Histochem Cytochem 2012; 45:113-9. [PMID: 22685353 PMCID: PMC3365302 DOI: 10.1267/ahc.11047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/28/2011] [Indexed: 11/22/2022] Open
Abstract
Mouse Trmt112, the homologous gene of yeast Trm112 (tRNA methyltransferase 11-2), was initially cloned from RIKEN with uncertain function. The yeast TRM112 is now known to play important roles in RNA methylation. Here, we studied the expression of Trmt112 by in situ hybridization and quantitative real-time RT-PCR (QRT-PCR). A higher expression level of Trmt112 was observed in the brain and nervous system by whole mount in situ hybridization from embryonic day 10.5 (E10.5) to E11.5. At later developmental stages E13.5 and E16.5, abundant expression was prominently found in various organs and tissues including developing brain, nervous system, thymus, lung, liver, intestine, kidney, and cartilage. Furthermore, Trmt112 was persistently expressed from E9.5 to E18.5 on whole embryos and highly expressed in multiple organs at E12.5, E15.5 and E18.5 by QRT-PCR. These results showed that Trmt112 gene was highly and ubiquitously expressed during mouse embryonic development, implying that it might be involved in the morphogenesis of diverse organs and tissues and numerous physiological functions.
Collapse
Affiliation(s)
- Tiantian Gu
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
| | - Hongjuan He
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Zhengbin Han
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
| | - Guangyuan Hou
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
| | - Tiebo Zeng
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
| | - Qi Liu
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
| | - Qiong Wu
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology
| |
Collapse
|
34
|
Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575. Mol Cell Biol 2012; 32:2254-67. [PMID: 22493060 DOI: 10.1128/mcb.06623-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional and posttranslational modification of macromolecules is known to fine-tune their functions. Trm112 is unique, acting as an activator of both tRNA and protein methyltransferases. Here we report that in Saccharomyces cerevisiae, Trm112 is required for efficient ribosome synthesis and progression through mitosis. Trm112 copurifies with pre-rRNAs and with multiple ribosome synthesis trans-acting factors, including the 18S rRNA methyltransferase Bud23. Consistent with the known mechanisms of activation of methyltransferases by Trm112, we found that Trm112 interacts directly with Bud23 in vitro and that it is required for its stability in vivo. Consequently, trm112Δ cells are deficient for Bud23-mediated 18S rRNA methylation at position G1575 and for small ribosome subunit formation. Bud23 failure to bind nascent preribosomes activates a nucleolar surveillance pathway involving the TRAMP complexes, leading to preribosome degradation. Trm112 is thus active in rRNA, tRNA, and translation factor modification, ideally placing it at the interface between ribosome synthesis and function.
Collapse
|
35
|
Graille M, Figaro S, Kervestin S, Buckingham RH, Liger D, Heurgué-Hamard V. Methylation of class I translation termination factors: structural and functional aspects. Biochimie 2012; 94:1533-43. [PMID: 22266024 DOI: 10.1016/j.biochi.2012.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/07/2012] [Indexed: 12/23/2022]
Abstract
During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies.
Collapse
Affiliation(s)
- Marc Graille
- IBBMC, Université Paris-Sud 11, CNRS UMR8619, Orsay Cedex, F-91405, France.
