1
|
Matsuzono K, Honda H, Mashiko T, Koide R, Sakashita E, Endo H, Kitamoto T, Fujimoto S. GPI-anchorless prion disease is sensitive to oxidative stress and shows potential for treatment with edaravone, based on iPS-derived neuron study. Cell Mol Life Sci 2025; 82:202. [PMID: 40372528 PMCID: PMC12081781 DOI: 10.1007/s00018-025-05698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Only a few reports have generated induced pluripotent stem cells from patients with prion diseases, making it important to conduct translational studies using cells derived from individuals with prion protein (PRNP) mutations. In this study, we established induced pluripotent stem cells from a patient with a glycosylphosphatidylinositol-anchorless PRNP mutation (Y162X), which leads to abnormal deposits of prion protein in various organs. While no abnormal intracellular prion protein deposits were observed in the neurons differentiated from PRNP Y162X induced pluripotent stem cells, extracellular PrP aggregates secretions were significantly increased, and these cells were significantly more sensitive to oxidative stress compared to control cells. Utilizing this PRNP Y162X iPSC-derived neuron model, we discovered that edaravone reduced the sensitivity of PRNP Y162X cells to oxidative stress. Following this finding, we treated a PRNP Y162X patient with edaravone for two years, which successfully suppressed indicators of disease progression. Our study demonstrates that the pathology of the glycosylphosphatidylinositol-anchorless PRNP mutation is associated with oxidative stress and highlights the potential of induced pluripotent stem cell technology in identifying novel treatments for rare prion diseases.
Collapse
Affiliation(s)
- Kosuke Matsuzono
- Division of Neurology, Department of Medicine, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Neuropathology Center, Department of Neurology, National Hospital Organization, Omuta National Hospital, Fukuoka, Japan
| | - Takafumi Mashiko
- Division of Neurology, Department of Medicine, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Reiji Koide
- Division of Neurology, Department of Medicine, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Eiji Sakashita
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Endo
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Tetsuyuki Kitamoto
- Division of CJD Science and Technology, Department of Neurological Science, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
2
|
Banik P, Ray K, Kamps J, Chen QY, Luesch H, Winklhofer KF, Tatzelt J. VCP/p97 mediates nuclear targeting of non-ER-imported prion protein to maintain proteostasis. Life Sci Alliance 2024; 7:e202302456. [PMID: 38570188 PMCID: PMC10992997 DOI: 10.26508/lsa.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.
Collapse
Affiliation(s)
- Papiya Banik
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Koustav Ray
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| |
Collapse
|
3
|
Limone A, Maggisano V, Sarnataro D, Bulotta S. Emerging roles of the cellular prion protein (PrP C) and 37/67 kDa laminin receptor (RPSA) interaction in cancer biology. Cell Mol Life Sci 2023; 80:207. [PMID: 37452879 PMCID: PMC10349719 DOI: 10.1007/s00018-023-04844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.
Collapse
Affiliation(s)
- Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| |
Collapse
|
4
|
Kim Y, Kim YC, Jeong BH. Novel Single Nucleotide Polymorphisms (SNPs) and Genetic Features of the Prion Protein Gene (PRNP) in Quail (Coturnix japonica). Front Vet Sci 2022; 9:870735. [PMID: 35692300 PMCID: PMC9174905 DOI: 10.3389/fvets.2022.870735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Prion diseases are fatal infectious diseases caused by conformational changes of a prion protein (PrPSc) derived from a normal prion protein (PrPC). Prion diseases have been reported in several mammalian hosts but not in any birds, including the most popular poultry species, of which chickens showed some resistance to experimental prion infection. To identify the genetic polymorphisms in the quail prion protein gene (PRNP), polymerase chain reaction and DNA sequencing were performed with gene-specific primers in 164 quails. Four in silico programs, including PROVEAN, PANTHER, SIFT, and AMYCO, were used to investigate the effect of non-synonymous single nucleotide polymorphisms (SNPs) on quail PrP. Furthermore, to investigate the genetic relationship of avian PrPs, phylogenetic analysis and multiple sequence alignments were performed using MEGA X program. Finally, the secondary and tertiary structures of avian PrPs were analyzed by SWISS-MODEL. We identified 33 novel SNPs in the quail PRNP gene, including three non-synonymous SNPs, c.56C>T (T19I), c.60C>T (V21I), and c.61G>A (A22S). Although V21I was predicted to have deleterious effects by SIFT, the substitutions of all three amino acids did not affect the amyloid propensity, 3D structure, or hydrogen bonds of quail PrP. Quail PrP showed a close evolutionary relationship and similar secondary and tertiary structures to chicken PrP compared to duck PrP. To our knowledge, this is the first report on the genetic and structural properties of the quail PRNP gene.
