1
|
Dos Santos BRC, Dos Santos LKC, Ferreira JM, Dos Santos ACM, Sortica VA, de Souza Figueiredo EVM. Toll-like receptors polymorphisms and COVID-19: a systematic review. Mol Cell Biochem 2025; 480:2677-2688. [PMID: 39520513 DOI: 10.1007/s11010-024-05137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024]
Abstract
COVID-19 is a disease caused by SARS-CoV-2. It became a health problem affecting the lives of millions of people. Toll-like receptors are responsible for recognizing viral particles and activating the innate immune system. The genetic factors associated with COVID-19 remain unclear. Thus, this study aims to assess the association between the polymorphism in Toll-like receptors and susceptibility to COVID-19. We searched the electronic databases (Science Direct, PUBMED, Web of Science, and Scopus) for studies assessing the association between Toll-like receptor polymorphisms and susceptibility to COVID-19. The quality of the studies was assessed using the Q-Genie tool. Thirteen studies were included in this systematic review. The studies analyzed polymorphisms in TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9. We used SNP2TFBS bioinformatic analysis to identify the variants influencing transcription factor binding sites. The Ensembl Genome Browser was used to assess the allele and genotype frequencies in different populations. The bioinformatic analysis revealed that the variant rs5743836 of TLR9 affects the transcription factor binding sites NFKB1 and RELA. The genotype frequency of the variants rs3775291, rs3853839, rs3764880 were higher in East Asian population compared to the other populations. The frequency of the rs3775290 variant was higher in East and South Asian populations. The rs179008 variant was higher in the European population, and the rs5743836 was higher in the African population. Toll-like receptors play an important role in COVID-19 susceptibility. Further studies in different populations are necessary to elucidate the role of Toll-like receptors polymorphisms in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Barbara Rayssa Correia Dos Santos
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Arapiraca, Brazil
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
| | | | - Jean Moises Ferreira
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Cidade Universitaria, Recife, Pernambuco, Brazil
| | | | | | - Elaine Virginia Martins de Souza Figueiredo
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Arapiraca, Brazil.
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil.
- Federal University of Alagoas (UFAL), Campus Arapiraca AL 115, Km 65, Bom Sucesso, Arapiraca, Alagoas, 57300-970, Brazil.
| |
Collapse
|
2
|
Shevchenko AV, Prokofiev VF, Konenkov VI, Chernykh VV, Trunov AN. Features of toll-like receptor genes (TLR-2, TLR-3, TLR-4 and TLR-6) polymorphism in open-angle glaucoma patients. Vavilovskii Zhurnal Genet Selektsii 2025; 29:128-134. [PMID: 40144379 PMCID: PMC11933905 DOI: 10.18699/vjgb-25-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/12/2024] [Accepted: 10/24/2024] [Indexed: 03/28/2025] Open
Abstract
Modern research shows that innate immunity plays an important role in the pathogenesis of primary open-angle glaucoma (POAG). An increase in the content of toll-like receptors (TLR) in the glaucomatous retina of the human eye was revealed. TLRs can modulate the immune response in glaucoma; provide early recognition of damaging agents, activation of signaling pathways and effector mechanisms of the nonspecific immune defense system aimed at restoring homeostasis. The TLR-encoding genes' polymorphism alters the amino acid structure of the receptors, which leads to changes in their immune functions: expression level, ligand-binding and coreceptor functions, transport and signal transmission. The aim was to analyze the association of the TLR2 (rs5743708), TLR3 (rs3775291), TLR4 (rs4986790, rs4986791) and TLR6 (rs5743810) polymorphisms with primary open-angle glaucoma in patients of Western Siberia. METHODS 99 patients (52 men and 47 women) with a diagnosis of primary open-angle glaucoma were examined. The comparison group consisted of 100 people (81 women and 19 men). TLR2 (rs5743708), TLR3 (rs3775291), TLR4 (rs4986790, rs4986791) and TLR6 (rs5743810) polymorphisms were analyzed by RT-PCR using test systems with Syber Green (Lytex, Russia). Statistical analysis was performed using the software package SPSS 23.0 and Arlequin 3.5.2.2. RESULTS the distribution of genotypes in the patient group and in the control group corresponded to the Hardy-Weinberg equilibrium. The genotype frequencies did not significantly differ between the two analyzed groups. The frequency of TLR2-753 ArgArg:TLR6-249 ProPro was increased in the group of patients with POAG. The linkage disequilibrium between two polymorphic positions of the TLR4 gene was revealed. In addition, the linkage disequilibrium between TLR2-TLR6 gene for the glaucoma group and the control group was revealed. CONCLUSION an increase in certain genotypes in the patient group relative to the control group may indirectly indicate the involvement of infectious factors in the initiation of POAG. However, despite the proven importance of the participation of their protein products in the pathogenesis of glaucoma, the relationship of TLR polymorphism requires additional research taking into account the ethnic characteristics of patients and intergenic interactions for a better understanding of the complex mechanisms of disease development. This will help carry out early diagnosis and develop the necessary therapeutic strategy.
Collapse
Affiliation(s)
- A V Shevchenko
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V F Prokofiev
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V I Konenkov
- Research Institute of Clinical and Experimental Lymрhology - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Chernykh
- Novosibirsk Branch of the S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery" of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - A N Trunov
- Novosibirsk Branch of the S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery" of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
3
|
Yip JQ, Oo A, Ng YL, Chin KL, Tan KK, Chu JJH, AbuBakar S, Zainal N. The role of inflammatory gene polymorphisms in severe COVID-19: a review. Virol J 2024; 21:327. [PMID: 39707400 PMCID: PMC11662554 DOI: 10.1186/s12985-024-02597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has profoundly impacted global healthcare systems and spurred extensive research efforts over the past three years. One critical aspect of the disease is the intricate interplay between the virus and the host immune response, particularly the role of inflammatory gene expression in severe COVID-19. While numerous previous studies have explored the role of genetic polymorphisms in COVID-19, research specifically focusing on inflammatory genes and their associations with disease severity remains limited. This review explores the relationship between severe COVID-19 outcomes and genetic polymorphisms within key inflammatory genes. By investigating the impact of genetic variations on immune responses, which include cytokine production and downstream signalling pathways, we aim to provide a comprehensive overview of how genetic polymorphisms contribute to the variability in disease presentation. Through an in-depth analysis of existing literature, we shed light on potential therapeutic targets and personalized approaches that may enhance our understanding of disease pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Jia Qi Yip
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Institute for Advanced Studies, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adrian Oo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yan Ling Ng
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kim Ling Chin
- Institute for Advanced Studies, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Disease Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nurhafiza Zainal
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Lemus YB, Martínez GA, Lugo LP, Escorcia LG, Peñata EZ, Llanos NS, Bonfanti AC, Acosta-Hoyos AJ, Quiroz EN. Gene profiling of Epstein-Barr Virus and human endogenous retrovirus in peripheral blood mononuclear cells of SLE patients: immune response implications. Sci Rep 2024; 14:20236. [PMID: 39215087 PMCID: PMC11364757 DOI: 10.1038/s41598-024-70913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial disease characterized by the convergence of genetic, immunological, and viral elements resulting in a complex interaction of both internal and external factors. The role of the Epstein-Barr virus (EBV) and human endogenous retroviruses (HERV-E) as triggers and maintenance elements in the pathogenesis of SLE has been widely recognized. Previous studies have independently evaluated the effects of EBV and HERV-E in this disease. In this work, for the first time, these viral factors are jointly investigated in SLE patients. This study aimed at assessing the differential expression of immune regulatory genes and the incidence of specific viral pathogens (EBV and HERV-E), alongside the detailed characterization of surface markers in T- and B-lymphocytes in patients with SLE and control participants. A comparative analysis between patients with SLE and control participants was performed, evaluating the expression of phenotypic markers and genes involved in the immune response (TNF-α, IL-2, IL-6, IL-10, IFNG, TLR3), as well as HERV-E gag and EBV viral genes (LMP1 and BZLF1).A significant association between SLE and EBV was found in this study. A notable increase in EBV LMP1 gene expression was observed in patients with SLE . Also, a significant overexpression of HERV-E was observed, in addition to a considerable increase in the distribution of the cell surface marker CD27 + on T- and B-lymphocytes, observed in individuals with SLE compared to the control group. This study provides evidence regarding the role that EBV virus plays in lymphocytes in the context of SLE, highlighting how both the virus and the host gene expression may influence disease pathogenesis by altering immune regulatory pathways mediated by TNF-α, IFN-γ, and IL-10, as well as parallel overexpression of HERV-E gag. The decrease in TLR3 could indicate a compromised antiviral response, which could facilitate viral reactivation and contribute to disease activity.
Collapse
Affiliation(s)
- Yesit Bello Lemus
- Centro de Investigaciones en Ciencias de La Vida, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, 080002, Barranquilla, Atlántico, Colombia.
| | - Gustavo Aroca Martínez
- Clínica de La Costa, 080020, Barranquilla, Atlántico, Colombia
- Facultad de Ciencias de La Salud, Universidad Simón Bolívar, 080002, Barranquilla, Atlántico, Colombia
| | - Lisandro Pacheco Lugo
- Centro de Investigaciones en Ciencias de La Vida, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, 080002, Barranquilla, Atlántico, Colombia
| | | | - Eloína Zarate Peñata
- Centro de Investigaciones en Ciencias de La Vida, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, 080002, Barranquilla, Atlántico, Colombia
| | - Nataly Solano Llanos
- Centro de Investigaciones en Ciencias de La Vida, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, 080002, Barranquilla, Atlántico, Colombia
| | - Andrés Cadena Bonfanti
- Clínica de La Costa, 080020, Barranquilla, Atlántico, Colombia
- Facultad de Ciencias de La Salud, Universidad Simón Bolívar, 080002, Barranquilla, Atlántico, Colombia
| | - Antonio J Acosta-Hoyos
- Centro de Investigaciones en Ciencias de La Vida, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, 080002, Barranquilla, Atlántico, Colombia
| | - Elkin Navarro Quiroz
- Centro de Investigaciones en Ciencias de La Vida, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, 080002, Barranquilla, Atlántico, Colombia
| |
Collapse
|
5
|
Braga M, Shiga MAS, Silva PES, Yamanaka AHU, Souza VH, Grava S, Simão ANC, Neves JSF, de Lima Neto QA, Zacarias JMV, Visentainer JEL. Association between polymorphisms in TLR3, TICAM1 and IFNA1 genes and covid-19 severity in Southern Brazil. Expert Rev Mol Diagn 2024; 24:525-531. [PMID: 38864429 DOI: 10.1080/14737159.2024.2367466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/01/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND A distinct phenotype in Coronavirus disease 2019 (Covid-19) was observed in severe patients, consisting of a highly impaired interferon (IFN) type I response, an exacerbated inflammatory response. OBJECTIVE The aim of the present study was to investigate a possible association of single nucleotide polymorphisms (SNPs), in five genes related to the immune response, rs3775291 in TLR3; rs2292151 in TICAM1; rs1758566 in IFNA1; rs1800629 in TNF, and rs1800795 in IL6 with the severity of Covid-19. METHODS A cross-sectional study was performed, with non-severe and severe/critical patients diagnosed with Covid-19, by two public hospitals in Brazil. In total, 300 patients were genotyped for the SNPs, 150 with the non-severe form of the disease and 150 with severe/critical form. RESULTS The T/T genotype of TLR3 in recessive model shows 58% of protection against severe/critical Covid-19; as well as the genotypes G/A+A/A of TICAM1 in dominant model with 60% of protection, and in a codominant model G/A with 57% and A/A with 71% of protection against severe/critical Covid-19. Comparing severe and critical cases, the T/C genotype of IFNA1 in the codominant model and TC+C/C in the dominant model showed twice the risk of critical Covid-19. CONCLUSION We can conclude that rs3775291, rs2292151 and rs1758566 can influence the COVID-19 severity.
