1
|
Leng Y, Niu ZB, Liu SH, Qiao FJ, Liu GF, Cheng B, Li SW. Characterisation of cytochrome c oxidase-coding genes from mung bean and their response to cadmium stress based on genome-wide identification and transcriptome analysis. Mol Biol Rep 2024; 52:17. [PMID: 39589562 DOI: 10.1007/s11033-024-10102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Cytochrome c oxidase (COX) is a crucial mitochondrial enzyme in the electron transport chain of plants, implicated in energy production and stress responses. Despite its importance, the function of COX in leguminous plants, especially under heavy metal stress like cadmium (Cd), remains understudied. METHODS AND RESULTS In this study, COX genes (COX s) were identified based on the genome annotation file in mung bean (Vigna radiata (Linn.) R. Wilczek), and the gene structure, physicochemical properties and systematic relationships of the relevant amino acid sequences were analyzed by using bioinformatics method. The effects of Cd on the transcription levels and activities of COX in mung bean roots, stems, and leaves were detected to understand the mechanism of COX in mung bean in response to cadmium (Cd) stress. Transcriptome sequencing revealed tissue-specific expression with roots showed the highest levels. Cd stress significantly altered the expression and activity of VrCOXs, particularly in roots and stems, with varied responses among different genes. CONCLUSIONS The differential response of VrCOX s to Cd stress indicates a role in the plant stress tolerance mechanism. The study provides insights into the function of COXs in legumes and a foundation for further research into Cd tolerance mechanisms, which could be vital for enhancing legume production and ensuring food safety in contaminated environments.
Collapse
Affiliation(s)
- Yan Leng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
| | - Zhuan-Bin Niu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
| | - Shao-Hua Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
| | - Fu-Jun Qiao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
| | - Gui-Fang Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China
| | - Bin Cheng
- Sinopharm Lanzhou Biopharmaceuticals Co., Ltd, Lanzhou, 730030, P.R. China
| | - Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P.R. China.
| |
Collapse
|
2
|
Caron-Godon CA, Collington E, Wolf JL, Coletta G, Glerum DM. More than Just Bread and Wine: Using Yeast to Understand Inherited Cytochrome Oxidase Deficiencies in Humans. Int J Mol Sci 2024; 25:3814. [PMID: 38612624 PMCID: PMC11011759 DOI: 10.3390/ijms25073814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited defects in cytochrome c oxidase (COX) are associated with a substantial subset of diseases adversely affecting the structure and function of the mitochondrial respiratory chain. This multi-subunit enzyme consists of 14 subunits and numerous cofactors, and it requires the function of some 30 proteins to assemble. COX assembly was first shown to be the primary defect in the majority of COX deficiencies 36 years ago. Over the last three decades, most COX assembly genes have been identified in the yeast Saccharomyces cerevisiae, and studies in yeast have proven instrumental in testing the impact of mutations identified in patients with a specific COX deficiency. The advent of accessible genome-wide sequencing capabilities has led to more patient mutations being identified, with the subsequent identification of several new COX assembly factors. However, the lack of genotype-phenotype correlations and the large number of genes involved in generating a functional COX mean that functional studies must be undertaken to assign a genetic variant as being causal. In this review, we provide a brief overview of the use of yeast as a model system and briefly compare the COX assembly process in yeast and humans. We focus primarily on the studies in yeast that have allowed us to both identify new COX assembly factors and to demonstrate the pathogenicity of a subset of the mutations that have been identified in patients with inherited defects in COX. We conclude with an overview of the areas in which studies in yeast are likely to continue to contribute to progress in understanding disease arising from inherited COX deficiencies.
Collapse
Affiliation(s)
- Chenelle A. Caron-Godon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Emma Collington
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Jessica L. Wolf
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Genna Coletta
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - D. Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Yang Y, Li M, Chen G, Liu S, Guo H, Dong X, Wang K, Geng H, Jiang J, Li X. Dissecting copper biology and cancer treatment: ‘Activating Cuproptosis or suppressing Cuproplasia’. Coord Chem Rev 2023; 495:215395. [DOI: 10.1016/j.ccr.2023.215395] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
4
|
Salman AA, Goldring JPD. Expression and copper binding studies of a Plasmodium falciparum protein with Cox19 copper binding motifs. Exp Parasitol 2023:108572. [PMID: 37348640 DOI: 10.1016/j.exppara.2023.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Copper can exist in an oxidized and a reduced form, which enables the metal to play essential roles as a catalytic co-factor in redox reactions in many organisms. Copper confers redox activity to the terminal electron transport chain cytochrome c oxidase protein. Cytochrome c oxidase in yeast obtains copper for the CuB site in the Cox1 subunit from Cox11 in association with Cox19. When copper is chelated in growth medium, Plasmodium falciparum parasite development in infected red blood cells is inhibited and excess copper is toxic for the parasite. The gene of a 26 kDa Plasmodium falciparum PfCox19 protein with two Cx9C Cox19 copper binding motifs, was cloned and expressed as a 66 kDa fusion protein with maltose binding protein and affinity purified (rMBP-PfCox19). rMBP-PfCox19 bound copper measured by: a bicinchoninic acid release assay; an in vivo bacterial host growth inhibition assay; ascorbate oxidation inhibition and differential scanning fluorimetry. The native protein was detected by antibodies raised against rMBP-PfCox19. PfCox19 binds copper and is predicted to associate with PfCox11 in the insertion of copper into the CuB site of Plasmodium cytochrome c oxidase. Characterisation of the proteins involved in Plasmodium spp. copper metabolism will help us understand the role of cytochrome c oxidase and this essential metal in Plasmodium homeostasis.
