1
|
Robinson KS, Sennhenn P, Yuan DS, Liu H, Taddei D, Qian Y, Luo W. TMBIM6/BI-1 is an intracellular environmental regulator that induces paraptosis in cancer via ROS and Calcium-activated ERAD II pathways. Oncogene 2025; 44:494-512. [PMID: 39609612 PMCID: PMC11832424 DOI: 10.1038/s41388-024-03222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Transmembrane B cell lymphoma 2-associated X protein inhibitor motif-containing (TMBIM) 6, also known as Bax Inhibitor-1 (BI-1), has been heavily researched for its cytoprotective functions. TMBIM6 functional diversity includes modulating cell survival, stress, metabolism, cytoskeletal dynamics, organelle function, regulating cytosolic acidification, calcium, and reactive oxygen species (ROS). Clinical research shows TMBIM6 plays a key role in many of the world's top diseases/injuries (i.e., Alzheimer's, Parkinson's, diabetes, obesity, brain injury, liver disease, heart disease, aging, etc.), including cancer, where TMBIM6 expression impacts patient survival, chemoresistance, cancer progression, and metastasis. We show TMBIM6 is activated by, and undergoes, different conformational changes that dictate its function following a significant change in the cell's IntraCellular Environment (ICE). TMBIM6 agonism, following ICE change, can help the cell overcome multiple stresses including toxin exposure, viral infection, wound healing, and excitotoxicity. However, in cancer cells TMBIM6 agonism results in rapid paraptotic induction irrespective of the cancer type, sub-type, genotype or phenotype. Furthermore, the level of TMBIM6 expression in cancer did not dictate the level of paraptotic induction; however, it did dictate the rate at which paraptosis occurred. TMBIM6 agonism did not induce paraptosis in cancer via canonical routes involving p38 MAPK, JNK, ERK, UPR, autophagy, proteasomes, or Caspase-9. Instead, TMBIM6 agonism in cancer upregulates cytosolic Ca2+ and ROS, activates lysosome biogenesis, and induces paraptosis via ERAD II mechanisms. In xenograft models, we show TMBIM6 agonism induces rapid cancer cell death with no toxicity, even at high doses of TMBIM6 agonist (>450 mg/kg). In summary, this study shows TMBIM6's functional diversity is only activated by severe ICE change in diseased/injured cells, highlighting its transformative potential as a therapeutic target across various diseases and injuries, including cancer.
Collapse
Affiliation(s)
| | | | | | - Hai Liu
- Viva Biotech, Shanghai, China
| | | | | | - Wei Luo
- MicroQuin, Cambridge, MA, USA
| |
Collapse
|
2
|
Zhang P, Zhang Z, Li J, Xu M, Lu W, Chen M, Shi J, Wang Q, Zhang H, Huang S, Lian C, Liu J, Ma J, Liu J. Advanced PROTAC and Quantitative Proteomics Strategy Reveals Bax Inhibitor-1 as a Critical Target of Icaritin in Burkitt Lymphoma. Int J Mol Sci 2024; 25:12944. [PMID: 39684655 DOI: 10.3390/ijms252312944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Understanding the molecular targets of natural products is crucial for elucidating their mechanisms of action, mitigating toxicity, and uncovering potential therapeutic pathways. Icaritin (ICT), a bioactive flavonoid, demonstrates significant anti-tumor activity but lacks defined molecular targets. This study employs an advanced strategy integrating proteolysis targeting chimera (PROTAC) technology with quantitative proteomics to identify ICT's key targets. A library of 22 ICT-based PROTAC derivatives were synthesized, among which LJ-41 exhibited a superior IC50 of 5.52 μM against Burkitt lymphoma (CA-46) cells. Then, differential proteomic analysis identified Bax inhibitor-1 (BI-1) as a potential target. Target validation techniques, including cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, surface plasmon resonance (SPR) assay, and molecular docking, confirmed LJ-41's high specificity for BI-1. Mechanistic investigations revealed that LJ-41 induces apoptosis through BI-1 degradation, triggering endoplasmic reticulum stress and activating inositol-requiring enzyme 1 α (IRE1α), activating transcription factor 6 (ATF6), and nuclear factor erythroid 2-related factor transcription factor heme oxygenase 1 (NRF2-HO-1) signaling pathways. This study establishes a refined methodological framework for natural product target discovery and highlights ICT-PROTAC derivatives' potential for clinical application in Burkitt lymphoma treatment.
Collapse
Affiliation(s)
- Peixi Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Ziqing Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jie Li
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Meng Xu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Weiming Lu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Ming Chen
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jiaqi Shi
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Qiaolai Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Hengyuan Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Shi Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Chenlei Lian
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jia Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Junjie Ma
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| |
Collapse
|
3
|
Shih YL, Hsu SY, Lai KC, Chueh FS, Huang YL, Kuo CL, Chen YL, Chen CJ, Peng SF, Huang WW, Lu HF. Allyl isothiocyanate induces DNA damage and inhibits DNA repair-associated proteins in a human gastric cancer cells in vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:1303-1314. [PMID: 37966020 DOI: 10.1002/tox.24020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 11/16/2023]
Abstract
Allyl isothiocyanate (AITC) is abundant in cruciferous vegetables and it present pharmacological activity including anticancer activity in many types of human cancer cells in vitro and in vivo. Currently, no available information to show AITC affecting DNA damage and repair-associated protein expression in human gastric cancer cells. Therefore, in the present studies, we investigated AITC-induced cytotoxic effects on human gastric cancer in AGS and SNU-1 cells whether or not via the induction of DNA damage and affected DNA damage and repair associated poteins expressions in vitro. Cell viability and morphological changes were assayed by flow cytometer and phase contrast microscopy, respectively, the results indicated AITC induced cell morphological changes and decreased total viable cells in AGS and SNU-1 cells in a dose-dependently. AITC induced DNA condensation and damage in a dose-dependently which based on the cell nuclei was stained by 4', 6-diamidino-2-phenylindole present in AGS and SNU-1 cells. DNA damage and repair associated proteins expression in AGS and SNU-1 cells were measured by Western blotting. The results indicated AITC decreased nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), glutathione, and catalase, but increased superoxide dismutase (SOD (Cu/Zn)), and nitric oxide synthase (iNOS) in AGS cells, however, in SNU-1 cells are increased HO-1. AITC increased DNA-dependent protein kinase (DNA-PK), phosphorylation of gamma H2A histone family member X on Ser139 (γH2AXpSer139 ), and heat shock protein 90 (HSP90) in AGS cells. AITC increased DNA-PK, mediator of DNA damage checkpoint protein 1 (MDC1), γH2AXpSer139 , topoisomerase II alpha (TOPIIα), topoisomerase II beta (TOPIIβ), HSP90, and heat shock protein 70 (HSP70) in SNU-1 cells. AITC increased p53, p53pSer15 , and p21 but decreased murine double minute 2 (MDM2)pSer166 and O6 -methylguanine-DNA methyltransferase (MGMT) in AGS cells; however, it has a similar effect of AITC except increased ataxia telangiectasia and Rad3 -related protein (ATR)pSer428 , checkpoint kinase 1 (CHK1), and checkpoint kinase 2 (CHK2) in SNU-1 cells. Apparently, both cell responses to AITC are different, nonetheless, all of these observations suggest that AITC inhibits the growth of gastric cancer cells may through induction off DNA damage in vitro.
Collapse
Affiliation(s)
- Yung-Luen Shih
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Sheng-Yao Hsu
- Department of Ophthalmology, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Chiung-Ju Chen
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Hsu-Fen Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Mhlekude B, Postmus D, Stenzel S, Weiner J, Jansen J, Zapatero-Belinchón FJ, Olmer R, Richter A, Heinze J, Heinemann N, Mühlemann B, Schroeder S, Jones TC, Müller MA, Drosten C, Pich A, Thiel V, Martin U, Niemeyer D, Gerold G, Beule D, Goffinet C. Pharmacological inhibition of bromodomain and extra-terminal proteins induces an NRF-2-mediated antiviral state that is subverted by SARS-CoV-2 infection. PLoS Pathog 2023; 19:e1011657. [PMID: 37747932 PMCID: PMC10629670 DOI: 10.1371/journal.ppat.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/07/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Inhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential prophylactics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-mediated antiviral activity and its susceptibility to viral subversion remain incompletely understood. Pretreatment of cells with iBETs inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV. The antiviral activity manifested itself by reduced reporter expression of recombinant viruses, and reduced viral RNA quantities and infectious titers in the culture supernatant. While we confirmed JQ-1-mediated downregulation of expression of angiotensin-converting enzyme 2 (ACE2) and interferon-stimulated genes (ISGs), multi-omics analysis addressing the chromatin accessibility, transcriptome and proteome uncovered induction of an antiviral nuclear factor erythroid 2-related factor 2 (NRF-2)-mediated cytoprotective response as an additional mechanism through which JQ-1 inhibits SARS-CoV-2 replication. Pharmacological inhibition of NRF-2, and knockdown of NRF-2 and its target genes reduced JQ-1-mediated inhibition of SARS-CoV-2 replication. Serial passaging of SARS-CoV-2 in the presence of JQ-1 resulted in predominance of ORF6-deficient variant, which exhibited resistance to JQ-1 and increased sensitivity to exogenously administered type I interferon (IFN-I), suggesting a minimised need for SARS-CoV-2 ORF6-mediated repression of IFN signalling in the presence of JQ-1. Importantly, JQ-1 exhibited a transient antiviral activity when administered prophylactically in human airway bronchial epithelial cells (hBAECs), which was gradually subverted by SARS-CoV-2, and no antiviral activity when administered therapeutically following an established infection. We propose that JQ-1 exerts pleiotropic effects that collectively induce an antiviral state in the host, which is ultimately nullified by SARS-CoV-2 infection, raising questions about the clinical suitability of the iBETs in the context of COVID-19.
Collapse
Affiliation(s)
- Baxolele Mhlekude
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Saskia Stenzel
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - January Weiner
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Francisco J. Zapatero-Belinchón
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH—Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Heinze
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Mühlemann
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Schroeder
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Terry C. Jones
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Marcel A. Müller
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Core Facility Proteomics, Hannover, Germany
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH—Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Dieter Beule
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool United Kingdom
| |
Collapse
|
5
|
Dellaert Z, Putnam HM. Reconciling the variability in the biological response of marine invertebrates to climate change. J Exp Biol 2023; 226:jeb245834. [PMID: 37655544 DOI: 10.1242/jeb.245834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
As climate change increases the rate of environmental change and the frequency and intensity of disturbance events, selective forces intensify. However, given the complicated interplay between plasticity and selection for ecological - and thus evolutionary - outcomes, understanding the proximate signals, molecular mechanisms and the role of environmental history becomes increasingly critical for eco-evolutionary forecasting. To enhance the accuracy of our forecasting, we must characterize environmental signals at a level of resolution that is relevant to the organism, such as the microhabitat it inhabits and its intracellular conditions, while also quantifying the biological responses to these signals in the appropriate cells and tissues. In this Commentary, we provide historical context to some of the long-standing challenges in global change biology that constrain our capacity for eco-evolutionary forecasting using reef-building corals as a focal model. We then describe examples of mismatches between the scales of external signals relative to the sensors and signal transduction cascades that initiate and maintain cellular responses. Studying cellular responses at this scale is crucial because these responses are the basis of acclimation to changing environmental conditions and the potential for environmental 'memory' of prior or historical conditions through molecular mechanisms. To challenge the field, we outline some unresolved questions and suggest approaches to align experimental work with an organism's perception of the environment; these aspects are discussed with respect to human interventions.