Collapse
Affiliation(s)
- Matheus Braga
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | | | - Victor Hugo Souza
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | - Sergio Grava
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | - Andréa Name Colado Simão
- Department of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Londrina, Paraná, Brazil
| | | | | | | | | |
Collapse
|
6
|
Wu J, Chang R, Liu Y. Key Mutant Genes and Biological Pathways Involved in Aspirin Resistance in the Residents of the Chinese Plateau Area. Comb Chem High Throughput Screen 2024; 27:632-640. [PMID: 37076463 DOI: 10.2174/1386207326666230418113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Aspirin is used to prevent and treat cardiovascular diseases; however, some patients develop aspirin resistance. AIM We aimed to explore the potential molecular mechanisms underlying aspirin resistance in people living in the Chinese plateau area. METHODS In total, 91 participants receiving aspirin treatment from the Qinghai plateau area were divided into the aspirin resistance and aspirin sensitivity groups. Genotyping was performed using the Sequence MASSarray. Differentially mutated genes between the two groups were analyzed using MAfTools. The annotation of differentially mutated genes was conducted based on the Metascape database. RESULTS AND DISCUSSION In total, 48 differential SNP and 22 differential InDel mutant genes between the aspirin resistance and aspirin sensitivity groups were screened using Fisher's exact test (P < 0.05). After the χ2 test, a total of 21 SNP mutant genes, including ZFPL1 and TLR3, and 19 InDel mutant genes were found to be differentially expressed between the two groups (P < 0.05). Functional analysis revealed that these differential SNP mutations were mainly enriched in aspirin resistance pathways, such as the Wnt signaling pathway. Furthermore, these genes were related to many diseases, including various aspirin indications. CONCLUSION This study identified several genes and pathways that could be involved in arachidonic acid metabolic processes and aspirin resistance progression, which will provide a theoretical understanding of the molecular mechanism of aspirin resistance.
Collapse
Affiliation(s)
- Jinchun Wu
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, China
| | - Rong Chang
- Department of Cardiology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, 518109, China
| | - Yanmin Liu
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, China
| |
Collapse
|
7
|
Gotay W, Rodrigues R, Yaochite J. Influence of host genetic polymorphisms involved in immune response and their role in the development of Chikungunya disease: a review. Braz J Med Biol Res 2023; 56:e12557. [PMID: 37703107 PMCID: PMC10496760 DOI: 10.1590/1414-431x2023e12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/22/2023] [Indexed: 09/15/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted by the bite of infected mosquitoes and can cause significant pathogenicity in humans. Moreover, its importance has increased in the Americas since 2013. The primary vectors for viral delivery are the mosquito species Aedes aegypti and Aedes albopictus. Several factors, including host genetic variations and immune response against CHIKV, influence the outcomes of Chikungunya disease. This work aimed to gather information about different single nucleotide polymorphisms (SNPs) in genes that influence the host immune response during an infection by CHIKV. The viral characteristics, disease epidemiology, clinical manifestations, and immune response against CHIKV are also addressed. The main immune molecules related to this arboviral disease elucidated in this review are TLR3/7/8, DC-SIGN, HLA-DRB1/HLA-DQB1, TNF, IL1RN, OAS2/3, and CRP. Advances in knowledge about the genetic basis of the immune response during CHIKV infection are essential for expanding the understanding of disease pathophysiology, providing new genetic markers for prognosis, and identifying molecular targets for the development of new drug treatments.
Collapse
Affiliation(s)
- W.J.P. Gotay
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R.O. Rodrigues
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J.N.U. Yaochite
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
8
|
Silva MJA, Silva CS, da Silva Vieira MC, dos Santos PAS, Frota CC, Lima KVB, Lima LNGC. The Relationship between TLR3 rs3775291 Polymorphism and Infectious Diseases: A Meta-Analysis of Case-Control Studies. Genes (Basel) 2023; 14:1311. [PMID: 37510216 PMCID: PMC10379146 DOI: 10.3390/genes14071311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
As the host's first line of defense against pathogens, Toll-like receptors (TLRs), such as the TLR3, are genes encoding transmembrane receptors of the same name. Depending on their expression, TLRs cause a pro- or anti-inflammatory response. The purpose of the article was to determine whether there is an association between the Toll-like receptor 3 (TLR3) rs3775291 Single Nucleotide Polymorphism-SNP and susceptibility to infections. This review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines and was registered in PROSPERO under the code CRD42023429533. A systematic search for relevant studies was performed using PubMed, Scopus, SciELO, Google Scholar, and Science Direct by the MeSH descriptors and the Boolean Operator "AND": "Infections"; "TLR3"; "SNP", between January 2005 and July 2022. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated for genotypic comparison assuming a dominant genetic model (CT + TT vs. CC). A meta-analysis of 18 studies consisting of 3118 cases and 4368 controls found a significant association for risk between the presence of the TLR3 SNP rs3775291 and infections as part of the general analysis (OR = 1.16, 95% CI = 1.04-1.28, p = 0.004). In the subgroups of continents, the SNP had a protective role in Europe for 1044 cases and 1471 controls (OR = 0.83, 95% CI = 0.70-0.99, p = 0.04); however, the Asian (for 1588 patients and 2306 controls) and American (for 486 patients and 591 controls) continents had an increase in infectious risk (OR = 1.37, 95% CI = 1.19-1.58, p < 0.001; OR = 1.42, 95% CI = 1.08-1.86, and p = 0.01, respectively). Heterogeneity between studies was detected (I2 = 58%) but was explained in meta-regression by the subgroup of continents itself and publication bias was not evident. The results of the meta-analysis suggest a significant association between the TLR3 rs3775291 polymorphism and susceptibility to infections. Thus, when analyzing subgroups, the Asian and American continents showed that this SNP confers a higher risk against infections in a dominant genotypic model. Therefore, more studies are necessary to fully elucidate the role of TLR3 rs3775291 in infections.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil;
| | - Caroliny Soares Silva
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil; (C.S.S.); (M.C.d.S.V.); (P.A.S.d.S.)
| | - Marcelo Cleyton da Silva Vieira
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil; (C.S.S.); (M.C.d.S.V.); (P.A.S.d.S.)
| | - Pabllo Antonny Silva dos Santos
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of State of Pará (UEPA), Belém 66087-670, PA, Brazil; (C.S.S.); (M.C.d.S.V.); (P.A.S.d.S.)
| | - Cristiane Cunha Frota
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza 60441-750, CE, Brazil;
| | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section of the Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil;
| | | |
Collapse
|
9
|
Mantovani S, Oliviero B, Varchetta S, Renieri A, Mondelli MU. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:8065. [PMID: 37175768 PMCID: PMC10178469 DOI: 10.3390/ijms24098065] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been responsible for a devastating pandemic since March 2020. Toll-like receptors (TLRs), crucial components in the initiation of innate immune responses to different pathogens, trigger the downstream production of pro-inflammatory cytokines, interferons, and other mediators. It has been demonstrated that they contribute to the dysregulated immune response observed in patients with severe COVID-19. TLR2, TLR3, TLR4 and TLR7 have been associated with COVID-19 severity. Here, we review the role of TLRs in the etiology and pathogenesis of COVID-19, including TLR7 and TLR3 rare variants, the L412F polymorphism in TLR3 that negatively regulates anti-SARS-CoV-2 immune responses, the TLR3-related cellular senescence, the interaction of TLR2 and TLR4 with SARS-CoV-2 proteins and implication of TLR2 in NET formation by SARS-CoV-2. The activation of TLRs contributes to viral clearance and disease resolution. However, TLRs may represent a double-edged sword which may elicit dysregulated immune signaling, leading to the production of proinflammatory mediators, resulting in severe disease. TLR-dependent excessive inflammation and TLR-dependent antiviral response may tip the balance towards the former or the latter, altering the equilibrium that drives the severity of disease.
Collapse
Affiliation(s)
- Stefania Mantovani
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Barbara Oliviero
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Stefania Varchetta
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy;
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Mario U. Mondelli
- Department of Research, Division of Clinical Immunology—Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.V.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Fathollahpour A, Abdi Abyaneh F, Darabi B, Ebrahimi M, Kooti W, Nasiri Kalmarzi R. Main Polymorphisms in Aspirin-Exacerbated Respiratory Disease. Gene 2023; 870:147326. [PMID: 37011853 DOI: 10.1016/j.gene.2023.147326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
Aspirin exacerbated respiratory disease (AERD) is a condition caused by increased bronchoconstriction in people with asthma after taking aspirin or another NSAID. Molecular analysis of the human genome has opened up new perspectives on human polymorphisms and disease. This study was conducted to identify the genetic factors that influence this disease due to its unknown genetic factors. We evaluated research studies, letters, comments, editorials, eBooks, and reviews. PubMed/MEDLINE, Web of Sciences, Cochrane Library, and Scopus were searched for information. We used the keywords polymorphisms, aspirin-exacerbated respiratory disease, asthma, allergy as search terms. This study included 38 studies. AERD complications were associated with polymorphisms in ALOX15, EP2, ADRB2, SLC6A12, CCR3, CRTH2, CysLTs, DPCR1, DPP10, FPR2, HSP70, IL8, IL1B, IL5RA, IL-13, IL17RA, ILVBL, TBXA2R, TLR3, HLA-DRB and HLA-DQ, HLA-DR7, HLA-DP. AERD was associated with heterogeneity in gene polymorphisms, making it difficult to pinpoint specific gene changes. Therefore, diagnosing and treating AERD may be facilitated by examining common variants involving the disease.
Collapse
|
11
|
Stefik D, Vranic V, Ivkovic N, Velikic G, Maric DM, Abazovic D, Vojvodic D, Maric DL, Supic G. Potential Impact of Polymorphisms in Toll-like Receptors 2, 3, 4, 7, 9, miR-146a, miR-155, and miR-196a Genes on Osteoarthritis Susceptibility. BIOLOGY 2023; 12:biology12030458. [PMID: 36979150 PMCID: PMC10045117 DOI: 10.3390/biology12030458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Osteoarthritis (OA) is a progressive inflammatory disease of synovial joints and a leading cause of disability among adults. Inflammation-related genes, including genes for Toll-like receptors (TLRs), are tightly controlled by several microRNAs that, in addition to their pivotal role in the epigenetic regulation of target genes, are ligands for TLR activation and downstream signaling. Thus, we evaluated the association between OA risk and genetic variants in TLR2, TLR3, TLR4, TLR7, TLR9, and microRNAs that regulate TLRs signaling miR146a, miR155, and miR196a2. Our study group consisted of 95 surgically treated OA patients and a control group of 104 healthy individuals. Genetic polymorphisms were determined using TaqMan real-time PCR assays (Applied Biosystems). Adjusted logistic regression analysis demonstrated that polymorphisms in TLR4 rs4986790 (OR = 2.964, p = 0.006), TLR4 rs4986791 (OR = 8.766, p = 0.00001), and TLR7 rs385389 (OR = 1.579, p = 0.012) increased OA risk, while miR-196a2 rs11614913 (OR = 0.619, p = 0.034) was significantly associated with decreased OA risk. Our findings indicate that polymorphisms in the TLR4 and TLR7 genes might increase OA risk and suggest a novel association of miR-196a2 polymorphism with decreased OA susceptibility. The modulation of TLRs and miRNAs and their cross-talk might be an attractive target for a personalized approach to OA management.