Collapse
Affiliation(s)
| | - J P Dean Goldring
- Biochemistry, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| |
Collapse
|
5
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
7
|
Gladyck S, Aras S, Hüttemann M, Grossman LI. Regulation of COX Assembly and Function by Twin CX 9C Proteins-Implications for Human Disease. Cells 2021; 10:197. [PMID: 33498264 PMCID: PMC7909247 DOI: 10.3390/cells10020197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Oxidative phosphorylation is a tightly regulated process in mammals that takes place in and across the inner mitochondrial membrane and consists of the electron transport chain and ATP synthase. Complex IV, or cytochrome c oxidase (COX), is the terminal enzyme of the electron transport chain, responsible for accepting electrons from cytochrome c, pumping protons to contribute to the gradient utilized by ATP synthase to produce ATP, and reducing oxygen to water. As such, COX is tightly regulated through numerous mechanisms including protein-protein interactions. The twin CX9C family of proteins has recently been shown to be involved in COX regulation by assisting with complex assembly, biogenesis, and activity. The twin CX9C motif allows for the import of these proteins into the intermembrane space of the mitochondria using the redox import machinery of Mia40/CHCHD4. Studies have shown that knockdown of the proteins discussed in this review results in decreased or completely deficient aerobic respiration in experimental models ranging from yeast to human cells, as the proteins are conserved across species. This article highlights and discusses the importance of COX regulation by twin CX9C proteins in the mitochondria via COX assembly and control of its activity through protein-protein interactions, which is further modulated by cell signaling pathways. Interestingly, select members of the CX9C protein family, including MNRR1 and CHCHD10, show a novel feature in that they not only localize to the mitochondria but also to the nucleus, where they mediate oxygen- and stress-induced transcriptional regulation, opening a new view of mitochondrial-nuclear crosstalk and its involvement in human disease.
Collapse
Affiliation(s)
- Stephanie Gladyck
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.G.); (S.A.); (M.H.)
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI 48201, USA
| |
Collapse
|
8
|
Sun H, Chen M, Wang Z, Zhao G, Liu JX. Transcriptional profiles and copper stress responses in zebrafish cox17 mutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113364. [PMID: 31662245 DOI: 10.1016/j.envpol.2019.113364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
While Cox17 functions importantly in copper metalation of cytochrome c oxidase and integral mitochondrial architecture in vertebrates, rare studies have been performed regarding the developmental and physiological characters of vertebrate cox17 mutants. In this study, normal-like developmental phenotype was observed in both cox17Δ6-/- and cox17Δ4-/- homozygous zebrafish mutants, while gene ontology term and pathway analysis of the differentially expressed genes in both mutants showed enrichment in oxidoreductase activity, ion transport, histone methylation, MICOS complex, Wnt signaling, etc. This implied the occurrence of damage to the integral function of Cox17 and change of transcriptomes in the two mutants. Further qRT-PCR and WISH assays revealed the down-regulated expression of Wnt signaling and reduced expression of swim bladder marker genes in the two mutants. Moreover, copper stimulation induced no obvious increase in reactive oxygen species (ROS) or in the expression of hemoglobin marker genes, but further reduced the expression of swim bladder marker genes in the mutants. The integral data in this study suggest that: (1) cox17 mutants cannot activate the response of oxidoreductase to copper stimulation; (2) copper depends on the integral function of Cox17 to induce developmental defects in hemoglobin rather than swim bladder and (3) Wnt signaling but not ROS might mediate copper-induced swim bladder developmental defects in fish.
Collapse
Affiliation(s)
- HaoJie Sun
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - MingYue Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - ZiYang Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Garcia L, Mansilla N, Ocampos N, Pagani MA, Welchen E, Gonzalez DH. The mitochondrial copper chaperone COX19 influences copper and iron homeostasis in arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 99:621-638. [PMID: 30778722 DOI: 10.1007/s11103-019-00840-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/09/2019] [Indexed: 05/24/2023]
Abstract
The mitochondrial metallochaperone COX19 influences iron and copper responses highlighting a role of mitochondria in modulating metal homeostasis in Arabidopsis. The mitochondrial copper chaperone COX19 participates in the biogenesis of cytochrome c oxidase (COX) in yeast and humans. In this work, we studied the function of COX19 in Arabidopsis thaliana, using plants with either decreased or increased COX19 levels. A fusion of COX19 to the red fluorescent protein localized to mitochondria in vivo, suggesting that Arabidopsis COX19 is a mitochondrial protein. Silencing of COX19 using an artificial miRNA did not cause changes in COX activity levels or respiration in plants grown under standard conditions. These amiCOX19 plants, however, showed decreased expression of the low-copper responsive miRNA gene MIR398b and an induction of the miR398 target CSD1 relative to wild-type plants. Plants with increased COX19 levels, instead, showed induction of MIR398b and other low-copper responsive genes. In addition, global transcriptional changes in rosettes of amiCOX19 plants resembled those observed under iron deficiency. Phenotypic analysis indicated that the roots of amiCOX19 plants show altered growth responses to copper excess and iron deficiency. COX activity levels and COX-dependent respiration were lower in amiCOX19 plants than in wild-type plants under iron deficiency conditions, suggesting that COX19 function is particularly important for COX assembly under iron deficiency. The results indicate that the mitochondrial copper chaperone COX19 has a role in regulating copper and iron homeostasis and responses in plants.
Collapse
Affiliation(s)
- Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral, Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Ocampo y Esmeralda s/n, 2000, Rosario, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral, Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Argentina
| | - Natacha Ocampos
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral, Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Argentina
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral, Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral, Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Argentina.
| |
Collapse
|
10
|
X-Ray Absorption Spectroscopy of Metalloproteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1876:179-195. [PMID: 30317482 DOI: 10.1007/978-1-4939-8864-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
X-ray absorption spectroscopy (XAS) has been widely used as a powerful local structural tool for studying the metal binding sites in metalloproteins, owing to its element specificity, chemical sensitivity, and minimum requirement for sample preparation. The principle subject of this chapter is to provide a general introduction of this technique to molecular biologists and biochemists, with the intention to fill the knowledge gaps in interdisciplinary communication and collaboration. An update of the XAS-based technique applied recently to metalloproteins is also briefly introduced at the end of the chapter.