| | | | | | | | | | | |
Collapse
|
36
|
Chen C, Huang B, Anderson JT, Byström AS. Unexpected accumulation of ncm(5)U and ncm(5)S(2) (U) in a trm9 mutant suggests an additional step in the synthesis of mcm(5)U and mcm(5)S(2)U. PLoS One 2011; 6:e20783. [PMID: 21687733 PMCID: PMC3110198 DOI: 10.1371/journal.pone.0020783] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Transfer RNAs are synthesized as a primary transcript that is processed to produce a mature tRNA. As part of the maturation process, a subset of the nucleosides are modified. Modifications in the anticodon region often modulate the decoding ability of the tRNA. At position 34, the majority of yeast cytosolic tRNA species that have a uridine are modified to 5-carbamoylmethyluridine (ncm(5)U), 5-carbamoylmethyl-2'-O-methyluridine (ncm(5)Um), 5-methoxycarbonylmethyl-uridine (mcm(5)U) or 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U). The formation of mcm(5) and ncm(5) side chains involves a complex pathway, where the last step in formation of mcm(5) is a methyl esterification of cm(5) dependent on the Trm9 and Trm112 proteins. METHODOLOGY AND PRINCIPAL FINDINGS Both Trm9 and Trm112 are required for the last step in formation of mcm(5) side chains at wobble uridines. By co-expressing a histidine-tagged Trm9p together with a native Trm112p in E. coli, these two proteins purified as a complex. The presence of Trm112p dramatically improves the methyltransferase activity of Trm9p in vitro. Single tRNA species that normally contain mcm(5)U or mcm(5)s(2)U nucleosides were isolated from trm9Δ or trm112Δ mutants and the presence of modified nucleosides was analyzed by HPLC. In both mutants, mcm(5)U and mcm(5)s(2)U nucleosides are absent in tRNAs and the major intermediates accumulating were ncm(5)U and ncm(5)s(2)U, not the expected cm(5)U and cm(5)s(2)U. CONCLUSIONS Trm9p and Trm112p function together at the final step in formation of mcm(5)U in tRNA by using the intermediate cm(5)U as a substrate. In tRNA isolated from trm9Δ and trm112Δ strains, ncm(5)U and ncm(5)s(2)U nucleosides accumulate, questioning the order of nucleoside intermediate formation of the mcm(5) side chain. We propose two alternative explanations for this observation. One is that the intermediate cm(5)U is generated from ncm(5)U by a yet unknown mechanism and the other is that cm(5)U is formed before ncm(5)U and mcm(5)U.
Collapse
Affiliation(s)
- Changchun Chen
- Department of Molecular Biology, Umeå
University, Umeå, Sweden
| | - Bo Huang
- Department of Molecular Biology, Umeå
University, Umeå, Sweden
- Division of Epidemiology, Department of
Medicine and Public Health, Vanderbilt University School of Medicine, Nashville,
Tennessee, United States of America
| | - James T. Anderson
- Department of Biological Sciences, Marquette
University, Milwaukee, Wisconsin, United States of America
- * E-mail: (JTA); (ASB)
| | - Anders S. Byström
- Department of Molecular Biology, Umeå
University, Umeå, Sweden
- * E-mail: (JTA); (ASB)
| |
Collapse
|
37
|
Liger D, Mora L, Lazar N, Figaro S, Henri J, Scrima N, Buckingham RH, van Tilbeurgh H, Heurgué-Hamard V, Graille M. Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein. Nucleic Acids Res 2011; 39:6249-59. [PMID: 21478168 PMCID: PMC3152332 DOI: 10.1093/nar/gkr176] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.
Collapse
Affiliation(s)
- Dominique Liger
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, IFR115, CNRS UMR 8619, Orsay Cedex F-91405, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Collinet B, Friberg A, Brooks MA, van den Elzen T, Henriot V, Dziembowski A, Graille M, Durand D, Leulliot N, Saint André C, Lazar N, Sattler M, Séraphin B, van Tilbeurgh H. Strategies for the structural analysis of multi-protein complexes: lessons from the 3D-Repertoire project. J Struct Biol 2011; 175:147-58. [PMID: 21463689 DOI: 10.1016/j.jsb.2011.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/18/2011] [Accepted: 03/19/2011] [Indexed: 11/25/2022]
Abstract
Structural studies of multi-protein complexes, whether by X-ray diffraction, scattering, NMR spectroscopy or electron microscopy, require stringent quality control of the component samples. The inability to produce 'keystone' subunits in a soluble and correctly folded form is a serious impediment to the reconstitution of the complexes. Co-expression of the components offers a valuable alternative to the expression of single proteins as a route to obtain sufficient amounts of the sample of interest. Even in cases where milligram-scale quantities of purified complex of interest become available, there is still no guarantee that good quality crystals can be obtained. At this step, protein engineering of one or more components of the complex is frequently required to improve solubility, yield or the ability to crystallize the sample. Subsequent characterization of these constructs may be performed by solution techniques such as Small Angle X-ray Scattering and Nuclear Magnetic Resonance to identify 'well behaved' complexes. Herein, we recount our experiences gained at protein production and complex assembly during the European 3D Repertoire project (3DR). The goal of this consortium was to obtain structural information on multi-protein complexes from yeast by combining crystallography, electron microscopy, NMR and in silico modeling methods. We present here representative set case studies of complexes that were produced and analyzed within the 3DR project. Our experience provides useful insight into strategies that are more generally applicable for structural analysis of protein complexes.