Collapse
Affiliation(s)
- Debora Stefik
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Vladimir Vranic
- Clinic for Orthopedic Surgery and Traumatology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Crnotravska 17, 11000 Belgrade, Serbia
| | - Nemanja Ivkovic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia
| | - Dzihan Abazovic
- Biocell Hospital, Omladinskih Brigada 86a, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Crnotravska 17, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
12
|
Sun H, Chan JFW, Yuan S. Cellular Sensors and Viral Countermeasures: A Molecular Arms Race between Host and SARS-CoV-2. Viruses 2023; 15:352. [PMID: 36851564 PMCID: PMC9962416 DOI: 10.3390/v15020352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic that has caused disastrous effects on the society and human health globally. SARS-CoV-2 is a sarbecovirus in the Coronaviridae family with a positive-sense single-stranded RNA genome. It mainly replicates in the cytoplasm and viral components including RNAs and proteins can be sensed by pattern recognition receptors including toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and NOD-like receptors (NLRs) that regulate the host innate and adaptive immune responses. On the other hand, the SARS-CoV-2 genome encodes multiple proteins that can antagonize the host immune response to facilitate viral replication. In this review, we discuss the current knowledge on host sensors and viral countermeasures against host innate immune response to provide insights on virus-host interactions and novel approaches to modulate host inflammation and antiviral responses.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
| | - Jasper Fuk-Woo Chan
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Shuofeng Yuan
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
13
|
Dieter C, de Almeida Brondani L, Lemos NE, Schaeffer AF, Zanotto C, Ramos DT, Girardi E, Pellenz FM, Camargo JL, Moresco KS, da Silva LL, Aubin MR, de Oliveira MS, Rech TH, Canani LH, Gerchman F, Leitão CB, Crispim D. Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19. Genes (Basel) 2022; 14:genes14010029. [PMID: 36672770 PMCID: PMC9858252 DOI: 10.3390/genes14010029] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Although advanced age, male sex, and some comorbidities impact the clinical course of COVID-19, these factors only partially explain the inter-individual variability in disease severity. Some studies have shown that genetic polymorphisms contribute to COVID-19 severity; however, the results are inconclusive. Thus, we investigated the association between polymorphisms in ACE1, ACE2, DPP9, IFIH1, IFNAR2, IFNL4, TLR3, TMPRSS2, and TYK2 and the clinical course of COVID-19. A total of 694 patients with COVID-19 were categorized as: (1) ward inpatients (moderate symptoms) or patients admitted at the intensive care unit (ICU; severe symptoms); and (2) survivors or non-survivors. In females, the rs1990760/IFIH1 T/T genotype was associated with risk of ICU admission and death. Moreover, the rs1799752/ACE1 Ins and rs12329760/TMPRSS2 T alleles were associated with risk of ICU admission. In non-white patients, the rs2236757/IFNAR2 A/A genotype was associated with risk of ICU admission, while the rs1799752/ACE1 Ins/Ins genotype, rs2236757/IFNAR2 A/A genotype, and rs12329760/TMPRSS2 T allele were associated with risk of death. Moreover, some of the analyzed polymorphisms interact in the risk of worse COVID-19 outcomes. In conclusion, this study shows an association of rs1799752/ACE1, rs1990760/IFIH1, rs2236757/IFNAR2, rs12329760/TMPRSS2, and rs2304256/TYK2 polymorphisms with worse COVID-19 outcomes, especially among female and non-white patients.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Leticia de Almeida Brondani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Natália Emerim Lemos
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Ariell Freires Schaeffer
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Caroline Zanotto
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Denise Taurino Ramos
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Eliandra Girardi
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Felipe Mateus Pellenz
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Joiza Lins Camargo
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Karla Suzana Moresco
- Campus Realeza, Universidade Federal da Fronteira Sul, Realeza 85770-000, PR, Brazil
| | - Lucas Lima da Silva
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Mariana Rauback Aubin
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Mayara Souza de Oliveira
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Tatiana Helena Rech
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Luís Henrique Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Fernando Gerchman
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Cristiane Bauermann Leitão
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Post-Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Correspondence:
| |
Collapse
|
14
|
Behairy MY, Soltan MA, Eldeen MA, Abdulhakim JA, Alnoman MM, Abdel-Daim MM, Otifi H, Al-Qahtani SM, Zaki MSA, Alsharif G, Albogami S, Jafri I, Fayad E, Darwish KM, Elhady SS, Eid RA. HBD-2 variants and SARS-CoV-2: New insights into inter-individual susceptibility. Front Immunol 2022; 13:1008463. [PMID: 36569842 PMCID: PMC9780532 DOI: 10.3389/fimmu.2022.1008463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background A deep understanding of the causes of liability to SARS-CoV-2 is essential to develop new diagnostic tests and therapeutics against this serious virus in order to overcome this pandemic completely. In the light of the discovered role of antimicrobial peptides [such as human b-defensin-2 (hBD-2) and cathelicidin LL-37] in the defense against SARS-CoV-2, it became important to identify the damaging missense mutations in the genes of these molecules and study their role in the pathogenesis of COVID-19. Methods We conducted a comprehensive analysis with multiple in silico approaches to identify the damaging missense SNPs for hBD-2 and LL-37; moreover, we applied docking methods and molecular dynamics analysis to study the impact of the filtered mutations. Results The comprehensive analysis reveals the presence of three damaging SNPs in hBD-2; these SNPs were predicted to decrease the stability of hBD-2 with a damaging impact on hBD-2 structure as well. G51D and C53G mutations were located in highly conserved positions and were associated with differences in the secondary structures of hBD-2. Docking-coupled molecular dynamics simulation analysis revealed compromised binding affinity for hBD-2 SNPs towards the SARS-CoV-2 spike domain. Different protein-protein binding profiles for hBD-2 SNPs, in relation to their native form, were guided through residue-wise levels and differential adopted conformation/orientation. Conclusions The presented model paves the way for identifying patients prone to COVID-19 in a way that would guide the personalization of both the diagnostic and management protocols for this serious disease.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt,*Correspondence: Mohamed A Soltan, ; Mohammed Y. Behairy,
| | - Mohamed A. Soltan
- Department of Microbiology and immunology, Faculty of Pharmacy, Sinai University – Kantara Branch, Ismailia, Egypt,*Correspondence: Mohamed A Soltan, ; Mohammed Y. Behairy,
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jawaher A. Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Maryam M. Alnoman
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hassan Otifi
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha, Saudi Arabia,Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadi Alsharif
- College of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
15
|
Singh H, Samani D. TLR3 polymorphisms in HIV infected individuals naïve to ART. Curr HIV Res 2022; 20:CHR-EPUB-126223. [PMID: 36089778 DOI: 10.2174/1570162x20666220908105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/08/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND TLR3 polymorphisms affect the risk of HIV infection and modify the disease course. Consequently, we analyzed the association of TLR3 polymorphism (rs5743312, rs3775296, and rs3775291) with susceptilbity to HIV-1 acquisition and disease progression. METHOD This is a cross-sectional study. Genotyping of TLR3 polymorphisms were completed by the utilization of the PCR-RFLP technique in 153 HIV naive subjects and 158 healthy controls. RESULT A haplotype is a physical grouping of genomic variants that tend to be inherited together. The TCC haplotype was increased in HIV infected individuals compared with healthy controls (0.05% versus 0.03%). TLR3 rs3775291CT genotype was associated to the early stage of HIV infection (OR=2.19, P=0.04), with a higher occurrence in advance stage of HIV infection when contrasted with healthy controls (41.2% versus 32.3%). TLR3 rs3775296 CA genotype was likely to be associated with intermediate stage of HIV infection (19.5% versus 31.6%, OR=0.42, P=0.06). TLR3 rs5743312TT genotype was used to be greater prevalence in advanced stage of HIV infection compared with healthy controls (2.9% versus 1.9%). TLR3 rs3775296CA genotype was less prevalent in HIV subjects devouring tobacco when contrasted with non-users (9.1% versus 34.9%, OR=0.25, P=0.09). TLR3 rs3775296AA and rs3775291CT and TT genotypes have been overrepresented in HIV subjects using alcohol when contrasted with non-users (5.6% versus 1.1%, OR=1.83, P=0.67; 50.0% versus 42.2%, OR=1.84, P=0.31; 5.6% versus 3.3%, OR=2.70, P=0.50). In multivariate examination, rs5743312TT genotype showed a greater risk for HIV infection (OR=1.86, P=0.50). CONCLUSION TLR3 rs3775291 C/T polymorphism may assist the risk of disease progression in alcohol consumers. TLR3 rs3775291 CT genotype may enhance the disease progression whereas the TLR3 rs3775296 CA genotype may protect for disease progression.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| | - Dharmesh Samani
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| |
Collapse
|
16
|
Redondo N, Rodríguez-Goncer I, Parra P, Ruiz-Merlo T, López-Medrano F, González E, Polanco N, Trujillo H, Hernández A, San Juan R, Andrés A, Aguado JM, Fernández-Ruiz M. Influence of single-nucleotide polymorphisms in TLR3 (rs3775291) and TLR9 (rs352139) on the risk of CMV infection in kidney transplant recipients. Front Immunol 2022; 13:929995. [PMID: 35967300 PMCID: PMC9374175 DOI: 10.3389/fimmu.2022.929995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
Risk stratification for cytomegalovirus (CMV) infection after kidney transplantation (KT) remains to be determined. Since endosomal toll-like receptors (TLRs) are involved in viral sensing, we investigated the impact of common single-nucleotide polymorphisms (SNPs) located within TLR3 and TLR9 genes on the occurrence of overall and high-level (≥1,000 IU/ml) CMV infection in a cohort of 197 KT recipients. Homozygous carriers of the minor allele of TLR3 (rs3775291) had higher infection-free survival compared with reference allele carriers (60.0% for TT versus 42.3% for CC/CT genotypes; P-value = 0.050). Decreased infection-free survival was observed with the minor allele of TLR9 (rs352139) (38.2% for TC/CC versus 59.3% for TT genotypes; P-value = 0.004). After multivariable adjustment, the recessive protective effect of the TLR3 (rs3775291) TT genotype was confirmed (adjusted hazard ratio [aHR]: 0.327; 95% CI: 0.167–0.642; P-value = 0.001), as was the dominant risk-conferring effect of TLR9 (rs352139) TC/CC genotypes (aHR: 1.865; 95% CI: 1.170–2.972; P-value = 0.009). Carriers of the TLR9 (rs352139) TC/CC genotypes showed lower CMV-specific interferon-γ-producing CD4+ T-cell counts measured by intracellular cytokine staining compared with the TT genotype (median of 0.2 versus 0.7 cells/μl; P-value = 0.003). In conclusion, TLR3/TLR9 genotyping may inform CMV infection risk after KT.
Collapse
Affiliation(s)
- Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- *Correspondence: Natalia Redondo,
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
| | - Hernando Trujillo
- Department of Nephrology, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
| | - Ana Hernández
- Department of Nephrology, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Department of Nephrology, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario “12 de Octubre”, Instituto de Investigación Sanitaria Hospital “12 de Octubre” (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
17
|
Polymorphisms in toll-like receptor 3 and 4 genes as prognostic and outcome biomarkers in melanoma patients. Melanoma Res 2022; 32:309-317. [PMID: 35855659 DOI: 10.1097/cmr.0000000000000836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melanoma is one of the most aggressive tumors, and in the setting of rising incidence and mortality, there is an urgent need to identify new prognostic markers. Toll-like receptors (TLRs), are aberrantly expressed in numerous cancers, including melanoma. TLR signaling provides a microenvironment that is involved in antitumor immune response, chronic inflammation, cancer cell proliferation and evasion of immune destruction. In the present study, we investigated whether single nucleotide polymorphisms (SNPs) in TLR3 and TLR4 genes are associated with clinicopathologic features, progression and survival of melanoma patients. The study was conducted on 120 melanoma patients. DNA extracted from peripheral blood was genotyped for TLR3 polymorphisms rs5743312 and rs3775291 (L412F) and TLR4 polymorphisms rs4986790 (D299G) and rs4986791 (T399I), by TaqMan Real-Time PCR Assays. Kaplan-Meier survival curves were compared by the log-rank test. TLR3 polymorphism L412F was associated with a higher mitotic index (P = 0.035). TLR4 D299G and T399I polymorphisms were associated with indicators of melanoma severity, nodal metastases (P = 0.005 and P = 0.007, respectively) and advanced stage III (P = 0.005 and P = 0.004, respectively). Cox regression analysis showed that the presence of tumor-infiltrating lymphocytes (TILs) predicted better overall survival (HR = 0.318; P = 0.004). TLR4 T399I polymorphism was significantly associated with worse survival, P = 0.025. The overall survival rates were significantly lower for patients carrying variant allele T of TLR4 T399I SNP (TC and TT genotypes combined) (P = 0.008, log-rank test), compared to wild-type genotype CC. Our findings indicate that TLR4 polymorphisms T399I (rs4986791) and D299G (rs4986790) could be potential prognostic and survival markers for melanoma patients.
Collapse
|
18
|
Redondo N, Rodríguez-Goncer I, Parra P, López-Medrano F, González E, Hernández A, Trujillo H, Ruiz-Merlo T, San Juan R, Folgueira MD, Andrés A, Aguado JM, Fernández-Ruiz M. Genetic polymorphisms in TLR3, IL10 and CD209 influence the risk of BK polyomavirus infection after kidney transplantation. Sci Rep 2022; 12:11338. [PMID: 35790769 PMCID: PMC9255529 DOI: 10.1038/s41598-022-15406-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Genetic determinants of BK polyomavirus infection after kidney transplantation remain poorly investigated. We assessed the potential impact of 13 different single nucleotide polymorphisms within genes mainly involved in innate immune responses on the risk of BKPyV viremia in 204 KT recipients. After a median follow-up of 1121.5 days, the cumulative incidence of any-level BKPyV viremia was 24.5% (50/204). There was a significant association between the minor T allele of TLR3 (rs3775291) SNP and the development of BKPyV viremia (adjusted hazard ratio [aHR]: 2.16; 95% confidence interval [CI]: 1.08–4.30; P value = 0.029), whereas the minor G allele of CD209 (rs4804803) SNP exerted a protective role (aHR: 0.54; 95% CI: 0.29–1.00; P value = 0.050). A higher incidence of BKPyV viremia was also observed for the minor G allele of IL10 (rs1800872) SNP, although the absence of BKPyV events among homozygotes for the reference allele prevented multivariable analysis. The BKPyV viremia-free survival rate decreased with the increasing number of unfavorable genotypes (100% [no unfavorable genotypes], 85.4% [1 genotype], 70.9% [2 genotypes], 52.5% [3 genotypes]; P value = 0.008). In conclusion, SNPs in TLR3, CD209 and IL10 genes play a role in modulating the susceptibility to any-level BKPyV viremia among KT recipients.
Collapse
Affiliation(s)
- Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain. .,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain.