Collapse
|
11
|
Mansilla N, Racca S, Gras DE, Gonzalez DH, Welchen E. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants. Int J Mol Sci 2018; 19:ijms19030662. [PMID: 29495437 PMCID: PMC5877523 DOI: 10.3390/ijms19030662] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Sofia Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
12
|
Burstein SR, Valsecchi F, Kawamata H, Bourens M, Zeng R, Zuberi A, Milner TA, Cloonan SM, Lutz C, Barrientos A, Manfredi G. In vitro and in vivo studies of the ALS-FTLD protein CHCHD10 reveal novel mitochondrial topology and protein interactions. Hum Mol Genet 2018; 27:160-177. [PMID: 29112723 PMCID: PMC5886281 DOI: 10.1093/hmg/ddx397] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/11/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in coiled-coil-helix-coiled-coil-helix-domain containing 10 (CHCHD10), a mitochondrial twin CX9C protein whose function is still unknown, cause myopathy, motor neuron disease, frontotemporal dementia, and Parkinson's disease. Here, we investigate CHCHD10 topology and its protein interactome, as well as the effects of CHCHD10 depletion or expression of disease-associated mutations in wild-type cells. We find that CHCHD10 associates with membranes in the mitochondrial intermembrane space, where it interacts with a closely related protein, CHCHD2. Furthermore, both CHCHD10 and CHCHD2 interact with p32/GC1QR, a protein with various intra and extra-mitochondrial functions. CHCHD10 and CHCHD2 have short half-lives, suggesting regulatory rather than structural functions. Cell lines with CHCHD10 knockdown do not display bioenergetic defects, but, unexpectedly, accumulate excessive intramitochondrial iron. In mice, CHCHD10 is expressed in many tissues, most abundantly in heart, skeletal muscle, liver, and in specific CNS regions, notably the dopaminergic neurons of the substantia nigra and spinal cord neurons, which is consistent with the pathology associated with CHCHD10 mutations. Homozygote CHCHD10 knockout mice are viable, have no gross phenotypes, no bioenergetic defects or ultrastructural mitochondrial abnormalities in brain, heart or skeletal muscle, indicating that functional redundancy or compensatory mechanisms for CHCHD10 loss occur in vivo. Instead, cells expressing S59L or R15L mutant versions of CHCHD10, but not WT, have impaired mitochondrial energy metabolism. Taken together, the evidence obtained from our in vitro and in vivo studies suggest that CHCHD10 mutants cause disease through a gain of toxic function mechanism, rather than a loss of function.
Collapse
Affiliation(s)
- S R Burstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - F Valsecchi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - H Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - M Bourens
- Department of Neurology, Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - R Zeng
- Department of Neurology, Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - A Zuberi
- The Jackson Laboratories, ME 04609, USA
| | - T A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - S M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - C Lutz
- The Jackson Laboratories, ME 04609, USA
| | - A Barrientos
- Department of Neurology, Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - G Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
13
|
Mitochondrial disulfide relay and its substrates: mechanisms in health and disease. Cell Tissue Res 2016; 367:59-72. [DOI: 10.1007/s00441-016-2481-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023]
|
14
|
Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies. Cell Metab 2015; 21:823-33. [PMID: 25959673 DOI: 10.1016/j.cmet.2015.04.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/03/2015] [Accepted: 04/04/2015] [Indexed: 11/20/2022]
Abstract
Three mitochondria-encoded subunits form the catalytic core of cytochrome c oxidase, the terminal enzyme of the respiratory chain. COX1 and COX2 contain heme and copper redox centers, which are integrated during assembly of the enzyme. Defects in this process lead to an enzyme deficiency and manifest as mitochondrial disorders in humans. Here we demonstrate that COA6 is specifically required for COX2 biogenesis. Absence of COA6 leads to fast turnover of newly synthesized COX2 and a concomitant reduction in cytochrome c oxidase levels. COA6 interacts transiently with the copper-containing catalytic domain of newly synthesized COX2. Interestingly, similar to the copper metallochaperone SCO2, loss of COA6 causes cardiomyopathy in humans. We show that COA6 and SCO2 interact and that corresponding pathogenic mutations in each protein affect complex formation. Our analyses define COA6 as a constituent of the mitochondrial copper relay system, linking defects in COX2 metallation to cardiac cytochrome c oxidase deficiency.
Collapse
|
15
|
Mattle D, Zhang L, Sitsel O, Pedersen LT, Moncelli MR, Tadini-Buoninsegni F, Gourdon P, Rees DC, Nissen P, Meloni G. A sulfur-based transport pathway in Cu+-ATPases. EMBO Rep 2015; 16:728-40. [PMID: 25956886 PMCID: PMC4467857 DOI: 10.15252/embr.201439927] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 11/09/2022] Open
Abstract
Cells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB -type Cu(+)-ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu(+) across cellular membranes. Crystal structures of a copper-free Cu(+)-ATPase are available, but the mechanism of Cu(+) recognition, binding, and translocation remains elusive. Through X-ray absorption spectroscopy, ATPase activity assays, and charge transfer measurements on solid-supported membranes using wild-type and mutant forms of the Legionella pneumophila Cu(+)-ATPase (LpCopA), we identify a sulfur-lined metal transport pathway. Structural analysis indicates that Cu(+) is bound at a high-affinity transmembrane-binding site in a trigonal-planar coordination with the Cys residues of the conserved CPC motif of transmembrane segment 4 (C382 and C384) and the conserved Met residue of transmembrane segment 6 (M717 of the MXXXS motif). These residues are also essential for transport. Additionally, the studies indicate essential roles of other conserved intramembranous polar residues in facilitating copper binding to the high-affinity site and subsequent release through the exit pathway.
Collapse
Affiliation(s)
- Daniel Mattle
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Limei Zhang
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Oleg Sitsel
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Lotte Thue Pedersen
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Maria Rosa Moncelli
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | | | - Pontus Gourdon
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Gabriele Meloni
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
16
|
Bode M, Woellhaf MW, Bohnert M, van der Laan M, Sommer F, Jung M, Zimmermann R, Schroda M, Herrmann JM. Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase. Mol Biol Cell 2015; 26:2385-401. [PMID: 25926683 PMCID: PMC4571295 DOI: 10.1091/mbc.e14-11-1526] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/24/2015] [Indexed: 01/02/2023] Open
Abstract
Members of the twin Cx9C protein family constitute the largest group of proteins in the intermembrane space (IMS) of mitochondria. Despite their conserved nature and their essential role in the biogenesis of the respiratory chain, the molecular function of twin Cx9C proteins is largely unknown. We performed a SILAC-based quantitative proteomic analysis to identify interaction partners of the conserved twin Cx9C protein Cox19. We found that Cox19 interacts in a dynamic manner with Cox11, a copper transfer protein that facilitates metalation of the Cu(B) center of subunit 1 of cytochrome c oxidase. The interaction with Cox11 is critical for the stable accumulation of Cox19 in mitochondria. Cox19 consists of a helical hairpin structure that forms a hydrophobic surface characterized by two highly conserved tyrosine-leucine dipeptides. These residues are essential for Cox19 function and its specific binding to a cysteine-containing sequence in Cox11. Our observations suggest that an oxidative modification of this cysteine residue of Cox11 stimulates Cox19 binding, pointing to a redox-regulated interplay of Cox19 and Cox11 that is critical for copper transfer in the IMS and thus for biogenesis of cytochrome c oxidase.