Collapse
Affiliation(s)
- B Collinet
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu P, Nie S, Li B, Yang ZQ, Xu ZM, Fei J, Lin C, Zeng R, Xu GL. Deficiency in a glutamine-specific methyltransferase for release factor causes mouse embryonic lethality. Mol Cell Biol 2010; 30:4245-53. [PMID: 20606008 PMCID: PMC2937546 DOI: 10.1128/mcb.00218-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/30/2010] [Accepted: 06/24/2010] [Indexed: 11/20/2022] Open
Abstract
Biological methylation is a fundamental enzymatic reaction for a variety of substrates in multiple cellular processes. Mammalian N6amt1 was thought to be a homologue of bacterial N(6)-adenine DNA methyltransferases, but its substrate specificity and physiological importance remain elusive. Here, we demonstrate that N6amt1 functions as a protein methyltransferase for the translation termination factor eRF1 in mammalian cells both in vitro and in vivo. Mass spectrometry analysis indicated that about 70% of the endogenous eRF1 is methylated at the glutamine residue of the conserved GGQ motif. To address the physiological significance of eRF1 methylation, we disrupted the N6amt1 gene in the mouse. Loss of N6amt1 led to early embryonic lethality. The postimplantation development of mutant embryos was impaired, resulting in degeneration around embryonic day 6.5. This is in contrast to what occurs in Escherichia coli and Saccharomyces cerevisiae, which can survive without the N6amt1 homologues. Thus, N6amt1 is the first glutamine-specific protein methyltransferase characterized in vivo in mammals and methylation of eRF1 by N6amt1 might be essential for the viability of early embryos.
Collapse
Affiliation(s)
- Peng Liu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Song Nie
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Bing Li
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Zhong-Qiang Yang
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Zhi-Mei Xu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Jian Fei
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Chyuansheng Lin
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Rong Zeng
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Guo-Liang Xu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
40
|
Henri J, Rispal D, Bayart E, van Tilbeurgh H, Séraphin B, Graille M. Structural and functional insights into Saccharomyces cerevisiae Tpa1, a putative prolylhydroxylase influencing translation termination and transcription. J Biol Chem 2010; 285:30767-78. [PMID: 20630870 DOI: 10.1074/jbc.m110.106864] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Efficiency of translation termination relies on the specific recognition of the three stop codons by the eukaryotic translation termination factor eRF1. To date only a few proteins are known to be involved in translation termination in eukaryotes. Saccharomyces cerevisiae Tpa1, a largely conserved but uncharacterized protein, has been described to associate with a messenger ribonucleoprotein complex located at the 3' end of mRNAs that contains at least eRF1, eRF3, and Pab1. Deletion of the TPA1 gene results in a decrease of translation termination efficacy and an increase in mRNAs half-lives and longer mRNA poly(A) tails. In parallel, Schizosaccharomyces pombe Ofd1, a Tpa1 ortholog, and its partner Nro1 have been implicated in the regulation of the stability of a transcription factor that regulates genes essential for the cell response to hypoxia. To gain insight into Tpa1/Ofd1 function, we have solved the crystal structure of S. cerevisiae Tpa1 protein. This protein is composed of two equivalent domains with the double-stranded β-helix fold. The N-terminal domain displays a highly conserved active site with strong similarities with prolyl-4-hydroxylases. Further functional studies show that the integrity of Tpa1 active site as well as the presence of Yor051c/Ett1 (the S. cerevisiae Nro1 ortholog) are essential for correct translation termination. In parallel, we show that Tpa1 represses the expression of genes regulated by Hap1, a transcription factor involved in the response to levels of heme and oxygen. Altogether, our results support that Tpa1 is a putative enzyme acting as an oxygen sensor and influencing several distinct regulatory pathways.
