1
|
Adnane M, Ahmed M, Chapwanya A. Advances in Molecular Biology and Immunology of Spermatozoa and Fertilization in Domestic Animals: Implications for Infertility and Assisted Reproduction. Curr Mol Med 2025; 25:167-186. [PMID: 39572916 DOI: 10.2174/0115665240306965240802075331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 04/11/2025]
Abstract
Unlocking the secrets of reproductive success in domestic animals requires a deep understanding of the molecular biology and immunology of spermatozoa, capacitation, fertilization, and conception. This review highlights the complex processes involved in spermatogenesis and sperm capacitation, including changes in membrane properties, signaling pathways, and the crucial acrosome reaction. The interaction with the zona pellucida in species-specific gamete recognition and binding is emphasized. The implications of fertilization defects for infertility and assisted reproduction are discussed, underscoring the challenges faced in breeding programs. The future directions for research in this field involve advancements in molecular techniques, understanding the immune regulation of spermatozoa, investigating environmental factors' impact, and integrating multi-omics approaches to enhance assisted reproduction techniques in domestic animals. This review contributes to our understanding of the intricate mechanisms underlying successful reproduction and provides insights into potential strategies for improving fertility outcomes in domestic animals.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret 14000, Algeria
| | - Moussa Ahmed
- Department of Animal Health, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret, 14000, Algeria
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
2
|
Dementieva NV, Dysin AP, Shcherbakov YS, Nikitkina EV, Musidray AA, Petrova AV, Mitrofanova OV, Plemyashov KV, Azovtseva AI, Griffin DK, Romanov MN. Risk of Sperm Disorders and Impaired Fertility in Frozen-Thawed Bull Semen: A Genome-Wide Association Study. Animals (Basel) 2024; 14:251. [PMID: 38254422 PMCID: PMC10812825 DOI: 10.3390/ani14020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cryopreservation is a widely used method of semen conservation in animal breeding programs. This process, however, can have a detrimental effect on sperm quality, especially in terms of its morphology. The resultant sperm disorders raise the risk of reduced sperm fertilizing ability, which poses a serious threat to the long-term efficacy of livestock reproduction and breeding. Understanding the genetic factors underlying these effects is critical for maintaining sperm quality during cryopreservation, and for animal fertility in general. In this regard, we performed a genome-wide association study to identify genomic regions associated with various cryopreservation sperm abnormalities in Holstein cattle, using single nucleotide polymorphism (SNP) markers via a high-density genotyping assay. Our analysis revealed a significant association of specific SNPs and candidate genes with absence of acrosomes, damaged cell necks and tails, as well as wrinkled acrosomes and decreased motility of cryopreserved sperm. As a result, we identified candidate genes such as POU6F2, LPCAT4, DPYD, SLC39A12 and CACNB2, as well as microRNAs (bta-mir-137 and bta-mir-2420) that may play a critical role in sperm morphology and disorders. These findings provide crucial information on the molecular mechanisms underlying acrosome integrity, motility, head abnormalities and damaged cell necks and tails of sperm after cryopreservation. Further studies with larger sample sizes, genome-wide coverage and functional validation are needed to explore causal variants in more detail, thereby elucidating the mechanisms mediating these effects. Overall, our results contribute to the understanding of genetic architecture in cryopreserved semen quality and disorders in bulls, laying the foundation for improved animal reproduction and breeding.
Collapse
Affiliation(s)
- Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Elena V. Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Artem A. Musidray
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Anna V. Petrova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Olga V. Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | - Kirill V. Plemyashov
- Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University of Veterinary Medicine”, 196084 St. Petersburg, Russia;
| | - Anastasiia I. Azovtseva
- Russian Research Institute of Farm Animal Genetics and Breeding—Branch of the L. K. Ernst Federal Research Centre for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia; (A.P.D.); (Y.S.S.); (E.V.N.); (A.A.M.); (A.V.P.); (O.V.M.); (A.I.A.)
| | | | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| |
Collapse
|
3
|
Tao M, Wan Y, Zheng X, Qian K, Merchant A, Xu B, Zhang Y, Zhou X, Wu Q. Tomato spotted wilt orthotospovirus shifts sex ratio toward males in the western flower thrips, Frankliniella occidentalis, by down-regulating a FSCB-like gene. PEST MANAGEMENT SCIENCE 2022; 78:5014-5023. [PMID: 36054039 DOI: 10.1002/ps.7125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/01/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plant viruses can facilitate their transmission by modulating the sex ratios of their insect vectors. Previously, we found that exposure to tomato spotted wilt orthotospovirus (TSWV) in the western flower thrips, Frankliniella occidentalis, led to a male-biased sex ratio in the offspring. TSWV, a generalist pathogen with a broad host range, is transmitted primarily by F. occidentalis in a circulative-propagative manner. Here, we integrated proteomic tools with RNAi to comprehensively investigate the genetic basis underlying the shift in vector sex ratio induced by the virus. RESULTS Proteomic analysis exhibited 104 differentially expressed proteins between F. occidentalis adult males with and without TSWV. The expression of the fiber sheath CABYR-binding-like (FSCB) protein, namely FoFSCB-like, a sperm-specific protein associated with sperm capacitation and motility, was decreased by 46%. The predicted FoFSCB-like protein includes 10 classic Pro-X-X-Pro motifs and 42 phosphorylation sites, which are key features for sperm capacitation. FoFSCB-like expression was gradually increased during the development and peaked at the pupal stage. After exposure to TSWV, FoFSCB-like expression was substantially down-regulated. Nanoparticle-mediated RNAi substantially suppressed FoFSCB-like expression and led to a significant male bias in the offspring. CONCLUSION These combined results suggest that down-regulation of FoFSCB-like in virus-exposed thrips leads to a male-biased sex ratio in the offspring. This study not only advances our understanding of virus-vector interactions, but also identifies a potential target for the genetic management of F. occidentalis, the primary vector of TSWV, by manipulating male fertility. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanghua Qian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Zhao Y, Yang L, Su G, Wei Z, Liu X, Song L, Hai C, Wu D, Hao Z, Wu Y, Zhang L, Bai C, Li G. Growth Traits and Sperm Proteomics Analyses of Myostatin Gene-Edited Chinese Yellow Cattle. Life (Basel) 2022; 12:627. [PMID: 35629295 PMCID: PMC9147296 DOI: 10.3390/life12050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Chinese Yellow Cattle, an ancient and domesticated breed for draft service, provide unique animal genetic resources with excellent genetic features, including crude feed tolerance, good stress resistance, strong adaptability, and tender meat quality; however, their production performance and meat yield are significantly inferior. Herein, the myostatin gene (MSTN), a negative regulator of skeletal muscle development, was knocked out by CRISPR/Cas9 technology. Eight MSTN gene-edited bull calves (MT) were born, and six of them are well-developed. Compared with the control cattle (WT), the growth trait indexes of MT cattle were generally increased, and the hindquarters especially were significantly improved. The biochemical indexes and the semen characteristics demonstrated that MT bulls were healthy and fertile. Consistent with our conjecture, the wobble and beating of MT bull spermatozoa were significantly higher than that of WT. Nine sperm motility-related proteins and nineteen mitochondrial-related proteins were identified by up-regulation in MT bull spermatozoa using FLQ proteomic technique and act to govern sperm flagellum assembly, organization, and beating and provide sufficient energy for sperm motility. The current study confirmed that the MSTN gene-edited Chinese Yellow cattle have improved growth traits and normal fertility, which can be used for beef cattle production and breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (Y.Z.); (L.Y.); (G.S.); (Z.W.); (X.L.); (L.S.); (C.H.); (D.W.); (Z.H.); (Y.W.); (L.Z.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China; (Y.Z.); (L.Y.); (G.S.); (Z.W.); (X.L.); (L.S.); (C.H.); (D.W.); (Z.H.); (Y.W.); (L.Z.)
| |
Collapse
|
5
|
Hunnicutt KE, Good JM, Larson EL. Unraveling patterns of disrupted gene expression across a complex tissue. Evolution 2022; 76:275-291. [PMID: 34882778 PMCID: PMC9355168 DOI: 10.1111/evo.14420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023]
Abstract
Whole tissue RNASeq is the standard approach for studying gene expression divergence in evolutionary biology and provides a snapshot of the comprehensive transcriptome for a given tissue. However, whole tissues consist of diverse cell types differing in expression profiles, and the cellular composition of these tissues can evolve across species. Here, we investigate the effects of different cellular composition on whole tissue expression profiles. We compared gene expression from whole testes and enriched spermatogenesis populations in two species of house mice, Mus musculus musculus and M. m. domesticus, and their sterile and fertile F1 hybrids, which differ in both cellular composition and regulatory dynamics. We found that cellular composition differences skewed expression profiles and differential gene expression in whole testes samples. Importantly, both approaches were able to detect large-scale patterns such as disrupted X chromosome expression, although whole testes sampling resulted in decreased power to detect differentially expressed genes. We encourage researchers to account for histology in RNASeq and consider methods that reduce sample complexity whenever feasible. Ultimately, we show that differences in cellular composition between tissues can modify expression profiles, potentially altering inferred gene ontological processes, insights into gene network evolution, and processes governing gene expression evolution.