Collapse
Affiliation(s)
- Manuela Bode
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael W Woellhaf
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Maria Bohnert
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, 66424 Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66424 Homburg, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | |
Collapse
|
17
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
18
|
Fraga H, Bech-Serra JJ, Canals F, Ortega G, Millet O, Ventura S. The mitochondrial intermembrane space oxireductase Mia40 funnels the oxidative folding pathway of the cytochrome c oxidase assembly protein Cox19. J Biol Chem 2014; 289:9852-64. [PMID: 24569988 DOI: 10.1074/jbc.m114.553479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mia40-catalyzed disulfide formation drives the import of many proteins into the mitochondria. Here we characterize the oxidative folding of Cox19, a twin CX9C Mia40 substrate. Cox19 oxidation is extremely slow, explaining the persistence of import-competent reduced species in the cytosol. Mia40 accelerates Cox19 folding through the specific recognition of the third Cys in the second helical CX9C motif and the subsequent oxidation of the inner disulfide bond. This renders a native-like intermediate that oxidizes in a slow uncatalyzed reaction into native Cox19. The same intermediate dominates the pathway in the absence of Mia40, and chemical induction of an α-helical structure by trifluoroethanol suffices to accelerate productive folding and mimic the Mia40 folding template mechanism. The Mia40 role is to funnel a rough folding landscape, skipping the accumulation of kinetic traps, providing a rationale for the promiscuity of Mia40.
Collapse
Affiliation(s)
- Hugo Fraga
- From the Institut de Biotecnologia i Biomedicina and
| | | | | | | | | | | |
Collapse
|
19
|
Bourens M, Fontanesi F, Soto IC, Liu J, Barrientos A. Redox and reactive oxygen species regulation of mitochondrial cytochrome C oxidase biogenesis. Antioxid Redox Signal 2013; 19:1940-52. [PMID: 22937827 PMCID: PMC3852343 DOI: 10.1089/ars.2012.4847] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. RECENT ADVANCES Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. CRITICAL ISSUES An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. FUTURE DIRECTIONS Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress.
Collapse
Affiliation(s)
- Myriam Bourens
- 1 Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida
| | | | | | | | | |
Collapse
|
20
|
The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int J Cell Biol 2013; 2013:742923. [PMID: 24348563 PMCID: PMC3848088 DOI: 10.1155/2013/742923] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/01/2013] [Indexed: 12/31/2022] Open
Abstract
Disulfide bond formation drives protein import of most proteins of the mitochondrial intermembrane space (IMS). The main components of this disulfide relay machinery are the oxidoreductase Mia40 and the sulfhydryl oxidase Erv1/ALR. Their precise functions have been elucidated in molecular detail for the yeast and human enzymes in vitro and in intact cells. However, we still lack knowledge on how Mia40 and Erv1/ALR impact cellular and organism physiology and whether they have functions beyond their role in disulfide bond formation. Here we summarize the principles of oxidation-dependent protein import mediated by the mitochondrial disulfide relay. We proceed by discussing recently described functions of Mia40 in the hypoxia response and of ALR in influencing mitochondrial morphology and its importance for tissue development and embryogenesis. We also include a discussion of the still mysterious function of Erv1/ALR in liver regeneration.
Collapse
|
21
|
Coppe A, Agostini C, Marino IAM, Zane L, Bargelloni L, Bortoluzzi S, Patarnello T. Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function. Genome Biol Evol 2013. [PMID: 23196969 PMCID: PMC3595028 DOI: 10.1093/gbe/evs108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antarctic notothenioids radiated over millions of years in subzero waters, evolving peculiar features, such as antifreeze glycoproteins and absence of heat shock response. Icefish, family Channichthyidae, also lack oxygen-binding proteins and display extreme modifications, including high mitochondrial densities in aerobic tissues. A genomic expansion accompanying the evolution of these fish was reported, but paucity of genomic information limits the understanding of notothenioid cold adaptation. We reconstructed and annotated the first skeletal muscle transcriptome of the icefish Chionodraco hamatus providing a new resource for icefish genomics (http://compgen.bio.unipd.it/chamatusbase/, last accessed December 12, 2012). We exploited deep sequencing of this energy-dependent tissue to test the hypothesis of selective duplication of genes involved in mitochondrial function. We developed a bioinformatic approach to univocally assign C. hamatus transcripts to orthology groups extracted from phylogenetic trees of five model species. Chionodraco hamatus duplicates were recorded for each orthology group allowing the identification of duplicated genes specific to the icefish lineage. Significantly more duplicates were found in the icefish when transcriptome data were compared with whole-genome data of model species. Indeed, duplicated genes were significantly enriched in proteins with mitochondrial localization, involved in mitochondrial function and biogenesis. In cold conditions and without oxygen-carrying proteins, energy production is challenging. The combination of high mitochondrial densities and the maintenance of duplicated genes involved in mitochondrial biogenesis and aerobic respiration might confer a selective advantage by improving oxygen diffusion and energy supply to aerobic tissues. Our results provide new insights into the genomic basis of icefish cold adaptation.
Collapse
Affiliation(s)
- Alessandro Coppe
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro (Padova), Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Palumaa P. Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett 2013; 587:1902-10. [PMID: 23684646 DOI: 10.1016/j.febslet.2013.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Copper chaperones compose a specific class of proteins assuring safe handling and specific delivery of potentially harmful copper ions to a variety of essential copper proteins. Copper chaperones are structurally heterogeneous and can exist in multiple metal-loaded as well as oligomeric forms. Moreover, many copper chaperones can exist in various oxidative states and participate in redox catalysis, connected with their functioning. This review is focused on the analysis of the structural and functional properties of copper chaperones and their partners, which allowed us to define specific regulatory principles in copper metabolism connected with copper-induced conformational control of copper proteins.