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Ana Hernández
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Hernando Trujillo
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - María Dolores Folgueira
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Microbiology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
19
|
Host genetic basis of COVID-19: from methodologies to genes. Eur J Hum Genet 2022; 30:899-907. [PMID: 35618891 PMCID: PMC9135575 DOI: 10.1038/s41431-022-01121-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 01/03/2023] Open
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is having a massive impact on public health, societies, and economies worldwide. Despite the ongoing vaccination program, treating COVID-19 remains a high priority; thus, a better understanding of the disease is urgently needed. Initially, susceptibility was associated with age, sex, and other prior existing comorbidities. However, as these conditions alone could not explain the highly variable clinical manifestations of SARS-CoV-2 infection, the attention was shifted toward the identification of the genetic basis of COVID-19. Thanks to international collaborations like The COVID-19 Host Genetics Initiative, it became possible the elucidation of numerous genetic markers that are not only likely to help in explaining the varied clinical outcomes of COVID-19 patients but can also guide the development of novel diagnostics and therapeutics. Within this framework, this review delineates GWAS and Burden test as traditional methodologies employed so far for the discovery of the human genetic basis of COVID-19, with particular attention to recently emerged predictive models such as the post-Mendelian model. A summary table with the main genome-wide significant genomic loci is provided. Besides, various common and rare variants identified in genes like TLR7, CFTR, ACE2, TMPRSS2, TLR3, and SELP are further described in detail to illustrate their association with disease severity.
Collapse
|
20
|
Elloumi N, Tahri S, Fakhfakh R, Abida O, Mahfoudh N, Hachicha H, Marzouk S, Bahloul Z, Masmoudi H. Role of innate immune receptors TLR4 and TLR2 polymorphisms in systemic lupus erythematosus susceptibility. Ann Hum Genet 2022; 86:137-144. [PMID: 35128637 DOI: 10.1111/ahg.12458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/22/2023]
Abstract
AIM Through their recognition of various bacterial cell wall components, TLR2 and TLR4 participate in the innate response and modulate the activation of adaptive immunity. Therefore, the genetic background of these receptors might play a crucial role in autoimmune diseases such as systemic lupus erythematosus (SLE). In this study, we investigated the possible association between polymorphisms within TLR2 and TLR4 genes with SLE susceptibility. MATERIAL AND METHODS A total of 100 SLE patients and 200 unrelated healthy controls of the Tunisian population were enrolled in the study.TLR4rs4986790, TLR4rs4986791, and TLR2rs5743708 genotyping were performed using a polymerase chain reaction-restriction fragment length polymorphism method. The number of guanine-thymine (GT) repeat microsatellite in the intron 2 of TLR2 gene was analyzed by sequencing. RESULTS We reported a lack of allelic and genotypic association between SNPs of TLR4 and TLR2 genes and SLE pathogenesis. No correlation was found with any SLE features. However, SLE susceptibility was associated with the GT repeat microsatellite polymorphism in the human TLR2 gene. Further subclassification of alleles into three subclasses revealed a significant association between the long-sized repeats ((GT) >23) and SLE. CONCLUSION Though the results showed the absence of genetic association of TLR4 and TLR2 SNPs with the risk of developing SLE, we have identified a protective association between the microsatellite polymorphism in intron 2 of the TLR2 gene and SLE. Functionally, these (GT)n repeats may confer modifying effects or susceptibility to certain inflammatory conditions.
Collapse
Affiliation(s)
- Nesrine Elloumi
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Safa Tahri
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Raouia Fakhfakh
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Olfa Abida
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Nadia Mahfoudh
- Immunology Department, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Hend Hachicha
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Sameh Marzouk
- Internal Medicine Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Zouhir Bahloul
- Internal Medicine Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Hatem Masmoudi
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
21
|
Xu Y, Xue W, Gao H, Cui J, Zhao L, You C. Association of toll-like receptors single nucleotide polymorphisms with HBV and HCV infection: research status. PeerJ 2022; 10:e13335. [PMID: 35462764 PMCID: PMC9029363 DOI: 10.7717/peerj.13335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 01/13/2023] Open
Abstract
Background Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections have become increasingly severe worldwide and are a threat to public health. There have been a number of studies conducted recently on the relationship of single nucleotide polymorphisms (SNPs) to innate immune receptor genes such as toll-like receptors (TLRs). Some literature suggests that SNPs of TLRs are associated with HBV and HCV infection. We summarized the role of TLRs gene polymorphisms associated with HBV and HCV infections and explored their possible mechanisms of action. Methodology PubMed and Web of Science were used to perform the literature review. Related articles and references were identified and used to analyze the role of TLRs gene polymorphism in HBV and HCV infection. Results TLRs gene polymorphisms may have beneficial or detrimental effects in HBV and HCV infection, and some SNPs can affect disease progression or prognosis. They affect the disease state by altering gene expression or protein synthesis; however, the mechanism of action is not clearly understood. Conclusions Single nucleotide polymorphisms of TLRs play a role in HBV and HCV infection, but the mechanism of action still needs to be explored in future studies.
Collapse
Affiliation(s)
- Yaxin Xu
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou City, Gansu Province, China
| | - Wentao Xue
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou City, Gansu Province, China
| | - Hongwei Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou City, Gansu Province, China
| | - Jiabo Cui
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou City, Gansu Province, China
| | - Lingzhi Zhao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou City, Gansu Province, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou City, Gansu Province, China
| |
Collapse
|
22
|
Dutta D, Nagappa M, Sreekumaran Nair BV, Das SK, Wahatule R, Sinha S, Ravi V, Taly AB, Debnath M. Variations within Toll-like receptor (TLR) and TLR signalling pathway-related genes and their synergistic effects on the risk of Guillain-Barré Syndrome. J Peripher Nerv Syst 2022; 27:131-143. [PMID: 35138004 DOI: 10.1111/jns.12484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
Guillain-Barré Syndrome (GBS) is the commonest postinfectious polyradiculopathy. Though genetic background of the host seems to play an important role in the susceptibility to GBS, genes conferring major risk are not yet known. Dysregulation of Toll-like receptor (TLR) molecules exacerbates immune-inflammatory responses and the genetic variations within TLR pathway-related genes contribute to differential risk to infection. To delineate the impact of genetic variations within TLR2, TLR3, and TLR4 genes and TLR signaling pathway-related genes such as MyD88, TRIF, TRAF3, TRAF6, IRF3, NFκβ1, and IκBα on risk of developing GBS. Fourteen polymorphisms located within TLR2 (rs3804099; rs111200466), TLR3 (rs3775290; rs3775291), TLR4 (rs1927911, rs11536891), MyD88 (rs7744, rs4988453), TRIF (rs8120 TRAF3 (rs12147254), TRAF6 (rs4755453), IRF3 (rs2304204), NFκβ1 (rs28362491) and IκBα (rs696) genes were genotyped in 150 GBS patients and 150 healthy subjects either by PCR-RFLP or TaqMan Allelic Discrimination Assay. Genotypes of two polymorphic variants, Del/Del of rs111200466 Insertion and Deletion (INDEL) polymorphism of TLR2 gene and TT of rs3775290 single nucleotide polymorphism (SNP) of TLR3 gene had significantly higher frequencies among GBS patients, while the frequencies of TT genotype of rs3804099 of TLR2 gene and TT genotype of rs11536891 SNP of TLR4 gene were significantly higher in controls. Gene-gene interaction study by Multifactor Dimensionality Reduction (MDR) analysis also suggested a significant combined effect of TLR2, and NFκβ1 genes on the risk of GBS. The SNPs in the IκBα and IRF3 genes correlated with severity of GBS. The genes encoding TLRs and TLR signalling pathway-related molecules could serve as crucial genetic markers of susceptibility and severity of GBS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Debprasad Dutta
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Binu V Sreekumaran Nair
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sumit Kumar Das
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rahul Wahatule
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
23
|
Croci S, Venneri MA, Mantovani S, Fallerini C, Benetti E, Picchiotti N, Campolo F, Imperatore F, Palmieri M, Daga S, Gabbi C, Montagnani F, Beligni G, Farias TDJ, Carriero ML, Di Sarno L, Alaverdian D, Aslaksen S, Cubellis MV, Spiga O, Baldassarri M, Fava F, Norman PJ, Frullanti E, Isidori AM, Amoroso A, Mari F, Furini S, Mondelli MU, Gen-Covid Multicenter Study, Chiariello M, Renieri A, Meloni I. The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males. Autophagy 2021; 18:1662-1672. [PMID: 34964709 PMCID: PMC9298458 DOI: 10.1080/15548627.2021.1995152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor
Collapse
Affiliation(s)
- Susanna Croci
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nicola Picchiotti
- DIISM-SAILAB, University of Siena, Siena, Italy.,Department of Mathematics, University of Pavia, Pavia, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Imperatore
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy.,Consiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy
| | - Maria Palmieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Gabbi
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Montagnani
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Medical Sciences, Infectious and Tropical Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giada Beligni
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ticiana D J Farias
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miriam Lucia Carriero
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Laura Di Sarno
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Diana Alaverdian
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sigrid Aslaksen
- Department of Clinical Science, Universty of Bergen and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | | | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elisa Frullanti
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy.,Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mario U Mondelli
- Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Mario Chiariello
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy.,Consiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
24
|
Gern OL, Mulenge F, Pavlou A, Ghita L, Steffen I, Stangel M, Kalinke U. Toll-like Receptors in Viral Encephalitis. Viruses 2021; 13:v13102065. [PMID: 34696494 PMCID: PMC8540543 DOI: 10.3390/v13102065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Viral encephalitis is a rare but serious syndrome. In addition to DNA-encoded herpes viruses, such as herpes simplex virus and varicella zoster virus, RNA-encoded viruses from the families of Flaviviridae, Rhabdoviridae and Paramyxoviridae are important neurotropic viruses. Whereas in the periphery, the role of Toll-like receptors (TLR) during immune stimulation is well understood, TLR functions within the CNS are less clear. On one hand, TLRs can affect the physiology of neurons during neuronal progenitor cell differentiation and neurite outgrowth, whereas under conditions of infection, the complex interplay between TLR stimulated neurons, astrocytes and microglia is just on the verge of being understood. In this review, we summarize the current knowledge about which TLRs are expressed by cell subsets of the CNS. Furthermore, we specifically highlight functional implications of TLR stimulation in neurons, astrocytes and microglia. After briefly illuminating some examples of viral evasion strategies from TLR signaling, we report on the current knowledge of primary immunodeficiencies in TLR signaling and their consequences for viral encephalitis. Finally, we provide an outlook with examples of TLR agonist mediated intervention strategies and potentiation of vaccine responses against neurotropic virus infections.
Collapse
Affiliation(s)
- Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Correspondence:
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Imke Steffen
- Department of Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Martin Stangel
- Translational Medicine, Novartis Institute for Biomedical Research (NIBR), 4056 Basel, Switzerland;
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Cluster of Excellence—Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
25
|
Elloumi N, Fakhfakh R, Abida O, Hachicha H, Marzouk S, Fourati M, Bahloul Z, Masmoudi H. RNA receptors, TLR3 and TLR7, are potentially associated with SLE clinical features. Int J Immunogenet 2021; 48:250-259. [PMID: 33650302 DOI: 10.1111/iji.12531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
The influence of intracellular Toll-like-receptors (TLR), recognized as nucleic acid sensors, in the immunopathogenesis of systemic lupus erythematosus (SLE) is increasingly explored. Yet, the results of both functional and genetic studies remain conflictual. We evaluated the association between TLR3 and TLR7 genes selected variants and SLE and investigated the possible relationship with clinical and serological parameters. Then, we studied the genetic expression of these receptors, and if the TLR7 gene evades X chromosome inactivation (XCI). Our study covers 106 cases and 200 controls, genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. TLR3 and TLR7 expression level was assessed by qPCR carried, respectively, on renal tissues and PBMC, and methylation status was evaluated by methylation-specific PCR. Results were statistically analysed using Shesis software, χ2 , and Mann-Whitney test. Significant associations with SLE susceptibility were found for the TLR3 rs3775291, rs5743305 and rs3775294 polymorphisms. Further subgroup analysis, TLR3 rs3775291 and rs3775294 polymorphisms were significantly associated with lupus nephritis (LN) and even correlate with the presence of auto-antibodies binding RNA molecules. SLE and LN were more common in men with rs3853839-G variant within TLR7 gene versus those carrying the C allele. Moreover, the role of the G allele in the TLR7 expression up-regulation was confirmed. However, gene expression analysis showed no significant differences in TLR3 and TLR7 mRNA levels between LN patient biopsies and healthy tissues (p > .05). When comparing patients and controls, no statistical difference was observed in XCI pattern. Otherwise, notable associations were raised between TLR3 and TLR7 gene variants and clinical and serological lupus features pointing towards the role of genetic background in the physiopathogenesis of the disease.