Collapse
Affiliation(s)
- Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, Colorado, 80208
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado, 80208
| |
Collapse
|
6
|
Lester WC, Johnson T, Hale B, Serra N, Elgart B, Wang R, Geyer CB, Sperry AO. Aurora a kinase (AURKA) is required for male germline maintenance and regulates sperm motility in the mouse. Biol Reprod 2021; 105:1603-1616. [PMID: 34518881 DOI: 10.1093/biolre/ioab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/12/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aurora A kinase (AURKA) is an important regulator of cell division and is required for assembly of the mitotic spindle. We recently reported the unusual finding that this mitotic kinase is also found on the sperm flagellum. To determine its requirement in spermatogenesis, we generated conditional knockout animals with deletion of the Aurka gene in either spermatogonia or spermatocytes to assess its role in mitotic and postmitotic cells, respectively. Deletion of Aurka in spermatogonia resulted in disappearance of all developing germ cells in the testis, as expected given its vital role in mitotic cell division. Deletion of Aurka in spermatocytes reduced testis size, sperm count, and fertility, indicating disruption of meiosis or an effect on spermiogenesis in developing mice. Interestingly, deletion of Aurka in spermatocytes increased apoptosis in spermatocytes along with an increase in the percentage of sperm with abnormal morphology. Despite the increase in abnormal sperm, sperm from spermatocyte Aurka knockout mice displayed increased progressive motility. In addition, sperm lysate prepared from Aurka knockout animals had decreased protein phosphatase 1 (PP1) activity. Together, our results show that AURKA plays multiple roles in spermatogenesis, from mitotic divisions of spermatogonia to sperm morphology and motility.
Collapse
Affiliation(s)
- William C Lester
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Taylor Johnson
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Ben Hale
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Nicholas Serra
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Brian Elgart
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Rong Wang
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Ann O Sperry
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| |
Collapse
|
7
|
Fuentes-Albero MC, González-Brusi L, Cots P, Luongo C, Abril-Sánchez S, Ros-Santaella JL, Pintus E, Ruiz-Díaz S, Barros-García C, Sánchez-Calabuig MJ, García-Párraga D, Avilés M, Izquierdo Rico MJ, García-Vázquez FA. Protein Identification of Spermatozoa and Seminal Plasma in Bottlenose Dolphin ( Tursiops truncatus). Front Cell Dev Biol 2021; 9:673961. [PMID: 34336830 PMCID: PMC8323341 DOI: 10.3389/fcell.2021.673961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Proteins play an important role in many reproductive functions such as sperm maturation, sperm transit in the female genital tract or sperm-oocyte interaction. However, in general, little information concerning reproductive features is available in the case of aquatic animals. The present study aims to characterize the proteome of both spermatozoa and seminal plasma of bottlenose dolphins (Tursiops truncatus) as a model organism for cetaceans. Ejaculate samples were obtained from two trained dolphins housed in an aquarium. Spermatozoa and seminal plasma were analyzed by means of proteomic analyses using an LC-MS/MS, and a list with the gene symbols corresponding to each protein was submitted to the DAVID database. Of the 419 proteins identified in spermatozoa and 303 in seminal plasma, 111 proteins were shared by both. Furthermore, 70 proteins were identified as involved in reproductive processes, 39 in spermatozoa, and 31 in seminal plasma. The five most abundant proteins were also identified in these samples: AKAP3, ODF2, TUBB, GSTM3, ROPN1 for spermatozoa and CST11, LTF, ALB, HSP90B1, PIGR for seminal plasma. In conclusion, this study provides the first characterization of the proteome in cetacean sperm and seminal plasma, opening the way to future research into new biomarkers, the analysis of conservation capacity or possible additional applications in the field of assisted reproductive technologies.