Collapse
Affiliation(s)
- Zoe Dellaert
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| |
Collapse
|
6
|
Yi SJ, Jang YJ, Lee S, Cho SJ, Kang K, Park JI, Chae HJ, Kim HR, Kim K. TMBIM6 deficiency leads to bone loss by accelerating osteoclastogenesis. Redox Biol 2023; 64:102804. [PMID: 37399733 PMCID: PMC10336580 DOI: 10.1016/j.redox.2023.102804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
TMBIM6 is an endoplasmic reticulum (ER) protein that modulates various physiological and pathological processes, including metabolism and cancer. However, its involvement in bone remodeling has not been investigated. In this study, we demonstrate that TMBIM6 serves as a crucial negative regulator of osteoclast differentiation, a process essential for bone remodeling. Our investigation of Tmbim6-knockout mice revealed an osteoporotic phenotype, and knockdown of Tmbim6 inhibited the formation of multinucleated tartrate-resistant acid phosphatase-positive cells, which are characteristic of osteoclasts. Transcriptome and immunoblot analyses uncovered that TMBIM6 exerts its inhibitory effect on osteoclastogenesis by scavenging reactive oxygen species and preventing p65 nuclear localization. Additionally, TMBIM6 depletion was found to promote p65 localization to osteoclast-related gene promoters. Notably, treatment with N-acetyl cysteine, an antioxidant, impeded the osteoclastogenesis induced by TMBIM6-depleted cells, supporting the role of TMBIM6 in redox regulation. Furthermore, we discovered that TMBIM6 controls redox regulation via NRF2 signaling pathways. Our findings establish TMBIM6 as a critical regulator of osteoclastogenesis and suggest its potential as a therapeutic target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - You-Jee Jang
- Department of Biomedical Laboratory Science, Honam University, Gwangju, Republic of Korea
| | - Seokchan Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Han-Jung Chae
- School of Pharmacy and New Drug Development Research Institute, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
7
|
Coates BS, Deleury E, Gassmann AJ, Hibbard BE, Meinke LJ, Miller NJ, Petzold-Maxwell J, French BW, Sappington TW, Siegfried BD, Guillemaud T. Up-regulation of apoptotic- and cell survival-related gene pathways following exposures of western corn rootworm to B. thuringiensis crystalline pesticidal proteins in transgenic maize roots. BMC Genomics 2021; 22:639. [PMID: 34479486 PMCID: PMC8418000 DOI: 10.1186/s12864-021-07932-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood. RESULTS Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome. Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and transport, were, in part, shared among transcripts that changed significantly following exposures to the entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in common between Bt and entomopathogen treatments encode proteins in general stress response pathways, including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases, pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among transcripts uniquely up-regulated following exposure to either Bt protein. CONCLUSIONS Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for future investigations of resistance mechanisms.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 103 Genetics Laboratory, Iowa State University, Ames, IA, 50011, USA.
| | | | | | | | - Lance J Meinke
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | | | | | - B Wade French
- USDA-ARS, North Central Agricultural Research Laboratory, Brookings, SD, USA
| | - Thomas W Sappington
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 103 Genetics Laboratory, Iowa State University, Ames, IA, 50011, USA
| | | | | |
Collapse
|
8
|
Lebedev M, McEligot HA, Mutua VN, Walsh P, Carvallo Chaigneau FR, Gershwin LJ. Analysis of lung transcriptome in calves infected with Bovine Respiratory Syncytial Virus and treated with antiviral and/or cyclooxygenase inhibitor. PLoS One 2021; 16:e0246695. [PMID: 33600498 PMCID: PMC7891793 DOI: 10.1371/journal.pone.0246695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Bovine Respiratory Syncytial virus (BRSV) is one of the major infectious agents in the etiology of the bovine respiratory disease complex. BRSV causes a respiratory syndrome in calves, which is associated with severe bronchiolitis. In this study we describe the effect of treatment with antiviral fusion protein inhibitor (FPI) and ibuprofen, on gene expression in lung tissue of calves infected with BRSV. Calves infected with BRSV are an excellent model of human RSV in infants: we hypothesized that FPI in combination with ibuprofen would provide the best therapeutic intervention for both species. The following experimental treatment groups of BRSV infected calves were used: 1) ibuprofen day 3-10, 2) ibuprofen day 5-10, 3) placebo, 4) FPI day 5-10, 5) FPI and ibuprofen day 5-10, 6) FPI and ibuprofen day 3-10. All calves were infected with BRSV on day 0. Daily clinical evaluation with monitoring of virus shedding by qRT-PCR was conducted. On day10 lung tissue with lesions (LL) and non-lesional (LN) was collected at necropsy, total RNA extracted, and RNA sequencing performed. Differential gene expression analysis was conducted with Gene ontology (GO) and KEGG pathway enrichment analysis. The most significant differential gene expression in BRSV infected lung tissues was observed in the comparison of LL with LN; oxidative stress and cell damage was especially noticeable. Innate and adaptive immune functions were reduced in LL. As expected, combined treatment with FPI and Ibuprofen, when started early, made the most difference in gene expression patterns in comparison with placebo, especially in pathways related to the innate and adaptive immune response in both LL and LN. Ibuprofen, when used alone, negatively affected the antiviral response and caused higher virus loads as shown by increased viral shedding. In contrast, when used with FPI Ibuprofen enhanced the specific antiviral effect of FPI, due to its ability to reduce the damaging effect of prostanoids and oxidative stress.
Collapse
Affiliation(s)
- Maxim Lebedev
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Heather A. McEligot
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Victoria N. Mutua
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Paul Walsh
- Pediatric Emergency Medicine, Sutter Medical Center Sacramento, Sacramento, California, United States of America
| | - Francisco R. Carvallo Chaigneau
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech., Blacksburg, VA, United States of America
| | - Laurel J. Gershwin
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
9
|
Heme Oxygenase-1 in Central Nervous System Malignancies. J Clin Med 2020; 9:jcm9051562. [PMID: 32455831 PMCID: PMC7290325 DOI: 10.3390/jcm9051562] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Central nervous system tumors are the most common pediatric solid tumors and account for 20–25% of all childhood malignancies. Several lines of evidence suggest that brain tumors show altered redox homeostasis that triggers the activation of various survival pathways, leading to disease progression and chemoresistance. Among these pathways, heme oxygenase-1 (HO-1) plays an important role. HO-1 catalyzes the enzymatic degradation of heme with the simultaneous release of carbon monoxide (CO), ferrous iron (Fe2+), and biliverdin. The biological effects of HO-1 in tumor cells have been shown to be cell-specific since, in some tumors, its upregulation promotes cell cycle arrest and cellular death, whereas, in other neoplasms, it is associated with tumor survival and progression. This review focuses on the role of HO-1 in central nervous system malignancies and the possibility of exploiting such a target to improve the outcome of well-established therapeutic regimens. Finally, several studies show that HO-1 overexpression is involved in the development and resistance of brain tumors to chemotherapy and radiotherapy, suggesting the use of HO-1 as an innovative therapeutic target to overcome drug resistance. The following keywords were used to search the literature related to this topic: nuclear factor erythroid 2 p45-related factor 2, heme oxygenase, neuroblastoma, medulloblastoma, meningioma, astrocytoma, oligodendroglioma, glioblastoma multiforme, and gliomas.
Collapse
|
10
|
Lebeaupin C, Blanc M, Vallée D, Keller H, Bailly-Maitre B. BAX inhibitor-1: between stress and survival. FEBS J 2020; 287:1722-1736. [PMID: 31841271 DOI: 10.1111/febs.15179] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Cellular gatekeepers are essential to maintain order within a cell and anticipate signals of stress to promote survival. BCL2 associated X, apoptosis regulator (BAX) inhibitor-1 (BI-1), also named transmembrane BAX inhibitor motif containing-6, is a highly conserved endoplasmic reticulum (ER) transmembrane protein. Originally identified as an inhibitor of BAX-induced apoptosis, its pro-survival properties have been expanded to include functions targeted against ER stress, calcium imbalance, reactive oxygen species accumulation, and metabolic dysregulation. Nevertheless, the structural biology and biochemical mechanism of action of BI-1 are still under debate. BI-1 has been implicated in several diseases, including chronic liver disease, diabetes, ischemia/reperfusion injury, neurodegeneration, and cancer. While most studies have demonstrated a beneficial role for BI-1 in the ubiquitous maintenance of cellular homeostasis, its expression in cancer cells seems most often to contribute to tumorigenesis and metastasis. Here, we summarize what is known about BI-1 and encourage future studies on BI-1's contribution to cellular life and death decisions to advocate its potential as a target for drug development and other therapeutic strategies.
Collapse
Affiliation(s)
- Cynthia Lebeaupin
- INSERM U1065, C3M, Université Côte d'Azur, Nice, France.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marina Blanc
- INSERM U1065, C3M, Université Côte d'Azur, Nice, France
| | | | - Harald Keller
- INRA1355-CNRS7254, Université Côte d'Azur, Sophia Antipolis, France
| | | |
Collapse
|
11
|
Swain LL, Mishra C, Sahoo SS, Nayak G, Pradhan SK, Mishra SR, Dige M. An in vivo and in silico analysis of novel variation in TMBIM6 gene affecting cardiopulmonary traits of Indian goats. J Therm Biol 2019; 88:102491. [PMID: 32125979 DOI: 10.1016/j.jtherbio.2019.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/30/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023]
Abstract
Transmembrane Bax Inhibitor Motif-containing 6 (TMBIM6) gene acts as calcium leak channel and negatively regulates autophagy and autophagosome formation. The TMBIM6 gene was amplified and searched for variation in three different goat populations (i.e. Black Bengal, Ganjam and Raighar) of Odisha state of the India. The result indicated two substitutions i.e. 55th position (C55T) and 95th position (C95A) in the amplified region of the gene resulting in change of amino acids (Leu > Phe and Thr > Asn). The identified SNPs were combined to form haplotypes and animals were grouped accordingly. Structural analysis showed minor changes (5%) in between mutant and wild TMBIM6 protein structures. However, any functional variation could not be identified with respect to the calcium ligand and open pore state. But an alteration of calcium binding site was found. The binding interaction of calcium with the TMBIM6 protein was hydrophobic in nature in closed state whereas hydrophilic in open pore stage. The stress releasing function was the result of calcium leakage controlled by amino acids coded by exon 4 and exon 5 regions of TMBIM6 gene. The effect of breed and haplotype on cardiopulmonary traits was studied. The data on cardiopulmonary traits of body i.e. rectal temperature, skin temperature, heart rate and respiration rate were recorded when ambient temperature usually remained the highest. The statistical analysis showed, significant difference in rectal temperature, skin temperature and respiration rate among these goat populations. The haplotypes (CC and TA) were found to have a significant (P < 0.05) effect on rectal temperature, skin temperature and respiration rate. However, any such significant effect could not be identified in recorded heart rate. The objective of the present study to identify the genetic variations in TMBIM6 gene having significant effect on cardiopulmonary traits which can be further uses as the molecular markers to improve heat tolerance mechanism in goats.