Collapse
Affiliation(s)
- Yoonhee Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Byung-Hoon Jeong
| |
Collapse
|
5
|
Shen P, Dang J, Wang Z, Zhang W, Yuan J, Lang Y, Ding M, Mitchell M, Kong Q, Feng J, Rozemuller AJM, Cui L, Petersen RB, Zou WQ. Characterization of Anchorless Human PrP With Q227X Stop Mutation Linked to Gerstmann-Sträussler-Scheinker Syndrome In Vivo and In Vitro. Mol Neurobiol 2020; 58:21-33. [PMID: 32889654 PMCID: PMC7695670 DOI: 10.1007/s12035-020-02098-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
Alteration in cellular prion protein (PrPC) localization on the cell surface through mediation of the glycosylphosphatidylinositol (GPI) anchor has been reported to dramatically affect the formation and infectivity of its pathological isoform (PrPSc). A patient with Gerstmann-Sträussler-Scheinker (GSS) syndrome was previously found to have a nonsense heterozygous PrP-Q227X mutation resulting in an anchorless PrP. However, the allelic origin of this anchorless PrPSc and cellular trafficking of PrPQ227X remain to be determined. Here, we show that PrPSc in the brain of this GSS patient is mainly composed of the mutant but not wild-type PrP (PrPWt), suggesting pathological PrPQ227X is incapable of recruiting PrPWt in vivo. This mutant anchorless protein, however, is able to recruit PrPWt from humanized transgenic mouse brain but not from autopsied human brain homogenates to produce a protease-resistant PrPSc-like form in vitro by protein misfolding cyclic amplification (PMCA). To further investigate the characteristics of this mutation, constructs expressing human PrPQ227X or PrPWt were transfected into neuroblastoma cells (M17). Fractionation of the M17 cells demonstrated that most PrPWt is recovered in the cell lysate fraction, while most of the mutant PrPQ227X is recovered in the medium fraction, consistent with the results obtained by immunofluorescence microscopy. Two-dimensional gel-electrophoresis and Western blotting showed that cellular PrPQ227X spots clustered at molecular weights of 22–25 kDa with an isoelectric point (pI) of 3.5–5.5, whereas protein spots from the medium are at 18–26 kDa with a pI of 7–10. Our findings suggest that the role of GPI anchor in prion propagation between the anchorless mutant PrP and wild-type PrP relies on the cellular distribution of the protein.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Johnny Dang
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Zerui Wang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Weiguanliu Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Jue Yuan
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Yue Lang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Mingxuan Ding
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Marcus Mitchell
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA
| | - Qingzhong Kong
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, USA
| | - Jiachun Feng
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Annemiek J M Rozemuller
- Dutch Surveillance Center for Prion Diseases, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| | - Robert B Petersen
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA. .,Foundation Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA.
| | - Wen-Quan Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, 2085 Adelbert Road, Cleveland, OH, USA. .,National Prion Disease Pathology Surveillance Center, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, USA. .,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
6
|
Bhattacharya A, Limone A, Napolitano F, Cerchia C, Parisi S, Minopoli G, Montuori N, Lavecchia A, Sarnataro D. APP Maturation and Intracellular Localization Are Controlled by a Specific Inhibitor of 37/67 kDa Laminin-1 Receptor in Neuronal Cells. Int J Mol Sci 2020; 21:ijms21051738. [PMID: 32143270 PMCID: PMC7084285 DOI: 10.3390/ijms21051738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is processed along both the nonamyloidogenic pathway preventing amyloid beta peptide (Aβ) production and the amyloidogenic pathway, generating Aβ, whose accumulation characterizes Alzheimer’s disease. Items of evidence report that the intracellular trafficking plays a key role in the generation of Aβ and that the 37/67 kDa LR (laminin receptor), acting as a receptor for Aβ, may mediate Aβ-pathogenicity. Moreover, findings indicating interaction between the receptor and the key enzymes involved in the amyloidogenic pathway suggest a strong link between 37/67 kDa LR and APP processing. We show herein that the specific 37/67 kDa LR inhibitor, NSC48478, is able to reversibly affect the maturation of APP in a pH-dependent manner, resulting in the partial accumulation of the immature APP isoforms (unglycosylated/acetylated forms) in the endoplasmic reticulum (ER) and in transferrin-positive recycling endosomes, indicating alteration of the APP intracellular trafficking. These effects reveal NSC48478 inhibitor as a novel small molecule to be tested in disease conditions, mediated by the 37/67 kDa LR and accompanied by inactivation of ERK1/2 (extracellular signal-regulated kinases) signalling and activation of Akt (serine/threonine protein kinase) with consequent inhibition of GSK3β.
Collapse
Affiliation(s)
- Antaripa Bhattacharya
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (F.N.); (N.M.)
| | - Carmen Cerchia
- Department of Pharmacy, “Drug Discovery Lab”, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.C.); (A.L.)
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Giuseppina Minopoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (F.N.); (N.M.)
| | - Antonio Lavecchia
- Department of Pharmacy, “Drug Discovery Lab”, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.C.); (A.L.)
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.L.); (S.P.); (G.M.)
- Correspondence:
| |
Collapse
|
7
|
D'Argenio V, Sarnataro D. Microbiome Influence in the Pathogenesis of Prion and Alzheimer's Diseases. Int J Mol Sci 2019; 20:E4704. [PMID: 31547531 PMCID: PMC6801937 DOI: 10.3390/ijms20194704] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022] Open
Abstract
Misfolded and abnormal β-sheets forms of wild-type proteins, such as cellular prion protein (PrPC) and amyloid beta (Aβ), are believed to be the vectors of neurodegenerative diseases, prion and Alzheimer's disease (AD), respectively. Increasing evidence highlights the "prion-like" seeding of protein aggregates as a mechanism for pathological spread in AD, tauopathy, as well as in other neurodegenerative diseases, such as Parkinson's. Mutations in both PrPC and Aβ precursor protein (APP), have been associated with the pathogenesis of these fatal disorders with clear evidence for their pathogenic significance. In addition, a critical role for the gut microbiota is emerging; indeed, as a consequence of gut-brain axis alterations, the gut microbiota has been involved in the regulation of Aβ production in AD and, through the microglial inflammation, in the amyloid fibril formation, in prion diseases. Here, we aim to review the role of microbiome ("the other human genome") alterations in AD and prion disease pathogenesis.
Collapse
Affiliation(s)
- Valeria D'Argenio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy.
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy.