Collapse
Affiliation(s)
- Peep Palumaa
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
23
|
Lionaki E, Tavernarakis N. Oxidative stress and mitochondrial protein quality control in aging. J Proteomics 2013; 92:181-94. [PMID: 23563202 DOI: 10.1016/j.jprot.2013.03.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/22/2013] [Accepted: 03/25/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein quality control incorporates an elaborate network of chaperones and proteases that survey the organelle for misfolded or unfolded proteins and toxic aggregates. Repair of misfolded or aggregated protein and proteolytic removal of irreversibly damaged proteins are carried out by the mitochondrial protein quality control system. Initial maturation and folding of the nuclear or mitochondrial-encoded mitochondrial proteins are mediated by processing peptidases and chaperones that interact with the protein translocation machinery. Mitochondrial proteins are subjected to cumulative oxidative damage. Thus, impairment of quality control processes may cause mitochondrial dysfunction. Aging has been associated with a marked decline in the effectiveness of mitochondrial protein quality control. Here, we present an overview of the chaperones and proteases involved in the initial folding and maturation of new, incoming precursor molecules, and the subsequent repair and removal of oxidized aggregated proteins. In addition, we highlight the link between mitochondrial protein quality control mechanisms and the aging process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
24
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
25
|
Pushie MJ, Zhang L, Pickering IJ, George GN. The fictile coordination chemistry of cuprous-thiolate sites in copper chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:938-47. [PMID: 22056518 DOI: 10.1016/j.bbabio.2011.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/06/2011] [Accepted: 10/14/2011] [Indexed: 02/03/2023]
Abstract
Copper plays vital roles in the active sites of cytochrome oxidase and in several other enzymes essential for human health. Copper is also highly toxic when dysregulated; because of this an elaborate array of accessory proteins have evolved which act as intracellular carriers or chaperones for the copper ions. In most cases chaperones transport cuprous copper. This review discusses some of the chemistry of these copper sites, with a view to some of the structural factors in copper coordination which are important in the biological function of these chaperones. The coordination chemistry and accessible geometries of the cuprous oxidation state are remarkably plastic and we discuss how this may relate to biological function. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N5E2
| | | | | | | |
Collapse
|
26
|
Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH, Taylor SS. ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J Biol Chem 2010; 286:2918-32. [PMID: 21081504 PMCID: PMC3024787 DOI: 10.1074/jbc.m110.171975] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial inner membrane (IM) serves as the site for ATP production by hosting the oxidative phosphorylation complex machinery most notably on the crista membranes. Disruption of the crista structure has been implicated in a variety of cardiovascular and neurodegenerative diseases. Here, we characterize ChChd3, a previously identified PKA substrate of unknown function (Schauble, S., King, C. C., Darshi, M., Koller, A., Shah, K., and Taylor, S. S. (2007) J. Biol. Chem. 282, 14952-14959), and show that it is essential for maintaining crista integrity and mitochondrial function. In the mitochondria, ChChd3 is a peripheral protein of the IM facing the intermembrane space. RNAi knockdown of ChChd3 in HeLa cells resulted in fragmented mitochondria, reduced OPA1 protein levels and impaired fusion, and clustering of the mitochondria around the nucleus along with reduced growth rate. Both the oxygen consumption and glycolytic rates were severely restricted. Ultrastructural analysis of these cells revealed aberrant mitochondrial IM structures with fragmented and tubular cristae or loss of cristae, and reduced crista membrane. Additionally, the crista junction opening diameter was reduced to 50% suggesting remodeling of cristae in the absence of ChChd3. Analysis of the ChChd3-binding proteins revealed that ChChd3 interacts with the IM proteins mitofilin and OPA1, which regulate crista morphology, and the outer membrane protein Sam50, which regulates import and assembly of β-barrel proteins on the outer membrane. Knockdown of ChChd3 led to almost complete loss of both mitofilin and Sam50 proteins and alterations in several mitochondrial proteins, suggesting that ChChd3 is a scaffolding protein that stabilizes protein complexes involved in maintaining crista architecture and protein import and is thus essential for maintaining mitochondrial structure and function.
Collapse
Affiliation(s)
- Manjula Darshi
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0654, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Endo T, Yamano K, Kawano S. Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Antioxid Redox Signal 2010; 13:1359-73. [PMID: 20136511 DOI: 10.1089/ars.2010.3099] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mitochondria contain two biological membranes. Although reducing agents can diffuse from the cytosol into the intermembrane space (IMS) between the outer and inner mitochondrial membranes, the IMS has a dedicated disulfide relay system to introduce disulfide bonds into mainly small and soluble proteins. This system consists of two essential proteins, a disulfide carrier Tim40/Mia40 and a flavin-dependent sulfhydryl oxidase Erv1, high-resolution structures that have recently become available. Tim40/Mia40 transfers disulfide bonds to newly imported IMS proteins by dithiol/disulfide exchange reactions involving mixed disulfide intermediates. Tight folding by introduction of disulfide bonds prevents egress of these small IMS proteins, resulting in their selective retention in the compartment. After disulfide transfer from Tim40/Mia40 to substrate proteins, Tim40/Mia40 is reoxidized again by Erv1, which is then oxidized by electron transfer to either cytochrome c or molecular oxygen. Here we review the recent advancement of the knowledge on the mechanism of the disulfide relay system in the mitochondrial IMS, especially shedding light on the structural aspects of its components.
Collapse
Affiliation(s)
- Toshiya Endo
- Department of Chemistry, Nagoya University, Japan.
| | | | | |
Collapse
|
28
|
Leary SC. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid Redox Signal 2010; 13:1403-16. [PMID: 20136502 DOI: 10.1089/ars.2010.3116] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reversible changes in the redox state of cysteine residues represent an important mechanism with which to regulate protein function. In mitochondria, such redox reactions modulate the localization or activity of a group of proteins, most of which function in poorly defined pathways with essential roles in copper delivery to cytochrome c oxidase (COX) during holoenzyme biogenesis. To date, a total of 8 soluble (COX17, COX19, COX23, PET191, CMC1-4) and 3 integral membrane (COX11, SCO1, SCO2) accessory proteins with cysteine-containing domains that reside within the mitochondrial intermembrane space (IMS) have been identified in yeast, all of which have human orthologues. Compelling evidence from studies of COX17, SCO1, and SCO2 argues that regulation of the redox state of their cysteines is integral to their metallochaperone function. Redox also appears to be crucial to the regulation of a SCO-dependent, mitochondrial signaling pathway that modulates the rate of copper efflux from the cell. Here, I review our understanding of redox-dependent modulation of copper delivery to COX and IMS-localized copper-zinc superoxide dismutase (SOD1) during the maturation of each enzyme, and discuss how this in turn may serve to functionally couple mitochondrial copper handling pathways with those localized elsewhere in the cell to regulate cellular copper homeostasis.