Collapse
Affiliation(s)
- Lipi Lekha Swain
- Department of Animal Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India.
| | - Chinmoy Mishra
- Department of Animal Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India.
| | - Siddhant Sekhar Sahoo
- Department of Animal Breeding and Genetics, National Dairy Research Institute, Karnal, India.
| | - Gangadhar Nayak
- Department of Animal Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India.
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar, India.
| | - Smruti Ranjan Mishra
- Department of Veterinary Physiology, Orissa University of Agriculture and Technology, Bhubaneswar, India.
| | - Mahesh Dige
- Department of Animal Genetics, Central Institute for Research on Goats, Makhdoom, Mathura, India.
| |
Collapse
|
12
|
Doycheva D, Xu N, Kaur H, Malaguit J, McBride DW, Tang J, Zhang JH. Adenoviral TMBIM6 vector attenuates ER-stress-induced apoptosis in a neonatal hypoxic-ischemic rat model. Dis Model Mech 2019; 12:dmm040352. [PMID: 31636086 PMCID: PMC6898997 DOI: 10.1242/dmm.040352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a major pathology encountered after hypoxic-ischemic (HI) injury. Accumulation of unfolded proteins triggers the unfolded protein response (UPR), resulting in the activation of pro-apoptotic cascades that lead to cell death. Here, we identified Bax inhibitor 1 (BI-1), an evolutionarily conserved protein encoded by the transmembrane BAX inhibitor motif-containing 6 (TMBIM6) gene, as a novel modulator of ER-stress-induced apoptosis after HI brain injury in a neonatal rat pup. The main objective of our study was to overexpress BI-1, via viral-mediated gene delivery of human adenoviral-TMBIM6 (Ad-TMBIM6) vector, to investigate its anti-apoptotic effects as well as to elucidate its signaling pathways in an in vivo neonatal HI rat model and in vitro oxygen-glucose deprivation (OGD) model. Ten-day-old unsexed Sprague Dawley rat pups underwent right common carotid artery ligation followed by 1.5 h of hypoxia. Rat pups injected with Ad-TMBIM6 vector, 48 h pre-HI, showed a reduction in relative infarcted area size, attenuated neuronal degeneration and improved long-term neurological outcomes. Furthermore, silencing of BI-1 or further activating the IRE1α branch of the UPR, using a CRISPR activation plasmid, was shown to reverse the protective effects of BI-1. Based on our in vivo and in vitro data, the protective effects of BI-1 are mediated via inhibition of IRE1α signaling and in part via inhibition of the second stress sensor receptor, PERK. Overall, this study showed a novel role for BI-1 and ER stress in the pathophysiology of HI and could provide a basis for BI-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Desislava Doycheva
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Ningbo Xu
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Department of Interventional Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Harpreet Kaur
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jay Malaguit
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Devin William McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiping Tang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H Zhang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
13
|
Nam SM, Jeon YJ. Proteostasis In The Endoplasmic Reticulum: Road to Cure. Cancers (Basel) 2019; 11:E1793. [PMID: 31739582 PMCID: PMC6895847 DOI: 10.3390/cancers11111793] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that is responsible for the biosynthesis, folding, maturation, stabilization, and trafficking of transmembrane and secretory proteins. Therefore, cells evolve protein quality-control equipment of the ER to ensure protein homeostasis, also termed proteostasis. However, disruption in the folding capacity of the ER caused by a large variety of pathophysiological insults leads to the accumulation of unfolded or misfolded proteins in this organelle, known as ER stress. Upon ER stress, unfolded protein response (UPR) of the ER is activated, integrates ER stress signals, and transduces the integrated signals to relive ER stress, thereby leading to the re-establishment of proteostasis. Intriguingly, severe and persistent ER stress and the subsequently sustained unfolded protein response (UPR) are closely associated with tumor development, angiogenesis, aggressiveness, immunosuppression, and therapeutic response of cancer. Additionally, the UPR interconnects various processes in and around the tumor microenvironment. Therefore, it has begun to be delineated that pharmacologically and genetically manipulating strategies directed to target the UPR of the ER might exhibit positive clinical outcome in cancer. In the present review, we summarize recent advances in our understanding of the UPR of the ER and the UPR of the ER-mitochondria interconnection. We also highlight new insights into how the UPR of the ER in response to pathophysiological perturbations is implicated in the pathogenesis of cancer. We provide the concept to target the UPR of the ER, eventually discussing the potential of therapeutic interventions for targeting the UPR of the ER for cancer treatment.
Collapse
Affiliation(s)
- Su Min Nam
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
14
|
Mechanistic Connections between Endoplasmic Reticulum (ER) Redox Control and Mitochondrial Metabolism. Cells 2019; 8:cells8091071. [PMID: 31547228 PMCID: PMC6769559 DOI: 10.3390/cells8091071] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022] Open
Abstract
The past decade has seen the emergence of endoplasmic reticulum (ER) chaperones as key determinants of contact formation between mitochondria and the ER on the mitochondria-associated membrane (MAM). Despite the known roles of ER–mitochondria tethering factors like PACS-2 and mitofusin-2, it is not yet entirely clear how they mechanistically interact with the ER environment to determine mitochondrial metabolism. In this article, we review the mechanisms used to communicate ER redox and folding conditions to the mitochondria, presumably with the goal of controlling mitochondrial metabolism at the Krebs cycle and at the electron transport chain, leading to oxidative phosphorylation (OXPHOS). To achieve this goal, redox nanodomains in the ER and the interorganellar cleft influence the activities of ER chaperones and Ca2+-handling proteins to signal to mitochondria. This mechanism, based on ER chaperones like calnexin and ER oxidoreductases like Ero1α, controls reactive oxygen production within the ER, which can chemically modify the proteins controlling ER–mitochondria tethering, or mitochondrial membrane dynamics. It can also lead to the expression of apoptotic or metabolic transcription factors. The link between mitochondrial metabolism and ER homeostasis is evident from the specific functions of mitochondria–ER contact site (MERC)-localized Ire1 and PERK. These functions allow these two transmembrane proteins to act as mitochondria-preserving guardians, a function that is apparently unrelated to their functions in the unfolded protein response (UPR). In scenarios where ER stress cannot be resolved via the activation of mitochondrial OXPHOS, MAM-localized autophagosome formation acts to remove defective portions of the ER. ER chaperones such as calnexin are again critical regulators of this MERC readout.
Collapse
|
15
|
Doycheva D, Xu N, Tang J, Zhang J. Viral-mediated gene delivery of TMBIM6 protects the neonatal brain via disruption of NPR-CYP complex coupled with upregulation of Nrf-2 post-HI. J Neuroinflammation 2019; 16:174. [PMID: 31472686 PMCID: PMC6717394 DOI: 10.1186/s12974-019-1559-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress play a major role in the pathogenesis of neonatal hypoxic-ischemic (HI) injury. ER stress results in the accumulation of unfolded proteins that trigger the NADPH-P450 reductase (NPR) and the microsomal monooxygenase system which is composed of cytochrome P450 members (CYP) generating reactive oxygen species (ROS) as well as the release of inflammatory cytokines. We explored the role of Bax Inhibitor-1 (BI-1) protein, encoded by the Transmembrane Bax inhibitor Motif Containing 6 (TMBIM6) gene, in protection from ER stress after HI brain injury. BI-1 may attenuate ER stress-induced ROS production and release of inflammatory mediators via (1) disruption of the NPR-CYP complex and (2) upregulation of Nrf-2, a redox-sensitive transcription factor, thus promoting an increase in anti-oxidant enzymes to inhibit ROS production. The main objective of our study is to evaluate BI-1's inhibitory effects on ROS production and inflammation by overexpressing BI-1 in 10-day-old rat pups. METHODS Ten-day-old (P10) unsexed Sprague-Dawley rat pups underwent right common carotid artery ligation, followed by 1.5 h of hypoxia. To overexpress BI-1, rat pups were intracerebroventricularly (icv) injected at 48 h pre-HI with the human adenoviral vector-TMBIM6 (Ad-TMBIM6). BI-1 and Nrf-2 silencing were achieved by icv injection at 48 h pre-HI using siRNA to elucidate the potential mechanism. Percent infarcted area, immunofluorescent staining, DHE staining, western blot, and long-term neurobehavior assessments were performed. RESULTS Overexpression of BI-1 significantly reduced the percent infarcted area and improved long-term neurobehavioral outcomes. BI-1's mediated protection was observed to be via inhibition of P4502E1, a major contributor to ROS generation and upregulation of pNrf-2 and HO-1, which correlated with a decrease in ROS and inflammatory markers. This effect was reversed when BI-1 or Nrf-2 were inhibited. CONCLUSIONS Overexpression of BI-1 increased the production of antioxidant enzymes and attenuated inflammation by destabilizing the complex responsible for ROS production. BI-1's multimodal role in inhibiting P4502E1, together with upregulating Nrf-2, makes it a promising therapeutic target.
Collapse
Affiliation(s)
- Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - John Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Loma Linda, CA 92354 USA
| |
Collapse
|
16
|
Doycheva D, Kaur H, Tang J, Zhang JH. The characteristics of the ancient cell death suppressor, TMBIM6, and its related signaling pathways after endoplasmic reticulum stress. J Neurosci Res 2019; 98:77-86. [PMID: 31044452 DOI: 10.1002/jnr.24434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
Activation of the unfolded protein response in combination with generation of reactive oxygen species, from cytochrome P450 members and NADPH-P450 reductases, are two major consequences of Endoplasmic Reticulum (ER) stress that cause oxidative damage and cell death. Herein, we reviewed the role of Bax Inhibitor-1 (BI-1), an evolutionarily conserved protein encoded by the Transmembrane Bax inhibitor Motif Containing 6 gene, in protection from ER stress. As BI-1 has multimodal properties that can target a wide array of pathophysiological consequences after injury, our main objective was to explore BI-1's protective role in ER stress and its potential signaling pathways.