| |
Collapse
|
8
|
Sarnataro D. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases. Int J Mol Sci 2018; 19:ijms19103081. [PMID: 30304819 PMCID: PMC6213118 DOI: 10.3390/ijms19103081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
The misfolding and aggregation of proteins is the neuropathological hallmark for numerous diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. It is believed that misfolded and abnormal β-sheets forms of wild-type proteins are the vectors of these diseases by acting as seeds for the aggregation of endogenous proteins. Cellular prion protein (PrPC) is a glycosyl-phosphatidyl-inositol (GPI) anchored glycoprotein that is able to misfold to a pathogenic isoform PrPSc, the causative agent of prion diseases which present as sporadic, dominantly inherited and transmissible infectious disorders. Increasing evidence highlights the importance of prion-like seeding as a mechanism for pathological spread in Alzheimer's disease and Tauopathy, as well as other neurodegenerative disorders. Here, we report the latest findings on the mechanisms controlling protein folding, focusing on the ER (Endoplasmic Reticulum) quality control of GPI-anchored proteins and describe the "prion-like" properties of amyloid-β and tau assemblies. Furthermore, we highlight the importance of pathogenic assemblies interaction with protein and lipid membrane components and their implications in both prion and Alzheimer's diseases.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, School of Medicine, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
9
|
Lebreton S, Zurzolo C, Paladino S. Organization of GPI-anchored proteins at the cell surface and its physiopathological relevance. Crit Rev Biochem Mol Biol 2018; 53:403-419. [PMID: 30040489 DOI: 10.1080/10409238.2018.1485627] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. The presence of both glycolipid anchor and protein portion confers them unique features. GPI-APs are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, neuritogenesis, and immune response. Likewise other plasma membrane proteins, the spatio-temporal organization of GPI-APs is critical for their biological activities in physiological conditions. In this review, we will summarize the latest findings on plasma membrane organization of GPI-APs and the mechanism of its regulation in different cell types. We will also examine the involvement of specific GPI-APs namely the prion protein PrPC, the Folate Receptor alpha and the urokinase plasminogen activator receptor in human diseases focusing on neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Stéphanie Lebreton
- a Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur , Paris , France
| | - Chiara Zurzolo
- a Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur , Paris , France
| | - Simona Paladino
- b Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II , Napoli , Italy.,c CEINGE Biotecnologie Avanzate , Napoli , Italy
| |
Collapse
|
10
|
Kim HJ, Roh IS, Park HC, Ahn SB, Suh TY, Park KJ, Kang HE, Sohn HJ. Establishment of a Madin-Darby bovine kidney cell line expressing anchorless bovine prion protein. J Vet Med Sci 2018; 80:909-912. [PMID: 29618668 PMCID: PMC6021889 DOI: 10.1292/jvms.17-0521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) performed using extensively purified
bacterially expressed bovine prion protein (PrP) shows decreased cross-reactivity. We
generated a transduced Madin–Darby bovine kidney (MDBK) cell line continuously expressing
glycosylphosphatidylinositol (GPI)-anchorless bovine PrP (designated as MDBK ∆GPI protein)
by using a lentiviral expression system. The present study also described the method for
purifying bovine PrP through sequential culturing without the need for complex
purification protocol. Our results showed that the purified bovine PrP could be used as an
immunogen for developing anti-PrP monoclonal antibodies. Together, our results suggest
that the new GPI-anchorless bovine PrP and its purification method can be used for
performing basic studies for employing a cell-based approach.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo 39660, Korea
| | - In-Soon Roh
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo 39660, Korea
| | - Hoo-Chang Park
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo 39660, Korea
| | - Su Bi Ahn
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo 39660, Korea
| | - Tae-Young Suh
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo 39660, Korea
| | - Kyung-Je Park
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo 39660, Korea
| | - Hae-Eun Kang
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo 39660, Korea
| | - Hyun-Joo Sohn
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo 39660, Korea
| |
Collapse
|
11
|
Abstract
Shadoo (Sho), a member of prion protein family, has been shown to prevent embryonic lethality in Prnp0/0 mice and to be reduced in the brains of rodents with terminal prion diseases. Sho can also affect PrP structural dynamics and can increase the prion conversion into its misfolded isoform (PrPSc), which is amyloidogenic and strictly related to expression, intracellular localization and association of PrPC to lipid rafts. We reasoned that if Sho possesses a natural tendency to convert to amyloid-like forms in vitro, it should be able to exhibit “prion-like” properties, such as PK-resistance and aggregation state, also in live cells. We tested this hypothesis, by different approaches in neuronal cells, finding that Sho shows folding properties partially dependent on lipid rafts integrity whose alteration, as well as proteasomal block, regulated generation of intermediate Sho isoforms and exacerbated its misfolding. Moreover, a 18 kDa isoform of Sho, likely bearing the signal peptide, was targeted to mitochondria by interacting with the molecular chaperone TRAP1 which, in turn controlled Sho dual targeting to ER or mitochondria. Our studies contribute to understand the role of molecular chaperones and of PrP-related folding intermediates in “prion-like” conversion.
Collapse
|
12
|
Majumder P, Chakrabarti O. Lysosomal Quality Control in Prion Diseases. Mol Neurobiol 2017; 55:2631-2644. [PMID: 28421536 DOI: 10.1007/s12035-017-0512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/04/2017] [Indexed: 11/28/2022]
Abstract
Prion diseases are transmissible, familial or sporadic. The prion protein (PrP), a normal cell surface glycoprotein, is ubiquitously expressed throughout the body. While loss of function of PrP does not elicit apparent phenotypes, generation of misfolded forms of the protein or its aberrant metabolic isoforms has been implicated in a number of neurodegenerative disorders such as scrapie, kuru, Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Sträussler-Scheinker and bovine spongiform encephalopathy. These diseases are all phenotypically characterised by spongiform vacuolation of the adult brain, hence collectively termed as late-onset spongiform neurodegeneration. Misfolded form of PrP (PrPSc) and one of its abnormal metabolic isoforms (the transmembrane CtmPrP) are known to be disease-causing agents that lead to progressive loss of structure or function of neurons culminating in neuronal death. The aberrant forms of PrP utilise and manipulate the various intracellular quality control mechanisms during pathogenesis of these diseases. Amongst these, the lysosomal quality control machinery emerges as one of the primary targets exploited by the disease-causing isoforms of PrP. The autophagosomal-lysosomal degradation pathway is adversely affected in multiple ways in prion diseases and may hence be regarded as an important modulator of neurodegeneration. Some of the ESCRT pathway proteins have also been shown to be involved in the manifestation of disease phenotype. This review discusses the significance of the lysosomal quality control pathway in affecting transmissible and familial types of prion diseases.