Collapse
Affiliation(s)
- Julien Henri
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR8619 Bat 430 Université Paris Sud, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
41
|
Mantsyzov AB, Ivanova EV, Birdsall B, Alkalaeva EZ, Kryuchkova PN, Kelly G, Frolova LY, Polshakov VI. NMR solution structure and function of the C-terminal domain of eukaryotic class 1 polypeptide chain release factor. FEBS J 2010. [PMID: 20553496 PMCID: PMC2909394 DOI: 10.1111/j.1742-4658.2010.07672.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Termination of translation in eukaryotes is triggered by two polypeptide chain release factors, eukaryotic class 1 polypeptide chain release factor (eRF1) and eukaryotic class 2 polypeptide chain release factor 3. eRF1 is a three-domain protein that interacts with eukaryotic class 2 polypeptide chain release factor 3 via its C-terminal domain (C-domain). The high-resolution NMR structure of the human C-domain (residues 277–437) has been determined in solution. The overall fold and the structure of the β-strand core of the protein in solution are similar to those found in the crystal structure. The structure of the minidomain (residues 329–372), which was ill-defined in the crystal structure, has been determined in solution. The protein backbone dynamics, studied using 15N-relaxation experiments, showed that the C-terminal tail 414–437 and the minidomain are the most flexible parts of the human C-domain. The minidomain exists in solution in two conformational states, slowly interconverting on the NMR timescale. Superposition of this NMR solution structure of the human C-domain onto the available crystal structure of full-length human eRF1 shows that the minidomain is close to the stop codon-recognizing N-terminal domain. Mutations in the tip of the minidomain were found to affect the stop codon specificity of the factor. The results provide new insights into the possible role of the C-domain in the process of translation termination.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Center for Magnetic Tomography and Spectroscopy, M. V. Lomonosov Moscow State University, Russia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mazauric MH, Dirick L, Purushothaman SK, Björk GR, Lapeyre B. Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. J Biol Chem 2010; 285:18505-15. [PMID: 20400505 PMCID: PMC2881776 DOI: 10.1074/jbc.m110.113100] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/16/2010] [Indexed: 11/06/2022] Open
Abstract
The degenerate base at position 34 of the tRNA anticodon is the target of numerous modification enzymes. In Saccharomyces cerevisiae, five tRNAs exhibit a complex modification of uridine 34 (mcm(5)U(34) and mcm(5)s(2)U(34)), the formation of which requires at least 25 different proteins. The addition of the last methyl group is catalyzed by the methyltransferase Trm9p. Trm9p interacts with Trm112p, a 15-kDa protein with a zinc finger domain. Trm112p is essential for the activity of Trm11p, another tRNA methyltransferase, and for Mtq2p, an enzyme that methylates the translation termination factor eRF1/Sup45. Here, we report that Trm112p is required in vivo for the formation of mcm(5)U(34) and mcm(5)s(2)U(34). When produced in Escherichia coli, Trm112p forms a complex with Trm9p, which renders the latter soluble. This recombinant complex catalyzes the formation of mcm(5)U(34) on tRNA in vitro but not mcm(5)s(2)U(34). An mtq2-0 trm9-0 strain exhibits a synthetic growth defect, thus revealing the existence of an unexpected link between tRNA anticodon modification and termination of translation. Trm112p is associated with other partners involved in ribosome biogenesis and chromatin remodeling, suggesting that it has additional roles in the cell.