Collapse
Affiliation(s)
- Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Harpreet Kaur
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
17
|
Dong X, Qi H, He B, Jiang D, Zhu B. RNA Sequencing Analysis to Capture the Transcriptome Landscape during Tenderization in Sea Cucumber Apostichopus japonicus. Molecules 2019; 24:E998. [PMID: 30871127 PMCID: PMC6429463 DOI: 10.3390/molecules24050998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/27/2022] Open
Abstract
Sea cucumber (Apostichopus japonicus) is an economically significant species in China having great commercial value. It is challenging to maintain the textural properties during thermal processing due to the distinctive physiochemical structure of the A. japonicus body wall (AJBW). In this study, the gene expression profiles associated with tenderization in AJBW were determined at 0 h (CON), 1 h (T_1h), and 3 h (T_3h) after treatment at 37 °C using Illumina HiSeq™ 4000 platform. Seven-hundred-and-twenty-one and 806 differentially expressed genes (DEGs) were identified in comparisons of T_1h vs. CON and T_3h vs. CON, respectively. Among these DEGs, we found that two endogenous proteases-72 kDa type IV collagenase and matrix metalloproteinase 16 precursor-were significantly upregulated that could directly affect the tenderness of AJBW. In addition, 92 genes controlled four types of physiological and biochemical processes such as oxidative stress response (3), immune system process (55), apoptosis (4), and reorganization of the cytoskeleton and extracellular matrix (30). Further, the RT-qPCR results confirmed the accuracy of RNA-sequencing analysis. Our results showed the dynamic changes in global gene expression during tenderization and provided a series of candidate genes that contributed to tenderization in AJBW. This can help further studies on the genetics/molecular mechanisms associated with tenderization.
Collapse
Affiliation(s)
- Xiufang Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Baoyu He
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Di Jiang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| |
Collapse
|
18
|
Hernández-López A, Díaz M, Rodríguez-López J, Guillén G, Sánchez F, Díaz-Camino C. Uncovering Bax inhibitor-1 dual role in the legume-rhizobia symbiosis in common bean roots. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1049-1061. [PMID: 30462254 PMCID: PMC6363093 DOI: 10.1093/jxb/ery417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/13/2018] [Indexed: 05/23/2023]
Abstract
Bax-inhibitor 1 (BI-1) is a cell death suppressor conserved in all eukaryotes that modulates cell death in response to abiotic stress and pathogen attack in plants. However, little is known about its role in the establishment of symbiotic interactions. Here, we demonstrate the functional relevance of an Arabidopsis thaliana BI-1 homolog (PvBI-1a) to symbiosis between the common bean (Phaseolus vulgaris) and Rhizobium tropici. We show that the changes in expression of PvBI-1a observed during early symbiosis resemble those of some defence response-related proteins. By using gain- and loss-of-function approaches, we demonstrate that the overexpression of PvBI-1a in the roots of common bean increases the number of rhizobial infection events (and therefore the final number of nodules per root), but induces the premature death of nodule cells, affecting their nitrogen fixation efficiency. Nodule morphological alterations are known to be associated with changes in the expression of genes tied to defence, autophagy, and vesicular trafficking. Results obtained in the present work suggest that BI-1 has a dual role in the regulation of programmed cell death during symbiosis, extending our understanding of its critical function in the modulation of host immunity while responding to beneficial microbes.
Collapse
Affiliation(s)
- Alejandrina Hernández-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Mauricio Díaz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Jonathan Rodríguez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Gabriel Guillén
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Claudia Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
19
|
Kim HK, Yadav RK, Bhattarai KR, Jung HW, Kim HR, Chae HJ. Transmembrane BAX Inhibitor Motif-6 (TMBIM6) protects against cisplatin-induced testicular toxicity. Hum Reprod 2019; 33:378-389. [PMID: 29309588 DOI: 10.1093/humrep/dex381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is the Transmembrane BAX Inhibitor Motif-6 (TMBIM6) involved in the molecular mechanism by which cisplatin causes reproductive toxicity? SUMMARY ANSWER TMBIM6 protects against cisplatin-induced testicular toxicity through up-regulation of heme oxygenase-1 (HO-1),-which maintains the levels of steroidogenic enzymes by decreaseing oxidative stress in the endoplasmic reticulum (ER). WHAT IS KNOWN ALREADY Testosterone production is highly suppressed as a main complication of cisplatin (cis-diamminedichloroplatinum) anticancer therapy. STUDY DESIGN, SIZE, DURATION Groups of seven wild type or Tmbim6 KO C57BL/6J mice were given a single i.p., injection of cisplatin (30 mg/kg body wt) and testis and serum were collected 3 days later. Tmbim6-lentivirus-mediated testicular expression-rescued KO mice were analyzed to confirm function was restored. Tmbim6-over expressing TM3 mouse Leydig cells were exposed to cisplatin in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS After collection of the specimens serum testosterone level and testicular weight and structure were compared between the groups. Quantitative PCR, immunoblot, and assays for ROS, HO-1 activity and protein disulfide isomerase (PDI) carbonylation were performed. MAIN RESULTS AND THE ROLE OF CHANCE Phospho protein kinase B (p-Akt), nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), and its downstream gene product HO-1 and the levels of testosterone synthesis-associated enzymes, including steroidogenic acute regulatory protein (StAR), a rate limiting enzyme for testosterone production, were significantly expressed in the presence of Tmbim6 and maintained after cisplatin treament. Excessive post-translational oxidation of protein disulfide isomerase (PDI), altered folding capacitance and ROS accumulation, and ER stress were also decreased in the presence of Tmbim6. Higher levels of ER stress and protein hypercarbonylation were consistently observed in KO testis, compared with WT testis. In the Tmbim6 KO mice, lentivirus-mediated testicular expression of Tmbim6 rescued the above phenotypes. Furthermore, the protective role of Tmbim6 against testicular toxicity was consistently shown in Tmbim6-overexpressing TM3 Leydig cells (testosterone producing cells). We conclude that TMBIM6 protects against cisplatin-induced testicular toxicity by inducing HO-1 and enhancing ER folding capacitance. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study was performed using a short, 3-day cisplatin treatment condition. Therefore, the results need to be cautiously interpreted with regard to cisplatin-associated chronic toxicity. Moreover, to determine the clinical relevance of the role of TMBIM6, further studies in testicular cancer are needed. WIDER IMPLICATIONS OF THE FINDINGS Cisplatin-associated ER stress and redox imbalance might be implicated as toxicity mechanisms associated with anticancer therapy. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Research Foundation of Korea (2015R1A2A1A13001849). The authors have no competing interests to disclose.
Collapse
Affiliation(s)
- Hyun-Kyoung Kim
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University, Jeonju 54689, Republic of Korea
| | - Raj Kumar Yadav
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University, Jeonju 54689, Republic of Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University, Jeonju 54689, Republic of Korea
| | - Han-Wool Jung
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University, Jeonju 54689, Republic of Korea
| | | | - Han-Jung Chae
- Department of Pharmacology and Institute of New Drug Development, Chonbuk National University, Jeonju 54689, Republic of Korea
| |
Collapse
|
20
|
Fan L, He Z, Head SA, Zhou Y, Lu T, Feng X, Zhang X, Zhang M, Dang Y, Jiang X, Wang M. Clofoctol and sorafenib inhibit prostate cancer growth via synergistic induction of endoplasmic reticulum stress and UPR pathways. Cancer Manag Res 2018; 10:4817-4829. [PMID: 30425575 PMCID: PMC6205540 DOI: 10.2147/cmar.s175256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background/Purpose Prostate cancer is a major burden on public health and a major cause of morbidity and mortality among men worldwide. Drug combination therapy is known as a powerful tool for the treatment of cancer. The aim of this study is to evaluate the synergistic inhibitory mechanisms of clofoctol and sorafenib in the treatment of prostate cancer. However, the molecular mechanisms of this phenomenon have not been illuminated clearly. In this study, we investigated the anti-tumor effects of clofoctol in combination with sorafenib in vitro and in vivo. Methods The activity and mechanism of clofoctol in combination with sorafenib were examined in PC-3cells. mRNA and protein expression of key players in the ER stress pathway were detected with RT-PCR and Western blotting. Cell viability was estimated by CCK-8 assay or Alamar blue assay, and apoptosis and cell cycle were monitored and measured by flow cytometry. PC-3 cells were inoculated subcutaneously in male BALB/c nude mice. The therapeutic regimen was initiated when the tumor began showing signs of growth and treatment continued for 5 weeks. Results Our data indicate that clofototol and sorafenib induce cell death through synergistic induction of endoplasmic reticulum (ER) stress, resulting in activation of the unfolded protein response (UPR). Combination therapy with clofoctol and sorafenib induced an upregulation of markers of all three ER stress pathways: PERK, IRE1 and ATF6. In addition, combination therapy with clofoctol and sorafenib markedly inhibited the growth of prostate cancer xenograft tumors, compared with clofoctol or sorafenib alone. Conclusion The combination of clofoctol and sorafenib can serve as a novel clinical treatment regimen, potentially enhancing antitumor efficacy in prostate cancer and decreasing the dose and adverse effects of either clofoctol or sorafenib alone. These results lay the foundation for subsequent research on this novel therapeutic regimen in human prostate cancer.
Collapse
Affiliation(s)
- Lixia Fan
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Zhenglei He
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Sarah A Head
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Ting Lu
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Xulong Feng
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Xueqing Zhang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Meng Zhang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| | - Yongjun Dang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xinghong Jiang
- Department of Neurobiology, Medical College, Soochow University, Suzhou, China,
| | - Minghua Wang
- Department of Biochemistry and Molecular Biology, Medical College, Soochow University, Suzhou, Jiangsu, China,
| |
Collapse
|
21
|
Xu Y, Yang C, Zhang S, Li J, Xiao Q, Huang W. Ginsenoside Rg1 Protects against Non-alcoholic Fatty Liver Disease by Ameliorating Lipid Peroxidation, Endoplasmic Reticulum Stress, and Inflammasome Activation. Biol Pharm Bull 2018; 41:1638-1644. [PMID: 30135326 DOI: 10.1248/bpb.b18-00132] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasingly prevalent and represents a growing challenge in terms of prevention and treatment. The purpose of this study is to investigate the protective effects of ginsenoside Rg1 (Rg1), an active ingredient of a natural medicine, and further clarify its protective mechanisms, in a mouse model of NAFLD induced by a high-fat diet. Rg1 significantly reduced liver weight, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), liver free fatty acids (FFAs) and malondialdehyde (MDA) levels, and increased superoxide dismutase (SOD) activity. Rg1 also upregulated the expression of peroxisome proliferator-activated receptor-alpha (PPARα), which stimulated fatty acid beta oxidation and promoted the metabolism of FFAs and TG. It also suppressed the expression of CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), cysteine-containing aspartate-specific proteases 12 (Caspase 12), and glucose-regulated protein78 (GRP78), which reduced endoplasmic reticulum (ER) stress. Furthermore, Rg1 alleviated liver inflammation by inhibiting the activation of nucleotide binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) and thus reduced the production of inflammatory cytokines, such as interleukin 1-beta (IL-1β) and interleukin 18 (IL-18). These results suggested that Rg1 may protect against NAFLD, through regulation of lipid peroxidation, ER stress and inflammasome activation.