Collapse
Affiliation(s)
- Priyanka Majumder
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal, 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal, 700064, India.
| |
Collapse
|
13
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
14
|
Honda H, Matsuzono K, Fushimi S, Sato K, Suzuki SO, Abe K, Iwaki T. C-Terminal-Deleted Prion Protein Fragment Is a Major Accumulated Component of Systemic PrP Deposits in Hereditary Prion Disease With a 2-Bp (CT) Deletion in
PRNP
Codon 178. J Neuropathol Exp Neurol 2016; 75:1008-1019. [DOI: 10.1093/jnen/nlw077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
The 37/67 kDa laminin receptor (LR) inhibitor, NSC47924, affects 37/67 kDa LR cell surface localization and interaction with the cellular prion protein. Sci Rep 2016; 6:24457. [PMID: 27071549 PMCID: PMC4829897 DOI: 10.1038/srep24457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/22/2016] [Indexed: 12/17/2022] Open
Abstract
The 37/67 kDa laminin receptor (LR) is a non-integrin protein, which binds both laminin-1 of the extracellular matrix and prion proteins, that hold a central role in prion diseases. The 37/67 kDa LR has been identified as interactor for the prion protein (PrP(C)) and to be required for pathological PrP (PrP(Sc)) propagation in scrapie-infected neuronal cells, leading to the possibility that 37/67 kDa LR-PrP(C) interaction is related to the pathogenesis of prion diseases. A relationship between 37/67 kDa LR and PrP(C) in the presence of specific LR inhibitor compounds has not been investigated yet. We have characterized the trafficking of 37/67 kDa LR in both neuronal and non-neuronal cells, finding the receptor on the cell surface and nuclei, and identified the 67 kDa LR as the almost exclusive isoform interacting with PrP(C). Here, we show that the treatment with the 37/67 kDa LR inhibitor, NSC47924, affects both the direct 37/67 kDa LR-PrP(C) interaction in vitro and the formation of the immunocomplex in live cells, inducing a progressive internalization of 37/67 kDa LR and stabilization of PrP(C) on the cell surface. These data reveal NSC47924 as a useful tool to regulate PrP(C) and 37/67 kDa LR trafficking and degradation, representing a novel small molecule to be tested against prion diseases.
Collapse
|
16
|
Dong B, Moseley-Alldredge M, Schwieterman AA, Donelson CJ, McMurry JL, Hudson ML, Chen L. EFN-4 functions in LAD-2-mediated axon guidance in Caenorhabditis elegans. Development 2016; 143:1182-91. [PMID: 26903502 DOI: 10.1242/dev.128934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/12/2016] [Indexed: 11/20/2022]
Abstract
During development of the nervous system, growing axons rely on guidance molecules to direct axon pathfinding. A well-characterized family of guidance molecules are the membrane-associated ephrins, which together with their cognate Eph receptors, direct axon navigation in a contact-mediated fashion. InC. elegans, the ephrin-Eph signaling system is conserved and is best characterized for their roles in neuroblast migration during early embryogenesis. This study demonstrates a role for the C. elegans ephrin EFN-4 in axon guidance. We provide both genetic and biochemical evidence that is consistent with the C. elegans divergent L1 cell adhesion molecule LAD-2 acting as a non-canonical ephrin receptor to EFN-4 to promote axon guidance. We also show that EFN-4 probably functions as a diffusible factor because EFN-4 engineered to be soluble can promote LAD-2-mediated axon guidance. This study thus reveals a potential additional mechanism for ephrins in regulating axon guidance and expands the repertoire of receptors by which ephrins can signal.
Collapse
Affiliation(s)
- Bingyun Dong
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alicia A Schwieterman
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Cory J Donelson
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jonathan L McMurry
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Martin L Hudson
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Lihsia Chen
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Lee Y, Lee D, Choi I, Song Y, Kang MJ, Kang SW. Single octapeptide deletion selectively processes a pathogenic prion protein mutant on the cell surface. Biochem Biophys Res Commun 2016; 470:263-268. [PMID: 26774341 DOI: 10.1016/j.bbrc.2016.01.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/12/2016] [Indexed: 11/30/2022]
Abstract
The number of octapeptide repeats has been considered to correlate with clinical and pathogenic phenotypes of prion diseases resulting from aberrant metabolism of prion protein (PrP). However, it is still poorly understood how this motif affects PrP metabolism. Here, we discover homozygous single octapeptide repeat deletion mutation in the PRNP gene encoding PrP in HeLa cells. The level of PrP proves to be unaffected by this mutation alone, but selectively reduced by additional pathogenic mutations within internal hydrophobic region of PrP. The pattern and relative amount of newly synthesized A117V mutant is unaffected, whereas the mutant appears to be differentially distributed and processed on the cell surface by single octapeptide deletion. This study provides an insight into a novel mutant-specific metabolism of PrP on the cell surface.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Duri Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Ilho Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Youngsup Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine & Asan Institute of Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
18
|
The inhibition of functional expression of calcium channels by prion protein demonstrates competition with α2δ for GPI-anchoring pathways. Biochem J 2014; 458:365-74. [PMID: 24329154 PMCID: PMC3924758 DOI: 10.1042/bj20131405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been shown recently that PrP (prion protein) and the calcium channel auxiliary α2δ subunits interact in neurons and expression systems [Senatore, Colleoni, Verderio, Restelli, Morini, Condliffe, Bertani, Mantovani, Canovi, Micotti, Forloni, Dolphin, Matteoli, Gobbi and Chiesa (2012) Neuron 74, 300-313]. In the present study we examined whether there was an effect of PrP on calcium currents. We have shown that when PrP is co-expressed with calcium channels formed from CaV2.1/β and α2δ-1 or α2δ-2, there is a consistent decrease in calcium current density. This reduction was absent when a PrP construct was used lacking its GPI (glycosylphosphatidylinositol) anchor. We have reported previously that α2δ subunits are able to form GPI-anchored proteins [Davies, Kadurin, Alvarez-Laviada, Douglas, Nieto-Rostro, Bauer, Pratt and Dolphin (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 1654-1659] and show further evidence in the present paper. We have characterized recently a C-terminally truncated α2δ-1 construct, α2δ-1ΔC, and found that, despite loss of its membrane anchor, it still shows a partial ability to increase calcium currents [Kadurin, Alvarez-Laviada, Ng, Walker-Gray, D'Arco, Fadel, Pratt and Dolphin (2012) J. Biol. Chem. 1287, 33554-33566]. We now find that PrP does not inhibit CaV2.1/β currents formed with α2δ-1ΔC, rather than α2δ-1. It is possible that PrP and α2δ-1 compete for GPI-anchor intermediates or trafficking pathways, or that interaction between PrP and α2δ-1 requires association in cholesterol-rich membrane microdomains. Our additional finding that CaV2.1/β1b/α2δ-1 currents were inhibited by GPI-GFP, but not cytosolic GFP, indicates that competition for limited GPI-anchor intermediates or trafficking pathways may be involved in PrP suppression of α2δ subunit function.