Collapse
Affiliation(s)
- Mari-Carmen Fuentes-Albero
- Department of Biology, Avanqua-Oceanogràfic S.L, Valencia, Spain.,Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Leopoldo González-Brusi
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Paula Cots
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Chiara Luongo
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Silvia Abril-Sánchez
- Department of Physiology, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - José Luis Ros-Santaella
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Sara Ruiz-Díaz
- Department of Animal Reproduction, National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain
| | | | - María-Jesús Sánchez-Calabuig
- Department of Animal Reproduction, National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain.,Department of Medicine and Surgery, Faculty of Veterinary Science, Madrid, Spain
| | - Daniel García-Párraga
- Department of Biology, Avanqua-Oceanogràfic S.L, Valencia, Spain.,Research Department, Fundación Oceanogràfic, Valencia, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Mᵃ José Izquierdo Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | |
Collapse
|
8
|
Kumar N, Singh AK. The anatomy, movement, and functions of human sperm tail: an evolving mystery. Biol Reprod 2020; 104:508-520. [PMID: 33238303 DOI: 10.1093/biolre/ioaa213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperms have attracted attention of many researchers since it was discovered by Antonie van Leeuwenhoek in 1677. Though a small cell, its every part has complex structure and different function to play in carrying life. Sperm tail is most complicated structure with more than 1000 proteins involved in its functioning. With the advent of three-dimensional microscopes, many studies are undergoing to understand exact mechanism of sperm tail movement. Most recent studies have shown that sperms move by spinning rather than swimming. Each subunit of tail, including axonemal, peri-axonemal structures, plays essential roles in sperm motility, capacitation, hyperactivation, fertilization. Furthermore, over 2300 genes are involved in spermatogenesis. A number of genetic mutations have been linked with abnormal sperm flagellar development leading to motility defects and male infertility. It was found that 6% of male infertility cases are related to genetic causes, and 4% of couples undergoing intracytoplasmic sperm injection for male subfertility have chromosomal abnormalities. Hence, an understanding of sperm tail development and genes associated with its normal functioning can help in better diagnosis of male infertility and its management. There is still a lot that needs to be discovered about genes, proteins contributing to normal human sperm tail development, movement, and role in male fertility. Sperm tail has complex anatomy, with surrounding axoneme having 9 + 2 microtubules arrangement along its entire length and peri-axonemal structures that contribute in sperm motility and fertilization. In future sperm tail-associated genes, proteins and subunits can be used as markers of male fertility.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Guntur, Andhra Pradesh 522503, India
| | - Amit Kant Singh
- Department of Physiology, U.P. University of Medical Sciences, Etawah 206130, Uttar Pradesh, India
| |
Collapse
|
9
|
Martinez CA, Alvarez-Rodriguez M, Wright D, Rodriguez-Martinez H. Does the Pre-Ovulatory Pig Oviduct Rule Sperm Capacitation In Vivo Mediating Transcriptomics of Catsper Channels? Int J Mol Sci 2020; 21:ijms21051840. [PMID: 32155986 PMCID: PMC7084628 DOI: 10.3390/ijms21051840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Spermatozoa need to conduct a series of biochemical changes termed capacitation in order to fertilize. In vivo, capacitation is sequentially achieved during sperm transport and interaction with the female genital tract, by mechanisms yet undisclosed in detail. However, when boar spermatozoa are stored in the tubal reservoir pre-ovulation, most appear to be in a non-capacitated state. This study aimed at deciphering the transcriptomics of capacitation-related genes in the pig pre-ovulatory oviduct, following the entry of semen or of sperm-free seminal plasma (SP). Ex-vivo samples of the utero-tubal junction (UTJ) and isthmus were examined with a microarray chip (GeneChip® Porcine Gene 1.0 ST Array, Thermo Fisher Scientific) followed by bioinformatics for enriched analysis of functional categories (GO terms) and restrictive statistics. The results confirmed that entry of semen or of relative amounts of sperm-free SP modifies gene expression of these segments, pre-ovulation. It further shows that enriched genes are differentially associated with pathways relating to sperm motility, acrosome reaction, single fertilization, and the regulation of signal transduction GO terms. In particular, the pre-ovulation oviduct stimulates the Catsper channels for sperm Ca2+ influx, with AKAPs, CATSPERs, and CABYR genes being positive regulators while PKIs and CRISP1 genes appear to be inhibitors of the process. We postulate that the stimulation of PKIs and CRISP1 genes in the pre-ovulation sperm reservoir/adjacent isthmus, mediated by SP, act to prevent premature massive capacitation prior to ovulation.