Collapse
Affiliation(s)
- Yashu Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University
| | - Cheng Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University
| | - Jiajun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University
| | - Qing Xiao
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University
| | - Wenxiang Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University
| |
Collapse
|
22
|
Carrara G, Parsons M, Saraiva N, Smith GL. Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer. Open Biol 2018; 7:rsob.170045. [PMID: 28469007 PMCID: PMC5451544 DOI: 10.1098/rsob.170045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Golgi anti-apoptotic protein (GAAP), also known as transmembrane Bax inhibitor-1 motif-containing 4 (TMBIM4) or Lifeguard 4 (Lfg4), shares remarkable amino acid conservation with orthologues throughout eukaryotes, prokaryotes and some orthopoxviruses, suggesting a highly conserved function. GAAPs regulate Ca2+ levels and fluxes from the Golgi and endoplasmic reticulum, confer resistance to a broad range of apoptotic stimuli, promote cell adhesion and migration via the activation of store-operated Ca2+ entry, are essential for the viability of human cells, and affect orthopoxvirus virulence. GAAPs are oligomeric, multi-transmembrane proteins that are resident in Golgi membranes and form cation-selective ion channels that may explain the multiple functions of these proteins. Residues contributing to the ion-conducting pore have been defined and provide the first clues about the mechanistic link between these very different functions of GAAP. Although GAAPs are naturally oligomeric, they can also function as monomers, a feature that distinguishes them from other virus-encoded ion channels that must oligomerize for function. This review summarizes the known functions of GAAPs and discusses their potential importance in disease.
Collapse
Affiliation(s)
- Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Nuno Saraiva
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK .,CBIOS, Universidade Lusófona Research Centre for Biosciences and Health Technologies, Campo Grande 376, Lisbon 1749-024, Portugal
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
23
|
Hossain MK, Saha SK, Abdal Dayem A, Kim JH, Kim K, Yang GM, Choi HY, Cho SG. Bax Inhibitor-1 Acts as an Anti-Influenza Factor by Inhibiting ROS Mediated Cell Death and Augmenting Heme-Oxygenase 1 Expression in Influenza Virus Infected Cells. Int J Mol Sci 2018; 19:ijms19030712. [PMID: 29498634 PMCID: PMC5877573 DOI: 10.3390/ijms19030712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/23/2023] Open
Abstract
Influenza virus remains a major health concern worldwide, and there have been continuous efforts to develop effective antivirals despite the use of annual vaccination programs. The purpose of this study was to determine the anti-influenza activity of Bax inhibitor-1 (BI-1). Madin-Darby Canine Kidney (MDCK) cells expressing wild type BI-1 and a non-functional BI-1 mutant, BI-1 ∆C (with the C-terminal 14 amino acids deleted) were prepared and infected with A/PR/8/34 influenza virus. BI-1 overexpression led to the suppression of virus-induced cell death and virus production compared to control Mock or BI-1 ∆C overexpression. In contrast to BI-1 ∆C-overexpressing cells, BI-1-overexpressing cells exhibited markedly reduced virus-induced expression of several viral genes, accompanied by a substantial decrease in ROS production. We found that treatment with a ROS scavenging agent, N-acetyl cysteine (NAC), led to a dramatic decrease in virus production and viral gene expression in control MDCK and BI-1 ∆C-overexpressing cells. In contrast, NAC treatment resulted in the slight additional suppression of virus production and viral gene expression in BI-1-overexpressing cells but was statistically significant. Moreover, the expression of heme oxygenase-1 (HO-1) was also significantly increased following virus infection in BI-1-overexpressing cells compared to control cells. Taken together, our data suggest that BI-1 may act as an anti-influenza protein through the suppression of ROS mediated cell death and upregulation of HO-1 expression in influenza virus infected MDCK cells.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Jung-Hyun Kim
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
24
|
Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis 2018; 9:331. [PMID: 29491367 PMCID: PMC5832433 DOI: 10.1038/s41419-017-0033-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Many cellular redox reactions housed within mitochondria, peroxisomes and the endoplasmic reticulum (ER) generate hydrogen peroxide (H2O2) and other reactive oxygen species (ROS). The contribution of each organelle to the total cellular ROS production is considerable, but varies between cell types and also over time. Redox-regulatory enzymes are thought to assemble at a “redox triangle” formed by mitochondria, peroxisomes and the ER, assembling “redoxosomes” that sense ROS accumulations and redox imbalances. The redoxosome enzymes use ROS, potentially toxic by-products made by some redoxosome members themselves, to transmit inter-compartmental signals via chemical modifications of downstream proteins and lipids. Interestingly, important components of the redoxosome are ER chaperones and oxidoreductases, identifying ER oxidative protein folding as a key ROS producer and controller of the tri-organellar membrane contact sites (MCS) formed at the redox triangle. At these MCS, ROS accumulations could directly facilitate inter-organellar signal transmission, using ROS transporters. In addition, ROS influence the flux of Ca2+ ions, since many Ca2+ handling proteins, including inositol 1,4,5 trisphosphate receptors (IP3Rs), SERCA pumps or regulators of the mitochondrial Ca2+ uniporter (MCU) are redox-sensitive. Fine-tuning of these redox and ion signaling pathways might be difficult in older organisms, suggesting a dysfunctional redox triangle may accompany the aging process.
Collapse
|
25
|
Pihán P, Carreras-Sureda A, Hetz C. BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ 2017. [PMID: 28622296 DOI: 10.1038/cdd.2017.82] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the last decade, the endoplasmic reticulum (ER) has emerged as a central organelle regulating the core mitochondrial apoptosis pathway. At the ER membrane, a variety of stress signals are integrated toward determining cell fate, involving a complex cross talk between key homeostatic pathways including the unfolded protein response, autophagy, calcium signaling and mitochondrial bioenergetics. In this context, key regulators of cell death of the BCL-2 and TMBIM/BI-1 family of proteins have relevant functions as stress rheostats mediated by the formation of distinct protein complexes that regulate the switch between adaptive and proapoptotic phases under stress. Here, we overview recent advances on our molecular understanding of how the apoptotic machinery integrates stress signals toward cell fate decisions upstream of the mitochondrial gateway of death.
Collapse
Affiliation(s)
- Philippe Pihán
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Amado Carreras-Sureda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA
| |
Collapse
|
26
|
M'Angale PG, Staveley BE. Bax-inhibitor-1 knockdown phenotypes are suppressed by Buffy and exacerbate degeneration in a Drosophila model of Parkinson disease. PeerJ 2017; 5:e2974. [PMID: 28243526 PMCID: PMC5322759 DOI: 10.7717/peerj.2974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/10/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bax inhibitor-1 (BI-1) is an evolutionarily conserved cytoprotective transmembrane protein that acts as a suppressor of Bax-induced apoptosis by regulation of endoplasmic reticulum stress-induced cell death. We knocked down BI-1 in the sensitive dopa decarboxylase (Ddc) expressing neurons of Drosophila melanogaster to investigate its neuroprotective functions. We additionally sought to rescue the BI-1-induced phenotypes by co-expression with the pro-survival Buffy and determined the effect of BI-1 knockdown on the neurodegenerative α-synuclein-induced Parkinson disease (PD) model. METHODS We used organismal assays to assess longevity of the flies to determine the effect of the altered expression of BI-1 in the Ddc-Gal4-expressing neurons by employing two RNAi transgenic fly lines. We measured the locomotor ability of these RNAi lines by computing the climbing indices of the climbing ability and compared them to a control line that expresses the lacZ transgene. Finally, we performed biometric analysis of the developing eye, where we counted the number of ommatidia and calculated the area of ommatidial disruption. RESULTS The knockdown of BI-1 in these neurons was achieved under the direction of the Ddc-Gal4 transgene and resulted in shortened lifespan and precocious loss of locomotor ability. The co-expression of Buffy, the Drosophila anti-apoptotic Bcl-2 homologue, with BI-1-RNAi resulted in suppression of the reduced lifespan and impaired climbing ability. Expression of human α-synuclein in Drosophila dopaminergic neurons results in neuronal degeneration, accompanied by the age-dependent loss in climbing ability. We exploited this neurotoxic system to investigate possible BI-1 neuroprotective function. The co-expression of α-synuclein with BI-1-RNAi results in a slight decrease in lifespan coupled with an impairment in climbing ability. In supportive experiments, we employed the neuron-rich Drosophila compound eye to investigate subtle phenotypes that result from altered gene expression. The knockdown of BI-1 in the Drosophila developing eye under the direction of the GMR-Gal4 transgene results in reduced ommatidia number and increased disruption of the ommatidial array. Similarly, the co-expression of BI-1-RNAi with Buffy results in the suppression of the eye phenotypes. The expression of α-synuclein along with the knockdown of BI-1 resulted in reduction of ommatidia number and more disruption of the ommatidial array. CONCLUSION Knockdown of BI-1 in the dopaminergic neurons of Drosophila results in a shortened lifespan and premature loss in climbing ability, phenotypes that appear to be strongly associated with models of PD in Drosophila, and which are suppressed upon overexpression of Buffy and worsened by co-expression with α-synuclein. This suggests that BI-1 is neuroprotective and its knockdown can be counteracted by the overexpression of the pro-survival Bcl-2 homologue.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland , St. John's, NL , Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland , St. John's, NL , Canada
| |
Collapse
|
27
|
Hatok J, Racay P. Bcl-2 family proteins: master regulators of cell survival. Biomol Concepts 2017; 7:259-70. [PMID: 27505095 DOI: 10.1515/bmc-2016-0015] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival.
Collapse
|
28
|
Lee GH, Oh KJ, Kim HR, Han HS, Lee HY, Park KG, Nam KH, Koo SH, Chae HJ. Effect of BI-1 on insulin resistance through regulation of CYP2E1. Sci Rep 2016; 6:32229. [PMID: 27576594 PMCID: PMC5006057 DOI: 10.1038/srep32229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
Diet-induced obesity is a major contributing factor to the progression of hepatic insulin resistance. Increased free fatty acids in liver enhances endoplasmic reticulum (ER) stress and production of reactive oxygen species (ROS), both are directly responsible for dysregulation of hepatic insulin signaling. BI-1, a recently studied ER stress regulator, was examined to investigate its association with ER stress and ROS in insulin resistance models. To induce obesity and insulin resistance, BI-1 wild type and BI-1 knock-out mice were fed a high-fat diet for 8 weeks. The BI-1 knock-out mice had hyperglycemia, was associated with impaired glucose and insulin tolerance under high-fat diet conditions. Increased activity of NADPH-dependent CYP reductase-associated cytochrome p450 2E1 (CYP2E1) and exacerbation of ER stress in the livers of BI-1 knock-out mice was also observed. Conversely, stable expression of BI-1 in HepG2 hepatocytes was shown to reduce palmitate-induced ER stress and CYP2E1-dependent ROS production, resulting in the preservation of intact insulin signaling. Stable expression of CYP2E1 led to increased ROS production and dysregulation of insulin signaling in hepatic cells, mimicking palmitate-mediated hepatic insulin resistance. We propose that BI-1 protects against obesity-induced hepatic insulin resistance by regulating CYP2E1 activity and ROS production.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Kyoung-Jin Oh
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Republic of Korea.,Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Hye-Sook Han
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, 700-721, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, KRIBB, Ochang-eup, 363-883, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| |
Collapse
|
29
|
Barbagallo I, Parenti R, Zappalà A, Vanella L, Tibullo D, Pepe F, Onni T, Li Volti G. Combined inhibition of Hsp90 and heme oxygenase-1 induces apoptosis and endoplasmic reticulum stress in melanoma. Acta Histochem 2015; 117:705-11. [PMID: 26493719 DOI: 10.1016/j.acthis.2015.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Heat shock proteins are ubiquitous molecular chaperones involved in post-translational folding, stability, activation and maturation of many proteins that are essential mediators of signal transduction and cell cycle progression. Heat shock protein 90 (Hsp90) has recently emerged as an attractive therapeutic target in cancer treatment since it may act as a key regulator of various oncogene products and cell-signaling molecules. Heme oxygenase-1 (HO-1; also known as Hsp32) is an inducible enzyme participating in heme degradation and involved in oxidative stress resistance. Recent studies indicate that HO-1 activation may play a role in tumor development and progression. In the present study we investigated the chemotherapic effects of combining an Hsp90 inhibitor (NMS E973) and an HO-1 inhibitor (SnMP) on A375 melanoma cells. NMS E973 treatment was able to reduce cell viability and induce endoplasmic reticulum (ER) stress (i.e. Ire1α, ERO1, PDI, BIP and CHOP). Interestingly, no significant effect was observed in reactive oxygen species (ROS) formation. Finally, NMS E973 treatment resulted in a significant HO-1 overexpression, which in turn serves as a possible chemoresistance molecular mechanism. Interestingly, the combination of NMS E973 and SnMP produced an increase of ROS and reduced cell viability compared to NMS E973 treatment alone. The inhibitors combination exhibited higher ER stress, apoptosis as evidenced by bifunctional apoptosis regulator (BFAR) mRNA expression and lower phosphorylation of Akt when compared to NMS E973 alone. In conclusion, these data suggest that HO-1 inhibition potentiates NMS E973 toxicity and may be exploited as a strategy for melanoma treatment.