Collapse
|
19
|
Zanusso G, Fiorini M, Ferrari S, Meade-White K, Barbieri I, Brocchi E, Ghetti B, Monaco S. Gerstmann-Sträussler-Scheinker disease and "anchorless prion protein" mice share prion conformational properties diverging from sporadic Creutzfeldt-Jakob disease. J Biol Chem 2014; 289:4870-81. [PMID: 24398683 DOI: 10.1074/jbc.m113.531335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of the GPI-anchor in prion disease pathogenesis is still a challenging issue. In vitro studies have shown that anchorless cellular prion protein (PrP(C)) undergoes aberrant post-translational processing and metabolism. Moreover, transgenic (Tg) mice overexpressing anchorless PrP(C) develop a spontaneous neurological disease accompanied with widespread brain PrP amyloid deposition, in the absence of spongiform changes. Generation of PrP forms lacking the GPI and PrP amyloidosis are striking features of human stop codon mutations in the PrP gene (PRNP), associated with PrP cerebral amyloid angiopathy (PrP-CAA) and Gerstmann-Sträussler-Scheinker (GSS) syndrome. More recently, the presence of anchorless PrP species has been also claimed in sporadic Creutzfeldt-Jakob disease (sCJD). Using a highly sensitive protein separation technique and taking advantage of reference maps of synthetic PrP peptides, we investigated brain tissues from scrapie-infected "anchorless PrP" Tg mice and wild type mice to determine the contribution of the GPI-anchor to the molecular mass and isoelectric point of PrP quasispecies under two-dimensional electrophoresis. We also assessed the conformational properties of anchorless and anchored prions under standard and inactivating conditions. These studies were extended to sCJD and GSS. At variance with GSS, characterization of PrP quasispecies in different sCJD subtypes ruled out the presence of anchorless prions. Moreover, under inactivating conditions, mice anchorless prions, but not sCJD prions, generated internal PrP fragments, cleaved at both N and C termini, similar to those found in PrP-CAA and GSS brain tissues. These findings show that anchorless PrP(Sc) generates GSS-like PrP fragments, and suggest a major role for unanchored PrP in amyloidogenesis.
Collapse
Affiliation(s)
- Gianluigi Zanusso
- From the Department of Neurological and Movement Sciences, University of Verona, Verona 37134, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
The α2δ subunits of voltage-gated calcium channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013. [DOI: 10.1016/j.bbamem.2012.11.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Abstract
The human cellular prion protein (PrP(C)) is a glycosylphosphatidylinositol (GPI) anchored membrane glycoprotein with two N-glycosylation sites at residues 181 and 197. This protein migrates in several bands by Western blot analysis (WB). Interestingly, PNGase F treatment of human brain homogenates prior to the WB, which is known to remove the N-glycosylations, unexpectedly gives rise to two dominant bands, which are now known as C-terminal (C1) and N-terminal (N1) fragments. This resembles the β-amyloid precursor protein (APP) in Alzheimer disease (AD), which can be physiologically processed by α-, β-, and γ-secretases. The processing of APP has been extensively studied, while the identity of the cellular proteases involved in the proteolysis of PrP(C) and their possible role in prion biology has remained limited and controversial. Nevertheless, there is a strong correlation between the neurotoxicity caused by prion proteins and the blockade of their normal proteolysis. For example, expression of non-cleavable PrP(C) mutants in transgenic mice generates neurotoxicity, even in the absence of infectious prions, suggesting that PrP(C) proteolysis is physiologically and pathologically important. As many mouse models of prion diseases have recently been developed and the knowledge about the proteases responsible for the PrP(C) proteolysis is accumulating, we examine the historical experimental evidence and highlight recent studies that shed new light on this issue.
Collapse
|
22
|
Kadurin I, Alvarez-Laviada A, Ng SFJ, Walker-Gray R, D'Arco M, Fadel MG, Pratt WS, Dolphin AC. Calcium currents are enhanced by α2δ-1 lacking its membrane anchor. J Biol Chem 2012; 287:33554-66. [PMID: 22869375 PMCID: PMC3460456 DOI: 10.1074/jbc.m112.378554] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The accessory α(2)δ subunits of voltage-gated calcium channels are membrane-anchored proteins, which are highly glycosylated, possess multiple disulfide bonds, and are post-translationally cleaved into α(2) and δ. All α(2)δ subunits have a C-terminal hydrophobic, potentially trans-membrane domain and were described as type I transmembrane proteins, but we found evidence that they can be glycosylphosphatidylinositol-anchored. To probe further the function of membrane anchoring in α(2)δ subunits, we have now examined the properties of α(2)δ-1 constructs truncated at their putative glycosylphosphatidylinositol anchor site, located before the C-terminal hydrophobic domain (α(2)δ-1ΔC-term). We find that the majority of α(2)δ-1ΔC-term is soluble and secreted into the medium, but unexpectedly, some of the protein remains associated with detergent-resistant membranes, also termed lipid rafts, and is extrinsically bound to the plasma membrane. Furthermore, heterologous co-expression of α(2)δ-1ΔC-term with Ca(V)2.1/β1b results in a substantial enhancement of the calcium channel currents, albeit less than that produced by wild-type α(2)δ-1. These results call into question the role of membrane anchoring of α(2)δ subunits for calcium current enhancement.