Collapse
Affiliation(s)
- Nesrine Elloumi
- Research Laboratory LR18/SP12 Auto-immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Raouia Fakhfakh
- Research Laboratory LR18/SP12 Auto-immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Olfa Abida
- Research Laboratory LR18/SP12 Auto-immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Hend Hachicha
- Research Laboratory LR18/SP12 Auto-immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Sameh Marzouk
- Urology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Mohamed Fourati
- Internal Medicine Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Zouhir Bahloul
- Urology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Hatem Masmoudi
- Research Laboratory LR18/SP12 Auto-immunity, Cancer and Immunogenetics, Immunology Department, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
26
|
Association of TLR3 functional variant (rs3775291) with COVID-19 susceptibility and death: a population-scale study. Hum Cell 2021; 34:1025-1027. [PMID: 33616867 PMCID: PMC7897730 DOI: 10.1007/s13577-021-00510-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 10/26/2022]
|
27
|
Abdelwahab SF, Hamdy S, Osman AM, Zakaria ZA, Galal I, Sobhy M, Hashem M, Allam WR, Abdel‐Samiee M, Rewisha E, Waked I. Association of the polymorphism of the Toll-like receptor (TLR)-3 and TLR-9 genes with hepatitis C virus-specific cell-mediated immunity outcomes among Egyptian health-care workers. Clin Exp Immunol 2021; 203:3-12. [PMID: 32939755 PMCID: PMC7744502 DOI: 10.1111/cei.13514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
Variations in the immune response could explain resistance to hepatitis C virus (HCV) infection. Toll-like receptor gene (TLR)-3 is an innate detector of dsRNA viruses, and the TLR-9 gene recognizes bacterial and viral unmethylated cytosine-phosphate-guanosine (CpG) motifs. We previously reported that the TLR-3.rs3775290 CC genotype was associated with HCV chronicity and that the TLR-9 gene played no major role in this infection. This study identified the role of TLR-3.rs3775290 (c.1377C/T), TLR-9.rs5743836 (-1237T→C) and TLR-9.rs352140 (G2848A) gene polymorphisms in predicting the outcome of HCV-specific cell-mediated immunity (CMI) among Egyptian health-care workers (HCWs). We enrolled 265 HCWs in this study and divided them into four groups. Group 1: 140 seronegative-aviraemic HCWs; group 2: 20 seronegative-viraemic HCWs; group 3: 35 subjects with spontaneously resolved HCV infection; and group 4: 70 chronic HCV HCWs (patients). All subjects were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis for the TLR-3.rs3775290, TLR-9.rs5743836 and TLR-9.rs352140 single nucleotide polymorphisms (SNPs). We also quantified HCV-specific CMI in the four groups using an interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assay in response to nine HCV genotype 4a, overlapping 15mer peptide pools covering the whole viral genome. No statistically significant difference was found between CMI-responding subjects with different HCV states and TLR-3.rs3775290 or TLR-9.rs352140 genotypes. However, there was a significant relationship between the outcome of the HCV-specific CMI and the TLR-9.rs5743836 genotype among the responding subjects (P = 0·005) and the chronic HCV patients (P = 0·044). In conclusion, TLR-9.rs5743836 SNP, but not TLR-3.rs3775290 or TLR-9.rs352140 genotypes, could predict the outcome of HCV-specific CMI responses among Egyptians infected with genotype-4.
Collapse
Affiliation(s)
- S. F. Abdelwahab
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
- Division of MicrobiologyDepartment of Pharmaceutics and Industrial PharmacyTaif College of PharmacyAl‐Haweiah, TaifSaudi Arabia
- Department of Microbiology and ImmunologyFaculty of MedicineMinia UniversityMiniaEgypt
| | - S. Hamdy
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
- Department of ZoologyFaculty of ScienceCairo UniversityGizaEgypt
| | - A. M. Osman
- Department of ZoologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Z. A. Zakaria
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
- Biomedical Research LaboratoryFaculty of PharmacyHeliopolis University for Sustainable DevelopmentCairoEgypt
| | - I. Galal
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
| | - M. Sobhy
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
| | - M. Hashem
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
- Department of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - W. R. Allam
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
- Centre for GenomicsUniversity of Science and TechnologyZewail City of Science and TechnologyGizaEgypt
| | - M. Abdel‐Samiee
- Department of Hepatology and GastroenterologyNational Liver InstituteMenoufia UniversityMenoufiaEgypt
| | - E. Rewisha
- Department of Hepatology and GastroenterologyNational Liver InstituteMenoufia UniversityMenoufiaEgypt
| | - I. Waked
- Department of Hepatology and GastroenterologyNational Liver InstituteMenoufia UniversityMenoufiaEgypt
| |
Collapse
|
28
|
Abida O, Bahloul E, Elloumi N, Toumi A, Tahri S, Ben Jmaa M, Fakhfakh R, Mahfoudh N, Turki H, Masmoudi H. Toll-like-Receptor Gene Polymorphisms in Tunisian Endemic Pemphigus Foliaceus. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6541761. [PMID: 33204706 PMCID: PMC7661111 DOI: 10.1155/2020/6541761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/21/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Pemphigus foliaceus (PF) is considered to be caused by the combined effects of susceptibility genes and environmental triggers. The polymorphisms of Toll-like receptors (TLRs) genes have been associated with the risk of various autoimmune diseases. The aim of this study was to evaluate the potential association of TLR2-3-4 and 7 gene polymorphisms with Tunisian PF. Fourteen polymorphisms were analyzed in 93 Tunisian PF patients compared to 193 matched healthy controls: rs5743703-rs5743709 and (GT)n repeat (TLR2); rs5743305, rs3775294, and rs3775291 (TLR3), rs4986790 and rs4986791 (TLR4); and rs3853839 (TLR7). Our results showed that the genetic factors varied depending on the epidemiological feature stratification. In fact, in the whole population, no association with the susceptibility to PF was found. The TLR2 GT repeat seems to be closely associated with PF risk in patients originated from the endemic localities (group 3); the GT18 allele and the heterozygous genotype GT18/GT19 seem to confer risk to endemic PF (P = 0.02; OR = 2.3 [1.1-4.9] and P = 0.0002, OR = 20 [2.5-171], respectively). In contrast, the GT23 repeat could be considered as protector allele (P = 0.02, OR = 0.2 [0.06-0.87]). Furthermore, medium GT alleles which induce high promoter activity were also significantly more frequent in patients versus short or long GT repeats (P = 0.0018 with OR = 3.26 [1.5-7]). On the other hand, the TLR3-rs574305 AA genotype and A allele were significantly more frequent in patients whose age of the onset was above 35 years (group 2) (P = 0.038, OR = 1.78 and P = 0.009, OR = 3.92, respectively). Besides, the TLR4>rs3775294 A allele was found to be protector only in patients with sporadic features (groups 2 and 4) (P = 0.03, OR = 0.57 [0.3-0.9] and P = 0.006, OR = 0.24 [0.08-0.74], respectively). No statistically significant difference was observed in the genotypic and allelic frequencies of TLR-4 and TLR-7 gene polymorphisms. The present data suggest that TLR2and TLR3 polymorphisms are significantly associated with increased susceptibility to PF in the Tunisian population.
Collapse
Affiliation(s)
- O. Abida
- Research Laboratory “Autoimmunity, Cancer and Immunogenetics” (LR18SP12), Immunology Department, Habib Bourguiba University Hospital of Sfax, Tunisia
| | - E. Bahloul
- Dermatology Department, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
| | - N. Elloumi
- Research Laboratory “Autoimmunity, Cancer and Immunogenetics” (LR18SP12), Immunology Department, Habib Bourguiba University Hospital of Sfax, Tunisia
| | - A. Toumi
- Research Laboratory “Autoimmunity, Cancer and Immunogenetics” (LR18SP12), Immunology Department, Habib Bourguiba University Hospital of Sfax, Tunisia
| | - Safa Tahri
- Research Laboratory “Autoimmunity, Cancer and Immunogenetics” (LR18SP12), Immunology Department, Habib Bourguiba University Hospital of Sfax, Tunisia
| | - M. Ben Jmaa
- Research Laboratory “Autoimmunity, Cancer and Immunogenetics” (LR18SP12), Immunology Department, Habib Bourguiba University Hospital of Sfax, Tunisia
| | - R. Fakhfakh
- Research Laboratory “Autoimmunity, Cancer and Immunogenetics” (LR18SP12), Immunology Department, Habib Bourguiba University Hospital of Sfax, Tunisia
| | - N. Mahfoudh
- Immunology Department, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
| | - H. Turki
- Dermatology Department, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
| | - H. Masmoudi
- Research Laboratory “Autoimmunity, Cancer and Immunogenetics” (LR18SP12), Immunology Department, Habib Bourguiba University Hospital of Sfax, Tunisia
| |
Collapse
|
29
|
Heterozygous TLR3 Mutation in Patients with Hantavirus Encephalitis. J Clin Immunol 2020; 40:1156-1162. [PMID: 32936395 PMCID: PMC7567724 DOI: 10.1007/s10875-020-00834-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Puumala hantavirus (PUUV) hemorrhagic fever with renal syndrome (HFRS) is common in Northern Europe; this infection is usually self-limited and severe complications are uncommon. PUUV and other hantaviruses, however, can rarely cause encephalitis. The pathogenesis of these rare and severe events is unknown. In this study, we explored the possibility that genetic defects in innate anti-viral immunity, as analogous to Toll-like receptor 3 (TLR3) mutations seen in HSV-1 encephalitis, may explain PUUV encephalitis. We completed exome sequencing of seven adult patients with encephalitis or encephalomyelitis during acute PUUV infection. We found heterozygosity for the TLR3 p.L742F novel variant in two of the seven unrelated patients (29%, p = 0.0195). TLR3-deficient P2.1 fibrosarcoma cell line and SV40-immortalized fibroblasts (SV40-fibroblasts) from patient skin expressing mutant or wild-type TLR3 were tested functionally. The TLR3 p.L742F allele displayed low poly(I:C)-stimulated cytokine induction when expressed in P2.1 cells. SV40-fibroblasts from three healthy controls produced increasing levels of IFN-λ and IL-6 after 24 h of stimulation with increasing concentrations of poly(I:C), whereas the production of the cytokines was impaired in TLR3 L742F/WT patient SV40-fibroblasts. Heterozygous TLR3 mutation may underlie not only HSV-1 encephalitis but also PUUV hantavirus encephalitis. Such possibility should be further explored in encephalitis caused by these and other hantaviruses.
Collapse
|
30
|
Liu G, Gack MU. Distinct and Orchestrated Functions of RNA Sensors in Innate Immunity. Immunity 2020; 53:26-42. [PMID: 32668226 PMCID: PMC7367493 DOI: 10.1016/j.immuni.2020.03.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 12/21/2022]
Abstract
Faithful maintenance of immune homeostasis relies on the capacity of the cellular immune surveillance machinery to recognize "nonself", such as the presence of pathogenic RNA. Several families of pattern-recognition receptors exist that detect immunostimulatory RNA and then induce cytokine-mediated antiviral and proinflammatory responses. Here, we review the distinct features of bona fide RNA sensors, Toll-like receptors and retinoic-acid inducible gene-I (RIG-I)-like receptors in particular, with a focus on their functional specificity imposed by cell-type-dependent expression, subcellular localization, and ligand preference. Furthermore, we highlight recent advances on the roles of nucleotide-binding oligomerization domain (NOD)-like receptors and DEAD-box or DEAH-box RNA helicases in an orchestrated RNA-sensing network and also discuss the relevance of RNA sensor polymorphisms in human disease.
Collapse
Affiliation(s)
- GuanQun Liu
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
31
|
Bucardo F, Reyes Y, Morales M, Briceño R, González F, Lundkvist Å, Svensson L, Nordgren J. Association of Genetic Polymorphisms in DC-SIGN, Toll-Like Receptor 3, and Tumor Necrosis Factor α Genes and the Lewis-Negative Phenotype With Chikungunya Infection and Disease in Nicaragua. J Infect Dis 2020; 223:278-286. [DOI: 10.1093/infdis/jiaa364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
AbstractBackgroundChikungunya infections range from subclinical infection to debilitating arthralgia and to chronic inflammatory rheumatism. Tumor necrosis factor (TNF) α, DC-SIGN (dendritic cell–specific intercellular adhesion molecule 3–grabbing nonintegrin), Toll-like receptor (TLR) 3, and blood groups have been directly or indirectly implicated in the susceptibility and pathogenesis of chikungunya.MethodsTo test the hypothesis that polymorphisms in genes coding for these molecules determine clinical outcomes of chikungunya infection, a retrospective case-control study was performed in León, Nicaragua. The study included 132 case patients and 132 controls, matched for age, sex and neighborhood. Case patients had clinical symptoms of chikungunya, which was diagnosed by means of polymerase chain reaction. Controls were individuals not reporting abrupt presentation of clinical chikungunya-like symptoms. Polymorphisms were identified by TaqMan single-nucleotide polymorphism genotyping assays.ResultsAfter adjustment for sociodemographic risk factors, chikungunya disease was associated with polymorphism in DC-SIGN and TLR3 genes (odds ratios, 5.2 and 3.3, respectively), and TNF-α with reduced persistent joint pain (0.24). Persistent joint pain was also associated with age, female sex and other comorbid conditions. Most interestingly, the Lewis-negative phenotype was strongly associated with both symptomatic chikungunya and immunoglobulin G seropositivity (odds ratios, 2.7, and 3.3, respectively).ConclusionThis study identified polymorphisms in DC-SIGN, TLR3, and TNF-α genes as well as Lewis-negative phenotype as risk factors for chikungunya infection and disease progression.