Collapse
Affiliation(s)
- Ignazio Barbagallo
- Department of Drug Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy; EuroMediterranean Institute of Science and Technology, Via Emerico Amari 123, 90139 Palermo, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy
| | - Daniele Tibullo
- Division of Hematology, AOU "Policlinico-Vittorio Emauele", University of Catania, Via Santa Sofia 78, 95125 Catania, Italy
| | - Francesco Pepe
- Department of Biomedical Sciences, Section of Physiology, University of Catania, Via Andrea Doria 6, 95125 Italy
| | - Toniangelo Onni
- Department of Biomedical Sciences, Section of Physiology, University of Catania, Via Andrea Doria 6, 95125 Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria 6, 95125 Catania, Italy; EuroMediterranean Institute of Science and Technology, Via Emerico Amari 123, 90139 Palermo, Italy.
| |
Collapse
|
30
|
Nagappan AS, Varghese J, James JV, Jacob M. Indomethacin induces endoplasmic reticulum stress, but not apoptosis, in the rat kidney. Eur J Pharmacol 2015; 761:199-205. [DOI: 10.1016/j.ejphar.2015.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
|
31
|
A feedback mechanism to control apoptosis occurs in the digestive gland of the oyster crassostrea gigas exposed to the paralytic shellfish toxins producer Alexandrium catenella. Mar Drugs 2014; 12:5035-54. [PMID: 25257788 PMCID: PMC4178494 DOI: 10.3390/md12095035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/01/2014] [Accepted: 09/11/2014] [Indexed: 11/23/2022] Open
Abstract
To better understand the effect of Paralytic Shellfish Toxins (PSTs) accumulation in the digestive gland of the Pacific oyster, Crassostrea gigas, we experimentally exposed individual oysters for 48 h to a PSTs producer, the dinoflagellate Alexandrium catenella. In comparison to the effect of the non-toxic Alexandrium tamarense, on the eight apoptotic related genes tested, Bax and BI.1 were significantly upregulated in oysters exposed 48 h to A. catenella. Among the five detoxification related genes tested, the expression of cytochrome P450 (CYP1A) was shown to be correlated with toxin concentration in the digestive gland of oysters exposed to the toxic dinoflagellate. Beside this, we observed a significant increase in ROS production, a decrease in caspase-3/7 activity and normal percentage of apoptotic cells in this tissue. Taken together, these results suggest a feedback mechanism, which may occur in the digestive gland where BI.1 could play a key role in preventing the induction of apoptosis by PSTs. Moreover, the expression of CYP1A, Bax and BI.1 were found to be significantly correlated to the occurrence of natural toxic events, suggesting that the expression of these genes together could be used as biomarker to assess the biological responses of oysters to stress caused by PSTs.
Collapse
|
32
|
Radovanovic I, Leung V, Iliescu A, Bongfen SE, Mullick A, Langlais D, Gros P. Genetic control of susceptibility to Candida albicans in SM/J mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:1290-300. [PMID: 24973457 DOI: 10.4049/jimmunol.1400783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the immunocompromised host, invasive infection with the fungal pathogen Candida albicans is associated with high morbidity and mortality. Sporadic cases in otherwise normal individuals are rare, and they are thought to be associated with genetic predisposition. Using a mouse model of systemic infection with C. albicans, we identified the SM/J mouse strain as unusually susceptible to infection. Genetic linkage studies in informative [C57BL/6JxSM/J]F2 mice identified a major locus on distal chromosome 15, given the appellation Carg5, that regulates C. albicans replication in SM/J mice. Cellular and molecular immunophenotyping experiments, as well as functional studies in purified cell populations from SM/J and C57BL/6J, and in [C57BL/6JxSM/J]F2 mice fixed for homozygous or heterozygous Carg5 alleles, indicate that Carg5-regulated susceptibility in SM/J is associated with a complex defect in the myeloid compartment of these mice. SM/J neutrophils express lower levels of Ly6G, and importantly, they show significantly reduced production of reactive oxygen species in response to stimulation with fMLF and PMA. Likewise, CD11b(+)Ly6G(-)Ly6C(hi) inflammatory monocytes were present at lower levels in the blood of infected SM/J, recruited less efficiently at the site of infection, and displayed blunted oxidative burst. Studies in F2 mice establish strong correlations between Carg5 alleles, Ly6G expression, production of serum CCL2 (MCP-1), and susceptibility to C. albicans. Genomic DNA sequencing of chromatin immunoprecipitated for myeloid proinflammatory transcription factors IRF1, IRF8, STAT1 and NF-κB, as well as RNA sequencing, were used to develop a "myeloid inflammatory score" and systematically analyze and prioritize potential candidate genes in the Carg5 interval.
Collapse
Affiliation(s)
- Irena Radovanovic
- Biochemistry Department, McGill University, Montreal, Quebec H3G 0B1, Canada; Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Vicki Leung
- Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada; Department of Human Genetics, McGill University, Montreal, Quebec H3G 0B1, Canada; and
| | - Alexandra Iliescu
- Biochemistry Department, McGill University, Montreal, Quebec H3G 0B1, Canada; Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Silayuv E Bongfen
- Biochemistry Department, McGill University, Montreal, Quebec H3G 0B1, Canada; Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Alaka Mullick
- National Research Council-Biotechnology Research Institute, Montreal, Quebec H4P 2R2, Canada
| | - David Langlais
- Biochemistry Department, McGill University, Montreal, Quebec H3G 0B1, Canada; Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Philippe Gros
- Biochemistry Department, McGill University, Montreal, Quebec H3G 0B1, Canada; Complex Traits Group, McGill University, Montreal, Quebec H3G 0B1, Canada;
| |
Collapse
|
33
|
Lee GH, Lee HY, Li B, Kim HR, Chae HJ. Bax inhibitor-1-mediated inhibition of mitochondrial Ca2+ intake regulates mitochondrial permeability transition pore opening and cell death. Sci Rep 2014; 4:5194. [PMID: 24899098 PMCID: PMC4046133 DOI: 10.1038/srep05194] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
A recently studied endoplasmic reticulum (ER) stress regulator, Bax inhibitor-1 (BI-1) plays a regulatory role in mitochondrial Ca2+ levels. In this study, we identified ER-resident and mitochondria-associated ER membrane (MAM)-resident populations of BI-1. ER stress increased mitochondrial Ca2+ to a lesser extent in BI-1–overexpressing cells (HT1080/BI-1) than in control cells, most likely as a result of impaired mitochondrial Ca2+ intake ability and lower basal levels of intra-ER Ca2+. Moreover, opening of the Ca2+-induced mitochondrial permeability transition pore (PTP) and cytochrome c release were regulated by BI-1. In HT1080/BI-1, the basal mitochondrial membrane potential was low and also resistant to Ca2+ compared with control cells. The activity of the mitochondrial membrane potential-dependent mitochondrial Ca2+ intake pore, the Ca2+ uniporter, was reduced in the presence of BI-1. This study also showed that instead of Ca2+, other cations including K+ enter the mitochondria of HT1080/BI-1 through mitochondrial Ca2+-dependent ion channels, providing a possible mechanism by which mitochondrial Ca2+ intake is reduced, leading to cell protection. We propose a model in which BI-1–mediated sequential regulation of the mitochondrial Ca2+ uniporter and Ca2+-dependent K+ channel opening inhibits mitochondrial Ca2+ intake, thereby inhibiting PTP function and leading to cell protection.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Hwa-Young Lee
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Bo Li
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and Cardiovascular Research Institute, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| |
Collapse
|
34
|
Aeluri M, Chamakuri S, Dasari B, Guduru SKR, Jimmidi R, Jogula S, Arya P. Small Molecule Modulators of Protein–Protein Interactions: Selected Case Studies. Chem Rev 2014; 114:4640-94. [DOI: 10.1021/cr4004049] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Madhu Aeluri
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Srinivas Chamakuri
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Bhanudas Dasari
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Shiva Krishna Reddy Guduru
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Ravikumar Jimmidi
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Srinivas Jogula
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Prabhat Arya
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| |
Collapse
|
35
|
TMBIM protein family: ancestral regulators of cell death. Oncogene 2014; 34:269-80. [DOI: 10.1038/onc.2014.6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
|
36
|
Mohanty S, Saha S, Md S Hossain D, Adhikary A, Mukherjee S, Manna A, Chakraborty S, Mazumdar M, Ray P, Das K, Chakraborty J, Sa G, Das T. ROS-PIASγ cross talk channelizes ATM signaling from resistance to apoptosis during chemosensitization of resistant tumors. Cell Death Dis 2014; 5:e1021. [PMID: 24457965 PMCID: PMC4040699 DOI: 10.1038/cddis.2013.534] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/24/2013] [Accepted: 11/12/2013] [Indexed: 11/09/2022]
Abstract
With the existing knowledge of ATM's role in therapeutic resistance, the present study aimed at identifying the molecular mechanisms that influence ATM to oscillate between chemoresistance and chemosensitivity. We observed that the redox status of tumors functions as a major determinant of ATM-dependent ‘resistance-to-apoptosis' molecular switch. At a low reactive oxygen species (ROS) condition during genotoxic insult, the ATM/sumoylated-IKKγ interaction induced NFκB activation that resisted JNK-mediated apoptosis, whereas increasing cellular ROS restored ATM/JNK apoptotic signaling. A search for the upstream missing link revealed that high ROS induces oxidation and ubiquitin-mediated degradation of PIASγ, thereby disrupting PIASγ-IKKγ cross talk, a pre-requisite for IKKγ sumoylation and subsequent NFκB activation. Interruption in the PIASγ-mediated resistance pathway channels ATM signaling toward ATM/JNK pro-death circuitry. These in vitro results also translated to sensitive and resistant tumor allograft mouse models in which low ROS-induced resistance was over-ruled in PIASγ knockout tumors, while its overexpression inhibited high ROS-dependent apoptotic cues. Cumulatively, our findings identified an unappreciated yet critical combinatorial function of cellular ROS and PIASγ in regulating ATM-mediated chemosensitization of resistant tumors. Thus, therapeutic strategies employing ROS upregulation to inhibit PIASγ during genotoxic therapy may, in future, help to eliminate the problems of NFκB-mediated tumor drug resistance.
