1
|
Egly CL, Barny LA, Do T, McDonald EF, Knollmann BC, Plate L. The proteostasis interactomes of trafficking-deficient variants of the voltage-gated potassium channel K V11.1 associated with long QT syndrome. J Biol Chem 2024; 300:107465. [PMID: 38876300 PMCID: PMC11284683 DOI: 10.1016/j.jbc.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The voltage-gated potassium ion channel KV11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause long QT syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which pharmacological chaperones like E-4031 can rescue. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes of WT KV11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. We identified 572 core KV11.1 protein interactors. Trafficking-deficient variants KV11.1-G601S and KV11.1-G601S-G965∗ had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We confirmed previous findings that the proteasome is critical for KV11.1 degradation. Our report provides the first comprehensive characterization of protein quality control mechanisms of KV11.1. We find extensive interactome remodeling associated with trafficking-deficient KV11.1 variants and with pharmacological chaperone rescue of KV11.1 cell surface expression. The identified protein interactions could be targeted therapeutically to improve KV11.1 trafficking and treat LQTS.
Collapse
Affiliation(s)
- Christian L Egly
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA
| | - Lea A Barny
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Tri Do
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA
| | - Eli F McDonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Björn C Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA.
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Egly CL, Barny L, Do T, McDonald EF, Plate L, Knollmann BC. The proteostasis interactomes of trafficking-deficient K V 11.1 variants associated with Long QT Syndrome and pharmacological chaperone rescue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.574410. [PMID: 38352392 PMCID: PMC10862811 DOI: 10.1101/2024.01.31.574410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Introduction The voltage gated potassium ion channel K V 11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause Long QT Syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which can be rescued by pharmacological chaperones like E-4031. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery, comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants, and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. Methods We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes in human embryonic kidney (HEK293) cells expressing wild-type (WT) K V 11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. Resultsa We identified 573 core K V 11.1 protein interactors. Both variants K V 11.1-G601S and K V 11.1-G601S-G965* had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We found that proteasomal degradation is a key component for K V 11.1 degradation and that the K V 11.1-G601S-G965* variant was more responsive to E-4031 treatment. This suggests a role in the C-terminal domain and the ER retention motif of K V 11.1 in regulating trafficking. Conclusion Our report characterizes the proteostasis network of K V 11.1, two trafficking deficient K V 11.1 variants, and variants treated with a pharmacological chaperone. The identified protein interactions could be targeted therapeutically to improve K V 11.1 trafficking and treat Long QT Syndrome.
Collapse
|
3
|
Zuo L, Kuo WT, Cao F, Chanez-Paredes SD, Zeve D, Mannam P, Jean-François L, Day A, Vallen Graham W, Sweat YY, Shashikanth N, Breault DT, Turner JR. Tacrolimus-binding protein FKBP8 directs myosin light chain kinase-dependent barrier regulation and is a potential therapeutic target in Crohn's disease. Gut 2023; 72:870-881. [PMID: 35537812 PMCID: PMC9977574 DOI: 10.1136/gutjnl-2021-326534] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/11/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Intestinal barrier loss is a Crohn's disease (CD) risk factor. This may be related to increased expression and enzymatic activation of myosin light chain kinase 1 (MLCK1), which increases intestinal paracellular permeability and correlates with CD severity. Moreover, preclinical studies have shown that MLCK1 recruitment to cell junctions is required for tumour necrosis factor (TNF)-induced barrier loss as well as experimental inflammatory bowel disease progression. We sought to define mechanisms of MLCK1 recruitment and to target this process pharmacologically. DESIGN Protein interactions between FK506 binding protein 8 (FKBP8) and MLCK1 were assessed in vitro. Transgenic and knockout intestinal epithelial cell lines, human intestinal organoids, and mice were used as preclinical models. Discoveries were validated in biopsies from patients with CD and control subjects. RESULTS MLCK1 interacted specifically with the tacrolimus-binding FKBP8 PPI domain. Knockout or dominant negative FKBP8 expression prevented TNF-induced MLCK1 recruitment and barrier loss in vitro. MLCK1-FKBP8 binding was blocked by tacrolimus, which reversed TNF-induced MLCK1-FKBP8 interactions, MLCK1 recruitment and barrier loss in vitro and in vivo. Biopsies of patient with CD demonstrated increased numbers of MLCK1-FKBP8 interactions at intercellular junctions relative to control subjects. CONCLUSION Binding to FKBP8, which can be blocked by tacrolimus, is required for MLCK1 recruitment to intercellular junctions and downstream events leading to immune-mediated barrier loss. The observed increases in MLCK1 activity, MLCK1 localisation at cell junctions and perijunctional MLCK1-FKBP8 interactions in CD suggest that targeting this process may be therapeutic in human disease. These new insights into mechanisms of disease-associated barrier loss provide a critical foundation for therapeutic exploitation of FKBP8-MLCK1 interactions.
Collapse
Affiliation(s)
- Li Zuo
- Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Wei-Ting Kuo
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Graduate Institute of Oral Biology, National Taiwan University, Taipei, Taiwan
| | - Feng Cao
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Otorhinolaryngology Head and Neck Surgery, Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Sandra D Chanez-Paredes
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Daniel Zeve
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Prabhath Mannam
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Léa Jean-François
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anne Day
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - W Vallen Graham
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Yan Y Sweat
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nitesh Shashikanth
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - David T Breault
- Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jerrold R Turner
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Yuan L, Bu S, Du M, Wang Y, Ju C, Huang D, Xu W, Tan X, Liang M, Deng S, Yang L, Huang K. RNF207 exacerbates pathological cardiac hypertrophy via post-translational modification of TAB1. Cardiovasc Res 2023; 119:183-194. [PMID: 35352799 DOI: 10.1093/cvr/cvac039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS The heart undergoes pathological remodelling, featured by the hypertrophic growth of cardiomyocytes and increased cardiac fibrosis, under biomechanical stress such as haemodynamic overload. Ring Finger Protein 207 (RNF207) is an E3 ubiquitin ligase that is predominantly expressed in the heart, but its function remains elusive. In this study, we aimed to explore the role of RNF207 in the development of pathological cardiac hypertrophy and dysfunction. METHODS AND RESULTS Transverse aortic constriction (TAC) surgery was performed on mice to induce cardiac hypertrophy. Cardiac function and remodelling were evaluated by echocardiography, histological assessment, and molecular analyses. Our data indicated that RNF207 overexpression (OE) exacerbated cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, TAC-induced cardiac remodelling was profoundly blunted in RNF207 knockdown (KD) hearts. In line with the in vivo findings, RNF207 OE augmented, whereas RNF207 KD alleviated, phenylephrine-induced cardiomyocyte hypertrophy in vitro. Mechanistically, we demonstrated that RNF207 elicited detrimental effects by promoting K63-linked ubiquitination of TAK1-binding protein 1 (TAB1), which triggered the autophosphorylation of transforming growth factor-β activated kinase 1 (TAK1) and the activation of downstream p38 and c-Jun N-terminal kinase (JNK)1/2 signalling pathways. In the TAB1-KD cardiomyocytes, RNF207-OE-induced cell hypertrophy was significantly attenuated, indicating that RNF207-induced hypertrophy is, at least in part, TAB1-dependent. CONCLUSIONS This study demonstrates that RNF207 exacerbates pressure overload-induced cardiac hypertrophy and dysfunction via post-translational modification of TAB1.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China
| | - Shichen Bu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Meng Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yilong Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Chenhui Ju
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Dandan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Wenjing Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Xin Tan
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Minglu Liang
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Shan Deng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Liu Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, Hubei, China
- Clinic Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Wolujewicz P, Steele JW, Kaltschmidt JA, Finnell RH, Ross ME. Unraveling the complex genetics of neural tube defects: From biological models to human genomics and back. Genesis 2021; 59:e23459. [PMID: 34713546 DOI: 10.1002/dvg.23459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Neural tube defects (NTDs) are a classic example of preventable birth defects for which there is a proven-effective intervention, folic acid (FA); however, further methods of prevention remain unrealized. In the decades following implementation of FA nutritional fortification programs throughout at least 87 nations, it has become apparent that not all NTDs can be prevented by FA. In the United States, FA fortification only reduced NTD rates by 28-35% (Williams et al., 2015). As such, it is imperative that further work is performed to understand the risk factors associated with NTDs and their underlying mechanisms so that alternative prevention strategies can be developed. However, this is complicated by the sheer number of genes associated with neural tube development, the heterogeneity of observable phenotypes in human cases, the rareness of the disease, and the myriad of environmental factors associated with NTD risk. Given the complex genetic architecture underlying NTD pathology and the way in which that architecture interacts dynamically with environmental factors, further prevention initiatives will undoubtedly require precision medicine strategies that utilize the power of human genomics and modern tools for assessing genetic risk factors. Herein, we review recent advances in genomic strategies for discovering genetic variants associated with these defects, and new ways in which biological models, such as mice and cell culture-derived organoids, are leveraged to assess mechanistic functionality, the way these variants interact with other genetic or environmental factors, and their ultimate contribution to human NTD risk.