Collapse
Affiliation(s)
- Filemón Bucardo
- Department of Microbiology, Faculty of Medical Science, National Autonomous University of Nicaragua, León, Nicaragua (UNAN-León)
| | - Yaoska Reyes
- Department of Microbiology, Faculty of Medical Science, National Autonomous University of Nicaragua, León, Nicaragua (UNAN-León)
| | - Marlen Morales
- Department of Microbiology, Faculty of Medical Science, National Autonomous University of Nicaragua, León, Nicaragua (UNAN-León)
| | - Rafaela Briceño
- Sistema Local de Atención Integral en Salud, Ministry of Health León, León, Nicaragua
| | - Fredman González
- Department of Microbiology, Faculty of Medical Science, National Autonomous University of Nicaragua, León, Nicaragua (UNAN-León)
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
32
|
Habibabadi HM, Parsania M, Pourfathollah AA, Haghighat S, Sharifi Z. Association of TLR3 single nucleotide polymorphisms with susceptibility to HTLV-1 infection in Iranian asymptomatic blood donors. Rev Soc Bras Med Trop 2020; 53:e20200026. [PMID: 32578708 PMCID: PMC7310369 DOI: 10.1590/0037-8682-0026-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/03/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION: The human T-lymphotropic virus type 1 (HTLV-1) has a single-stranded RNA genome and expresses specific proteins that have oncogenic potential. Approximately 15 to 20 million people worldwide have been infected by this virus. Changes in protein or gene expression are the effects of single nucleotide polymorphisms (SNPs) within the Toll-like receptor 3 (TLR3) gene. The function and efficacy of signal transduction also lead to modified immune responses. The present study aimed to investigate the association of SNPs within TLR3 (rs3775291 and rs3775296) with susceptibility to HTLV-1 infection in Iranian asymptomatic blood donors. METHODS: This study was performed on 100 HTLV-1-infected asymptomatic blood donors and 118 healthy blood donors. Genomic DNA from all participants was purified and then amplified using specific PCR primers. SNPs within TLR3 were evaluated using the restriction fragmentation length polymorphism technique, and the results were analyzed using SPSS software (version 22). RESULTS: The frequencies of the TLR3 (rs3775296) CC, CA, AA genotypes were 70%, 24%, and 6% in the patient group, and 50.8%, 44.9%, and 4.2% in the control group, respectively. There was a significant difference in the frequency distribution of TLR3 (rs3775296) genotypes and alleles, but not in the frequency distribution of TLR3 (rs3775291) genotypes between the patient and control groups. CONCLUSIONS: The TLR3 SNP rs3775296 was significantly associated with HTLV-1 infection and may be a protective factor against this viral infection.
Collapse
Affiliation(s)
- Hossein Mehrabi Habibabadi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Masoud Parsania
- Department of Microbiology, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
33
|
RNA Signaling in Pulmonary Arterial Hypertension-A Double-Stranded Sword. Int J Mol Sci 2020; 21:ijms21093124. [PMID: 32354189 PMCID: PMC7247700 DOI: 10.3390/ijms21093124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Recognition of and response to pathogens and tissue injury is driven by the innate immune system via activation of pattern recognition receptors. One of the many patterns recognized is RNA and, while several receptors bind RNA, Toll-like receptor 3 (TLR3) is well placed for initial recognition of RNA molecules due to its localization within the endosome. There is a growing body of work describing a role for TLR3 in maintenance of vascular homeostasis. For example, TLR3 deficiency has been shown to play repair and remodeling roles in the systemic vasculature and in lung parenchyma. A hallmark of pulmonary arterial hypertension (PAH) is pulmonary vascular remodeling, yet drivers and triggers of this remodeling remain incompletely understood. Based on its role in the systemic vasculature, our group discovered reduced endothelial TLR3 expression in PAH and revealed a protective role for a TLR3 agonist in rodent models of pulmonary hypertension. This review will provide an overview of RNA signaling in the vasculature and how it relates to PAH pathobiology, including whether targeting double-stranded RNA signaling is a potential treatment option for PAH.
Collapse
|
34
|
Genetic diversity of TLR3 and TLR8 genes among five Chinese native cattle breeds from southwest China. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Tal Y, Ribak Y, Khalaila A, Shamriz O, Marcus N, Zinger A, Meiner V, Schuster R, Lewis EC, Nahum A. Toll-like receptor 3 (TLR3) variant and NLRP12 mutation confer susceptibility to a complex clinical presentation. Clin Immunol 2019; 212:108249. [PMID: 31445170 DOI: 10.1016/j.clim.2019.108249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/10/2023]
Abstract
Genetic aberrations in the toll-like receptor (TLR)3 pathway are associated with increased susceptibility to herpes simplex virus (HSV) infections. Leucine-rich repeat and PYD-containing protein (NLRP)12 is a component of the inflammasome apparatus, which is critical to an immediate innate inflammatory response. Aberrations in NLRP12 have been shown to mediate auto-inflammation. In this study, we present a 44-year old patient with severe HSV esophagitis and Crohn's disease. An immune and genetic investigation confirmed two coinciding genetic mutations in TLR3 and NLRP12. Our findings support conducting laboratory workup that targets TLR3 pathway in the immunocompetent host developing recurrent HSV infections.
Collapse
Affiliation(s)
- Yuval Tal
- Allergy and Clinical immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Internal Medicine Division, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel.
| | - Yaarit Ribak
- Allergy and Clinical immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Internal Medicine Division, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Aya Khalaila
- Pediatrics Department A, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Oded Shamriz
- Allergy and Clinical immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Nofar Marcus
- Department of Pediatrics B, Schneider Children's Medical Center of Israel, Petah Tiqva, Israel
| | - Adar Zinger
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel; Institute of Gastroenterology and Liver Diseases, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Schuster
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amit Nahum
- Pediatrics Department A, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
36
|
Gray V, Briggs S, Palles C, Jaeger E, Iveson T, Kerr R, Saunders MP, Paul J, Harkin A, McQueen J, Summers MG, Johnstone E, Wang H, Gatcombe L, Maughan TS, Kaplan R, Escott-Price V, Al-Tassan NA, Meyer BF, Wakil SM, Houlston RS, Cheadle JP, Tomlinson I, Church DN. Pattern Recognition Receptor Polymorphisms as Predictors of Oxaliplatin Benefit in Colorectal Cancer. J Natl Cancer Inst 2019; 111:828-836. [PMID: 30649440 PMCID: PMC6695319 DOI: 10.1093/jnci/djy215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/22/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Constitutional loss of function (LOF) single nucleotide polymorphisms (SNPs) in pattern recognition receptors FPR1, TLR3, and TLR4 have previously been reported to predict oxaliplatin benefit in colorectal cancer. Confirmation of this association could substantially improve patient stratification. METHODS We performed a retrospective biomarker analysis of the Short Course in Oncology Therapy (SCOT) and COIN/COIN-B trials. Participant status for LOF variants in FPR1 (rs867228), TLR3 (rs3775291), and TLR4 (rs4986790/rs4986791) was determined by genotyping array or genotype imputation. Associations between LOF variants and disease-free survival (DFS) and overall survival (OS) were analyzed by Cox regression, adjusted for confounders, using additive, dominant, and recessive genetic models. All statistical tests were two-sided. RESULTS Our validation study populations included 2929 and 1948 patients in the SCOT and COIN/COIN-B cohorts, respectively, of whom 2728 and 1672 patients had functional status of all three SNPs determined. We found no evidence of an association between any SNP and DFS in the SCOT cohort, or with OS in either cohort, irrespective of the type of model used. This included models for which an association was previously reported for rs867228 (recessive model, multivariable-adjusted hazard ratio [HR] for DFS in SCOT = 1.19, 95% confidence interval [CI] = 0.99 to 1.45, P = .07; HR for OS in COIN/COIN-B = 0.92, 95% CI = 0.63 to 1.34, P = .66), and rs4986790 (dominant model, multivariable-adjusted HR for DFS in SCOT = 0.86, 95% CI = 0.65 to 1.13, P = .27; HR for OS in COIN/COIN-B = 1.08, 95% CI = 0.90 to 1.31, P = .40). CONCLUSION In this prespecified analysis of two large clinical trials, we found no evidence that constitutional LOF SNPs in FPR1, TLR3, or TLR4 are associated with differential benefit from oxaliplatin. Our results suggest these SNPs are unlikely to be clinically useful biomarkers.
Collapse
Affiliation(s)
- Victoria Gray
- See the Notes section for the full list of authors’ affiliations
| | - Sarah Briggs
- See the Notes section for the full list of authors’ affiliations
| | - Claire Palles
- See the Notes section for the full list of authors’ affiliations
| | - Emma Jaeger
- See the Notes section for the full list of authors’ affiliations
| | - Timothy Iveson
- See the Notes section for the full list of authors’ affiliations
| | - Rachel Kerr
- See the Notes section for the full list of authors’ affiliations
| | - Mark P Saunders
- See the Notes section for the full list of authors’ affiliations
| | - James Paul
- See the Notes section for the full list of authors’ affiliations
| | - Andrea Harkin
- See the Notes section for the full list of authors’ affiliations
| | - John McQueen
- See the Notes section for the full list of authors’ affiliations
| | | | - Elaine Johnstone
- See the Notes section for the full list of authors’ affiliations
| | - Haitao Wang
- See the Notes section for the full list of authors’ affiliations
| | - Laura Gatcombe
- See the Notes section for the full list of authors’ affiliations
| | | | - Richard Kaplan
- See the Notes section for the full list of authors’ affiliations
| | | | - Nada A Al-Tassan
- See the Notes section for the full list of authors’ affiliations
| | - Brian F Meyer
- See the Notes section for the full list of authors’ affiliations
| | - Salma M Wakil
- See the Notes section for the full list of authors’ affiliations
| | | | - Jeremy P Cheadle
- See the Notes section for the full list of authors’ affiliations
| | - Ian Tomlinson
- See the Notes section for the full list of authors’ affiliations
| | - David N Church
- See the Notes section for the full list of authors’ affiliations
| |
Collapse
|
37
|
Deeba E, Koptides D, Lambrianides A, Pantzaris M, Krashias G, Christodoulou C. Complete sequence analysis of human toll-like receptor 3 gene in natural killer cells of multiple sclerosis patients. Mult Scler Relat Disord 2019; 33:100-106. [PMID: 31177052 DOI: 10.1016/j.msard.2019.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) where both environmental and genetic risk factors play a role. Among the environmental risk factors, EBV and HSV infections have been suggested as strong candidates contributing to MS pathology/progression. Viral recognition and control is largely tasked to the NK cells via TLR recognition and various cytotoxic and immunoregulatory functions. The present work aimed to characterize NK cells isolated from MS patients for genetic polymorphisms in the gene encoding for TLR3, as TLR3 in NK cells is important in herpesvirus recognition. METHODS Highly purified NK cells isolated from peripheral blood of MS patients (n = 27) and healthy controls (n = 30) were used to sequence all five exons of the TLR3 gene using sanger sequencing. Alignment of the obtained sequences with the wild-type TLR3 sequence was used to identify genetic polymorphisms within the TLR3 gene. RESULTS The alignment identified multiple substitution mutations across the five exons of the TLR3 gene (rs116729895, rs3775296, rs377529, rs3775290, rs3775291, rs376735334 and rs73873710). A significant difference was observed in the allele distribution of rs3775291 (Leu412Phe) between MS patients and HC, whereby the minor allele was detected in 38.9% of MS patients versus 11% of HC (Fisher's exact test, p = 0.021). CONCLUSION There appears to be a possible association between the TLR3 missense mutation rs3775291 and multiple sclerosis, which might be attributed to changes in the TLR3 functional properties.
