1
|
Li T, Lin S, Zhu Y, Ye D, Rong X, Wang L. Basic biology and roles of CEBPD in cardiovascular disease. Cell Death Discov 2025; 11:102. [PMID: 40087290 PMCID: PMC11909146 DOI: 10.1038/s41420-025-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/17/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD), as an evolutionarily conserved protein in mammals, belongs to the CEBP transcription factor family, which modulates many biological processes. The diversity of CEBPD functions partly depends on the cell type and cellular context. Aberrant CEBPD expression and activity are associated with multiple organ diseases, including cardiovascular diseases. In this review, we describe the basic molecular biology of CEBPD to understand its expression regulation, modifications, and functions. Here, we summarize the recent advances in genetically modified animals with CEBPD. Finally, we discuss the contribution of CEBPD to cardiovascular diseases and highlight the strategies for developing novel therapies targeting CEBPD.
Collapse
Affiliation(s)
- Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shaoling Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yingyin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Geng S, Lei Y, Snead ML. Minimal amelogenin domain for enamel formation. JOM (WARRENDALE, PA. : 1989) 2021; 73:1696-1704. [PMID: 34456537 PMCID: PMC8386916 DOI: 10.1007/s11837-021-04687-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/31/2021] [Indexed: 06/13/2023]
Abstract
Amelogenin is the most abundant matrix protein guiding hydroxyapatite formation in enamel, the durable bioceramic tissue that covers vertebrate teeth. Here, we sought to refine structure-function for an amelogenin domain based on in vitro data showing a 42 amino acid amelogenin-derived peptide (ADP7) mimicked formation of hydroxyapatite similar to that observed for the full-length mouse 180 amino acid protein. In mice, we used CRISPR-Cas9 to express only ADP7 by the native amelogenin promoter. Analysis revealed ADP7 messenger RNA expression in developing mouse teeth with the formation of a thin layer of enamel. In vivo, ADP7 peptide partially replaced the function of the full-length amelogenin protein and its several protein isoforms. Protein structure-function relationships identified through in vitro assays can be deployed in whole model animals using CRISPR-Cas9 to validate function of a minimal protein domain to be translated for clinical use as an enamel biomimetic.
Collapse
Affiliation(s)
- Shuhui Geng
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China, 201210
| | - Yaping Lei
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
- Biology and Biologic Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Malcolm L Snead
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
| |
Collapse
|
3
|
Nurbaeva MK, Eckstein M, Snead ML, Feske S, Lacruz RS. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes. J Dent Res 2015; 94:1471-7. [PMID: 26232387 DOI: 10.1177/0022034515598144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+ -EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+ -handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs.
Collapse
Affiliation(s)
- M K Nurbaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - M Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - M L Snead
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - S Feske
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - R S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
4
|
Snead ML. Biomineralization of a self-assembled-, soft-matrix precursor: Enamel. JOM (WARRENDALE, PA. : 1989) 2015; 67:788-795. [PMID: 26052186 PMCID: PMC4454482 DOI: 10.1007/s11837-015-1305-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Enamel is the bioceramic covering of teeth, a composite tissue composed of hierarchical organized hydroxyapatite crystallites fabricated by cells under physiologic pH and temperature. Enamel material properties resist wear and fracture to serve a lifetime of chewing. Understanding the cellular and molecular mechanisms for enamel formation may allow a biology-inspired approach to material fabrication based on self-assembling proteins that control form and function. Genetic understanding of human diseases expose insight from Nature's errors by exposing critical fabrication events that can be validated experimentally and duplicated in mice using genetic engineering to phenocopy the human disease so that it can be explored in detail. This approach led to assessment of amelogenin protein self-assembly which, when altered, disrupts fabrication of the soft enamel protein matrix. A misassembled protein matrix precursor results in loss of cell to matrix contacts essential to fabrication and mineralization.