Collapse
Affiliation(s)
- Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - John W Steele
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Tian T, Cao X, Kim SE, Lin YL, Steele JW, Cabrera RM, Karki M, Yang W, Marini NJ, Hoffman EN, Han X, Hu C, Wang L, Wlodarczyk BJ, Shaw GM, Ren A, Finnell RH, Lei Y. FKBP8 variants are risk factors for spina bifida. Hum Mol Genet 2021; 29:3132-3144. [PMID: 32969478 DOI: 10.1093/hmg/ddaa211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Neural tube defects (NTDs) are a group of severe congenital malformations caused by a failure of neural tube closure during early embryonic development. Although extensively investigated, the genetic etiology of NTDs remains poorly understood. FKBP8 is critical for proper mammalian neural tube closure. Fkbp8-/- mouse embryos showed posterior NTDs consistent with a diagnosis of spina bifida (SB). To date, no publication has reported any association between FKBP8 and human NTDs. Using Sanger sequencing on genomic DNA samples from 472 SB and 565 control samples, we identified five rare (MAF ≤ 0.001) deleterious variants in SB patients, while no rare deleterious variant was identified in the controls (P = 0.0191). p.Glu140* affected FKBP8 localization to the mitochondria and created a truncated form of the FKBP8 protein, thus impairing its interaction with BCL2 and ultimately leading to an increase in cellular apoptosis. p.Ser3Leu, p.Lys315Asn and p.Ala292Ser variants decreased FKBP8 protein level. p.Lys315Asn further increased the cellular apoptosis. RNA sequencing on anterior and posterior tissues isolated from Fkbp8-/- and wildtype mice at E9.5 and E10.5 showed that Fkbp8-/- embryos have an abnormal expression profile within tissues harvested at posterior sites, thus leading to a posterior NTD. Moreover, we found that Fkbp8 knockout mouse embryos have abnormal expression of Wnt3a and Nkx2.9 during the early stage of neural tube development, perhaps also contributing to caudal specific NTDs. These findings provide evidence that functional variants of FKBP8 are risk factors for SB, which may involve a novel mechanism by which Fkbp8 mutations specifically cause SB in mice.
Collapse
Affiliation(s)
- Tian Tian
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China.,Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA
| | - Sung-Eun Kim
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX 78723, USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA
| | - John W Steele
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA
| | - Robert M Cabrera
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas J Marini
- Department of Molecular and Cellular Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Ethan N Hoffman
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA
| | - Xiao Han
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA
| | - Cindy Hu
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX 78723, USA
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| | - Bogdan J Wlodarczyk
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA.,Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77031, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031, USA
| |
Collapse
|
7
|
de la Riva-Carrasco R, Perez-Pandolfo S, Suárez Freire S, Romero NM, Bhujabal Z, Johansen T, Wappner P, Melani M. The immunophilin Zonda controls regulated exocytosis in endocrine and exocrine tissues. Traffic 2021; 22:111-122. [PMID: 33336828 DOI: 10.1111/tra.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Abstract
Exocytosis is a fundamental process in physiology, that ensures communication between cells, organs and even organisms. Hormones, neuropeptides and antibodies, among other cargoes are packed in exocytic vesicles that need to reach and fuse with the plasma membrane to release their content to the extracellular milieu. Hundreds of proteins participate in this process and several others in its regulation. We report here a novel component of the exocytic machinery, the Drosophila transmembrane immunophilin Zonda (Zda), previously found to participate in autophagy. Zda is highly expressed in secretory tissues, and regulates exocytosis in at least three of them: the ring gland, insulin-producing cells and the salivary gland. Using the salivary gland as a model system, we found that Zda is required at final steps of the exocytic process for fusion of secretory granules to the plasma membrane. In a genetic screen we identified the small GTPase RalA as a crucial regulator of secretory granule exocytosis that is required, similarly to Zda, for fusion between the secretory granule and the plasma membrane.
Collapse
Affiliation(s)
| | - Sebastián Perez-Pandolfo
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sofía Suárez Freire
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Nuria M Romero
- Université Côte d'Azur, INRA, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Zambarlal Bhujabal
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Pablo Wappner
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Melani
- Laboratorio de Genética y Fisiología Molecular, Fundación Instituto Leloir, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Tan S, Di Donato M, Glanc M, Zhang X, Klíma P, Liu J, Bailly A, Ferro N, Petrášek J, Geisler M, Friml J. Non-steroidal Anti-inflammatory Drugs Target TWISTED DWARF1-Regulated Actin Dynamics and Auxin Transport-Mediated Plant Development. Cell Rep 2020; 33:108463. [PMID: 33264621 DOI: 10.1016/j.celrep.2020.108463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/18/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds.
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin Di Donato
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Xixi Zhang
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Petr Klíma
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Noel Ferro
- University of Bonn, Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, 53115 Bonn, Germany
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic; The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
9
|
Geisler M, Hegedűs T. A twist in the ABC: regulation of ABC transporter trafficking and transport by FK506-binding proteins. FEBS Lett 2020; 594:3986-4000. [PMID: 33125703 DOI: 10.1002/1873-3468.13983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 01/07/2023]
Abstract
Post-transcriptional regulation of ATP-binding cassette (ABC) proteins has been so far shown to encompass protein phosphorylation, maturation, and ubiquitination. Yet, recent accumulating evidence implicates FK506-binding proteins (FKBPs), a type of peptidylprolyl cis-trans isomerase (PPIase) proteins, in ABC transporter regulation. In this perspective article, we summarize current knowledge on ABC transporter regulation by FKBPs, which seems to be conserved over kingdoms and ABC subfamilies. We uncover striking functional similarities but also differences between regulatory FKBP-ABC modules in plants and mammals. We dissect a PPIase- and HSP90-dependent and independent impact of FKBPs on ABC biogenesis and transport activity. We propose and discuss a putative new mode of transient ABC transporter regulation by cis-trans isomerization of X-prolyl bonds.
Collapse
Affiliation(s)
- Markus Geisler
- Department of Biology, University of Fribourg, Switzerland
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Comparative transcriptome analysis reveals potential evolutionary differences in adaptation of temperature and body shape among four Percidae species. PLoS One 2019; 14:e0215933. [PMID: 31063465 PMCID: PMC6504104 DOI: 10.1371/journal.pone.0215933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022] Open
Abstract
Considering the divergent temperature habitats and morphological traits of four Percidae species: yellow perch (Perca flavescens), Eurasian perch (Perca fluviatilis), pike perch (Sander lucioperca), and ruffe (Gymnocephalus cernua), we stepped into the transcriptome level to discover genes and mechanisms that drive adaptation to different temperature environments and evolution in body shape. Based on 93,566 to 181,246 annotated unigenes of the four species, we identified 1,117 one-to-one orthologous genes and subsequently constructed the phylogenetic trees that are consistent with previous studies. Together with the tree, the ratios of nonsynonymous to synonymous substitutions presented decreased evolutionary rates from the D. rerio branch to the sub-branch clustered by P. flavescens and P. fluviatilis. The specific 93 fast-evolving genes and 57 positively selected genes in P. flavescens, compared with 22 shared fast-evolving genes among P. fluviatilis, G. cernua, and S. lucioperca, showed an intrinsic foundation that ensure its adaptation to the warmer Great Lakes and farther south, especially in functional terms like “Cul4-RING E3 ubiquitin ligase complex.” Meanwhile, the specific 78 fast-evolving genes and 41 positively selected genes in S. lucioperca drew a clear picture of how it evolved to a large and elongated body with camera-type eyes and muscle strength so that it could occupy the highest position in the food web. Overall, our results uncover genetic basis that support evolutionary adaptation of temperature and body shape in four Percid species, and could furthermore assist studies on environmental adaptation in fishes.
Collapse
|
11
|
Mutation-specific peripheral and ER quality control of hERG channel cell-surface expression. Sci Rep 2019; 9:6066. [PMID: 30988392 PMCID: PMC6465299 DOI: 10.1038/s41598-019-42331-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Impaired functional plasma membrane (PM) expression of the hERG K+-channel is associated with Long-QT syndrome type-2 (LQT2) and increased risk of cardiac arrhythmia. Reduced PM-expression is primarily attributed to retention and degradation of misfolded channels by endoplasmic reticulum (ER) protein quality control (QC) systems. However, as the molecular pathogenesis of LQT2 was defined using severely-misfolded hERG variants with limited PM-expression, the potential contribution of post-ER (peripheral) QC pathways to the disease phenotype remains poorly established. Here, we investigate the cellular processing of mildly-misfolded Per-Arnt-Sim (PAS)-domain mutant hERGs, which display incomplete ER-retention and PM-expression defects at physiological temperature. We show that the attenuated PM-expression of hERG is dictated by mutation-specific contributions from both the ER and peripheral QC systems. At the ER, PAS-mutants experience inefficient conformational maturation coupled with rapid ubiquitin-dependent proteasomal degradation. In post-ER compartments, they are rapidly endocytosed from the PM via a ubiquitin-independent mechanism and rapidly targeted for lysosomal degradation. Conformational destabilization underlies aberrant cellular processing at both ER- and post-ER compartments, since conformational correction by a hERG-specific pharmacochaperone or low-temperatures can restore WT-like trafficking. Our results demonstrate that the post-ER QC alone or jointly with the ER QC determines the loss-of-PM-expression phenotype of a subset of LQT2 mutations.
Collapse
|
12
|
Exome sequencing identifies a novel nonsense mutation of Ring Finger Protein 207 in a Chinese family with Long QT syndrome and syncope. J Hum Genet 2018; 64:233-238. [PMID: 30542207 DOI: 10.1038/s10038-018-0549-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
Long QT syndrome (LQTS) is a rare inherited arrhythmia disease characterized by a prolonged QT interval on 12-lead electrocardiograms. It is the crucial factor to induce syncope, ventricular fibrillation, and even sudden cardiac death. Previous studies have proved that mutations of ion channels-related genes play an important role in LQTS patients. In this study, we enrolled a Chinese family with LQTS and syncope. With the help of whole-exome sequencing, we identified a novel nonsense mutation (c.439C>T/p.Q147X) of Ring Finger Protein 207 (RNF207) in this family. The novel mutation, resulting in a premature stop codon in exon 4 of the RNF207 gene, co-segregated with the affected individuals. Bioinformatics analysis and real-time PCR further proved that the newly identified mutation might induce nonsense-mediated mRNA decay. In mutation carriers, the level of RNF207 mRNA expression was much lower than controls, which may affect potassium channel KCNH2 and lead to LQTS and syncope. In this research, we reported a rare novel mutation of RNF207 in LQTS and syncope patients which further supports the significant role of RNF207 in potassium channel activation and expanded the spectrum of RNF207 mutations. These data may contribute to the genetic diagnosis and counseling of families with LQTS and syncope.