Collapse
Affiliation(s)
- Ivan Kadurin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mahal SP, Jablonski J, Suponitsky-Kroyter I, Oelschlegel AM, Herva ME, Oldstone M, Weissmann C. Propagation of RML prions in mice expressing PrP devoid of GPI anchor leads to formation of a novel, stable prion strain. PLoS Pathog 2012; 8:e1002746. [PMID: 22685404 PMCID: PMC3369955 DOI: 10.1371/journal.ppat.1002746] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/27/2012] [Indexed: 12/03/2022] Open
Abstract
PrP(C), a host protein which in prion-infected animals is converted to PrP(Sc), is linked to the cell membrane by a GPI anchor. Mice expressing PrP(C) without GPI anchor (tgGPI⁻ mice), are susceptible to prion infection but accumulate anchorless PrP(Sc) extra-, rather than intracellularly. We investigated whether tgGPI⁻ mice could faithfully propagate prion strains despite the deviant structure and location of anchorless PrP(Sc). We found that RML and ME7, but not 22L prions propagated in tgGPI⁻ brain developed novel cell tropisms, as determined by the Cell Panel Assay (CPA). Surprisingly, the levels of proteinase K-resistant PrP(Sc) (PrP(res)) in RML- or ME7-infected tgGPI⁻ brain were 25-50 times higher than in wild-type brain. When returned to wild-type brain, ME7 prions recovered their original properties, however RML prions had given rise to a novel prion strain, designated SFL, which remained unchanged even after three passages in wild-type mice. Because both RML PrP(Sc) and SFL PrP(Sc) are stably propagated in wild-type mice we propose that the two conformations are separated by a high activation energy barrier which is abrogated in tgGPI⁻ mice.
Collapse
Affiliation(s)
- Sukhvir Paul Mahal
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | - Joseph Jablonski
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | | | | | - Maria Eugenia Herva
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | - Michael Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Charles Weissmann
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
24
|
Alais S, Soto-Rifo R, Balter V, Gruffat H, Manet E, Schaeffer L, Darlix JL, Cimarelli A, Raposo G, Ohlmann T, Leblanc P. Functional mechanisms of the cellular prion protein (PrP(C)) associated anti-HIV-1 properties. Cell Mol Life Sci 2012; 69:1331-52. [PMID: 22076653 PMCID: PMC11114771 DOI: 10.1007/s00018-011-0879-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/15/2011] [Accepted: 10/24/2011] [Indexed: 12/22/2022]
Abstract
The cellular prion protein PrP(C)/CD230 is a GPI-anchor protein highly expressed in cells from the nervous and immune systems and well conserved among vertebrates. In the last decade, several studies suggested that PrP(C) displays antiviral properties by restricting the replication of different viruses, and in particular retroviruses such as murine leukemia virus (MuLV) and the human immunodeficiency virus type 1 (HIV-1). In this context, we previously showed that PrP(C) displays important similarities with the HIV-1 nucleocapsid protein and found that PrP(C) expression in a human cell line strongly reduced HIV-1 expression and virus production. Using different PrP(C) mutants, we report here that the anti-HIV-1 properties are mostly associated with the amino-terminal 24-KRPKP-28 basic domain. In agreement with its reported RNA chaperone activity, we found that PrP(C) binds to the viral genomic RNA of HIV-1 and negatively affects its translation. Using a combination of biochemical and cell imaging strategies, we found that PrP(C) colocalizes with the virus assembly machinery at the plasma membrane and at the virological synapse in infected T cells. Depletion of PrP(C) in infected T cells and microglial cells favors HIV-1 replication, confirming its negative impact on the HIV-1 life cycle.
Collapse
Affiliation(s)
- Sandrine Alais
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Ricardo Soto-Rifo
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Vincent Balter
- Université de Lyon, 69000 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- CNRS UMR 5276 “Laboratoire de Géologie de Lyon”, Lyon, France
| | - Henri Gruffat
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Evelyne Manet
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Laurent Schaeffer
- Université de Lyon, 69000 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) UMR5239 CNRS/ENS/Université de Lyon/HCL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Jean Luc Darlix
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Andrea Cimarelli
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Graça Raposo
- Structure and Membrane Compartments and PICT-IBiSA, Institut Curie, CNRS-UMR144, 12 Rue Lhomond, 75005 Paris, France
| | - Théophile Ohlmann
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Pascal Leblanc
- Université de Lyon, 69000 Lyon, France
- Human virology department, INSERM U758, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule (LBMC) UMR5239 CNRS/ENS/Université de Lyon/HCL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| |
Collapse
|
25
|
Linden R, Cordeiro Y, Lima LMTR. Allosteric function and dysfunction of the prion protein. Cell Mol Life Sci 2012; 69:1105-24. [PMID: 21984610 PMCID: PMC11114699 DOI: 10.1007/s00018-011-0847-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrP(C)), its conformational conversion, aggregation and precipitation. We recently proposed that PrP(C) serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrP(C), which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrP(C) and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrP(C), and that allosteric dysfunction of PrP(C) has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrP(C), as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS, Cidade Universitária, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
26
|
Hsp70 binds to PrPCin the process of PrPCrelease via exosomes from THP-1 monocytes. Cell Biol Int 2011; 35:553-8. [DOI: 10.1042/cbi20090391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Murdoch BM, Clawson ML, Laegreid WW, Stothard P, Settles M, McKay S, Prasad A, Wang Z, Moore SS, Williams JL. A 2cM genome-wide scan of European Holstein cattle affected by classical BSE. BMC Genet 2010; 11:20. [PMID: 20350325 PMCID: PMC2853485 DOI: 10.1186/1471-2156-11-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 03/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Polymorphisms that alter the prion protein of sheep or humans have been associated with variations in transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that non-synonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE disease susceptibility. However, two bovine PRNP insertion/deletion polymorphisms, one within the promoter region and the other in intron 1, have been associated with susceptibility to classical BSE. These associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. To test for associations with BSE susceptibility, we conducted a genome wide scan using a panel of 3,072 single nucleotide polymorphism (SNP) markers on 814 animals representing cases and control Holstein cattle from the United Kingdom BSE epidemic. Results Two sets of BSE affected Holstein cattle were analyzed in this study, one set with known family relationships and the second set of paired cases with controls. The family set comprises half-sibling progeny from six sires. The progeny from four of these sires had previously been scanned with microsatellite markers. The results obtained from the current analysis of the family set yielded both some supporting and new results compared with those obtained in the earlier study. The results revealed 27 SNPs representing 18 chromosomes associated with incidence of BSE disease. These results confirm a region previously reported on chromosome 20, and identify additional regions on chromosomes 2, 14, 16, 21 and 28. This study did not identify a significant association near the PRNP in the family sample set. The only association found in the PRNP region was in the case-control sample set and this was not significant after multiple test correction. The genome scan of the case-control animals did not identify any associations that passed a stringent genome-wide significance threshold. Conclusions Several regions of the genome are statistically associated with the incidence of classical BSE in European Holstein cattle. Further investigation of loci on chromosomes 2, 14, 16, 20, 21 and 28 will be required to uncover any biological significance underlying these marker associations.