Collapse
Affiliation(s)
- Malcolm L Snead
- Center for Craniofacial Molecular Biology Hermann Ostrow School of Dentistry of USC The University of Southern California 2250 Alcazar St., CSA Room 142, HSC Los Angeles, CA 90032
| |
Collapse
|
5
|
Babajko S, de La Dure-Molla M, Jedeon K, Berdal A. MSX2 in ameloblast cell fate and activity. Front Physiol 2015; 5:510. [PMID: 25601840 PMCID: PMC4283505 DOI: 10.3389/fphys.2014.00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022] Open
Abstract
While many effectors have been identified in enamel matrix and cells via genetic studies, physiological networks underlying their expression levels and thus the natural spectrum of enamel thickness and degree of mineralization are now just emerging. Several transcription factors are candidates for enamel gene expression regulation and thus the control of enamel quality. Some of these factors, such as MSX2, are mainly confined to the dental epithelium. MSX2 homeoprotein controls several stages of the ameloblast life cycle. This chapter introduces MSX2 and its target genes in the ameloblast and provides an overview of knowledge regarding its effects in vivo in transgenic mouse models. Currently available in vitro data on the role of MSX2 as a transcription factor and its links to other players in ameloblast gene regulation are considered. MSX2 modulations are relevant to the interplay between developmental, hormonal and environmental pathways and in vivo investigations, notably in the rodent incisor, have provided insight into dental physiology. Indeed, in vivo models are particularly promising for investigating enamel formation and MSX2 function in ameloblast cell fate. MSX2 may be central to the temporal-spatial restriction of enamel protein production by the dental epithelium and thus regulation of enamel quality (thickness and mineralization level) under physiological and pathological conditions. Studies on MSX2 show that amelogenesis is not an isolated process but is part of the more general physiology of coordinated dental-bone complex growth.
Collapse
Affiliation(s)
- Sylvie Babajko
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France
| | - Muriel de La Dure-Molla
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France ; Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild Paris, France
| | - Katia Jedeon
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France ; Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild Paris, France
| |
Collapse
|
6
|
Sarkar J, Simanian EJ, Tuggy SY, Bartlett JD, Snead ML, Sugiyama T, Paine ML. Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Front Physiol 2014; 5:277. [PMID: 25120490 PMCID: PMC4110967 DOI: 10.3389/fphys.2014.00277] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam, and Mmp20), while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4). Western blot analyses show that Amelx, Ambn, and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.
Collapse
Affiliation(s)
- Juni Sarkar
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - Emil J Simanian
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - Sarah Y Tuggy
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - John D Bartlett
- Department of Mineralized Tissue Biology, The Forsyth Institute Cambridge, MA, USA
| | - Malcolm L Snead
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - Toshihiro Sugiyama
- Department of Biochemistry, Akita University Graduate School of Medicine Hondo, Akita, Japan
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
7
|
Amm HM, Rollins DL, Ren C, Dong J, DeVilliers P, Rivera H, MacDougall M. Establishment and characterization of a primary calcifying epithelial odontogenic tumor cell population. J Oral Pathol Med 2013; 43:183-90. [PMID: 24118390 DOI: 10.1111/jop.12125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2013] [Indexed: 12/17/2022]
Abstract
UNLABELLED Calcifying epithelial odontogenic tumors (CEOTs) are rare neoplasms derived from dental tissue with the unique characteristic of calcifying amyloid-like material. OBJECTIVES To establish primary CEOT epithelial-derived cell populations, investigate the expression of enamel matrix proteins (EMPs), and identify potential ameloblastin (AMBN) and patched 1 (PTCH1) gene alterations. MATERIALS AND METHODS A 28-year-old patient with a lesion of the posterior maxilla, radiographically characterized by a radiolucency with well-defined borders containing mixed radiopacities, agreed to participate with informed consent. The patient's biopsy confirmed the diagnosis of CEOT, and a small representative tumor fragment was ascertained for cell culture. Explant cultures were established and used to establish primary cell populations. These were analyzed for morphology, cell proliferation, mineralization activity, expression of epithelial-associated markers (qRT-PCR and immunocytochemistry), and gene mutations of AMBN or PTCH1. DNA was extracted from tumor cells and gene coding and exon-intron boundaries overlapping fragments amplified. PCR products were bidirectional DNA sequenced and compared against reference sequence. RESULTS A CEOT cell population was established and proliferated in culture and could be maintained for several passages. Expression of EMPs, cytokeratin 14 and 17, and patched (PTCH1), as well as ALP activity, was detected. These cells also had the ability to mineralize, similar to the primary tumor. Two AMBN alterations were identified in the sample: c.1323G>A/A441A (rs7680880) and c.1344*+111delA. Two single-nucleotide polymorphisms were identified in the PTCH1 gene. CONCLUSIONS Our data support the establishment of a CEOT-derived cell population, which expresses known epithelial-associated proteins.