Collapse
|
13
|
FKBP8 Enhances Protein Stability of the CLC-1 Chloride Channel at the Plasma Membrane. Int J Mol Sci 2018; 19:ijms19123783. [PMID: 30487393 PMCID: PMC6320802 DOI: 10.3390/ijms19123783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 01/23/2023] Open
Abstract
Mutations in the skeletal muscle-specific CLC-1 chloride channel are associated with the human hereditary disease myotonia congenita. The molecular pathophysiology underlying some of the disease-causing mutations can be ascribed to defective human CLC-1 protein biosynthesis. CLC-1 protein folding is assisted by several molecular chaperones and co-chaperones, including FK506-binding protein 8 (FKBP8). FKBP8 is generally considered an endoplasmic reticulum- and mitochondrion-resident membrane protein, but is not thought to contribute to protein quality control at the cell surface. Herein, we aim to test the hypothesis that FKBP8 may regulate CLC-1 protein at the plasma membrane. Surface biotinylation and subcellular fractionation analyses reveal that a portion of FKBP8 is present at the plasma membrane, and that co-expression with CLC-1 enhances surface localization of FKBP8. Immunoblotting analyses of plasma membrane proteins purified from skeletal muscle further confirm surface localization of FKBP8. Importantly, FKBP8 promotes CLC-1 protein stability at the plasma membrane. Together, our data underscore the importance of FKBP8 in the peripheral quality control of CLC-1 channel.
Collapse
|
14
|
Bertalovitz AC, Badhey MLO, McDonald TV. Synonymous nucleotide modification of the KCNH2 gene affects both mRNA characteristics and translation of the encoded hERG ion channel. J Biol Chem 2018; 293:12120-12136. [PMID: 29907571 PMCID: PMC6078446 DOI: 10.1074/jbc.ra118.001805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/06/2018] [Indexed: 11/06/2022] Open
Abstract
Synonymous nucleotide variation is increasingly recognized as a factor than can affect protein expression, but the underlying mechanisms are incompletely understood. Here, we investigated whether synonymous changes could affect expression of the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene, encoding the human ether-a-go-go-related gene (hERG) ion channel, which is linked to hereditary cardiac arrhythmia. We examined a previously described synthetic version (hERG-codon modified (CM)) with synonymous substitutions designed to reduce GC content, rare codons, and mRNA secondary structure relative to the native construct (hERG-NT). hERG-CM exhibited lower protein expression than hERG-NT in HEK293T cells. We found that the steady-state abundance of hERG-NT mRNA was greater than hERG-CM because of an enhanced transcription rate and increased mRNA stability for hERG-NT. Translation of hERG-CM was independently reduced, contributing to the overall greater synthesis of hERG-NT channel protein. This was partially offset, however, by a higher aggregation of a newly synthesized hERG-NT channel, resulting in nonfunctional protein. Regional mRNA analyses of chimeras of hERG-NT and hERG-CM revealed that synonymous changes in the 5' segments of the coding region had the greatest influence on hERG synthesis at both the mRNA and protein levels. Taken together, these results indicate that synonymous nucleotide variations within the coding region, particularly in the 5' region of the hERG mRNA, can affect both transcription and translation. These findings support the notion that greater attention should be given to the effects of synonymous genetic variation when analyzing hERG DNA sequences in the study of hereditary cardiac disease.
Collapse
Affiliation(s)
- Alexander C Bertalovitz
- Department of Molecular Pharmacology, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461; Department of Cardiovascular Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Marika L Osterbur Badhey
- Department of Molecular Pharmacology, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Thomas V McDonald
- Department of Molecular Pharmacology, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461; Department of Cardiovascular Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612.
| |
Collapse
|
15
|
Bai X, Li K, Yao L, Kang XL, Cai SQ. A forward genetic screen identifies chaperone CNX-1 as a conserved biogenesis regulator of ERG K + channels. J Gen Physiol 2018; 150:1189-1201. [PMID: 29941431 PMCID: PMC6080891 DOI: 10.1085/jgp.201812025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes a voltage-gated potassium channel that controls repolarization of cardiac action potentials. Accumulating evidence suggests that most disease-related hERG mutations reduce the function of the channel by disrupting protein biogenesis of the channel in the endoplasmic reticulum (ER). However, the molecular mechanism underlying the biogenesis of ERG K+ channels is largely unknown. By forward genetic screening, we identified an ER-located chaperone CNX-1, the worm homologue of mammalian chaperone Calnexin, as a critical regulator for the protein biogenesis of UNC-103, the ERG-type K+ channel in Caenorhabditis elegans Loss-of-function mutations of cnx-1 decreased the protein level and current density of the UNC-103 K+ channel and suppressed the behavioral defects caused by a gain-of-function mutation in unc-103 Moreover, CNX-1 facilitated tetrameric assembly of UNC-103 channel subunits in a liposome-assisted cell-free translation system. Further studies showed that CNX-1 act in parallel to DNJ-1, another ER-located chaperone known to regulate maturation of UNC-103 channels, on controlling the protein biogenesis of UNC-103. Importantly, Calnexin interacted with hERG proteins in the ER in HEK293T cells. Deletion of calnexin reduced the expression and current densities of endogenous hERG K+ channels in SH-SY5Y cells. Collectively, we reveal an evolutionarily conserved chaperone CNX-1/Calnexin controlling the biogenesis of ERG-type K+ channels.
Collapse
Affiliation(s)
- Xue Bai
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Li Yao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Lei Kang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shi-Qing Cai
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Hall AR, Anderson CL, Smith JL, Mirshahi T, Elayi CS, January CT, Delisle BP. Visualizing Mutation-Specific Differences in the Trafficking-Deficient Phenotype of Kv11.1 Proteins Linked to Long QT Syndrome Type 2. Front Physiol 2018; 9:584. [PMID: 29875689 PMCID: PMC5974211 DOI: 10.3389/fphys.2018.00584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/02/2018] [Indexed: 02/05/2023] Open
Abstract
KCNH2 encodes the Kv11.1 α-subunit that underlies the rapidly activating delayed-rectifier K+ current in the heart. Loss-of-function KCNH2 mutations cause long QT syndrome type 2 (LQT2), and most LQT2-linked missense mutations inhibit the trafficking of Kv11.1 channel protein to the cell surface membrane. Several trafficking-deficient LQT2 mutations (e.g., G601S) generate Kv11.1 proteins that are sequestered in a microtubule-dependent quality control (QC) compartment in the transitional endoplasmic reticulum (ER). We tested the hypothesis that the QC mechanisms that regulate LQT2-linked Kv11.1 protein trafficking are mutation-specific. Confocal imaging analyses of HEK293 cells stably expressing the trafficking-deficient LQT2 mutation F805C showed that, unlike G601S-Kv11.1 protein, F805C-Kv11.1 protein was concentrated in several transitional ER subcompartments. The microtubule depolymerizing drug nocodazole differentially affected G601S- and F805C-Kv11.1 protein immunostaining. Nocodazole caused G601S-Kv11.1 protein to distribute into peripheral reticular structures, and it increased the diffuse immunostaining of F805C-Kv11.1 protein around the transitional ER subcompartments. Proteasome inhibition also affected the immunostaining of G601S- and F805C-Kv11.1 protein differently. Incubating cells in MG132 minimally impacted G601S-Kv11.1 immunostaining, but it dramatically increased the diffuse immunostaining of F805C-Kv11.1 protein in the transitional ER. Similar results were seen after incubating cells in the proteasome inhibitor lactacystin. Differences in the cellular distribution of G601S-Kv11.1 and F805C-Kv11.1 protein persisted in transfected human inducible pluripotent stem cell derived cardiomyocytes. These are the first data to visually demonstrate mutation-specific differences in the trafficking-deficient LQT2 phenotype, and this study has identified a novel way to categorize trafficking-deficient LQT2 mutations based on differences in intracellular retention.
Collapse
Affiliation(s)
- Allison R. Hall
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Corey L. Anderson
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Jennifer L. Smith
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Tooraj Mirshahi
- Department of Molecular and Functional Genomics, Genomic Medicine Institute, Geisinger Clinic, Danville, PA, United States
| | - Claude S. Elayi
- Department of Cardiology, Gill Heart Institute, University of Kentucky, Lexington, KY, United States
| | - Craig T. January
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
17
|
Hacker B, Schultheiß C, Döring M, Kurzik-Dumke U. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies. Hum Mol Genet 2018; 27:1858-1878. [DOI: 10.1093/hmg/ddy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Benedikt Hacker
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Schultheiß
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Michael Döring
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ursula Kurzik-Dumke
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
18
|
Cui S, Park H, Park H, Mun D, Lee SH, Kim H, Yun N, Kim H, Kim M, Pak HN, Lee MH, Joung B. The Role of Serotonin in Ventricular Repolarization in Pregnant Mice. Yonsei Med J 2018; 59:279-286. [PMID: 29436197 PMCID: PMC5823831 DOI: 10.3349/ymj.2018.59.2.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. MATERIALS AND METHODS We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(-/-)-NP). RESULTS During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(-/-)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. CONCLUSION Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents.