Collapse
Affiliation(s)
- Elie Deeba
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Dana Koptides
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anastasia Lambrianides
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Pantzaris
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Krashias
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | - Christina Christodoulou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
38
|
Aslaksen S, Wolff AB, Vigeland MD, Breivik L, Sheng Y, Oftedal BE, Artaza H, Skinningsrud B, Undlien DE, Selmer KK, Husebye ES, Bratland E. Identification and characterization of rare toll-like receptor 3 variants in patients with autoimmune Addison's disease. J Transl Autoimmun 2019; 1:100005. [PMID: 32743495 PMCID: PMC7388336 DOI: 10.1016/j.jtauto.2019.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
Autoimmune Addison's disease (AAD) is a classic organ-specific autoimmune disease characterized by an immune-mediated attack on the adrenal cortex. As most autoimmune diseases, AAD is believed to be caused by a combination of genetic and environmental factors, and probably interactions between the two. Persistent viral infections have been suggested to play a triggering role, by invoking inflammation and autoimmune destruction. The inability of clearing infections can be due to aberrations in innate immunity, including mutations in genes involved in the recognition of conserved microbial patterns. In a whole exome sequencing study of anonymized AAD patients, we discovered several rare variants predicted to be damaging in the gene encoding Toll-like receptor 3 (TLR3). TLR3 recognizes double stranded RNAs, and is therefore a major factor in antiviral defense. We here report the occurrence and functional characterization of five rare missense variants in TLR3 of patients with AAD. Most of these variants occurred together with a common TLR3 variant that has been associated with a wide range of immunopathologies. The biological implications of these variants on TLR3 function were evaluated in a cell-based assay, revealing a partial loss-of-function effect of three of the rare variants. In addition, rare mutations in other members of the TLR3-interferon (IFN) signaling pathway were detected in the AAD patients. Together, these findings indicate a potential role for TLR3 and downstream signaling proteins in the pathogenesis in a subset of AAD patients.
Collapse
Affiliation(s)
- Sigrid Aslaksen
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Anette B Wolff
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Magnus D Vigeland
- Institute of Clinical Medicine, University of Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Norway
| | - Lars Breivik
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Haydee Artaza
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | | | - Dag E Undlien
- Institute of Clinical Medicine, University of Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Norway
| | - Kaja K Selmer
- Department of Research and Development, Division of Neuroscience, Oslo University Hospital and the University of Oslo, Norway.,National Centre for Epilepsy, Oslo University Hospital, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| |
Collapse
|
39
|
Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand J Immunol 2019; 90:e12771. [PMID: 31054156 DOI: 10.1111/sji.12771] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Immunopolymorphism is considered as an important aspect behind the resistance or susceptibility of the host to an infectious disease. Over the years, researchers have explored many genetic factors for their role in immune surveillance against infectious diseases. Polymorphic characters in the gene encoding Toll-like receptors (TLRs) play profound roles in inducing differential immune responses by the host against parasitic infections. Protein(s) encoded by TLR gene(s) are immensely important due to their ability of recognizing different types of pathogen associated molecular patterns (PAMPs). This study reviews the polymorphic residues present in the nucleotide or in the amino acid sequence of TLRs and their influence on alteration of inflammatory signalling pathways promoting either susceptibility or resistance to major infectious diseases, including tuberculosis, leishmaniasis, malaria and filariasis. Population-based studies exploring TLR polymorphisms in humans are primarily emphasized to discuss the association of the polymorphic residues with the occurrence and epidemiology of the mentioned infectious diseases. Principal polymorphic residues in TLRs influencing immunity to infection are mostly single nucleotide polymorphisms (SNPs). I602S (TLR1), R677W (TLR2), P554S (TLR3), D299G (TLR4), F616L (TLR5), S249P (TLR6), Q11L (TLR7), M1V (TLR8), G1174A (TLR9) and G1031T (TLR10) are presented as the major influential SNPs in shaping immunity to pathogenic infections. The contribution of these SNPs in the structure-function relationship of TLRs is yet not clear. Therefore, molecular studies on such polymorphisms can improve our understanding on the genetic basis of the immune response and pave the way for therapeutic intervention in a more feasible way.
Collapse
Affiliation(s)
| | - Sahel Huda
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| | - Santi P Sinha Babu
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| |
Collapse
|
40
|
Ou B, Liu Y, Zhang T, Sun Y, Chen J, Peng Z. TLR9 rs352139 Genetic Variant Promotes Tacrolimus Elimination in Chinese Liver Transplant Patients During the Early Posttransplantation Period. Pharmacotherapy 2019; 39:67-76. [PMID: 30537010 DOI: 10.1002/phar.2204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND There are limited markers that could facilitate individualized tacrolimus treatment in the early posttransplantation period. Genetic factors have been found to play critical roles in determining tacrolimus pharmacokinetics. OBJECTIVE We aimed to examine the association of donor and recipient Toll-like receptor (TLR) polymorphisms with tacrolimus elimination and the potential mechanism for TLR gene polymorphism-mediated tacrolimus metabolism. METHODS Two independent cohorts including 297 patients receiving liver transplantation (LT) were enrolled in this study (cohort A was composed of 200 patients; cohort B included 97 patients and served as a validation set). Toll-like receptors polymorphisms were genotyped using TaqMan single nucleotide polymorphisms (SNPs) assays. The protein expressions were detected by Western blotting. The metabolism assay was used to quantify tacrolimus elimination. The activity of nuclear factor-kB (NF-kB) was evaluated by luciferase reporter assay. RESULTS Tacrolimus dose-adjusted trough blood concentrations (C/D) ratios were significantly lower for donor TLR9 rs352139 AG/GG carriers than AA carriers at weeks 1, 2, and 3 after LT. In multivariate analysis, donor and recipient CYP3A5 rs776746 and donor TLR9 rs352139 were independent predictors of tacrolimus C/D ratios in the early period after transplantation in both cohorts. When investigating the combined effects of donor CYP3A5 rs776746 and donor TLR9 rs352139 genotypes, the C/D ratios were remarkably significant at all time points during the first month after LT within the four groups. Furthermore, CYP3A5 mRNA expression in liver tissue was significantly higher for AG/GG patients than AA carriers after LT. In addition, we demonstrated that the TLR9 rs352139 genetic variant promotes tacrolimus metabolism of liver cells via upregulation of CYP3A5, which is dependent on the repression of NF-κB/pregnane X receptor (PXR) signaling. CONCLUSIONS Donor TLR9 rs352139 genetic variant facilitated tacrolimus elimination during the early stage after LT in Chinese patients, which might be related to the upregulation of CYP3A5 enzyme via the NF-kB/PXR signaling pathway.
Collapse
Affiliation(s)
- Baochi Ou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yahuang Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Afkham A, Eghbal-Fard S, Heydarlou H, Azizi R, Aghebati-Maleki L, Yousefi M. Toll-like receptors signaling network in pre-eclampsia: An updated review. J Cell Physiol 2018; 234:2229-2240. [PMID: 30221394 DOI: 10.1002/jcp.27189] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023]
Abstract
Toll-like receptors (TLRs) are innate immune cells receptors. They are expressed on leukocytes, epithelial cells, and more particularly on placental immune cells and chorion trophoblast. Upregulation of innate immune response occurs during normal pregnancy, but its excessive activity is involved in the pathology of pregnancy complications including pregnancy-induced hypertension and pre-eclampsia (PE). The recent studies about the overmuch inflammatory responses and aberrant placentation are associated with increased expression of TLRs in PE patients. This review has tried to focus on the relationship between some activities of TLRs and the risk of preeclampsia development.
Collapse
Affiliation(s)
- Amir Afkham
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Eghbal-Fard
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Heydarlou
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramyar Azizi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Fischer J, Koukoulioti E, Schott E, Fülöp B, Heyne R, Berg T, van Bömmel F. Polymorphisms in the Toll-like receptor 3 (TLR3) gene are associated with the natural course of hepatitis B virus infection in Caucasian population. Sci Rep 2018; 8:12737. [PMID: 30143709 PMCID: PMC6109130 DOI: 10.1038/s41598-018-31065-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
Innate immunity can induce spontaneous hepatitis B surface antigen (HBsAg) seroclearance (SC) of hepatitis B virus (HBV) infection or transition towards an inactive carrier state. Toll-like receptor (TLR) 3 signalling has been linked to these processes. Alterations in the TLR3 gene might impair immune responses against HBV. In our study, we analysed the impact of the TLR3 polymorphisms rs3775291 and rs5743305 on the natural course of HBV infection. In this retrospective study, a Caucasian cohort of 621 patients with chronic HBV infection (CHB), 239 individuals with spontaneous HBsAg SC, and 254 healthy controls were enrolled. In the CHB group, 49% of patients were inactive carriers, and 17% were HBeAg-positive. The TLR3 rs3775291 A allele was associated with a reduced likelihood of spontaneous HBsAg SC and HBeAg SC, and an increased risk of developing chronic hepatitis B. In haplotype analysis, the haplotype including both risk variants rs3775291A and rs5743305A had the lowest likelihood of HBsAg SC. Further research in larger cohorts and functional analyses are needed to shed light on the impact of TLR3 signalling.
Collapse
Affiliation(s)
- Janett Fischer
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany.
| | - Eleni Koukoulioti
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Eckart Schott
- Department of Gastroenterology, Hepatology and Diabetology, Internal Medicine II, HELIOS Hospital Emil von Behring, Berlin, Germany
| | - Balazs Fülöp
- Department of Internal Medicine and Gastroenterology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Renate Heyne
- Liver and Study Center Checkpoint, Berlin, Germany
| | - Thomas Berg
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| | - Florian van Bömmel
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Lindqvist R, Upadhyay A, Överby AK. Tick-Borne Flaviviruses and the Type I Interferon Response. Viruses 2018; 10:E340. [PMID: 29933625 PMCID: PMC6071234 DOI: 10.3390/v10070340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses are globally distributed pathogens causing millions of human infections every year. Flaviviruses are arthropod-borne viruses and are mainly transmitted by either ticks or mosquitoes. Mosquito-borne flaviviruses and their interactions with the innate immune response have been well-studied and reviewed extensively, thus this review will discuss tick-borne flaviviruses and their interactions with the host innate immune response.
Collapse
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90187 Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden.
| | - Arunkumar Upadhyay
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90187 Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden.
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90187 Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden.
| |
Collapse
|
44
|
Akbarshahi H, Menzel M, Ramu S, Mahmutovic Persson I, Bjermer L, Uller L. House dust mite impairs antiviral response in asthma exacerbation models through its effects on TLR3. Allergy 2018; 73:1053-1063. [PMID: 29319193 DOI: 10.1111/all.13378] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impaired antiviral interferon expression may be involved in asthma exacerbations commonly caused by rhinovirus infections. Allergy is a known risk factor for viral-induced asthma exacerbation, but little is known whether allergens may affect interferon responses. OBJECTIVE Our hypothesis is that house dust mite (HDM) impairs viral stimulus-induced antiviral signalling. METHODS Experimental asthma exacerbations were produced in vitro in human bronchial epithelial cells (HBECs) and in mice using sequential challenges with HDM and a viral infection mimic, Poly(I:C). We examined rhinovirus pattern recognition receptors (PRRs) signalling pathways and potential mechanisms of impaired interferon response. RESULTS HBECs and mice exposed to HDM prior to Poly(I:C) exhibited a reduced antiviral response compared to Poly(I:C) alone, including reduced IFN-β, IFN-λ, TLR3, RIG-I, MDA5, IRF-3 and IRF-7. Heat inactivation of HDM partially restored the TLR3-induced interferon response in vitro and in vivo. Our HBEC-data further showed that HDM directly affects TLR3 signalling by targeting the receptor glycosylation level. CONCLUSIONS Direct effects of allergens such as HDM on PRRs can present as potential mechanism for defective antiviral airway responses. Accordingly, therapeutic measures targeting inhibitory effects of allergens on antiviral PRRs may find use as a strategy to boost antiviral response and ameliorate exacerbations in asthmatic patients.