Collapse
Affiliation(s)
- Hope M Amm
- Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
The role of bioactive nanofibers in enamel regeneration mediated through integrin signals acting upon C/EBPα and c-Jun. Biomaterials 2013; 34:3303-14. [PMID: 23398885 DOI: 10.1016/j.biomaterials.2013.01.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 12/15/2022]
Abstract
Enamel formation involves highly orchestrated intracellular and extracellular events; following development, the tissue is unable to regenerate, making it a challenging target for tissue engineering. We previously demonstrated the ability to trigger enamel differentiation and regeneration in the embryonic mouse incisor using a self-assembling matrix that displayed the integrin-binding epitope RGDS (Arg-Gly-Asp-Ser). To further elucidate the intracellular signaling pathways responsible for this phenomenon, we explore here the coupling response of integrin receptors to the biomaterial and subsequent downstream gene expression profiles. We demonstrate that the artificial matrix activates focal adhesion kinase (FAK) to increase phosphorylation of both c-Jun N-terminal kinase (JNK) and its downstream transcription factor c-Jun (c-Jun). Inhibition of FAK blocked activation of the identified matrix-mediated pathways, while independent inhibition of JNK nearly abolished phosphorylated-c-Jun (p-c-Jun) and attenuated the pathways identified to promote enamel regeneration. Cognate binding sites in the amelogenin promoter were identified to be transcriptionally up-regulated in response to p-c-Jun. Furthermore, the artificial matrix induced gene expression as evidenced by an increased abundance of amelogenin, the main protein expressed during enamel formation, and the CCAAT enhancer binding protein alpha (C/EBPα), which is the known activator of amelogenin expression. Elucidating these cues not only provides guidelines for the design of synthetic regenerative strategies and opportunities to manipulate pathways to regulate enamel regeneration, but can provide insight into the molecular mechanisms involved in tissue formation.
Collapse
|
9
|
Lungova V, Buchtova M, Janeckova E, Tucker AS, Knopfova L, Smarda J, Matalova E. Localization of c-MYB in differentiated cells during postnatal molar and alveolar bone development. Eur J Oral Sci 2012; 120:495-504. [DOI: 10.1111/j.1600-0722.2012.01004.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Abigail S. Tucker
- Department of Craniofacial Development and Stem Cell Biology, and Department of Orthodontics; KCL; London; UK
| | - Lucia Knopfova
- Department of Experimental Biology; Faculty of Science; Masaryk University; Brno; Czech Republic
| | - Jan Smarda
- Department of Experimental Biology; Faculty of Science; Masaryk University; Brno; Czech Republic
| | | |
Collapse
|
10
|
Shi X, Metges CC, Seyfert HM. Interaction of C/EBP-beta and NF-Y factors constrains activity levels of the nutritionally controlled promoter IA expressing the acetyl-CoA carboxylase-alpha gene in cattle. BMC Mol Biol 2012; 13:21. [PMID: 22738246 PMCID: PMC3441787 DOI: 10.1186/1471-2199-13-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/16/2012] [Indexed: 11/10/2022] Open
Abstract
Background The enzyme acetyl-CoA carboxylase-alpha (ACC-α) is rate limiting for de novo fatty acid synthesis. Among the four promoters expressing the bovine gene, promoter IA (PIA) is dominantly active in lipogenic tissues. This promoter is in principal repressed but activated under favorable nutritional conditions. Previous analyses already coarsely delineated the repressive elements on the distal promoter but did not resolve the molecular nature of the repressor. Knowledge about the molecular functioning of this repressor is fundamental to understanding the nutrition mediated regulation of PIA activity. We analyzed here the molecular mechanism calibrating PIA activity. Results We finely mapped the repressor binding sites in reporter gene assays and demonstrate together with Electrophoretic Mobility Shift Assays that nuclear factor-Y (NF-Y) and CCAAT/enhancer binding protein-β (C/EBPβ) each separately repress PIA activity by binding to their cognate low affinity sites, located on distal elements of the promoter. Simultaneous binding of both factors results in strongest repression. Paradoxically, over expression of NFY factors, but also - and even more so - of C/EBPβ significantly activated the promoter when bound to high affinity sites on the proximal promoter. However, co-transfection experiments revealed that NF-Y may eventually diminish the strong stimulatory effect of C/EBPβ at the proximal PIA in a dose dependent fashion. We validated by chromatin immunoprecipitation, that NF-Y and C/EBP factors may physically interact. Conclusion The proximal promoter segment of PIA appears to be principally in an active state, since even minute concentrations of both, NF-Y and C/EBPβ factors can saturate the high affinity activator sites. Higher factor concentrations will saturate the low affinity repressive sites on the distal promoter resulting in reduced and calibrated promoter activity. Based on measurements of the mRNA concentrations of those factors in different tissues we propose that the interplay of both factors may set tissue-specific limits for PIA activity.