Collapse
Affiliation(s)
- Brenda M Murdoch
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chesebro B, Race B, Meade-White K, Lacasse R, Race R, Klingeborn M, Striebel J, Dorward D, McGovern G, Jeffrey M. Fatal transmissible amyloid encephalopathy: a new type of prion disease associated with lack of prion protein membrane anchoring. PLoS Pathog 2010; 6:e1000800. [PMID: 20221436 PMCID: PMC2832701 DOI: 10.1371/journal.ppat.1000800] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 01/29/2010] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases of humans and animals characterized by gray matter spongiosis and accumulation of aggregated, misfolded, protease-resistant prion protein (PrPres). PrPres can be deposited in brain in an amyloid-form and/or non-amyloid form, and is derived from host-encoded protease-sensitive PrP (PrPsen), a protein normally anchored to the plasma membrane by glycosylphosphatidylinositol (GPI). Previously, using heterozygous transgenic mice expressing only anchorless PrP, we found that PrP anchoring to the cell membrane was required for typical clinical scrapie. However, in the present experiments, using homozygous transgenic mice expressing two-fold more anchorless PrP, scrapie infection induced a new fatal disease with unique clinical signs and altered neuropathology, compared to non-transgenic mice expressing only anchored PrP. Brain tissue of transgenic mice had high amounts of infectivity, and histopathology showed dense amyloid PrPres plaque deposits without gray matter spongiosis. In contrast, infected non-transgenic mice had diffuse non-amyloid PrPres deposits with significant gray matter spongiosis. Brain graft studies suggested that anchored PrPsen expression was required for gray matter spongiosis during prion infection. Furthermore, electron and light microscopic studies in infected transgenic mice demonstrated several pathogenic processes not seen in typical prion disease, including cerebral amyloid angiopathy and ultrastructural alterations in perivascular neuropil. These findings were similar to certain human familial prion diseases as well as to non-prion human neurodegenerative diseases, such as Alzheimer's disease. Prion diseases, also known as transmissible spongiform encephalopathies, are infectious fatal neurodegenerative diseases of humans and animals. A major feature of prion diseases is the refolding and aggregation of a normal host protein, prion protein (PrP), into a disease-associated form which may contribute to brain damage. In uninfected individuals, normal PrP is anchored to the outer cell membrane by a sugar-phosphate-lipid linker molecule. In the present report we show that prion infection of mice expressing PrP lacking the anchor can result in a new type of fatal neurodegenerative disease. This disease displays mechanisms of damage to brain cells and brain blood vessels found in Alzheimer's disease and in familial amyloid brain diseases. In contrast, the typical sponge-like brain damage seen in prion diseases was not observed. These results suggest that presence or absence of PrP membrane anchoring can influence the type of neurodegeneration seen after prion infection.
Collapse
Affiliation(s)
- Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jansen C, Parchi P, Capellari S, Vermeij AJ, Corrado P, Baas F, Strammiello R, van Gool WA, van Swieten JC, Rozemuller AJM. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP. Acta Neuropathol 2010; 119:189-97. [PMID: 19911184 PMCID: PMC2808512 DOI: 10.1007/s00401-009-0609-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/31/2009] [Accepted: 10/31/2009] [Indexed: 12/11/2022]
Abstract
Stop codon mutations in the gene encoding the prion protein (PRNP) are very rare and have thus far only been described in two patients with prion protein cerebral amyloid angiopathy (PrP-CAA). In this report, we describe the clinical, histopathological and pathological prion protein (PrP(Sc)) characteristics of two Dutch patients carrying novel adjacent stop codon mutations in the C-terminal part of PRNP, resulting in either case in hereditary prion protein amyloidoses, but with strikingly different clinicopathological phenotypes. The patient with the shortest disease duration (27 months) carried a Y226X mutation and showed PrP-CAA without any neurofibrillary lesions, whereas the patient with the longest disease duration (72 months) had a Q227X mutation and showed an unusual Gerstmann-Sträussler-Scheinker disease phenotype with numerous cerebral multicentric amyloid plaques and severe neurofibrillary lesions without PrP-CAA. Western blot analysis in the patient with the Q227X mutation demonstrated the presence of a 7 kDa unglycosylated PrP(Sc) fragment truncated at both the N- and C-terminal ends. Our observations expand the spectrum of clinicopathological phenotypes associated with PRNP mutations and show that a single tyrosine residue difference in the PrP C-terminus may significantly affect the site of amyloid deposition and the overall phenotypic expression of the prion disease. Furthermore, it confirms that the absence of the glycosylphosphatidylinositol anchor in PrP predisposes to amyloid plaque formation.