Collapse
Affiliation(s)
- S Mohanty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - S Saha
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - D Md S Hossain
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - A Adhikary
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - S Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - A Manna
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - S Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - M Mazumdar
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - P Ray
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - K Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - J Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - G Sa
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - T Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| |
Collapse
|
37
|
B L, R.K Y, G.S J, H.-R K, H.-J C. The characteristics of Bax inhibitor-1 and its related diseases. Curr Mol Med 2014; 14:603-15. [PMID: 24894176 PMCID: PMC4083451 DOI: 10.2174/1566524014666140603101113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/01/2013] [Accepted: 11/24/2013] [Indexed: 11/28/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily-conserved endoplasmic reticulum protein. The expression of BI-1 in mammalian cells suppresses apoptosis induced by Bax, a pro-apoptotic member of the Bcl-2 family. BI-1 has been shown to be associated with calcium (Ca(2+)) levels, reactive oxygen species (ROS) production, cytosolic acidification, and autophagy as well as endoplasmic reticulum stress signaling pathways. According to both in vitro and clinical studies, BI-1 promotes the characteristics of cancers. In other diseases, BI-1 has also been shown to regulate insulin resistance, adipocyte differentiation, hepatic dysfunction and depression. However, the roles of BI-1 in these disease conditions are not fully consistent among studies. Until now, the molecular mechanisms of BI-1 have not directly explained with regard to how these conditions can be regulated. Therefore, this review investigates the physiological role of BI-1 through molecular mechanism studies and its application in various diseases.
Collapse
Affiliation(s)
- Li B
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Yadav R.K
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Jeong G.S
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| | - Kim H.-R
- Department of Dental Pharmacology and Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, 570-749, Republic of Korea
| | - Chae H.-J
- Department of Pharmacology, Medical School, Chonbuk National University, Jeonju, 561-181, Republic of Korea
| |
Collapse
|
38
|
The protective role of Bax inhibitor-1 against chronic mild stress through the inhibition of monoamine oxidase A. Sci Rep 2013; 3:3398. [PMID: 24292328 PMCID: PMC3844965 DOI: 10.1038/srep03398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/15/2013] [Indexed: 11/08/2022] Open
Abstract
The anti-apoptotic protein Bax inhibitor-1 (BI-1) is a regulator of apoptosis linked to endoplasmic reticulum (ER) stress. It has been hypothesized that BI-1 protects against neuron degenerative diseases. In this study, BI-1⁻/⁻ mice showed increased vulnerability to chronic mild stress accompanied by alterations in the size and morphology of the hippocampi, enhanced ROS accumulation and an ER stress response compared with BI-1⁺/⁺ mice. BI-1⁻/⁻ mice exposed to chronic mild stress showed significant activation of monoamine oxidase A (MAO-A), but not MAO-B, compared with BI-1⁺/⁺ mice. To examine the involvement of BI-1 in the Ca²⁺-sensitive MAO activity, thapsigargin-induced Ca²⁺ release and MAO activity were analyzed in neuronal cells overexpressing BI-1. The in vitro study showed that BI-1 regulates Ca²⁺ release and related MAO-A activity. This study indicates an endogenous protective role of BI-1 under conditions of chronic mild stress that is primarily mediated through Ca²⁺-associated MAO-A regulation.
Collapse
|
39
|
Epple LM, Dodd RD, Merz AL, Dechkovskaia AM, Herring M, Winston BA, Lencioni AM, Russell RL, Madsen H, Nega M, Dusto NL, White J, Bigner DD, Nicchitta CV, Serkova NJ, Graner MW. Induction of the unfolded protein response drives enhanced metabolism and chemoresistance in glioma cells. PLoS One 2013; 8:e73267. [PMID: 24039668 PMCID: PMC3748289 DOI: 10.1371/journal.pone.0073267] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/22/2013] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-based cytoprotective mechanism acting to prevent pathologies accompanying protein aggregation. It is frequently active in tumors, but relatively unstudied in gliomas. We hypothesized that UPR stress effects on glioma cells might protect tumors from additional exogenous stress (ie, chemotherapeutics), postulating that protection was concurrent with altered tumor cell metabolism. Using human brain tumor cell lines, xenograft tumors, human samples and gene expression databases, we determined molecular features of glioma cell UPR induction/activation, and here report a detailed analysis of UPR transcriptional/translational/metabolic responses. Immunohistochemistry, Western and Northern blots identified elevated levels of UPR transcription factors and downstream ER chaperone targets in gliomas. Microarray profiling revealed distinct regulation of stress responses between xenograft tumors and parent cell lines, with gene ontology and network analyses linking gene expression to cell survival and metabolic processes. Human glioma samples were examined for levels of the ER chaperone GRP94 by immunohistochemistry and for other UPR components by Western blotting. Gene and protein expression data from patient gliomas correlated poor patient prognoses with increased expression of ER chaperones, UPR target genes, and metabolic enzymes (glycolysis and lipogenesis). NMR-based metabolomic studies revealed increased metabolic outputs in glucose uptake with elevated glycolytic activity as well as increased phospholipid turnover. Elevated levels of amino acids, antioxidants, and cholesterol were also evident upon UPR stress; in particular, recurrent tumors had overall higher lipid outputs and elevated specific UPR arms. Clonogenicity studies following temozolomide treatment of stressed or unstressed cells demonstrated UPR-induced chemoresistance. Our data characterize the UPR in glioma cells and human tumors, and link the UPR to chemoresistance possibly via enhanced metabolism. Given the role of the UPR in the balance between cell survival and apoptosis, targeting the UPR and/or controlling metabolic activity may prove beneficial for malignant glioma therapeutics.
Collapse
Affiliation(s)
- Laura M. Epple
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Rebecca D. Dodd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrea L. Merz
- Cancer Center Metabolomics Core, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Anjelika M. Dechkovskaia
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew Herring
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Benjamin A. Winston
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Alex M. Lencioni
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Rae L. Russell
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Helen Madsen
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Meheret Nega
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Nathaniel L. Dusto
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Jason White
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Darell D. Bigner
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher V. Nicchitta
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Natalie J. Serkova
- Cancer Center Metabolomics Core, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Anesthesiology, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Michael W. Graner
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
40
|
Kiviluoto S, Luyten T, Schneider L, Lisak D, Rojas-Rivera D, Welkenhuyzen K, Missaen L, De Smedt H, Parys JB, Hetz C, Methner A, Bultynck G. Bax Inhibitor-1-mediated Ca2+ leak is decreased by cytosolic acidosis. Cell Calcium 2013; 54:186-92. [PMID: 23867001 DOI: 10.1016/j.ceca.2013.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 05/10/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
Bax Inhibitor-1 (BI-1) is an evolutionarily conserved six-transmembrane domain endoplasmic reticulum (ER)-localized protein that protects against ER stress-induced apoptotic cell death. This function is closely connected to its ability to lower steady-state ER Ca2+ levels. Recently, we elucidated BI-1's Ca(2+)-channel pore in the C-terminal part of the protein and identified the critical amino acids of its pore. Based on these insights, a Ca(2+)-channel pore-dead mutant BI-1 (BI-1(D213R)) was developed. We determined whether BI-1 behaves as a bona fide H+/Ca2+ antiporter or as an ER Ca(2+)-leak channel by investigating the effect of pH on unidirectional Ca(2+)-efflux rates. At pH 6.8, wild-type BI-1 expression in BI-1(-/-) cells increased the ER Ca(2+)-leak rate, correlating with its localization in the ER compartment. In contrast, BI-1(D231R) expression in BI-1(-/-), despite its ER localization, did not increase the ER Ca(2+)-leak rate. However, at pH < 6.8, the BI-1-mediated ER Ca2+ leak was blocked. Finally, a peptide representing the Ca(2+)-channel pore of BI-1 promoting Ca2+ flux from the ER was used. Lowering the pH from 6.8 to 6.0 completely abolished the ability of the BI-1 peptide to mediate Ca2+ flux from the ER. We propose that this pH dependence is due to two aspartic acid residues critical for the function of the Ca(2+)-channel pore and located in the ER membrane-dipping domain, which facilitates the protonation of these residues.
Collapse
Affiliation(s)
- Santeri Kiviluoto
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N-I, Herestraat 49--box 802, BE-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1612-24. [PMID: 23380704 DOI: 10.1016/j.bbamcr.2013.01.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/13/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
The endoplasmic reticulum (ER) performs multiple functions in the cell: it is the major site of protein and lipid synthesis as well as the most important intracellular Ca(2+) reservoir. Adverse conditions, including a decrease in the ER Ca(2+) level or an increase in oxidative stress, impair the formation of new proteins, resulting in ER stress. The subsequent unfolded protein response (UPR) is a cellular attempt to lower the burden on the ER and to restore ER homeostasis by imposing a general arrest in protein synthesis, upregulating chaperone proteins and degrading misfolded proteins. This response can also lead to autophagy and, if the stress can not be alleviated, to apoptosis. The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and IP3-induced Ca(2+) signaling are important players in these processes. Not only is the IP3R activity modulated in a dual way during ER stress, but also other key proteins involved in Ca(2+) signaling are modulated. Changes also occur at the structural level with a strengthening of the contacts between the ER and the mitochondria, which are important determinants of mitochondrial Ca(2+) uptake. The resulting cytoplasmic and mitochondrial Ca(2+) signals will control cellular decisions that either promote cell survival or cause their elimination via apoptosis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
42
|
Jeon K, Lim H, Kim JH, Han D, Lee ER, Yang GM, Song MK, Kim JH, Cho SG. Bax inhibitor-1 enhances survival and neuronal differentiation of embryonic stem cells via differential regulation of mitogen-activated protein kinases activities. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2190-200. [PMID: 22906541 DOI: 10.1016/j.bbamcr.2012.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/23/2012] [Accepted: 08/04/2012] [Indexed: 01/05/2023]
Abstract
Bax inhibitor-1 (BI-1), a member of the BI-1 family of integral membrane proteins, was originally identified as an inhibitor of stress-induced cell death in mammalian cells. Previous studies have shown that the withdrawal of leukemia inhibitory factor (LIF) results in differentiation of the majority of mouse embryonic stem (mES) cells into various cell lineages, while some ES cells die within 3days. Thus, to investigate the function of BI-1 in ES cell survival and neuronal differentiation, we generated mES cell lines that overexpress BI-1 or a carboxy-terminal BI-1ΔC mutant. Overexpression of BI-1 in mES cells significantly increased cell viability and resistance to apoptosis induced by LIF withdrawal, while the control vector or BI-1ΔC-overexpressing mES cells had no effect. Moreover, overexpression of BI-1 produced significant inhibition of the p38 mitogen-activated protein kinases (MAPK) pathway in response to LIF withdrawal, while activity of the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK) MAPK pathway was increased. Interestingly, we found that BI-1-overexpressing cells showed higher expression levels of neuroectodermal markers (Otx1, Lmx1b, En1, Pax2, Wnt1, Sox1, and Nestin) and greater neuronal differentiation efficiency than control or BI-1ΔC-overexpressing mES cells did. Considering these findings, our results indicated that BI-1-modulated MAPK activity plays a key role in protecting mES cells from LIF-withdrawal-induced apoptosis and in promoting their differentiation toward neuronal lineages.