Collapse
Affiliation(s)
| | - Léon Dirick
- Institut de Génétique Moléculaire, University of Montpellier 1 and 2, 34293 Montpellier, France and
| | | | - Glenn R. Björk
- the
Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Bruno Lapeyre
- From the
Centre de Recherche de Biochimie Macromoléculaire and
| |
Collapse
|
43
|
Mantsyzov AB, Ivanova EV, Birdsall B, Alkalaeva EZ, Kryuchkova PN, Kelly G, Frolova LY, Polshakov VI. NMR solution structure and function of the C-terminal domain of eukaryotic class 1 polypeptide chain release factor. FEBS J 2010; 277:2611-27. [PMID: 20553496 PMCID: PMC2909394 DOI: 10.1111/j.1742-464x.2010.07672.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 11/27/2022]
Abstract
Termination of translation in eukaryotes is triggered by two polypeptide chain release factors, eukaryotic class 1 polypeptide chain release factor (eRF1) and eukaryotic class 2 polypeptide chain release factor 3. eRF1 is a three-domain protein that interacts with eukaryotic class 2 polypeptide chain release factor 3 via its C-terminal domain (C-domain). The high-resolution NMR structure of the human C-domain (residues 277-437) has been determined in solution. The overall fold and the structure of the beta-strand core of the protein in solution are similar to those found in the crystal structure. The structure of the minidomain (residues 329-372), which was ill-defined in the crystal structure, has been determined in solution. The protein backbone dynamics, studied using (15)N-relaxation experiments, showed that the C-terminal tail 414-437 and the minidomain are the most flexible parts of the human C-domain. The minidomain exists in solution in two conformational states, slowly interconverting on the NMR timescale. Superposition of this NMR solution structure of the human C-domain onto the available crystal structure of full-length human eRF1 shows that the minidomain is close to the stop codon-recognizing N-terminal domain. Mutations in the tip of the minidomain were found to affect the stop codon specificity of the factor. The results provide new insights into the possible role of the C-domain in the process of translation termination.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Center for Magnetic Tomography and Spectroscopy, M. V. Lomonosov Moscow State University, Russia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol Cell Biol 2010; 30:2449-59. [PMID: 20308323 DOI: 10.1128/mcb.01604-09] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
tRNA nucleosides are extensively modified to ensure their proper function in translation. However, many of the enzymes responsible for tRNA modifications in mammals await identification. Here, we show that human AlkB homolog 8 (ABH8) catalyzes tRNA methylation to generate 5-methylcarboxymethyl uridine (mcm(5)U) at the wobble position of certain tRNAs, a critical anticodon loop modification linked to DNA damage survival. We find that ABH8 interacts specifically with tRNAs containing mcm(5)U and that purified ABH8 complexes methylate RNA in vitro. Significantly, ABH8 depletion in human cells reduces endogenous levels of mcm(5)U in RNA and increases cellular sensitivity to DNA-damaging agents. Moreover, DNA-damaging agents induce ABH8 expression in an ATM-dependent manner. These results expand the role of mammalian AlkB proteins beyond that of direct DNA repair and support a regulatory mechanism in the DNA damage response pathway involving modulation of tRNA modification.
Collapse
|
45
|
Hu Z, Qin Z, Wang M, Xu C, Feng G, Liu J, Meng Z, Hu Y. The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:600-610. [PMID: 19929876 DOI: 10.1111/j.1365-313x.2009.04085.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell proliferation is integrated into developmental progression in multicellular organisms, including plants, and the regulation of cell division is of pivotal importance for plant growth and development. Here, we report the identification of an Arabidopsis SMALL ORGAN 2 (SMO2) gene that functions in regulation of the progression of cell division during organ growth. The smo2 knockout mutant displays reduced size of aerial organs and shortened roots, due to the decreased number of cells in these organs. Further analyses reveal that disruption of SMO2 does not alter the developmental timing but reduces the rate of cell production during leaf and root growth. Moreover, smo2 plants exhibit a constitutive activation of cell cycle-related genes and over-accumulation of cells expressing CYCB1;1:beta-glucuronidase (CYCB1;1:GUS) during organogenesis, suggesting that smo2 has a defect in G(2)-M phase progression in the cell cycle. SMO2 encodes a functional homologue of yeast TRM112, a plurifunctional component involved in a few cellular events, including tRNA and protein methylation. In addition, the mutation of SMO2 does not appear to affect endoreduplication in Arabidopsis leaf cells. Taken together we postulate that Arabidopsis SMO2 is a conserved yeast TRM112 homologue and SMO2-mediated cellular events are required for proper progression of cell division in plant growth and development.