Collapse
Affiliation(s)
- Shanyu Cui
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyewon Park
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyelim Park
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dasom Mun
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Yonsei University, Seoul, Korea
| | - Hyoeun Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Nuri Yun
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Michael Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hui Nam Pak
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Moon Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Abstract
This study examines the interaction between hERG and Kv4.3. The functional interaction between hERG and Kv4.3, expressed in a heterologous cell line, was studied using patch clamp techniques, western blot, immunofluorescence, and co-immunoprecipitation. Co-expression of Kv4.3 with hERG increased hERG current density (tail current after a step to +10 mV: 26 ± 3 versus 56 ± 7 pA/pF, p < 0.01). Kv4.3 co-expression also increased the protein expression and promoted the membrane localization of hERG. Western blot showed Kv4.3 increased hERG expression by Hsp70. hERG and Kv4.3 co-localized and co-immunoprecipitated in cultured 293 T cells, indicating physical interactions between hERG and Kv4.3 proteins in vitro. In addition, Hsp70 interacted with hERG and Kv4.3 respectively, and formed complexes with hERG and Kv4.3. The α subunit of Ito Kv4.3 can interact with and modify the localization of the α subunit of IKr hERG, thus providing potentially novel insights into the molecular mechanism of the malignant ventricular arrhythmia in heart failure.
Collapse
|
20
|
Misaka T, Murakawa T, Nishida K, Omori Y, Taneike M, Omiya S, Molenaar C, Uno Y, Yamaguchi O, Takeda J, Shah AM, Otsu K. FKBP8 protects the heart from hemodynamic stress by preventing the accumulation of misfolded proteins and endoplasmic reticulum-associated apoptosis in mice. J Mol Cell Cardiol 2017; 114:93-104. [PMID: 29129702 PMCID: PMC5807029 DOI: 10.1016/j.yjmcc.2017.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
Protein quality control in cardiomyocytes is crucial to maintain cellular homeostasis. The accumulation of damaged organelles, such as mitochondria and misfolded proteins in the heart is associated with heart failure. During the process to identify novel mitochondria-specific autophagy (mitophagy) receptors, we found FK506-binding protein 8 (FKBP8), also known as FKBP38, shares similar structural characteristics with a yeast mitophagy receptor, autophagy-related 32 protein. However, knockdown of FKBP8 had no effect on mitophagy in HEK293 cells or H9c2 myocytes. Since the role of FKBP8 in the heart has not been fully elucidated, the aim of this study is to determine the functional role of FKBP8 in the heart. Cardiac-specific FKBP8-deficient (Fkbp8-/-) mice were generated. Fkbp8-/- mice showed no cardiac phenotypes under baseline conditions. The Fkbp8-/- and control wild type littermates (Fkbp8+/+) mice were subjected to pressure overload by means of transverse aortic constriction (TAC). Fkbp8-/- mice showed left ventricular dysfunction and chamber dilatation with lung congestion 1week after TAC. The number of apoptotic cardiomyocytes was dramatically elevated in TAC-operated Fkbp8-/- hearts, accompanied with an increase in protein levels of cleaved caspase-12 and endoplasmic reticulum (ER) stress markers. Caspase-12 inhibition resulted in the attenuation of hydrogen peroxide-induced apoptotic cell death in FKBP8 knockdown H9c2 myocytes. Immunocytological and immunoprecipitation analyses indicate that FKBP8 is localized to the ER and mitochondria in the isolated cardiomyocytes, interacting with heat shock protein 90. Furthermore, there was accumulation of misfolded protein aggregates in FKBP8 knockdown H9c2 myocytes and electron dense deposits in perinuclear region in TAC-operated Fkbp8-/- hearts. The data suggest that FKBP8 plays a protective role against hemodynamic stress in the heart mediated via inhibition of the accumulation of misfolded proteins and ER-associated apoptosis.
Collapse
Affiliation(s)
- Tomofumi Misaka
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Tomokazu Murakawa
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Kazuhiko Nishida
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Yosuke Omori
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Manabu Taneike
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Shigemiki Omiya
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Chris Molenaar
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Yoshihiro Uno
- Developmental Biology, Laboratory Animal Science, The Institute of Experimental Animal Sciences, Osaka University Medical School, Suita 565-0871, Japan
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Junji Takeda
- Department of Genome Biology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Ajay M Shah
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK.
| |
Collapse
|
21
|
Li K, Jiang Q, Bai X, Yang YF, Ruan MY, Cai SQ. Tetrameric Assembly of K + Channels Requires ER-Located Chaperone Proteins. Mol Cell 2017; 65:52-65. [DOI: 10.1016/j.molcel.2016.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/02/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
|
22
|
Liu L, Tian J, Lu C, Chen X, Fu Y, Xu B, Zhu C, Sun Y, Zhang Y, Zhao Y, Li Y. Electrophysiological Characteristics of the LQT2 Syndrome Mutation KCNH2-G572S and Regulation by Accessory Protein KCNE2. Front Physiol 2016; 7:650. [PMID: 28082916 PMCID: PMC5187237 DOI: 10.3389/fphys.2016.00650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023] Open
Abstract
Mutations in hERG cause long QT syndrome type 2 which is characterized by a prolonged QT interval on electrocardiogram and predisposition to life-threatening ventricular tachyarrhythmia, syncope, and sudden death. hERG-G572S induces trafficking defects of hERG channel protein from Golgi to the plasma membrane and results in a dominant negative suppression of hERG current density. As an accessory β subunit, KCNE2 promotes hERG migration from Golgi to cellular membrane. In this study, we investigated the rescue effect of KCNE2 in a G572S mutation of hERG. Transfection was performed into HEK293 cells. Patch clamp technique, western blotting analyses and confocal microscopic examination were used. Results showed that KCNE2 had a significantly enhanced effect on G572S mutation current. The increase of current was largest at KCNH2:KCNE2 of 1:3. Confocal images showed co-expressing G572S and KCNE2 could cause a substantial up-regulated membrane protein (155 kDa) expression. Expression of membrane protein accumulated markedly with increasing ratio of KCNH2:KCNE2. G572S defective mutant could be restored by both KCNE2 and lower temperature (27°C), which suggested that the lower temperature could be the favorable circumstances for the rescue function of KCNE2. In this study, we successfully set up “the action potential” on the HEK 293 cells by genetically engineered to express Kir2.1, Nav1.5, and Kv11.1, wherein on reaching over an excitation threshold by current injection. The results suggested that KCNE2 could shorten action potential duration which was prolonged by G572S. These findings described electrophysiological characteristics of the LQT2 syndrome mutation KCNH2-G572S and regulation by accessory protein KCNE2, and provided a clue about LQT2 and relative rescue mechanism.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiology, General Hospital of People's Liberation ArmyBeijing, China; The Third Department of Internal Medicine, Beijing Municipal Corps Hospital of Chinese People's Armed Police ForceBeijing, China
| | - Jinwen Tian
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Caiyi Lu
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Xi Chen
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Yicheng Fu
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Bin Xu
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Chao Zhu
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Yanmei Sun
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Yu Zhang
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Ying Zhao
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| | - Yang Li
- Department of Cardiology, General Hospital of People's Liberation Army Beijing, China
| |
Collapse
|
23
|
Foo B, Williamson B, Young JC, Lukacs G, Shrier A. hERG quality control and the long QT syndrome. J Physiol 2016; 594:2469-81. [PMID: 26718903 DOI: 10.1113/jp270531] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
Long-QT syndrome type-2 (LQT2) is characterized by reduced functional expression of the human ether-à-go-go related (hERG) gene product, resulting in impaired cardiac repolarization and predisposition to fatal arrhythmia. Previous studies have implicated abnormal trafficking of misfolded hERG as the primary mechanism of LQT2, with misfolding being caused by mutations in the hERG gene (inherited) or drug treatment (acquired). More generally, environmental and metabolic stresses present a constant challenge to the folding of proteins, including hERG, and must be countered by robust protein quality control (QC) systems. Disposal of partially unfolded yet functional plasma membrane (PM) proteins by protein QC contributes to the loss-of-function phenotype in various conformational diseases including cystic fibrosis (CF) and long-QT syndrome type-2 (LQT2). The prevalent view has been that the loss of PM expression of hERG is attributed to biosynthetic block by endoplasmic reticulum (ER) QC pathways. However, there is a growing appreciation for protein QC pathways acting at post-ER cellular compartments, which may contribute to conformational disease pathogenesis. This article will provide a background on the structure and cellular trafficking of hERG as well as inherited and acquired LQT2. We will review previous work on hERG ER QC and introduce the more novel view that there is a significant peripheral QC at the PM and peripheral cellular compartments. Particular attention is drawn to the unique role of the peripheral QC system in acquired LQT2. Understanding the QC process and players may provide targets for therapeutic intervention in dealing with LQT2.
Collapse
Affiliation(s)
- Brian Foo
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Brittany Williamson
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Jason C Young
- Department of Biochemistry, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Gergely Lukacs
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| | - Alvin Shrier
- Department of Physiology, McGill University, Montréal, Québec, Canada, H3G 1Y6
| |
Collapse
|
24
|
A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin. Sci Rep 2016; 6:20301. [PMID: 26839186 PMCID: PMC4738285 DOI: 10.1038/srep20301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70. After demonstrating that the inhibitor modulates the Hsp70 function in the cell, we used the inhibitor to show for the first time that the stress-inducible chaperone Hsp70 functions as molecular component for entry of a bacterial protein toxin into mammalian cells. Pharmacological inhibition of Hsp70 protected cells from intoxication with the binary actin ADP-ribosylating iota toxin from Clostridium perfringens, the prototype of a family of enterotoxins from pathogenic Clostridia and inhibited translocation of its enzyme component across cell membranes into the cytosol. This finding offers a starting point for novel therapeutic strategies against certain bacterial toxins.