Collapse
Affiliation(s)
- Xuanming Shi
- Research Unit for Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | | | | |
Collapse
|
11
|
Huang Z, Kim J, Lacruz RS, Bringas P, Glogauer M, Bromage TG, Kaartinen VM, Snead ML. Epithelial-specific knockout of the Rac1 gene leads to enamel defects. Eur J Oral Sci 2012; 119 Suppl 1:168-76. [PMID: 22243243 DOI: 10.1111/j.1600-0722.2011.00904.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ras-related C3 botulinum toxin substrate 1 (Rac1) gene encodes a 21-kDa GTP-binding protein belonging to the RAS superfamily. RAS members play important roles in controlling focal adhesion complex formation and cytoskeleton contraction, activities with consequences for cell growth, adhesion, migration, and differentiation. To examine the role(s) played by RAC1 protein in cell-matrix interactions and enamel matrix biomineralization, we used the Cre/loxP binary recombination system to characterize the expression of enamel matrix proteins and enamel formation in Rac1 knockout mice (Rac1(-/-)). Mating between mice bearing the floxed Rac1 allele and mice bearing a cytokeratin 14-Cre transgene generated mice in which Rac1 was absent from epithelial organs. Enamel of the Rac1 conditional knockout mouse was characterized by light microscopy, backscattered electron imaging in the scanning electron microscope, microcomputed tomography, and histochemistry. Enamel matrix protein expression was analyzed by western blotting. Major findings showed that the Tomes' processes of Rac1(-/-) ameloblasts lose contact with the forming enamel matrix in unerupted teeth, the amounts of amelogenin and ameloblastin are reduced in Rac1(-/-) ameloblasts, and after eruption, the enamel from Rac1(-/-) mice displays severe structural defects with a complete loss of enamel. These results support an essential role for RAC1 in the dental epithelium involving cell-matrix interactions and matrix biomineralization.