Collapse
Affiliation(s)
- Zhubing Hu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gao X, Bu D, Xu J, Li M. Improving consensus contact prediction via server correlation reduction. BMC STRUCTURAL BIOLOGY 2009; 9:28. [PMID: 19419562 PMCID: PMC2689239 DOI: 10.1186/1472-6807-9-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 05/06/2009] [Indexed: 11/10/2022]
Abstract
Background Protein inter-residue contacts play a crucial role in the determination and prediction of protein structures. Previous studies on contact prediction indicate that although template-based consensus methods outperform sequence-based methods on targets with typical templates, such consensus methods perform poorly on new fold targets. However, we find out that even for new fold targets, the models generated by threading programs can contain many true contacts. The challenge is how to identify them. Results In this paper, we develop an integer linear programming model for consensus contact prediction. In contrast to the simple majority voting method assuming that all the individual servers are equally important and independent, the newly developed method evaluates their correlation by using maximum likelihood estimation and extracts independent latent servers from them by using principal component analysis. An integer linear programming method is then applied to assign a weight to each latent server to maximize the difference between true contacts and false ones. The proposed method is tested on the CASP7 data set. If the top L/5 predicted contacts are evaluated where L is the protein size, the average accuracy is 73%, which is much higher than that of any previously reported study. Moreover, if only the 15 new fold CASP7 targets are considered, our method achieves an average accuracy of 37%, which is much better than that of the majority voting method, SVM-LOMETS, SVM-SEQ, and SAM-T06. These methods demonstrate an average accuracy of 13.0%, 10.8%, 25.8% and 21.2%, respectively. Conclusion Reducing server correlation and optimally combining independent latent servers show a significant improvement over the traditional consensus methods. This approach can hopefully provide a powerful tool for protein structure refinement and prediction use.
Collapse
Affiliation(s)
- Xin Gao
- David R, Cheriton School of Computer Science, University of Waterloo, N2L3G1, Canada.
| | | | | | | |
Collapse
|
47
|
Sorkin A, Truhlar DG, Amin EA. Energies, Geometries, and Charge Distributions of Zn Molecules, Clusters, and Biocenters from Coupled Cluster, Density Functional, and Neglect of Diatomic Differential Overlap Models. J Chem Theory Comput 2009; 5:1254-65. [PMID: 26609716 DOI: 10.1021/ct900038m] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present benchmark databases of Zn-ligand bond distances, bond angles, dipole moments, and bond dissociation energies for Zn-containing small molecules and Zn coordination compounds with H, CH3, C2H5, NH3, O, OH, H2O, F, Cl, S, and SCH3 ligands. The test set also includes clusters with Zn-Zn bonds. In addition, we calculated dipole moments and binding energies for Zn centers in coordination environments taken from zinc metalloenzyme X-ray structures, representing both structural and catalytic zinc centers. The benchmark values are based on relativistic-core coupled cluster calculations. These benchmark calculations are used to test the predictions of four density functionals, namely B3LYP and the more recently developed M05-2X, M06, and M06-2X levels of theory, and six semiempirical methods, including neglect of diatomic differential overlap (NDDO) calculations incorporating the new PM3 parameter set for Zn called ZnB, developed by Brothers and co-workers, and the recent PM6 parametrization of Stewart. We found that the best DFT method to reproduce dipole moments and dissociation energies of our Zn compound database is M05-2X, which is consistent with a previous study employing a much smaller and less diverse database and a much larger set of density functionals. Here we show that M05-2X geometries and single-point coupled cluster calculations with M05-2X geometries can also be used as benchmarks for larger compounds, where coupled cluster optimization is impractical, and in particular we use this strategy to extend the geometry, binding energy, and dipole moment databases to additional molecules, and we extend the tests involving crystal-site coordination compounds to two additional proteins. We find that the most predictive NDDO methods for our training set are PM3 and MNDO/d. Notably, we also find large errors in B3LYP for the coordination compounds based on experimental X-ray geometries.