Collapse
|
25
|
Smith JL, Anderson CL, Burgess DE, Elayi CS, January CT, Delisle BP. Molecular pathogenesis of long QT syndrome type 2. J Arrhythm 2016; 32:373-380. [PMID: 27761161 PMCID: PMC5063260 DOI: 10.1016/j.joa.2015.11.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/21/2015] [Accepted: 11/17/2015] [Indexed: 12/26/2022] Open
Abstract
The molecular mechanisms underlying congenital long QT syndrome (LQTS) are now beginning to be understood. New insights into the etiology and therapeutic strategies are emerging from heterologous expression studies of LQTS-linked mutant proteins, as well as inducible pluripotent stem cell derived cardiomyocytes (iPSC-CMs) from LQTS patients. This review focuses on the major molecular mechanism that underlies LQTS type 2 (LQT2). LQT2 is caused by loss of function (LOF) mutations in KCNH2 (also known as the human Ether-à-go-go-Related Gene or hERG). Most LQT2-linked mutations are missense mutations and functional studies suggest that ~90% of them disrupt the intracellular transport (trafficking) of KCNH2-encoded Kv11.1 proteins to the cell membrane. Trafficking deficient LQT2 mutations disrupt Kv11.1 protein folding and misfolded Kv11.1 proteins are retained in the endoplasmic reticulum (ER) until they are degraded in the ER associated degradation pathway (ERAD). This review focuses on the quality control mechanisms in the ER that contribute to the folding and ERAD of Kv11.1 proteins; the mechanism for ER export of Kv11.1 proteins in the secretory pathway; different subclasses of trafficking deficient LQT2 mutations; and strategies being developed to mitigate or correct trafficking deficient LQT2-related phenotypes.
Collapse
Affiliation(s)
- Jennifer L Smith
- Department of Physiology, Cardiovascular Research Center, Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Corey L Anderson
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, WI, USA
| | - Don E Burgess
- Department of Physiology, Cardiovascular Research Center, Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Claude S Elayi
- Department of Cardiology, Gill Heart Institute, University of Kentucky, Lexington, KY, USA
| | - Craig T January
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, WI, USA
| | - Brian P Delisle
- Department of Physiology, Cardiovascular Research Center, Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
26
|
Anneken L, Baumann S, Vigneault P, Biliczki P, Friedrich C, Xiao L, Girmatsion Z, Takac I, Brandes RP, Kissler S, Wiegratz I, Zumhagen S, Stallmeyer B, Hohnloser SH, Klingenheben T, Schulze-Bahr E, Nattel S, Ehrlich JR. Estradiol regulates human QT-interval: acceleration of cardiac repolarization by enhanced KCNH2 membrane trafficking. Eur Heart J 2015; 37:640-50. [PMID: 26271031 DOI: 10.1093/eurheartj/ehv371] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 07/15/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Modulation of cardiac repolarization by sexual hormones is controversial and hormonal effects on ion channels remain largely unknown. In the present translational study, we therefore assessed the relationship between QTc duration and gonadal hormones and studied underlying mechanisms. METHODS AND RESULTS We measured hormone levels and QTc intervals in women during clomiphene stimulation for infertility and women before, during, and after pregnancy. Three heterozygous LQT-2 patients (KCNH2-p.Arg752Pro missense mutation) and two unaffected family members additionally were studied during their menstrual cycles. A comprehensive cellular and molecular analysis was done to identify the mechanisms of hormonal QT-interval regulation. High estradiol levels, but neither progesterone nor estradiol/progesterone ratio, inversely correlated with QTc. Consistent with clinical data, in vitro estradiol stimulation (60 pmol/L, 48 h) enhanced IKCNH2. This increase was mediated by estradiol receptor-α-dependent promotion of KCNH2-channel trafficking to the cell membrane. To study the underlying mechanism, we focused on heat-shock proteins. The heat-shock protein-90 (Hsp90) inhibitor geldanamycin abolished estradiol-induced increase in IKCNH2. Geldanamycin had no effect on KCNH2 transcription or translation; nor did it affect expression of estradiol receptors and chaperones. Estradiol enhanced the physical interaction of KCNH2-channel subunits with heat-shock proteins and augmented ion-channel trafficking to the membrane. CONCLUSION Elevated estradiol levels were associated with shorter QTc intervals in healthy women and female LQT-2 patients. Estradiol acts on KCNH2 channels via enhanced estradiol-receptor-α-mediated Hsp90 interaction, augments membrane trafficking and thereby increases repolarizing current. These results provide mechanistic insights into hormonal control of human ventricular repolarization and open novel therapeutic avenues.
Collapse
Affiliation(s)
- Lars Anneken
- Universitätsklinikum, Goethe-Universität, Frankfurt, Germany Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Baumann
- Universitätsklinikum, Goethe-Universität, Frankfurt, Germany Universitätsklinikum Mannheim, Mannheim, Germany
| | - Patrick Vigneault
- Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Peter Biliczki
- Universitätsklinikum, Goethe-Universität, Frankfurt, Germany
| | - Corinna Friedrich
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Ling Xiao
- Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | | | - Ina Takac
- Cardiovascular Physiology, Goethe-Universität, Frankfurt, Germany
| | - Ralf P Brandes
- Cardiovascular Physiology, Goethe-Universität, Frankfurt, Germany
| | - Stefan Kissler
- Universitätsklinikum, Goethe-Universität, Frankfurt, Germany
| | - Inka Wiegratz
- Universitätsklinikum, Goethe-Universität, Frankfurt, Germany Kinderwunschpraxis am Goetheplatz, Frankfurt, Germany
| | - Sven Zumhagen
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Birgit Stallmeyer
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | | | - Thomas Klingenheben
- Universitätsklinikum, Goethe-Universität, Frankfurt, Germany Praxis für Kardiologie, Bonn, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Stanley Nattel
- Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Joachim R Ehrlich
- Universitätsklinikum, Goethe-Universität, Frankfurt, Germany Division of Cardiology, St. Josefs-Hospital, Wiesbaden, Germany
| |
Collapse
|
27
|
Zhang KP, Yang BF, Li BX. Translational toxicology and rescue strategies of the hERG channel dysfunction: biochemical and molecular mechanistic aspects. Acta Pharmacol Sin 2014; 35:1473-84. [PMID: 25418379 PMCID: PMC4261120 DOI: 10.1038/aps.2014.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/20/2014] [Indexed: 01/08/2023]
Abstract
The human ether-à-go-go related gene (hERG) potassium channel is an obligatory anti-target for drug development on account of its essential role in cardiac repolarization and its close association with arrhythmia. Diverse drugs have been removed from the market owing to their inhibitory activity on the hERG channel and their contribution to acquired long QT syndrome (LQTS). Moreover, mutations that cause hERG channel dysfunction may induce congenital LQTS. Recently, an increasing number of biochemical and molecular mechanisms underlying hERG-associated LQTS have been reported. In fact, numerous potential biochemical and molecular rescue strategies are hidden within the biogenesis and regulating network. So far, rescue strategies of hERG channel dysfunction and LQTS mainly include activators, blockers, and molecules that interfere with specific links and other mechanisms. The aim of this review is to discuss the rescue strategies based on hERG channel toxicology from the biochemical and molecular perspectives.
Collapse
Affiliation(s)
- Kai-ping Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| | - Bao-feng Yang
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| | - Bao-xin Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| |
Collapse
|
28
|
Schiene-Fischer C. Multidomain Peptidyl Prolyl cis/trans Isomerases. Biochim Biophys Acta Gen Subj 2014; 1850:2005-16. [PMID: 25445709 DOI: 10.1016/j.bbagen.2014.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Peptidyl prolyl cis/trans isomerases (PPIases) assist the folding and restructuring of client proteins by catalysis of the slow rotational motion of peptide bonds preceding a proline residue. Catalysis is performed by relatively small, distinct protein domains of 10 to 18kDa for all PPIase families. PPIases are involved in a wide variety of physiological and pathophysiological processes like signal transduction, cell differentiation, apoptosis as well as viral, bacterial and parasitic infection. SCOPE OF REVIEW There are multidomain PPIases consisting of one to up to four catalytic domains of the respective PPIase family supplemented by N- or C-terminal extensions. This review examines the biochemical and functional properties of the members of the PPIase class of enzymes which contain additional protein domains with defined biochemical functions. MAJOR CONCLUSIONS The versatile domain architecture of multidomain PPIases is important for the control of enzyme specificity and organelle-specific targeting, the establishment of molecular connections and hence the coordination of PPIase functions across the cellular network. GENERAL SIGNIFICANCE Accessory domains covalently linked to a PPIase domain supply an additional layer of control to the catalysis of prolyl isomerization in specific client proteins. Understanding these control mechanisms will provide new insights into the physiological mode of action of the multidomain PPIases and their ability to form therapeutic targets. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Cordelia Schiene-Fischer
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany.
| |
Collapse
|
29
|
Roder K, Werdich AA, Li W, Liu M, Kim TY, Organ-Darling LE, Moshal KS, Hwang JM, Lu Y, Choi BR, MacRae CA, Koren G. RING finger protein RNF207, a novel regulator of cardiac excitation. J Biol Chem 2014; 289:33730-40. [PMID: 25281747 DOI: 10.1074/jbc.m114.592295] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two recent studies (Newton-Cheh, C. et al. (2009) Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399-406 and Pfeufer, A. et al. (2009) Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41, 407-414) identified an association, with genome-wide significance, between a single nucleotide polymorphism within the gene encoding RING finger protein 207 (RNF207) and the QT interval. We sought to determine the role of RNF207 in cardiac electrophysiology. Morpholino knockdown of RNF207 in zebrafish embryos resulted in action potential duration prolongation, occasionally a 2:1 atrioventricular block, and slowing of conduction velocity. Conversely, neonatal rabbit cardiomyocytes infected with RNF207-expressing adenovirus exhibited shortened action potential duration. Using transfections of U-2 OS and HEK293 cells, Western blot analysis and immunocytochemistry data demonstrate that RNF207 and the human ether-a-go-go-related gene (HERG) potassium channel interact and colocalize. Furthermore, RNF207 overexpression significantly elevated total and membrane HERG protein and HERG-encoded current density by ∼30-50%, which was dependent on the intact N-terminal RING domain of RNF207. Finally, coexpression of RNF207 and HSP70 increased HERG expression compared with HSP70 alone. This effect was dependent on the C terminus of RNF207. Taken together, the evidence is strong that RNF207 is an important regulator of action potential duration, likely via effects on HERG trafficking and localization in a heat shock protein-dependent manner.