Collapse
Affiliation(s)
- H. Akbarshahi
- Unit of Respiratory Immunopharmacology; Department of Experimental Medical Science; Lund University; Lund Sweden
- Lung Medicine and Allergology; Department of Clinical Sciences; Lund University; Lund Sweden
| | - M. Menzel
- Unit of Respiratory Immunopharmacology; Department of Experimental Medical Science; Lund University; Lund Sweden
| | - S. Ramu
- Unit of Respiratory Immunopharmacology; Department of Experimental Medical Science; Lund University; Lund Sweden
| | - I. Mahmutovic Persson
- Unit of Respiratory Immunopharmacology; Department of Experimental Medical Science; Lund University; Lund Sweden
| | - L. Bjermer
- Lung Medicine and Allergology; Department of Clinical Sciences; Lund University; Lund Sweden
| | - L. Uller
- Unit of Respiratory Immunopharmacology; Department of Experimental Medical Science; Lund University; Lund Sweden
| |
Collapse
|
45
|
Yudin NS, Barkhash AV, Maksimov VN, Ignatieva EV, Romaschenko AG. Human Genetic Predisposition to Diseases Caused by Viruses from Flaviviridae Family. Mol Biol 2018. [DOI: 10.1134/s0026893317050223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Cooke G, Kamal I, Strengert M, Hams E, Mawhinney L, Tynan A, O’Reilly C, O’Dwyer DN, Kunkel SL, Knaus UG, Shields DC, Moller DR, Bowie AG, Fallon PG, Hogaboam CM, Armstrong ME, Donnelly SC. Toll-like receptor 3 L412F polymorphism promotes a persistent clinical phenotype in pulmonary sarcoidosis. QJM 2018; 111:217-224. [PMID: 29237089 PMCID: PMC6256937 DOI: 10.1093/qjmed/hcx243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/30/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/INTRODUCTION Sarcoidosis is a multi-systemic disorder of unknown etiology, characterized by the presence of non-caseating granulomas in target organs. In 90% of cases, there is thoracic involvement. Fifty to seventy percent of pulmonary sarcoidosis patients will experience acute, self-limiting disease. For the subgroup of patients who develop persistent disease, no targeted therapy is currently available. AIM To investigate the potential of the single nucleotide polymorphism (SNP), Toll-like receptor 3 Leu412Phe (TLR3 L412F; rs3775291), as a causative factor in the development of and in disease persistence in pulmonary sarcoidosis. To investigate the functionality of TLR3 L412F in vitro in primary human lung fibroblasts from pulmonary sarcoidosis patients. DESIGN SNP-genotyping and cellular assays, respectively, were used to investigate the role of TLR3 L412F in the development of persistent pulmonary sarcoidosis. METHODS Cohorts of Irish sarcoidosis patients (n = 228), healthy Irish controls (n = 263) and a secondary cohort of American sarcoidosis patients (n = 123) were genotyped for TLR3 L412F. Additionally, the effect of TLR3 L412F in primary lung fibroblasts from pulmonary sarcoidosis patients was quantitated following TLR3 activation in the context of cytokine and type I interferon production, TLR3 expression and apoptotic- and fibroproliferative-responses. RESULTS We report a significant association between TLR3 L412F and persistent clinical disease in two cohorts of Irish and American Caucasians with pulmonary sarcoidosis. Furthermore, activation of TLR3 in primary lung fibroblasts from 412 F-homozygous pulmonary sarcoidosis patients resulted in reduced IFN-β and TLR3 expression, reduced apoptosis- and dysregulated fibroproliferative-responses compared with TLR3 wild-type patients. DISCUSSION/CONCLUSION This study identifies defective TLR3 function as a previously unidentified factor in persistent clinical disease in pulmonary sarcoidosis and reveals TLR3 L412F as a candidate biomarker.
Collapse
Affiliation(s)
- G Cooke
- Department of Applied Sciences, Institute of Technology Tallaght,
Tallaght, Dublin 24, Ireland
| | - I Kamal
- School of Medicine and Medical Science, College of Life Sciences, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
- National Pulmonary Fibrosis Referral Centre at St. Vincent’s University
Hospital, Elm Park, Dublin 4, Ireland
| | - M Strengert
- School of Medicine and Medical Science, College of Life Sciences, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| | - E Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity
College, Dublin 2, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital
Crumlin, Dublin 12, Ireland
| | - L Mawhinney
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity
College, Dublin 2, Ireland
| | - A Tynan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity
College, Dublin 2, Ireland
| | - C O’Reilly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity
College, Dublin 2, Ireland
| | - D N O’Dwyer
- School of Medicine and Medical Science, College of Life Sciences, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
- National Pulmonary Fibrosis Referral Centre at St. Vincent’s University
Hospital, Elm Park, Dublin 4, Ireland
| | - S L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann
Arbor, MI 48109, USA
| | - U G Knaus
- School of Medicine and Medical Science, College of Life Sciences, UCD
Conway Institute of Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| | - D C Shields
- UCD Complex and Adaptive Systems Laboratory, University College Dublin,
Belfield, Dublin 4, Ireland
| | - D R Moller
- Division of Pulmonary and Critical Care Medicine, Department of
Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - A G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences
Institute, Trinity College, Dublin 2, Ireland
| | - P G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity
College, Dublin 2, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital
Crumlin, Dublin 12, Ireland
| | - C M Hogaboam
- Department of Pathology, University of Michigan Medical School, Ann
Arbor, MI 48109, USA
| | - M E Armstrong
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity
College, Dublin 2, Ireland
| | - S C Donnelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity
College, Dublin 2, Ireland
- Department of Clinical Medicine, Trinity Centre for Health Sciences,
Tallaght Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
47
|
Genetic and immune determinants of immune activation in HIV-exposed seronegative individuals and their role in protection against HIV infection. INFECTION GENETICS AND EVOLUTION 2017; 66:325-334. [PMID: 29258786 DOI: 10.1016/j.meegid.2017.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
Soon thereafter infection is established, hosts strive for an efficient eradication of microorganisms, with as limited tissue damage as possible, and durable immunological protection against re-infection. On the other hand, pathogens have developed countermeasures to escape host surveillance and to warrant diffusion to other hosts. In this molecular arms race the final results relies on multiple variables, including the genetic and immunologic e correlates of protection available for the host. In the field of HIV-infection, natural protection has been repeatedly associated to the presence of an immune activation state, at least in some cohorts of HESN (HIV-exposed seronegative). Indeed, these subjects, who naturally resist HIV-infection despite repeated exposure to the virus, are characterized by an increased expression of activation markers on circulating cells and greater production of immunological effector molecules both in basal condition and upon specific-stimulation. Although these results are not univocally shared, several publications emphasize the existence of a correlation between polymorphisms in genes associated with increased immune activation and the HESN phenotype. In this review, we will describe some of the genetic variants associated with protection against HIV infection. Understanding the basis of HIV resistance in HESN is mandatory to develop new preventative and therapeutic interventions.
Collapse
|
48
|
Saha SS, Caviness G, Yi G, Raymond EL, Mbow ML, Kao CC. E3 Ubiquitin Ligase RNF125 Activates Interleukin-36 Receptor Signaling and Contributes to Its Turnover. J Innate Immun 2017; 10:56-69. [PMID: 29176319 DOI: 10.1159/000481210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022] Open
Abstract
Signaling by the interleukin-36 receptor (IL-36R) is linked to inflammatory diseases such as psoriasis. However, the regulation of IL-36R signaling is poorly understood. Activation of IL-36R signaling in cultured cells results in an increased polyubiquitination of the receptor subunit, IL-1Rrp2. Treatment with deubiquitinases shows that the receptor subunit of IL-36R, IL-1Rrp2, is primarily polyubiquitinated at the K63 position, which is associated with endocytic trafficking and signal transduction. A minor amount of ubiquitination is at the K48 position that is associated with protein degradation. A focused siRNA screen identified RNF125, an E3 ubiquitin ligase, to ubiquitinate IL-1Rrp2 upon activation of IL-36R signaling while not affecting the activated IL-1 receptor. Knockdown of RNF125 decreases signal transduction by the IL-36R. Overexpression of RNF125 in HEK293T cells activates IL-36R signaling and increases the ubiquitination of IL-1Rrp2 and its subsequent turnover. RNF125 can coimmunoprecipitate with the IL-36R, and it traffics with IL-1Rrp2 from the cell surface to lysosomes. Mutations of Lys568 and Lys569 in the C-terminal tail of IL-1Rrp2 decrease ubiquitination by RNF125 and increase the steady-state levels of IL-1Rrp2. These results demonstrate that RNF125 has multiple regulatory roles in the signaling, trafficking, and turnover of the IL-36R.
Collapse
Affiliation(s)
- Siddhartha S Saha
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | | | | | | | | | | |
Collapse
|
49
|
Grygorczuk S, Parczewski M, Świerzbińska R, Czupryna P, Moniuszko A, Dunaj J, Kondrusik M, Pancewicz S. The increased concentration of macrophage migration inhibitory factor in serum and cerebrospinal fluid of patients with tick-borne encephalitis. J Neuroinflammation 2017. [PMID: 28646884 PMCID: PMC5483307 DOI: 10.1186/s12974-017-0898-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Host factors determining the clinical presentation of tick-borne encephalitis (TBE) are not fully elucidated. The peripheral inflammatory response to TBE virus is hypothesized to facilitate its entry into central nervous system by disrupting the blood-brain barrier with the involvement of a signaling route including Toll-like receptor 3 (TLR3) and pro-inflammatory cytokines macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNFα), and interleukin-1 beta (IL-1β). Methods Concentrations of MIF, TNFα, and IL-1β were measured with commercial ELISA in serum and cerebrospinal fluid (CSF) from 36 hospitalized TBE patients, 7 patients with non-TBE meningitis, and 6 controls. The CSF albumin quotient (AQ) was used as a marker of blood-brain barrier permeability. Single nucleotide polymorphisms rs3775291, rs5743305 (associated with TLR3 expression), and rs755622 (associated with MIF expression) were assessed in blood samples from 108 TBE patients and 72 non-TBE controls. The data were analyzed with non-parametric tests, and p < 0.05 was considered significant. Results The median serum and CSF concentrations of MIF and IL-1β were significantly increased in TBE group compared to controls. MIF concentration in serum tended to correlate with AQ in TBE, but not in non-TBE meningitis. The serum concentration of TNFα was increased in TBE patients bearing a high-expression TLR3 rs5743305 TT genotype, which also associated with the increased risk of TBE. The low-expression rs3775291 TLR3 genotype TT associated with a prolonged increase of CSF protein concentration. The high-expression MIF rs755622 genotype CC tended to correlate with an increased risk of TBE, and within TBE group, it was associated with a mild presentation. Conclusions The results point to the signaling route involving TLR3, MIF, and TNFα being active in TBE virus infection and contributing to the risk of an overt neuroinvasive disease. The same factors may play a protective role intrathecally contributing to the milder course of neuroinfection. This suggests that the individual variability of the risk and clinical presentation of TBE might be traced to the variable peripheral and intrathecal expression of the mediators of the inflammatory response, which in turn associates with the host genetic background.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland.
| | - Miłosz Parczewski
- Department of Infectious Diseases and Hepatology, Pomeranian Medical University in Szczecin, ul. Arkońska 4, 71-455, Szczecin, Poland
| | - Renata Świerzbińska
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Piotr Czupryna
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Anna Moniuszko
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Justyna Dunaj
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Maciej Kondrusik
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| | - Sławomir Pancewicz
- Department of the Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540, Białystok, Poland
| |
Collapse
|
50
|
Gene polymorphisms of TLR2 and TLR3 in HBV clearance and HBV-related hepatocellular carcinoma in a Chinese male population. Int J Biol Markers 2017; 32:e195-e201. [PMID: 28009434 DOI: 10.5301/jbm.5000238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Toll-like receptor plays an essential role in controlling immunity and inflammation. This study was to investigate the relationships of genetic variants in TLR2 and TLR3 with hepatitis B virus (HBV) natural clearance and HBV-related hepatocellular carcinoma (HCC) risk in a Chinese male population. METHODS We analyzed 5 polymorphisms of TLR2 (rs3804099 and rs3804100) and TLR3 (rs5743305, rs3775296 and rs3775291) in a population consisting of 686 participants with HBV natural clearance, 293 chronic HBV carriers and 395 HBV-positive HCC patients, using the improved multiplex ligase detection reaction method. RESULTS After adjustment for age and smoking and drinking status, no associations were observed either between the 5 single-nucleotide polymorphisms (SNPs) and the HBV natural clearance participants, or between the 5 SNPs and HCC patients. Whereas the stratified analysis showed that under the dominant models, nondrinkers with TLR2 rs3804100 and participants younger than 40 years old with TLR3 rs3775291 were significantly associated with HCC risk when compared with persistent HBV carriers (adjusted odd ratio [OR] = 0.49, 95% confidence interval [95% CI], 0.31-0.78, p = 0.003; and adjusted OR = 0.50, 95% CI, 0.29-0.86, p = 0.013, respectively). Furthermore, the TTTCT haplotype was found to promote the progress of HBV clearance and inhibit development of HBV-related HCC (OR = 0.77, 95% CI, 0.61-0.97, p = 0.029; and OR = 0.72, 95% CI, 0.55-0.94, p = 0.016, respectively). And the CCACC and CCTCT haplotypes were observed to decrease susceptibility to HCC (OR = 0.64, 95% CI, 0.40-1.00, p = 0.048; and OR = 0.43, 95% CI, 0.28-0.68, p<0.001, respectively). CONCLUSIONS This study revealed that TLR2 rs3804100 and TLR3 rs3775291 polymorphisms may be protective factors for HBV-related HCC.
Collapse
|