Collapse
Affiliation(s)
- Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
29
|
Cavallaro G. Genome-wide analysis of eukaryotic twin CX9C proteins. MOLECULAR BIOSYSTEMS 2010; 6:2459-70. [PMID: 20922212 DOI: 10.1039/c0mb00058b] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Twin CX(9)C proteins are eukaryotic proteins that derive their name from their characteristic motif, consisting of two pairs of cysteines that form two disulfide bonds stabilizing a coiled coil-helix-coiled coil-helix (CHCH) fold. The best characterized of these proteins are Cox17, a copper chaperone acting in cytochrome c oxidase biogenesis, and Mia40, the central component of a system for protein import into the mitochondrial inter-membrane space (IMS). However, the range of possible functions for these proteins is unclear. Here, we performed a systematic search of twin CX(9)C proteins in eukaryotic organisms, and classified them into groups of putative homologues, by combining bioinformatics methods with literature analysis. Our results suggest that the functions of most twin CX(9)C proteins vary around the common theme of playing a scaffolding role, which can tie their observed roles in mitochondrial structure and function. This study will enhance the present annotation of eukaryotic proteomes, and will provide a rational basis for future experimental work aimed at a deeper understanding of this remarkable class of proteins.
Collapse
Affiliation(s)
- Gabriele Cavallaro
- Magnetic Resonance Center (CERM)-University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
30
|
Martherus RSRM, Sluiter W, Timmer EDJ, VanHerle SJV, Smeets HJM, Ayoubi TAY. Functional annotation of heart enriched mitochondrial genes GBAS and CHCHD10 through guilt by association. Biochem Biophys Res Commun 2010; 402:203-8. [PMID: 20888800 DOI: 10.1016/j.bbrc.2010.09.109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/27/2010] [Indexed: 10/19/2022]
Abstract
Despite the mitochondria ubiquitous nature many of their components display divergences in their expression profile across different tissues. Using the bioinformatics-approach of guilt by association (GBA) we exploited these variations to predict the function of two so far poorly annotated genes: Coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) and glioblastoma amplified sequence (GBAS). We predicted both genes to be involved in oxidative phosphorylation. Through in vitro experiments using gene-knockdown we could indeed confirm this and furthermore we asserted CHCHD10 to play a role in complex IV activity.
Collapse
Affiliation(s)
- Ruben S R M Martherus
- Department of Clinical Genomics, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Banci L, Bertini I, Cantini F, Ciofi-Baffoni S. Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci 2010; 67:2563-89. [PMID: 20333435 PMCID: PMC11115773 DOI: 10.1007/s00018-010-0330-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 02/22/2010] [Indexed: 01/01/2023]
Abstract
Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.
Collapse
Affiliation(s)
- Lucia Banci
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Ivano Bertini
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Francesca Cantini
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Simone Ciofi-Baffoni
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| |
Collapse
|
32
|
Horn D, Zhou W, Trevisson E, Al-Ali H, Harris TK, Salviati L, Barrientos A. The conserved mitochondrial twin Cx9C protein Cmc2 Is a Cmc1 homologue essential for cytochrome c oxidase biogenesis. J Biol Chem 2010; 285:15088-15099. [PMID: 20220131 PMCID: PMC2865262 DOI: 10.1074/jbc.m110.104786] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/08/2010] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial copper metabolism and delivery to cytochrome c oxidase and mitochondrially localized CuZn-superoxide dismutase (Sod1) requires a growing number of intermembrane space proteins containing a twin Cx(9)C motif. Among them, Cmc1 was recently identified by our group. Here we describe another conserved mitochondrial metallochaperone-like protein, Cmc2, a close homologue of Cmc1, whose function affects both cytochrome c oxidase and Sod1. In the yeast Saccharomyces cerevisiae, Cmc2 localizes to the mitochondrial inner membrane facing the intermembrane space. In the absence of Cmc2, cytochrome c oxidase activity measured spectrophotometrically and cellular respiration measured polarographically are undetectable. Additionally, mutant cmc2 cells display 2-fold increased mitochondrial Sod1 activity, whereas CMC2 overexpression results in Sod1 activity decreased to 60% of wild-type levels. CMC1 overexpression does not rescue the respiratory defect of cmc2 mutants or vice versa. However, Cmc2 physically interacts with Cmc1 and the absence of Cmc2 induces a 5-fold increase in Cmc1 accumulation in the mitochondrial membranes. Cmc2 function is conserved from yeast to humans. Human CMC2 localizes to the mitochondria and CMC2 expression knockdown produces cytochrome c oxidase deficiency in Caenorhabditis elegans. We conclude that Cmc1 and Cmc2 have cooperative but nonoverlapping functions in cytochrome c oxidase biogenesis.
Collapse
Affiliation(s)
- Darryl Horn
- Departments of Biochemistry and Molecular Biology, University of Padova, 35128 Padova, Italy
| | - Wen Zhou
- Departments of Biochemistry and Molecular Biology, University of Padova, 35128 Padova, Italy
| | - Eva Trevisson
- Laboratorio di Oncoematologia Pediatrica, Dipartimento di Pediatria, University of Padova, 35128 Padova, Italy
| | - Hassan Al-Ali
- Departments of Biochemistry and Molecular Biology, University of Padova, 35128 Padova, Italy
| | - Thomas K Harris
- Departments of Biochemistry and Molecular Biology, University of Padova, 35128 Padova, Italy
| | - Leonardo Salviati
- Laboratorio di Oncoematologia Pediatrica, Dipartimento di Pediatria, University of Padova, 35128 Padova, Italy
| | - Antoni Barrientos
- Departments of Biochemistry and Molecular Biology, University of Padova, 35128 Padova, Italy; Departments of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136.