Collapse
Affiliation(s)
- Karim Roder
- From the Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903
| | - Andreas A Werdich
- the Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Weiyan Li
- From the Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903
| | - Man Liu
- From the Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903
| | - Tae Yun Kim
- From the Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903
| | - Louise E Organ-Darling
- the Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts 02481
| | - Karni S Moshal
- From the Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903
| | - Jung Min Hwang
- From the Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903
| | - Yichun Lu
- From the Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903
| | - Bum-Rak Choi
- From the Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903
| | - Calum A MacRae
- the Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Gideon Koren
- From the Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903,
| |
Collapse
|
30
|
Functional evolution of Erg potassium channel gating reveals an ancient origin for IKr. Proc Natl Acad Sci U S A 2014; 111:5712-7. [PMID: 24706772 DOI: 10.1073/pnas.1321716111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian Ether-a-go-go related gene (Erg) family voltage-gated K(+) channels possess an unusual gating phenotype that specializes them for a role in delayed repolarization. Mammalian Erg currents rectify during depolarization due to rapid, voltage-dependent inactivation, but rebound during repolarization due to a combination of rapid recovery from inactivation and slow deactivation. This is exemplified by the mammalian Erg1 channel, which is responsible for IKr, a current that repolarizes cardiac action potential plateaus. The Drosophila Erg channel does not inactivate and closes rapidly upon repolarization. The dramatically different properties observed in mammalian and Drosophila Erg homologs bring into question the evolutionary origins of distinct Erg K(+) channel functions. Erg channels are highly conserved in eumetazoans and first evolved in a common ancestor of the placozoans, cnidarians, and bilaterians. To address the ancestral function of Erg channels, we identified and characterized Erg channel paralogs in the sea anemone Nematostella vectensis. N. vectensis Erg1 (NvErg1) is highly conserved with respect to bilaterian homologs and shares the IKr-like gating phenotype with mammalian Erg channels. Thus, the IKr phenotype predates the divergence of cnidarians and bilaterians. NvErg4 and Caenorhabditis elegans Erg (unc-103) share the divergent Drosophila Erg gating phenotype. Phylogenetic and sequence analysis surprisingly indicates that this alternate gating phenotype arose independently in protosomes and cnidarians. Conversion from an ancestral IKr-like gating phenotype to a Drosophila Erg-like phenotype correlates with loss of the cytoplasmic Ether-a-go-go domain. This domain is required for slow deactivation in mammalian Erg1 channels, and thus its loss may partially explain the change in gating phenotype.
Collapse
|
31
|
Shirane-Kitsuji M, Nakayama KI. Mitochondria: FKBP38 and mitochondrial degradation. Int J Biochem Cell Biol 2014; 51:19-22. [PMID: 24657651 DOI: 10.1016/j.biocel.2014.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 12/30/2022]
Abstract
FK506-binding protein 38 (FKBP38) is a membrane chaperone that is localized predominantly to mitochondria and contains a COOH-terminal tail anchor. FKBP38 also harbors an FKBP domain that confers peptidyl-prolyl cis-trans isomerase activity, but it differs from other FKBP family members in that this activity is dependent on the binding of Ca(2+)-calmodulin. FKBP38 inhibits apoptosis by recruiting the anti-apoptotic proteins Bcl-2 and Bcl-xL to mitochondria. Mice deficient in FKBP38 die soon after birth manifesting a defect in neural tube closure that results in part from unrestrained apoptosis. We recently found that FKBP38 and Bcl-2 translocate from mitochondria to the endoplasmic reticulum during mitophagy, a form of autophagy responsible for the elimination of damaged mitochondria. FKBP38 and Bcl-2 thus escape the degradative fate of most mitochondrial proteins during mitophagy. This escape of FKBP38 is dependent on the low basicity of its COOH-terminal sequence and is essential for the suppression of apoptosis during mitophagy. FKBP38 thus plays a key role in the regulation of apoptosis under normal and pathological conditions.
Collapse
Affiliation(s)
- Michiko Shirane-Kitsuji
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
32
|
It Takes More Than Two to Tango: Regulation of Plant ABC Transporters. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-319-06511-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Wang Q, Hu W, Lei M, Wang Y, Yan B, Liu J, Zhang R, Jin Y. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress. PLoS One 2013; 8:e84984. [PMID: 24386440 PMCID: PMC3875566 DOI: 10.1371/journal.pone.0084984] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. RESULTS H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.
Collapse
Affiliation(s)
- Qi Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Weina Hu
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Mingming Lei
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Yong Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Bing Yan
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Jun Liu
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Ren Zhang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Yuanzhe Jin
- The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P. R. China
- * E-mail:
| |
Collapse
|
34
|
Apaja PM, Foo B, Okiyoneda T, Valinsky WC, Barriere H, Atanasiu R, Ficker E, Lukacs GL, Shrier A. Ubiquitination-dependent quality control of hERG K+ channel with acquired and inherited conformational defect at the plasma membrane. Mol Biol Cell 2013; 24:3787-804. [PMID: 24152733 PMCID: PMC3861077 DOI: 10.1091/mbc.e13-07-0417] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane trafficking in concert with the peripheral quality control machinery plays a critical role in preserving plasma membrane (PM) protein homeostasis. Unfortunately, the peripheral quality control may also dispose of partially or transiently unfolded polypeptides and thereby contribute to the loss-of-expression phenotype of conformational diseases. Defective functional PM expression of the human ether-a-go-go-related gene (hERG) K(+) channel leads to the prolongation of the ventricular action potential that causes long QT syndrome 2 (LQT2), with increased propensity for arrhythmia and sudden cardiac arrest. LQT2 syndrome is attributed to channel biosynthetic processing defects due to mutation, drug-induced misfolding, or direct channel blockade. Here we provide evidence that a peripheral quality control mechanism can contribute to development of the LQT2 syndrome. We show that PM hERG structural and metabolic stability is compromised by the reduction of extracellular or intracellular K(+) concentration. Cardiac glycoside-induced intracellular K(+) depletion conformationally impairs the complex-glycosylated channel, which provokes chaperone- and C-terminal Hsp70-interacting protein-dependent polyubiquitination, accelerated internalization, and endosomal sorting complex required for transport-dependent lysosomal degradation. A similar mechanism contributes to the down-regulation of PM hERG harboring LQT2 missense mutations, with incomplete secretion defect. These results suggest that PM quality control plays a determining role in the loss-of-expression phenotype of hERG in certain hereditary and acquired LTQ2 syndromes.
Collapse
Affiliation(s)
- Pirjo M Apaja
- Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3E 1Y6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang YJ, Han DY, Tabib T, Yates JR, Mu TW. Identification of GABA(C) receptor protein homeostasis network components from three tandem mass spectrometry proteomics approaches. J Proteome Res 2013; 12:5570-86. [PMID: 24079818 DOI: 10.1021/pr400535z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
γ-Amino butyric acid type C (GABA(C)) receptors inhibit neuronal firing primarily in retina. Maintenance of GABA(C) receptor protein homeostasis in cells is essential for its function. However, a systematic study of GABA(C) receptor protein homeostasis (proteostasis) network components is absent. Here coimmunoprecipitation of human GABA(C)-ρ1-receptor complexes was performed in HEK293 cells overexpressing ρ1 receptors. To enhance the coverage and reliability of identified proteins, immunoisolated ρ1-receptor complexes were subjected to three tandem mass spectrometry (MS)-based proteomic analyses, namely, gel-based tandem MS (GeLC-MS/MS), solution-based tandem MS (SoLC-MS/MS), and multidimensional protein identification technology (MudPIT). From the 107 identified proteins, we assembled GABA(C)-ρ1-receptor proteostasis network components, including proteins with protein folding, degradation, and trafficking functions. We studied representative individual ρ1-receptor-interacting proteins, including calnexin, a lectin chaperone that facilitates glycoprotein folding, and LMAN1, a glycoprotein trafficking receptor, and global effectors that regulate protein folding in cells based on bioinformatics analysis, including HSF1, a master regulator of the heat shock response, and XBP1, a key transcription factor of the unfolded protein response. Manipulating selected GABA(C) receptor proteostasis network components is a promising strategy to regulate GABA(C) receptor folding, trafficking, degradation and thus function to ameliorate related retinal diseases.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Center for Proteomics and Bioinformatics and Department of Epidemiology and Biostatistics and ‡Department of Physiology and Biophysics, Case Western Reserve University School of Medicine , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | | | | | | | |
Collapse
|
36
|
Hsp90-binding immunophilins as a potential new platform for drug treatment. Future Med Chem 2013; 5:591-607. [PMID: 23573975 DOI: 10.4155/fmc.13.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immunophilins are proteins that contain a PPIase domain as a family signature. Low-molecular-weight immunophilins were first described associated to immunosuppressive action and protein folding. Recent studies of other members of the family have led to the identification of their participation in basic processes such as protein-protein interactions, signal transduction cascades, cell differentiation, cell cycle progression, metabolic activity, apoptosis mechanisms, microorganisms infection, cancer, neurotrophism and neuroprotection, among several other physiological and pathophysiological processes. Due to all these emerging features, the development of specific ligands for immunophilins appears to have promising perspectives, in particular in the fields of cancer biology and neuroregeneration fields. We review the emerging role of immunophilins in protein transport, transcription regulation, malignancies development and neurotrophic action, in addition to a number of biological properties that transform these proteins in potential targets for novel therapeutic strategies.