Collapse
Affiliation(s)
- Zhan Huang
- The Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lacruz RS, Hacia JG, Bromage TG, Boyde A, Lei Y, Xu Y, Miller JD, Paine ML, Snead ML. The circadian clock modulates enamel development. J Biol Rhythms 2012; 27:237-45. [PMID: 22653892 PMCID: PMC3511783 DOI: 10.1177/0748730412442830] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fully mature enamel is about 98% mineral by weight. While mineral crystals appear very early during its formative phase, the newly secreted enamel is a soft gel-like matrix containing several enamel matrix proteins of which the most abundant is amelogenin (Amelx). Histological analysis of mineralized dental enamel reveals markings called cross-striations associated with daily increments of enamel formation, as evidenced by injections of labeling dyes at known time intervals. The daily incremental growth of enamel has led to the hypothesis that the circadian clock might be involved in the regulation of enamel development. To identify daily rhythms of clock genes and Amelx, we subjected murine ameloblast cells to serum synchronization to analyze the expression of the circadian transcription factors Per2 and Bmal1 by real-time PCR. Results indicate that these key genetic regulators of the circadian clock are expressed in synchronized murine ameloblast cell cultures and that their expression profile follows a circadian pattern with acrophase and bathyphase for both gene transcripts in antiphase. Immunohistological analysis confirms the protein expression of Bmal and Cry in enamel cells. Amelx expression in 2-day postnatal mouse molars dissected every 4 hours for a duration of 48 hours oscillated with an approximately 24-hour period, with a significant approximately 2-fold decrease in expression during the dark period compared to the light period. The expression of genes involved in bicarbonate production (Car2) and transport (Slc4a4), as well as in enamel matrix endocytosis (Lamp1), was greater during the dark period, indicating that ameloblasts express these proteins when Amelx expression is at the nadir. The human and mouse Amelx genes each contain a single nonconserved E-box element within 10 kb upstream of their respective transcription start sites. We also found that within 2 kb of the transcription start site of the human NFYA gene, which encodes a positive regulator of amelogenin, there is an E-box element that is conserved in rodents and other mammals. Moreover, we found that Nfya expression in serum-synchronized murine ameloblasts oscillated with a strong 24-hour rhythm. Taken together, our data support the hypothesis that the circadian clock temporally regulates enamel development.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Poché RA, Sharma R, Garcia MD, Wada AM, Nolte MJ, Udan RS, Paik JH, DePinho RA, Bartlett JD, Dickinson ME. Transcription factor FoxO1 is essential for enamel biomineralization. PLoS One 2012; 7:e30357. [PMID: 22291941 PMCID: PMC3265481 DOI: 10.1371/journal.pone.0030357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/14/2011] [Indexed: 01/10/2023] Open
Abstract
The Transforming growth factor β (Tgf-β) pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta.
Collapse
Affiliation(s)
- Ross A. Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ramaswamy Sharma
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Cambridge, Massachusetts, United States of America
| | - Monica D. Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aya M. Wada
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark J. Nolte
- Department of Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ryan S. Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ji-Hye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald A. DePinho
- Departments of Medical Oncology, Medicine, and Genetics, Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Bartlett
- Department of Cytokine Biology, Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Cambridge, Massachusetts, United States of America
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Simmer J, Papagerakis P, Smith C, Fisher D, Rountrey A, Zheng L, Hu JC. Regulation of dental enamel shape and hardness. J Dent Res 2010; 89:1024-38. [PMID: 20675598 PMCID: PMC3086535 DOI: 10.1177/0022034510375829] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal interactions guide tooth development through its early stages and establish the morphology of the dentin surface upon which enamel will be deposited. Starting with the onset of amelogenesis beneath the future cusp tips, the shape of the enamel layer covering the crown is determined by five growth parameters: the (1) appositional growth rate, (2) duration of appositional growth (at the cusp tip), (3) ameloblast extension rate, (4) duration of ameloblast extension, and (5) spreading rate of appositional termination. Appositional growth occurs at a mineralization front along the ameloblast distal membrane in which amorphous calcium phosphate (ACP) ribbons form and lengthen. The ACP ribbons convert into hydroxyapatite crystallites as the ribbons elongate. Appositional growth involves a secretory cycle that is reflected in a series of incremental lines. A potentially important function of enamel proteins is to ensure alignment of successive mineral increments on the tips of enamel ribbons deposited in the previous cycle, causing the crystallites to lengthen with each cycle. Enamel hardens in a maturation process that involves mineral deposition onto the sides of existing crystallites until they interlock with adjacent crystallites. Neutralization of acidity generated by hydroxyapatite formation is a key part of the mechanism. Here we review the growth parameters that determine the shape of the enamel crown as well as the mechanisms of enamel appositional growth and maturation.