| |
Collapse
|
33
|
Mitochondrial Disulfide Bond Formation Is Driven by Intersubunit Electron Transfer in Erv1 and Proofread by Glutathione. Mol Cell 2010; 37:516-28. [DOI: 10.1016/j.molcel.2010.01.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/05/2009] [Accepted: 11/24/2009] [Indexed: 01/21/2023]
|
34
|
Banci L, Bertini I, McGreevy KS, Rosato A. Molecular recognition in copper trafficking. Nat Prod Rep 2010; 27:695-710. [DOI: 10.1039/b906678k] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Systematic Analysis of the Twin Cx9C Protein Family. J Mol Biol 2009; 393:356-68. [DOI: 10.1016/j.jmb.2009.08.041] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 11/20/2022]
|
36
|
Abstract
Bioinformatics is a central discipline in modern life sciences aimed at describing the complex properties of living organisms starting from large-scale data sets of cellular constituents such as genes and proteins. In order for this wealth of information to provide useful biological knowledge, databases and software tools for data collection, analysis and interpretation need to be developed. In this paper, we review recent advances in the design and implementation of bioinformatics resources devoted to the study of metals in biological systems, a research field traditionally at the heart of bioinorganic chemistry. We show how metalloproteomes can be extracted from genome sequences, how structural properties can be related to function, how databases can be implemented, and how hints on interactions can be obtained from bioinformatics.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM)-University of Florence, Via L. Sacconi 6, Sesto Fiorentino, Italy.
| | | |
Collapse
|
37
|
Baughman JM, Nilsson R, Gohil VM, Arlow DH, Gauhar Z, Mootha VK. A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis. PLoS Genet 2009; 5:e1000590. [PMID: 19680543 PMCID: PMC2721412 DOI: 10.1371/journal.pgen.1000590] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 07/09/2009] [Indexed: 11/18/2022] Open
Abstract
The human oxidative phosphorylation (OxPhos) system consists of approximately 90 proteins encoded by nuclear and mitochondrial genomes and serves as the primary cellular pathway for ATP biosynthesis. While the core protein machinery for OxPhos is well characterized, many of its assembly, maturation, and regulatory factors remain unknown. We exploited the tight transcriptional control of the genes encoding the core OxPhos machinery to identify novel regulators. We developed a computational procedure, which we call expression screening, which integrates information from thousands of microarray data sets in a principled manner to identify genes that are consistently co-expressed with a target pathway across biological contexts. We applied expression screening to predict dozens of novel regulators of OxPhos. For two candidate genes, CHCHD2 and SLIRP, we show that silencing with RNAi results in destabilization of OxPhos complexes and a marked loss of OxPhos enzymatic activity. Moreover, we show that SLIRP plays an essential role in maintaining mitochondrial-localized mRNA transcripts that encode OxPhos protein subunits. Our findings provide a catalogue of potential novel OxPhos regulators that advance our understanding of the coordination between nuclear and mitochondrial genomes for the regulation of cellular energy metabolism.
Collapse
Affiliation(s)
- Joshua M. Baughman
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roland Nilsson
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vishal M. Gohil
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel H. Arlow
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zareen Gauhar
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vamsi K. Mootha
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
The coiled coil-helix-coiled coil-helix proteins may be redox proteins. FEBS Lett 2009; 583:1699-702. [PMID: 19345215 DOI: 10.1016/j.febslet.2009.03.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/27/2009] [Indexed: 01/05/2023]
Abstract
A number of nuclear encoded proteins are imported in to the intermembrane space of mitochondria where they adopt a coiled coil-helix-coiled coil-helix (CHCH) fold. Two disulfide bonds formed by twin CX(3)C or CX(9)C motifs stabilize this fold. Some of these proteins are also characterized at their N-termini by the presence of two additional cysteine residues which can perform oxidoreductase or metallochaperone functions or both. This fold represents the most 'minimal' oxidoreductase domain described so far.
Collapse
|
39
|
Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F. Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:97-107. [PMID: 18522805 PMCID: PMC2644423 DOI: 10.1016/j.bbamcr.2008.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin whose assembly is intricate and highly regulated. In addition to the structural subunits, a large number of accessory factors are required to build the holoenzyme. The function of these factors is required in all stages of the assembly process. They are relevant to human health because devastating human disorders have been associated with mutations in nuclear genes encoding conserved COX assembly factors. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to attain the current state of knowledge, even if still fragmentary, of the COX assembly process. After the identification of the genes involved, the isolation and characterization of genetic and metabolic suppressors of COX assembly defects, reviewed here, have become a profitable strategy to gain insight into their functions and the pathways in which they operate. Additionally, they have the potential to provide useful information for devising therapeutic approaches to combat human disorders associated with COX deficiency.
Collapse
Affiliation(s)
- Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
40
|
Zhang L, Pickering IJ, Winge DR, George GN. X-ray absorption spectroscopy of cuprous-thiolate clusters in Saccharomyces cerevisiae metallothionein. Chem Biodivers 2008; 5:2042-2049. [PMID: 18972536 DOI: 10.1002/cbdv.200890186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Copper (Cu) metallothioneins are cuprous-thiolate proteins that contain multimetallic clusters, and are thought to have dual functions of Cu storage and Cu detoxification. We have used a combination of X-ray absorption spectroscopy (XAS) and density-functional theory (DFT) to investigate the nature of Cu binding to Saccharomyces cerevisiae metallothionein. We found that the XAS of metallothionein prepared, containing a full complement of Cu, was quantitatively consistent with the crystal structure, and that reconstitution of the apo-metallothionein with stoichiometric Cu results in the formation of a tetracopper cluster, indicating cooperative binding of the Cu ions by the metallothionein.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon S7N5E2, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the Cu(A) site, the primary acceptor of electrons from ferrocytochrome c. The third copper, Cu(B), is associated with the high-spin heme a(3) group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1) the source of the copper used for COX metallation; 2) the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the Cu(A) and Cu(B) sites, respectively; 3) the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4) the existence of at least four Cox17p homologues carrying a similar twin CX(9)C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5) the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX(9)C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis.