Collapse
|
37
|
Iwai C, Li P, Kurata Y, Hoshikawa Y, Morikawa K, Maharani N, Higaki K, Sasano T, Notsu T, Ishido Y, Miake J, Yamamoto Y, Shirayoshi Y, Ninomiya H, Nakai A, Murata S, Yoshida A, Yamamoto K, Hiraoka M, Hisatome I. Hsp90 prevents interaction between CHIP and HERG proteins to facilitate maturation of wild-type and mutant HERG proteins. Cardiovasc Res 2013; 100:520-8. [PMID: 23963841 DOI: 10.1093/cvr/cvt200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS We examined the role of Hsp90 in expression and maturation of wild-type (WT) and mutant ether-a-go-go related gene (HERG) proteins by using Hsp90 inhibitors, geldanamycin (GA) and radicicol, and Hsp90 overexpression. METHODS AND RESULTS The proteins were expressed in HEK293 cells or collected from HL-1 mouse cardiomyocytes, and analysed by western blotting, immunoprecipitation, immunofluorescence, and whole-cell patch-clamp techniques. GA and radicicol suppressed maturation of HERG-FLAG proteins and increased their immature forms. Co-expression of Hsp90 counteracted the effects of Hsp90 inhibitors and suppressed ubiquitination of HERG proteins. Overexpressed Hsp90 also inhibited the binding of endogenous C-terminus of Hsp70-interacting protein (CHIP) to HERG-FLAG proteins. Hsp90-induced increase of functional HERG proteins was verified by their increased expression on the cell surface and enhanced HERG channel currents. CHIP overexpression decreased both mature and immature forms of HERG-FLAG proteins in cells treated with GA. Hsp90 facilitated maturation of endogenous ERG proteins, whereas CHIP decreased both forms of ERG proteins in HL-1 cells. Mutant HERG proteins harbouring disease-causing missense mutations were mainly in the immature form and had a higher binding capacity to CHIP than the WT; Hsp90 overexpression suppressed this association. Overexpressed Hsp90 increased the mature form of HERG(1122fs/147) proteins, reduced its ubiquitinated form, increased its immunoreactivity in the endoplasmic reticulum and on the plasma membrane, and increased the mutant-mediated membrane current. CHIP overexpression decreased the immature form of HERG(1122fs/147) proteins. CONCLUSION Enhancement of HERG protein expression through Hsp90 inhibition of CHIP binding might be a novel therapeutic strategy for long QT syndrome 2 caused by trafficking abnormalities of HERG proteins.
Collapse
Affiliation(s)
- Chisato Iwai
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science. Nishichou 86, Yonago 683, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Trafficking defects in PAS domain mutant Kv11.1 channels: roles of reduced domain stability and altered domain–domain interactions. Biochem J 2013; 454:69-77. [DOI: 10.1042/bj20130328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Loss of Kv11.1 potassium channel function is the underlying cause of pathology in long-QT syndrome type 2, one of the commonest causes of sudden cardiac death in the young. Previous studies have identified the cytosolic PAS (Per/Arnt/Sim) domain as a hotspot for mutations that cause Kv11.1 trafficking defects. To investigate the underlying basis of this observation, we have quantified the effect of mutants on domain folding as well as interactions between the PAS domain and the remainder of the channel. Apart from R56Q, all mutants impaired the thermostability of the isolated PAS domain. Six mutants, located in the vicinity of a hydrophobic patch on the PAS domain surface, also affected binding of the isolated PAS domain to an N-terminal truncated hERG (human ether-a-go-go-related gene) channel. Conversely, four other surface mutants (C64Y, T65P, A78P and I96T) and one buried mutant (L86R) did not prevent the isolated PAS domain binding to the truncated channels. Our results highlight a critical role for interactions between the PAS domain and the remainder of the channel in the hERG assembly and that mutants that affect PAS domain interactions with the remainder of the channel have a more severe trafficking defect than that caused by domain unfolding alone.
Collapse
|
39
|
Sroubek J, Krishnan Y, McDonald TV. Sequence and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency. FASEB J 2013; 27:3039-53. [PMID: 23608144 DOI: 10.1096/fj.12-227009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human ether-á-gogo-related gene (HERG) encodes a potassium channel that is highly susceptible to deleterious mutations resulting in susceptibility to fatal cardiac arrhythmias. Most mutations adversely affect HERG channel assembly and trafficking. Why the channel is so vulnerable to missense mutations is not well understood. Since nothing is known of how mRNA structural elements factor in channel processing, we synthesized a codon-modified HERG cDNA (HERG-CM) where the codons were synonymously changed to reduce GC content, secondary structure, and rare codon usage. HERG-CM produced typical IKr-like currents; however, channel synthesis and processing were markedly different. Translation efficiency was reduced for HERG-CM, as determined by heterologous expression, in vitro translation, and polysomal profiling. Trafficking efficiency to the cell surface was greatly enhanced, as assayed by immunofluorescence, subcellular fractionation, and surface labeling. Chimeras of HERG-NT/CM indicated that trafficking efficiency was largely dependent on 5' sequences, while translation efficiency involved multiple areas. These results suggest that HERG translation and trafficking rates are independently governed by noncoding information in various regions of the mRNA molecule. Noncoding information embedded within the mRNA may play a role in the pathogenesis of hereditary arrhythmia syndromes and could provide an avenue for targeted therapeutics.
Collapse
Affiliation(s)
- Jakub Sroubek
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | |
Collapse
|
40
|
Yang H, Richter GL, Wang X, Młodzińska E, Carraro N, Ma G, Jenness M, Chao DY, Peer WA, Murphy AS. Sterols and sphingolipids differentially function in trafficking of the Arabidopsis ABCB19 auxin transporter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:37-47. [PMID: 23279701 DOI: 10.1111/tpj.12103] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/06/2012] [Accepted: 12/12/2012] [Indexed: 05/21/2023]
Abstract
The Arabidopsis ATP-binding cassette B19 (ABCB19, P-glycoprotein19) transporter functions coordinately with ABCB1 and PIN1 to motivate long-distance transport of the phytohormone auxin from the shoot to root apex. ABCB19 exhibits a predominantly apolar plasma membrane (PM) localization and stabilizes PIN1 when the two proteins co-occur. Biochemical evidence associates ABCB19 and PIN1 with sterol- and sphingolipid-enriched PM fractions. Mutants deficient in structural sterols and sphingolipids exhibit similarity to abcb19 mutants. Sphingolipid-defective tsc10a mutants and, to a lesser extent, sterol-deficient cvp1 mutants phenocopy abcb19 mutants. Live imaging studies show that sterols function in trafficking of ABCB19 from the trans-Golgi network to the PM. Pharmacological or genetic sphingolipid depletion has an even greater impact on ABCB19 PM targeting and interferes with ABCB19 trafficking from the Golgi. Our results also show that sphingolipids function in trafficking associated with compartments marked by the VTI12 syntaxin, and that ABCB19 mediates PIN1 stability in sphingolipid-containing membranes. The TWD1/FKBP42 co-chaperone immunophilin is required for exit of ABCB19 from the ER, but ABCB19 interactions with sterols, sphingolipids and PIN1 are spatially distinct from FKBP42 activity at the ER. The accessibility of this system to direct live imaging and biochemical analysis makes it ideal for the modeling and analysis of sterol and sphingolipid regulation of ABCB/P-glycoprotein transporters.
Collapse
Affiliation(s)
- Haibing Yang
- Department of Horticulture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Matsa E, Dixon JE, Medway C, Georgiou O, Patel MJ, Morgan K, Kemp PJ, Staniforth A, Mellor I, Denning C. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. Eur Heart J 2013; 35:1078-87. [PMID: 23470493 PMCID: PMC3992427 DOI: 10.1093/eurheartj/eht067] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aims Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. Methods and results We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K+ currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). Conclusions These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart.
Collapse
Affiliation(s)
- Elena Matsa
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sampson HM, Lam H, Chen PC, Zhang D, Mottillo C, Mirza M, Qasim K, Shrier A, Shyng SL, Hanrahan JW, Thomas DY. Compounds that correct F508del-CFTR trafficking can also correct other protein trafficking diseases: an in vitro study using cell lines. Orphanet J Rare Dis 2013; 8:11. [PMID: 23316740 PMCID: PMC3558398 DOI: 10.1186/1750-1172-8-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/01/2013] [Indexed: 11/12/2022] Open
Abstract
Background Many genetic diseases are due to defects in protein trafficking where the mutant protein is recognized by the quality control systems, retained in the endoplasmic reticulum (ER), and degraded by the proteasome. In many cases, the mutant protein retains function if it can be trafficked to its proper cellular location. We have identified structurally diverse correctors that restore the trafficking and function of the most common mutation causing cystic fibrosis, F508del-CFTR. Most of these correctors do not act directly as ligands of CFTR, but indirectly on other pathways to promote folding and correction. We hypothesize that these proteostasis regulators may also correct other protein trafficking diseases. Methods To test our hypothesis, we used stable cell lines or transient transfection to express 2 well-studied trafficking disease mutations in each of 3 different proteins: the arginine-vasopressin receptor 2 (AVPR2, also known as V2R), the human ether-a-go-go-related gene (KCNH2, also known as hERG), and finally the sulfonylurea receptor 1 (ABCC8, also known as SUR1). We treated cells expressing these mutant proteins with 9 structurally diverse F508del-CFTR correctors that function through different cellular mechanisms and assessed whether correction occurred via immunoblotting and functional assays. Results were deemed significantly different from controls by a one-way ANOVA (p < 0.05). Results Here we show that F508del-CFTR correctors RDR1, KM60 and KM57 also correct some mutant alleles of other protein trafficking diseases. We also show that one corrector, the cardiac glycoside ouabain, was found to alter the glycosylation of all mutant alleles tested. Conclusions Correctors of F508del-CFTR trafficking might have broader applications to other protein trafficking diseases.