Collapse
Affiliation(s)
- Kilsoo Jeon
- Department of Animal Biotechnology (BK21), Animal Resources Research Center, and SMART-IABS, Konkuk University, Seoul 143-702, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ha YM, Kim MY, Park MK, Lee YS, Kim YM, Kim HJ, Lee JH, Chang KC. Higenamine reduces HMGB1 during hypoxia-induced brain injury by induction of heme oxygenase-1 through PI3K/Akt/Nrf-2 signal pathways. Apoptosis 2012; 17:463-74. [PMID: 22183510 DOI: 10.1007/s10495-011-0688-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growing lines of evidence suggests that high mobility group box-1 (HMGB1) plays an important role for promoting inflammation and apoptosis in brain ischemia. Previously, we demonstrated that inducers of heme oxygenase-1 (HO-1) significantly reduce HMGB1 release in inflammatory conditions in vitro and in vivo. Thus, we tested our hypothesis that higenamine protects brain injury by inhibition of middle cerebral artery occlusion (MCAO)-mediated HMGB1 release in vivo, and glucose/glucose oxidase (GOX)-induced apoptosis in C6 cells in vitro due to HO-1 induction. Higenamine increased HO-1 expression in C6 cells in both hypoxia and normoxia, in which the former was much more significant than the latter. Higenamine increased Nrf-2 luciferase activity, translocated Nrf-2 to nucleus, and increased phosphorylation of Akt in C6 cells. Consistent with this, LY 294002, a PI3K inhibitor, inhibited HO-1 induction by higenamine and apoptosis induced by glucose/GOX in C6 cells was prevented by higenamine, which effect was reversed by LY 294002. Importantly, administration of higenamine (i.p) significantly reduced brain infarct size, mortality rate, MPO activity and tissue expression of HMGB1 in MCAO rats. In addition, recombinant high mobility group box 1 induced apoptosis in C6 cells by increasing ratio of Bax/bcl-2 and cleaved caspase c, which was inhibited by higenamine, and all of these effects were reversed by co-treatment with ZnPPIX. Therefore, we conclude that higenamine, at least in part, protects brain cells against hypoxic damages by up-regulation of HO-1. Thus, higenamine may be beneficial for the use of ischemic injuries such as stroke.
Collapse
Affiliation(s)
- Yu Mi Ha
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Li B, Reed JC, Kim HR, Chae HJ. Proteomic profiling of differentially expressed proteins from Bax inhibitor-1 knockout and wild type mice. Mol Cells 2012; 34:15-23. [PMID: 22736268 PMCID: PMC3887783 DOI: 10.1007/s10059-012-0001-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/04/2012] [Accepted: 05/12/2012] [Indexed: 02/02/2023] Open
Abstract
Bax inhibitor-1 (BI-1) is an anti-apoptotic protein located in the endoplasmic reticulum (ER). The role of BI-1 has been studied in different physiopathological models including ischemia, diabetes, liver regeneration and cancer. However, fundamental knowledge about the effects of BI-1 deletion on the proteome is lacking. To further explore this protein, we compared the levels of different proteins in bi-1 (-/-) and bi-1 (+/+) mouse tissues by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). In several bi-1 (-/-) mice, glucose-regulated protein 75 (GRP75/mortalin/ PBP74/mthsp70), peroxiredoxin6 (Prx6) and fumarylacetoacetate hydrolase (FAH) showed a pI shift that could be attributed to post-translational modifications. Selenium-binding protein 2 (SBP2) and ferritin light chain 1 levels were significantly increased. Phosphatidylethanolamine-binding protein-1 (PEBP-1) was dramatically decreased in bi-1 (-/-) mice, which was confirmed by Western blotting. The phosphorylation of GRP75, Prx6 and FAH were compared between bi-1 (+/+) and bi-1 (-/-) mice using liver tissue lysates. Of these three proteins, only one exhibited modified phosphorylation; Tyr phosphorylation of Prx6 was increased in bi-1 (-/-) mice. Our protein profiling results provide fundamental knowledge about the physiopathological function of BI-1.
Collapse
Affiliation(s)
- Bo Li
- Department of Pharmacology and Cardiovascular Research Center, Chonbuk National University, Jeonju 561-182,
Korea
| | - John C. Reed
- Burnham Institute for Medical Research, California 92037,
USA
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, School of Dentistry, Wonkwang University, Iksan 570-749,
Korea
| | - Han-Jung Chae
- Department of Pharmacology and Cardiovascular Research Center, Chonbuk National University, Jeonju 561-182,
Korea
- Research Center for Pulmonary Disorders, Chonbuk National University Hospital, Jeonju 561-182,
Korea
| |
Collapse
|
45
|
Caba O, Rodríguez-Serrano F, Díaz-Gavilán M, Conejo-García A, Ortiz R, Martínez-Amat A, Alvarez P, Gallo MA, Campos JM, Marchal JA, Aránega A. The selective cytotoxic activity in breast cancer cells by an anthranilic alcohol-derived acyclic 5-fluorouracil O,N-acetal is mediated by endoplasmic reticulum stress-induced apoptosis. Eur J Med Chem 2012; 50:376-382. [PMID: 22373735 DOI: 10.1016/j.ejmech.2012.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 01/01/2023]
Abstract
Advance in the knowledge of molecular biology has thrown light on many aspects of apoptosis regulation mechanisms. This has allowed a change in anti-cancer therapy trends, from classic cytotoxic strategies to the development of new non-harmful therapies which target the apoptosis response selectively only in tumour cells. We have selected an anthranilic alcohol-derived acyclic 5-fluorouracil O,N-acetal (5) to carry out the anti-cancer studies. This compound shows activity as a potent growth inhibitor of the tumour cell line MCF-7 at a very low concentration. Moreover, when this compound was administered to the non-neoplastic cell line, MCF-10A displayed less toxicity resulting in lower rates of apoptosis. Further studies by microarray hybridization, real-time PCR and western blot showed that when administered to human breast cancer cells, MCF-7, 5 had no activity against classic pro-apoptotic genes such as p53, and even induced the down-regulation of anti-apoptotic genes such as Bcl-2. In contrast, several pro-apoptotic genes related with the endoplasmic reticulum (ER)-stress-induced apoptosis, such as BBC3 and Noxa, appeared up-regulated. These results seem to show that the mechanism of action and selectivity of 5 was via the activation of the ER stress-induced apoptosis. The selective activity of this compound against tumour cells via the ER stress-induced apoptosis supposes a great advantage for future therapeutic use.
Collapse
Affiliation(s)
- Octavio Caba
- Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales y de la Salud, Paraje de las Lagunillas s/n, 23071 Jaén, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kim JH, Lee ER, Jeon K, Choi HY, Lim H, Kim SJ, Chae HJ, Park SH, Kim S, Seo YR, Kim JH, Cho SG. Role of BI-1 (TEGT)-mediated ERK1/2 activation in mitochondria-mediated apoptosis and splenomegaly in BI-1 transgenic mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:876-88. [DOI: 10.1016/j.bbamcr.2012.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/22/2012] [Accepted: 01/23/2012] [Indexed: 12/30/2022]
|
47
|
Lee GH, Kim HR, Chae HJ. Bax inhibitor-1 regulates the expression of P450 2E1 through enhanced lysosome activity. Int J Biochem Cell Biol 2012; 44:600-11. [DOI: 10.1016/j.biocel.2011.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
48
|
Yun CH, Chae HJ, Kim HR, Ahn T. Doxorubicin- and daunorubicin-induced regulation of Ca2+ and H+ fluxes through human bax inhibitor-1 reconstituted into membranes. J Pharm Sci 2011; 101:1314-26. [PMID: 22147501 DOI: 10.1002/jps.23007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/28/2011] [Accepted: 11/15/2011] [Indexed: 11/05/2022]
Abstract
Bax inhibitor-1 (BI-1) is an evolutionarily conserved cell death suppressor in both animals and plants. We examined the effect of doxorubicin (DXR) and daunorubicin (DNR), which are clinically important anthracycline compounds, on the functional regulation of BI-1 reconstituted into membranes. DXR and DNR inhibited the proton-induced efflux of encapsulated Ca(2+) from membranes in a drug concentration-dependent manner. Both compounds also reduced the H(+) influx activity of BI-1. The proteoliposomes containing BI-1 increased the quenching of DXR fluorescence by Cu(2+), and the fluorescence energy transfer between pyrene-labeled BI-1 and DXR was enhanced with increasing DXR concentrations. The dissociation constants and the number of binding sites for both drugs in BI-1 were determined to be in the range of 3.7-4.5 × 10(-6) m and approximately 4-5/BI-1 molecule, respectively, using a proteomicelle system. DXR also induced secondary structural changes in reconstituted BI-1 and abolished the ability of BI-1-overexpressing cells to protect against endoplasmic reticulum stress-induced cell death. However, when mitoxantrone was used instead of DNR and DXR as an anthracycline analog, no significant effects were observed. These results suggest that BI-1 can be considered to be a new cancer therapeutic target by anthracyclines because of its stimulatory effects in cancer/tumor progression.
Collapse
Affiliation(s)
- Chul-ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | |
Collapse
|
49
|
Yoon H, Lee GH, Kim DS, Kim KW, Kim HR, Chae HJ. The effects of 3, 4 or 5 amino salicylic acids on manganese-induced neuronal death: ER stress and mitochondrial complexes. Toxicol In Vitro 2011; 25:1259-68. [DOI: 10.1016/j.tiv.2011.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/07/2011] [Accepted: 04/01/2011] [Indexed: 02/02/2023]
|
50
|
Lee GH, Hwang JD, Choi JY, Park HJ, Cho JY, Kim KW, Chae HJ, Kim HR. An acidic pH environment increases cell death and pro-inflammatory cytokine release in osteoblasts: The involvement of BAX Inhibitor-1. Int J Biochem Cell Biol 2011; 43:1305-17. [DOI: 10.1016/j.biocel.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/08/2011] [Accepted: 05/04/2011] [Indexed: 12/29/2022]
|