Collapse
Affiliation(s)
- Casper Jansen
- Dutch Surveillance Centre for Prion Diseases, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Singh A, Mohan ML, Isaac AO, Luo X, Petrak J, Vyoral D, Singh N. Prion protein modulates cellular iron uptake: a novel function with implications for prion disease pathogenesis. PLoS One 2009; 4:e4468. [PMID: 19212444 PMCID: PMC2637434 DOI: 10.1371/journal.pone.0004468] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 12/26/2008] [Indexed: 01/18/2023] Open
Abstract
Converging evidence leaves little doubt that a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich PrP-scrapie (PrPSc) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrPSc, nor the normal function of PrPC is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrPC mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrPC increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrPC on ferritin iron content is enhanced by stimulating PrPC endocytosis, and reversed by cross-linking PrPC on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP102L decreases ferritin iron content significantly relative to PrPC expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrPC nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrPC in cellular iron uptake and transport to ferritin, and dysfunction of PrPC as a significant contributing factor of brain iron imbalance in prion disorders.
Collapse
Affiliation(s)
- Ajay Singh
- The Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Maradumane L. Mohan
- The Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alfred Orina Isaac
- The Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiu Luo
- The Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jiri Petrak
- Department of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Daniel Vyoral
- Department of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Neena Singh
- The Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: .
| |
Collapse
|
31
|
Ashok A, Hegde RS. Retrotranslocation of prion proteins from the endoplasmic reticulum by preventing GPI signal transamidation. Mol Biol Cell 2008; 19:3463-76. [PMID: 18508914 DOI: 10.1091/mbc.e08-01-0087] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurodegeneration in diseases caused by altered metabolism of mammalian prion protein (PrP) can be averted by reducing PrP expression. To identify novel pathways for PrP down-regulation, we analyzed cells that had adapted to the negative selection pressure of stable overexpression of a disease-causing PrP mutant. A mutant cell line was isolated that selectively and quantitatively routes wild-type and various mutant PrPs for ER retrotranslocation and proteasomal degradation. Biochemical analyses of the mutant cells revealed that a defect in glycosylphosphatidylinositol (GPI) anchor synthesis leads to an unprocessed GPI-anchoring signal sequence that directs both ER retention and efficient retrotranslocation of PrP. An unprocessed GPI signal was sufficient to impart ER retention, but not retrotranslocation, to a heterologous protein, revealing an unexpected role for the mature domain in the metabolism of misprocessed GPI-anchored proteins. Our results provide new insights into the quality control pathways for unprocessed GPI-anchored proteins and identify transamidation of the GPI signal sequence as a step in PrP biosynthesis that is absolutely required for its surface expression. As each GPI signal sequence is unique, these results also identify signal recognition by the GPI-transamidase as a potential step for selective small molecule perturbation of PrP expression.
Collapse
Affiliation(s)
- Aarthi Ashok
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Kikuchi Y, Kakeya T, Nakajima O, Sakai A, Ikeda K, Yamaguchi N, Yamazaki T, Tanamoto KI, Matsuda H, Sawada JI, Takatori K. Hypoxia induces expression of a GPI-anchorless splice variant of the prion protein. FEBS J 2008; 275:2965-76. [PMID: 18445040 DOI: 10.1111/j.1742-4658.2008.06452.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human prion protein (PrP) is a glycoprotein with a glycosylphosphatidylinositol (GPI) anchor at its C-terminus. Here we report alternative splicing within exon 2 of the PrP gene (PRNP) in the human glioblastoma cell line T98G. The open reading frame of the alternatively spliced mRNA lacked the GPI anchor signal sequence and encoded a 230 amino acid polypeptide. Its product, GPI-anchorless PrP (GPI(-) PrPSV), was unglycosylated and soluble in non-ionic detergent, and was found in the cytosolic fraction. We also detected low levels of alternatively spliced mRNA in human brain and non-neuronal tissues. When long-term passaged T98G cells were placed in a low-oxygen environment, alternatively spliced mRNA expression increased and expression of normally spliced PrP mRNA decreased. These findings imply that oxygen tension regulates GPI(-) PrPSV expression in T98G cells.
Collapse
Affiliation(s)
- Yutaka Kikuchi
- Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schiff E, Campana V, Tivodar S, Lebreton S, Gousset K, Zurzolo C. Coexpression of wild-type and mutant prion proteins alters their cellular localization and partitioning into detergent-resistant membranes. Traffic 2008; 9:1101-15. [PMID: 18410485 DOI: 10.1111/j.1600-0854.2008.00746.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of diseases of infectious, sporadic and genetic origin, found in higher organisms and caused by the pathological form of the prion protein. The inheritable subgroup of TSEs is linked to insertional or point mutations in the prion gene prnp, which favour its misfolding and are passed on to offspring in an autosomal-dominant fashion. The large majority of patients with these diseases are heterozygous for the prnp gene, leading to the coexpression of the wild-type (wt) (PrP(C)) and the mutant forms (PrPmut) in the carriers of these mutations. To mimic this situation in vitro, we produced Fischer rat thyroid cells coexpressing PrPwt alongside mutant versions of mouse PrP including A117V, E200K and T182A relevant to the human TSE diseases Gestmann-Sträussler-Scheinker (GSS) disease and familial Creutzfeldt-Jakob disease (fCJD). We found that coexpression of mutant PrP with wt proteins does not affect the glycosylation pattern or the biochemical characteristics of either protein. However, FRET and co-immunoprecipitation experiments suggest an interaction occurring between the wt and mutant proteins. Furthermore, by comparing the intracellular localization and detergent-resistant membrane (DRM) association in single- and double-expressing clones, we found changes in the intracellular/surface ratio and an increased sequestration of both proteins in DRMs, a site believed to be involved in the pathological conversion (or protection thereof) of the prion protein. We, therefore, propose that the mutant forms alter the subcellular localization and the membrane environment of the wt protein in co-transfected cells. These effects may play a role in the development of these diseases.
Collapse
Affiliation(s)
- Edwin Schiff
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
34
|
The role of exosomes in the processing of proteins associated with neurodegenerative diseases. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:323-32. [DOI: 10.1007/s00249-007-0246-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/01/2007] [Accepted: 11/20/2007] [Indexed: 01/21/2023]
|