Collapse
Affiliation(s)
- J.P. Simmer
- Department of Biologic and Materials Sciences
| | - P. Papagerakis
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, 1011 N. University, Ann Arbor, MI 48109-1078, USA
| | - C.E. Smith
- Department of Biologic and Materials Sciences
- Université de Montréal, Faculté de médecine dentaire, Pavillon Roger-Gaudry, Room A-221, 2900 Blvd. Édouard-Montpetit, Montréal, QC, Canada H3T 1J4, and McGill University, Faculty of Dentistry, Montreal QC H3A 2B2
| | - D.C. Fisher
- University of Michigan Museum of Paleontology, 1529 Ruthven, Ann Arbor MI 48109-1079, USA
| | - A.N. Rountrey
- University of Michigan Museum of Paleontology, 1529 Ruthven, Ann Arbor MI 48109-1079, USA
| | - L. Zheng
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, 1011 N. University, Ann Arbor, MI 48109-1078, USA
| | - J.C.-C. Hu
- Department of Biologic and Materials Sciences
| |
Collapse
|
15
|
Shi G, Zhang Z, Feng D, Xu Y, Lu Y, Wang J, Jiang J, Zhang Z, Li X, Ning G. Selection of reference genes for quantitative real-time reverse transcription-polymerase chain reaction in concanavalin A-induced hepatitis model. Anal Biochem 2010; 401:81-90. [DOI: 10.1016/j.ab.2010.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/04/2010] [Accepted: 02/06/2010] [Indexed: 11/16/2022]
|
16
|
Ravindran S, Song Y, George A. Development of three-dimensional biomimetic scaffold to study epithelial-mesenchymal interactions. Tissue Eng Part A 2010; 16:327-42. [PMID: 19712044 PMCID: PMC2806069 DOI: 10.1089/ten.tea.2009.0110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 08/24/2009] [Indexed: 01/09/2023] Open
Abstract
Epithelial-mesenchymal interactions play a key role in the development of tissues such as tooth, lungs, and kidneys. To successfully engineer or repair such living tissues it is necessary to first understand the complex cell-cell and cell-matrix interactions underlying organogenesis. To mimic an in vivo setting it is necessary to assemble a three-dimensional matrix that would facilitate cell-cell interaction leading to proliferation and cellular differentiation. In this study, we have developed an in vitro three-dimensional multilayered coculture system using type I collagen and chitosan blends as matrices, to study epithelial-mesenchymal interactions that occur during tooth morphogenesis. Results from this study showed that the matrix composition influenced the migration, proliferation, and differentiation properties of the epithelial and mesenchymal cells. Specifically, the system supported the migration and differentiation of the HAT-7 epithelial cells and mesenchymal-derived dental pulp stem cells. Results from the in vivo implantation study of the coculture system in mice demonstrated a similar cellular migration and differentiation pattern that corroborates well with the in vitro model. Interestingly, the biopolymer matrix also permitted neovascularization in vivo.
Collapse
Affiliation(s)
- Sriram Ravindran
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
17
|
Abstract
During tooth development, ectoderm-derived ameloblast cells create enamel by synthesizing a complex protein mixture serving to control cell to matrix interactions and the habit of hydroxyapatite crystallites. Using an in vitro cell and organ culture system, we studied the effect of artificial bioactive nanostructures on ameloblasts with the long-term goal of developing cell-based strategies for tooth regeneration. We used branched peptide amphiphile molecules containing the peptide motif Arg-Gly-Asp, or "RGD" (abbreviated BRGD-PA), known to self-assemble in physiologic environments into nanofibers that display on their surfaces high densities of this biological signal. Ameloblast-like cells (line LS8) and primary enamel organ epithelial (EOE) cells were cultured within PA hydrogels, and the PA was injected into the enamel organ epithelia of mouse embryonic incisors. The expression of amelogenin, ameloblastin, integrin alpha 5, and integrin alpha 6 was detected by quantitative real-time PCR and immunodetection techniques. We performed cell proliferation assay using BrdU labeling and a biomineralization assay using Alizarin red S staining with quantitative Ca(2+) measurements. In the cell culture model, ameloblast-like cells (LS8) and primary EOE cells responded to the BRGD-PA nanostructures with enhanced proliferation and greater amelogenin, ameloblastin, and integrin expression levels. At the site of injection of the BRGD-PA in the organ culture model, we observed EOE cell proliferation with differentiation into ameloblasts as evidenced by their expression of enamel specific proteins. Ultrastructural analysis showed the nanofibers within the forming extracellular matrix, in contact with the EOE cells engaged in enamel formation and regeneration. This study shows that BRGD-PA nanofibers present with enamel proteins participate in integrin-mediated cell binding to the matrix with delivery of instructive signals for enamel formation.
Collapse
|