Collapse
Affiliation(s)
- Heidi M Sampson
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, McIntyre Medical Building, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Baaklini I, Wong MJH, Hantouche C, Patel Y, Shrier A, Young JC. The DNAJA2 substrate release mechanism is essential for chaperone-mediated folding. J Biol Chem 2012; 287:41939-54. [PMID: 23091061 DOI: 10.1074/jbc.m112.413278] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNAJA1 (DJA1/Hdj2) and DNAJA2 (DJA2) are the major J domain partners of human Hsp70/Hsc70 chaperones. Although they have overall similarity with the well characterized type I co-chaperones from yeast and bacteria, they are biologically distinct, and their functional mechanisms are poorly characterized. We identified DJA2-specific activities in luciferase folding and repression of human ether-a-go-go-related gene (HERG) trafficking that depended on its expression levels in cells. Mutations in different internal domains of DJA2 abolished these effects. Using purified proteins, we addressed the mechanistic defects. A mutant lacking the region between the zinc finger motifs (DJA2-Δm2) was able to bind substrate similar to wild type but was incapable of releasing substrate during its transfer to Hsc70. The equivalent mutation in DJA1 also abolished its substrate release. A DJA2 mutant (DJA-221), which had its C-terminal dimerization region replaced by that of DJA1, was inactive but retained its ability to release substrate. The release mechanism required the J domain and ATP hydrolysis by Hsc70, although the nucleotide dependence diverged between DJA2 and DJA1. Limited proteolysis suggested further conformational differences between the two wild-type co-chaperones and the mutants. Our results demonstrate an essential role of specific DJA domains in the folding mechanism of Hsc70.
Collapse
Affiliation(s)
- Imad Baaklini
- Department of Biochemistry, McGill University and Groupe de Recherche Axé sur la Structure des Protéines, Montreal, Quebec H3G 0B1, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
45
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
46
|
Usenovic M, Knight AL, Ray A, Wong V, Brown KR, Caldwell GA, Caldwell KA, Stagljar I, Krainc D. Identification of novel ATP13A2 interactors and their role in α-synuclein misfolding and toxicity. Hum Mol Genet 2012; 21:3785-94. [PMID: 22645275 DOI: 10.1093/hmg/dds206] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysosomes are responsible for degradation and recycling of bulky cell material, including accumulated misfolded proteins and dysfunctional organelles. Increasing evidence implicates lysosomal dysfunction in several neurodegenerative disorders, including Parkinson's disease and related synucleinopathies, which are characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies. Studies of lysosomal proteins linked to neurodegenerative disorders present an opportunity to uncover specific molecular mechanisms and pathways that contribute to neurodegeneration. Loss-of-function mutations in a lysosomal protein, ATP13A2 (PARK9), cause Kufor-Rakeb syndrome that is characterized by early-onset parkinsonism, pyramidal degeneration and dementia. While loss of ATP13A2 function plays a role in α-syn misfolding and toxicity, the normal function of ATP13A2 in the brain remains largely unknown. Here, we performed a screen to identify ATP13A2 interacting partners, as a first step toward elucidating its function. Utilizing a split-ubiquitin membrane yeast two-hybrid system that was developed to identify interacting partners of full-length integral membrane proteins, we identified 43 novel interactors that primarily implicate ATP13A2 in cellular processes such as endoplasmic reticulum (ER) translocation, ER-to-Golgi trafficking and vesicular transport and fusion. We showed that a subset of these interactors modified α-syn aggregation and α-syn-mediated degeneration of dopaminergic neurons in Caenorhabditis elegans, further suggesting that ATP13A2 and α-syn are functionally linked in neurodegeneration. These results implicate ATP13A2 in vesicular trafficking and provide a platform for further studies of ATP13A2 in neurodegeneration.
Collapse
Affiliation(s)
- Marija Usenovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Krishnan Y, Li Y, Zheng R, Kanda V, McDonald TV. Mechanisms underlying the protein-kinase mediated regulation of the HERG potassium channel synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1273-84. [PMID: 22613764 DOI: 10.1016/j.bbamcr.2012.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 12/11/2022]
Abstract
The HERG (human ether-a-go-go related gene) potassium channel aids in the repolarization of the cardiomyocyte membrane at the end of each action potential. We have previously shown that sustained protein kinase A or C (PKA and PKC) activity specifically enhances channel synthesis over the course of hours to days in heterologous expression and cardiac myocytes. The kinase-mediated augmentation of the channel is post-transcriptional and occurs near or at the endoplasmic reticulum. Here we report our further investigations into the mechanisms of kinase-mediated augmentation of HERG channel protein. We show that HERG channel phosphorylation alone is not sufficient for the PKA-dependent increase to occur. In vitro translation studies indicate that an additional factor is required for the process. Pharmacologic inhibitors suggest that the channel augmentation is not due to kinase-mediated alteration in proteasome or lysosome activity. PKA activation had no effect on stability of HERG mRNA and polyribosomal profiling showed that kinase activity did not elevate translation from low to high rates. Transcriptional inhibition results suggest that the additional cellular factor is a PKA-regulated protein. Together, these findings suggest that PKA-mediated augmentation of HERG abundance is more complex than previously appreciated involving enhancement of already active translation rates, phosphorylation of the channel protein and at least one other cyclic-AMP/PKA-responsive protein. Further exploration of molecular components of this regulatory pathway will be necessary to determine exact mechanism and the biomedical impact of this process in vivo.
Collapse
Affiliation(s)
- Yamini Krishnan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
48
|
Peterson LB, Eskew JD, Vielhauer GA, Blagg BSJ. The hERG channel is dependent upon the Hsp90α isoform for maturation and trafficking. Mol Pharm 2012; 9:1841-6. [PMID: 22554505 DOI: 10.1021/mp300138n] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heat shock protein 90 (Hsp90) has emerged as a promising therapeutic target for the treatment of cancer. Several Hsp90 inhibitors have entered clinical trials. However, some toxicological detriments have arisen, such as cardiotoxicity resulting from hERG inhibition following the administration of Hsp90 inhibitors. We sought to investigate this toxicity as hERG has been previously reported as a client protein that depends upon Hsp90 for its maturation and functional trafficking. In this study we show that hERG depends upon a single Hsp90 isoform. hERG preferentially co-immunoprecipitated with Hsp90α, and genetic knockdown of Hsp90α, but not Hsp90β, resulted in a trafficking-defective hERG channel. This study demonstrates the importance of delineating the isoform dependence of Hsp90 client proteins and provides rationale for the design of isoform-selective Hsp90 inhibitors that avoid detrimental effects.
Collapse
Affiliation(s)
- Laura B Peterson
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | | | | | | |
Collapse
|
49
|
Hutt DM, Roth DM, Chalfant MA, Youker RT, Matteson J, Brodsky JL, Balch WE. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability. J Biol Chem 2012; 287:21914-25. [PMID: 22474283 DOI: 10.1074/jbc.m112.339788] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Zak M, Bress A, Pfister M, Blin N. Temporal expression pattern of Fkbp8 in rodent cochlea. Cell Physiol Biochem 2011; 28:1023-30. [PMID: 22178952 DOI: 10.1159/000335789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND FKBP8 is a multifunctional protein involved in many distinct processes like formation of central nervous system, viral RNA replication and inhibition of apoptosis. Fkbp8 expression was reported in different tissues, various cell lines and malignancies, in the latter displaying changes during carcinogenesis. Loss of Fkbp8 leads to substantial neurodegenerations during regular mouse development, thus hearing onset in mice could also potentially depend on Fkbp8 expression. Since Fkbp8 is crucial for patterning of neuronal function, we studied its expression during maturation of the rodent auditory function. METHODS Fkbp8 gene expression in rodent cochlear samples was studied by RT-PCR, qPCR, and western blot. Localization of Fkbp8 transcripts and protein was analyzed by in-situ hybridization and immunohistochemistry. RESULTS Studies of auditory organ demonstrate that Fkbp8 gene activity is increasing just before hearing onset and gradually decreasing after onset of hearing. Western blot analysis suggests substantial levels of Fkbp8 protein before hearing onset, and slow degradation after onset of hearing. The Fkbp8 mRNA is localized in spiral ganglion of cochlea but its distribution changes over time to the stria vascularis, a finding supported by immunohistochemistry staining. Additionally, in pre-hearing time Fkbp8-specific signal was also observed in the tectorial membrane, whose α- and β-Tectorin components show similar time-dependent expression of mRNA as Fkbp8. CONCLUSION These results indicate a temporal shift in expression of Fkbp8 which correlates with cochlear maturation, strongly suggesting a contribution of Fkbp8 to the onset of the rodent hearing processes.
Collapse
Affiliation(s)
- Magdalena Zak
- University of Tübingen, Institute of Human Genetics, Tübingen, Germany.
| | | | | | | |
Collapse
|