Collapse
Affiliation(s)
- Anastassia Sorkin
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 717 Delaware St. SE, Minneapolis, Minnesota 55414-2959, and Department of, Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota, 55455-0431
| | - Donald G Truhlar
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 717 Delaware St. SE, Minneapolis, Minnesota 55414-2959, and Department of, Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota, 55455-0431
| | - Elizabeth A Amin
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 717 Delaware St. SE, Minneapolis, Minnesota 55414-2959, and Department of, Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota, 55455-0431
| |
Collapse
|
48
|
Bowman GR, Pande VS. Simulated tempering yields insight into the low-resolution Rosetta scoring functions. Proteins 2009; 74:777-88. [PMID: 18767152 DOI: 10.1002/prot.22210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rosetta is a structure prediction package that has been employed successfully in numerous protein design and other applications.1 Previous reports have attributed the current limitations of the Rosetta de novo structure prediction algorithm to inadequate sampling, particularly during the low-resolution phase.2-5 Here, we implement the Simulated Tempering (ST) sampling algorithm67 in Rosetta to address this issue. ST is intended to yield canonical sampling by inducing a random walk in temperatures space such that broad sampling is achieved at high temperatures and detailed exploration of local free energy minima is achieved at low temperatures. ST should therefore visit basins in accordance with their free energies rather than their energies and achieve more global sampling than the localized scheme currently implemented in Rosetta. However, we find that ST does not improve structure prediction with Rosetta. To understand why, we carried out a detailed analysis of the low-resolution scoring functions and find that they do not provide a strong bias towards the native state. In addition, we find that both ST and standard Rosetta runs started from the native state are biased away from the native state. Although the low-resolution scoring functions could be improved, we propose that working entirely at full-atom resolution is now possible and may be a better option due to superior native-state discrimination at full-atom resolution. Such an approach will require more attention to the kinetics of convergence, however, as functions capable of native state discrimination are not necessarily capable of rapidly guiding non-native conformations to the native state.
Collapse
Affiliation(s)
- Gregory R Bowman
- Biophysics Program, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
49
|
Studte P, Zink S, Jablonowski D, Bär C, von der Haar T, Tuite MF, Schaffrath R. tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Mol Microbiol 2008; 69:1266-77. [PMID: 18657261 DOI: 10.1111/j.1365-2958.2008.06358.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modification of Saccharomyces cerevisiae tRNA anticodons at the wobble uridine (U34) position is required for tRNA cleavage by the zymocin tRNase killer toxin from Kluyveromyces lactis. Hence, U34 modification defects including lack of the U34 tRNA methyltransferase Trm9 protect against tRNA cleavage and zymocin. Using zymocin as a tool, we have identified toxin-resistant mutations in TRM9 that are likely to affect the U34 methylation reaction. Most strikingly, C-terminal truncations in Trm9 abolish interaction with Trm112, a protein shown to individually purify with Lys9 and two more methylases, Trm11 and Mtq2. Downregulation of a GAL1-TRM112 allele protects against zymocin whereas LYS9, TRM11 and MTQ2 are dosage suppressors of zymocin. Based on immune precipitation studies, the latter scenario correlates with competition for Trm112 and in excess, some of these Trm112 partners interfere with formation of the toxin-relevant Trm9.Trm112 complex. In contrast to trm11Delta or lys9Delta cells, trm112Delta and mtq2Delta null mutants are zymocin resistant. In line with the identified role that methylation of Sup45 by Mtq2 has for translation termination by the release factor dimer Sup45.Sup35, we observe that SUP45 overexpression and sup45 mutants suppress zymocin. Intriguingly, this suppression correlates with upregulated levels of tRNA species targeted by zymocin's tRNase activity.
Collapse
Affiliation(s)
- Patrick Studte
- Institut für Biologie, Bereich Genetik, Martin-Luther-Universität, Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Figaro S, Scrima N, Buckingham RH, Heurgué-Hamard V. HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1. FEBS Lett 2008; 582:2352-6. [PMID: 18539146 DOI: 10.1016/j.febslet.2008.05.045] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 05/21/2008] [Indexed: 11/29/2022]
Abstract
The ubiquitous tripeptide Gly-Gly-Gln in class 1 polypeptide release factors triggers polypeptide release on ribosomes. The Gln residue in both bacterial and yeast release factors is N5-methylated, despite their distinct evolutionary origin. Methylation of eRF1 in yeast is performed by the heterodimeric methyltransferase (MTase) Mtq2p/Trm112p, and requires eRF3 and GTP. Homologues of yeast Mtq2p and Trm112p are found in man, annotated as an N6-DNA-methyltransferase and of unknown function. Here we show that the human proteins methylate human and yeast eRF1.eRF3.GTP in vitro, and that the MTase catalytic subunit can complement the growth defect of yeast strains deleted for mtq2.
Collapse
Affiliation(s)
- Sabine Figaro
- IBPC, CNRS, UPR 9073, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|