Collapse
Affiliation(s)
- Darryl Horn
- Department of Biochemistry & Molecular Biology, The John T. MacDonald Foundation Center for Medical Genetics. University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, The John T. MacDonald Foundation Center for Medical Genetics. University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. The John T. MacDonald Foundation Center for Medical Genetics. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
42
|
Rigby K, Cobine PA, Khalimonchuk O, Winge DR. Mapping the functional interaction of Sco1 and Cox2 in cytochrome oxidase biogenesis. J Biol Chem 2008; 283:15015-22. [PMID: 18390903 PMCID: PMC2397465 DOI: 10.1074/jbc.m710072200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/19/2008] [Indexed: 11/06/2022] Open
Abstract
Sco1 is implicated in the copper metallation of the Cu(A) site in Cox2 of cytochrome oxidase. The structure of Sco1 in the metallated and apo-conformers revealed structural dynamics primarily in an exposed region designated loop 8. The structural dynamics of loop 8 in Sco1 suggests it may be an interface for interactions with Cox17, the Cu(I) donor and/or Cox2. A series of conserved residues in the sequence motif (217)KKYRVYF(223) on the leading edge of this loop are shown presently to be important for yeast Sco1 function. Cells harboring Y219D, R220D, V221D, and Y222D mutant Sco1 proteins failed to restore respiratory growth or cytochrome oxidase activity in sco1Delta cells. The mutant proteins are stably expressed and are competent to bind Cu(I) and Cu(II) normally. Specific Cu(I) transfer from Cox17 to the mutant apo-Sco1 proteins proceeds normally. In contrast, using two in vivo assays that permit monitoring of the transient Sco1-Cox2 interaction, the mutant Sco1 molecules appear compromised in a function with Cox2. The mutants failed to suppress the respiratory defect of cox17-1 cells unlike wild-type SCO1. In addition, the mutants failed to suppress the hydrogen peroxide sensitivity of sco1Delta cells. These studies implicate different surfaces on Sco1 for interaction or function with Cox17 and Cox2.
Collapse
Affiliation(s)
| | | | | | - Dennis R. Winge
- Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132
| |
Collapse
|
43
|
Pet191 is a cytochrome c oxidase assembly factor in Saccharomyces cerevisiae. EUKARYOTIC CELL 2008; 7:1427-31. [PMID: 18503002 DOI: 10.1128/ec.00132-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The twin-Cx(9)C motif protein Pet191 is essential for cytochrome c oxidase maturation. The motif Cys residues are functionally important and appear to be present in disulfide linkages within a large oligomeric complex associated with the mitochondrial inner membrane. The import of Pet191 differs from that of other twin-Cx(9)C motif class of proteins in being independent of the Mia40 pathway.
Collapse
|
44
|
Cmc1p is a conserved mitochondrial twin CX9C protein involved in cytochrome c oxidase biogenesis. Mol Cell Biol 2008; 28:4354-64. [PMID: 18443040 DOI: 10.1128/mcb.01920-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Copper is an essential cofactor of two mitochondrial enzymes: cytochrome c oxidase (COX) and Cu-Zn superoxide dismutase (Sod1p). Copper incorporation into these enzymes is facilitated by metallochaperone proteins which probably use copper from a mitochondrial matrix-localized pool. Here we describe a novel conserved mitochondrial metallochaperone-like protein, Cmc1p, whose function affects both COX and Sod1p. In Saccharomyces cerevisiae, Cmc1p localizes to the mitochondrial inner membrane facing the intermembrane space. Cmc1p is essential for full expression of COX and respiration, contains a twin CX9C domain conserved in other COX assembly copper chaperones, and has the ability to bind copper(I). Additionally, mutant cmc1 cells display increased mitochondrial Sod1p activity, while CMC1 overexpression results in decreased Sod1p activity. Our results suggest that Cmc1p could play a direct or indirect role in copper trafficking and distribution to COX and Sod1p.
Collapse
|
45
|
Khalimonchuk O, Winge DR. Function and redox state of mitochondrial localized cysteine-rich proteins important in the assembly of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:618-28. [PMID: 18070608 PMCID: PMC2374233 DOI: 10.1016/j.bbamcr.2007.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/22/2007] [Accepted: 10/30/2007] [Indexed: 11/16/2022]
Abstract
The cytochrome c oxidase (CcO) complex of the mitochondrial respiratory chain exists within the mitochondrial inner membrane (IM). The biogenesis of the complex is a multi-faceted process requiring multiple assembly factors that function on both faces of the IM. Formation of the two copper centers of CcO occurs within the intermembrane space (IMS) and is dependent on assembly factors with critical cysteinyl thiolates. Two classes of assembly factors exist, one group being soluble IMS proteins and the second class being proteins tethered to the IM. A common motif in the soluble assembly factors is a duplicated Cx(9)C sequence motif. Since mitochondrial respiration is a major source of reactive oxygen species, control of the redox state of mitochondrial proteins is an important process. This review documents the role of these cysteinyl CcO assembly factors within the IMS and the necessity of redox control in their function.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
46
|
|
47
|
Andreini C, Banci L, Bertini I, Rosato A. Occurrence of Copper Proteins through the Three Domains of Life: A Bioinformatic Approach. J Proteome Res 2008; 7:209-16. [DOI: 10.1021/pr070480u] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Bertini I, Cavallaro G. Metals in the “omics” world: copper homeostasis and cytochrome c oxidase assembly in a new light. J Biol Inorg Chem 2007; 13:3-14. [DOI: 10.1007/s00775-007-0316-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/25/2007] [Indexed: 01/20/2023]
|
49
|
Attallah CV, Welchen E, Pujol C, Bonnard G, Gonzalez DH. Characterization of Arabidopsis thaliana genes encoding functional homologues of the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis. PLANT MOLECULAR BIOLOGY 2007; 65:343-55. [PMID: 17712601 DOI: 10.1007/s11103-007-9224-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 08/08/2007] [Indexed: 05/16/2023]
Abstract
The Arabidopsis thaliana genome contains two nearly identical genes which encode proteins showing similarity with the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis. One of these genes (AtCOX19-1) produces two transcript forms that arise from an alternative splicing event and encode proteins with different N-terminal portions. Both AtCOX19 isoforms are imported into mitochondria in vitro and are found attached to the inner membrane facing the intermembrane space. The smaller AtCOX19-1 isoform, but not the larger one, is able to restore growth on non-fermentable carbon sources when expressed in a yeast cox19 null mutant. AtCOX19 transcript levels increase by treatment with copper or compounds that produce reactive oxygen species. Young roots and anthers are highly stained in AtCOX19-1::GUS plants. Expression in leaves is only observed when cuts are produced, suggesting an induction by wounding. Infection of plants with the pathogenic bacterium Pseudomonas syringae pv. tomato also induces AtCOX19 gene expression. The results suggest that AtCOX19 genes encode functional homologues of the yeast metal chaperone. Induction by biotic and abiotic stress factors may indicate a relevant role of this protein in the biogenesis of cytochrome c oxidase to replace damaged forms of the enzyme or a more general role in the response of plants to stress.
Collapse
Affiliation(s)
- Carolina V Attallah
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, Santa Fe, 3000, Argentina
| | | | | | | | | |
Collapse
|
50
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|