Collapse
Affiliation(s)
- Cristina A. Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
- Correspondence: ; Tel.: +34-678077708
| | - Manuel Alvarez-Rodriguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering; Linköping University, SE-58183 Linköping, Sweden;
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; (M.A.-R.); (H.R.-M.)
| |
Collapse
|
10
|
Shen S, Li D, Liang J, Wang J. Testis-specific calcium-binding protein CBP86-IV (CABYR) binds with phosphoglycerate kinase 2 in vitro and in vivo experiment. Andrologia 2019; 51:e13287. [PMID: 30972801 DOI: 10.1111/and.13287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The investigation of the interacting proteins with testis-specific calcium-binding protein CBP86-IV (CABYR) was carried out in human spermatozoa. The total RNA from human spermatozoa was extracted, and the ORF sequence of TSCBP86-IV gene was amplified and cloned into expression vector pET-28a. The positive recombinant clones were transformed into Escherichia coli strain BL21 (DE3) to express fusion protein. Then, co-immunoprecipitation (Co-IP) of TSCBP86-IV was performed in BL21 cell lysate expressing CBP86-IV recombinant protein. The immune complex was captured and identified by mass spectrometry. Reverse Co-IP of potential interacting proteins was performed in human sperm cell lysate. The potential protein interactions were confirmed by yeast two-hybrid system. Thirteen proteins were successfully identified in immune complex from E. coli cell lysate. Phosphoglycerate kinase 2 (PGK2) further showed positive results both in reverse Co-IP and yeast two-hybrid experiments and was confirmed to be interacted with TSCBP86-IV in human sperm cells.
Collapse
Affiliation(s)
- Shulin Shen
- Department of Andrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongrun Li
- Department of Andrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jihong Liang
- Department of Andrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinzi Wang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
11
|
Shawki HH, Ishikawa-Yamauchi Y, Kawashima A, Katoh Y, Matsuda M, Al-Soudy AS, Minisy FM, Kuno A, Gulibaikelamu X, Hirokawa T, Takahashi S, Oishi H. EFCAB2 is a novel calcium-binding protein in mouse testis and sperm. PLoS One 2019; 14:e0214687. [PMID: 30933994 PMCID: PMC6443151 DOI: 10.1371/journal.pone.0214687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/18/2019] [Indexed: 11/18/2022] Open
Abstract
Calcium-binding proteins regulate ion metabolism and the necessary signaling pathways for the maturational events of sperm. Our aim is to identify the novel calcium-binding proteins in testis. The gene EFCAB2 (GenBank NM_026626.3, NP_080902.1) was not previously examined, and its properties and exact mechanisms of action are unknown. In this study, we performed phylogenetic and structure prediction analyses of EFCAB2, which displays definitive structural features. Additionally, the distribution, localization, and calcium binding ability of mouse EFCAB2 were investigated. Results revealed extensive conservation of EFCAB2 among different eukaryotic orthologs. The constructed 3D model predicted that mouse EFCAB2 contains seven α-helices and two EF-hand motifs. The first EF-hand motif is located in N-terminal, while the second is located in C-terminal. By aligning the 3D structure of Ca2+-binding loops from EFCAB2 with calmodulin, we predicted six residues that might be involved in Ca2+ binding. The distribution of the Efcab2 mRNA, as determined by northern blotting, was detected only in the testis among mouse tissues. Native and recombinant EFCAB2 protein were detected by western blotting as one band at 20 kDa. In situ hybridization and immunohistochemical analyses showed its localization specifically in spermatogenic cells from primary spermatocytes to elongate spermatids within the seminiferous epithelium, but neither spermatogonia nor somatic cells were expressed. Moreover, EFCAB2 was specifically localized to the principal piece of cauda epididymal sperm flagellum. Furthermore, the analyses of purified recombinant EFCAB2 by Stains-all, ruthenium red staining, and by applying in vitro autoradiography assay showed that the physiological function of this protein is Ca2+ binding. These results suggested that EFCAB2 might be involved in the control of sperm flagellar movement. Altogether, here we describe about EFCAB2 as a novel calcium-binding protein in mouse testis and sperm.
Collapse
Affiliation(s)
- Hossam H. Shawki
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Animal Genetic Resources, National Gene Bank, Giza, Egypt
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- * E-mail: (HHS); (AK)
| | - Yu Ishikawa-Yamauchi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kawashima
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- * E-mail: (HHS); (AK)
| | - Yuki Katoh
- Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Manabu Matsuda
- Department of Arts and Sciences, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Al-Sayed Al-Soudy
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
- Department of Animal Genetic Resources, National Gene Bank, Giza, Egypt
| | - Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Pathology Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Xiafukaiti Gulibaikelamu
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Koutou-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
12
|
Balbach M, Beckert V, Hansen JN, Wachten D. Shedding light on the role of cAMP in mammalian sperm physiology. Mol Cell Endocrinol 2018; 468:111-120. [PMID: 29146556 DOI: 10.1016/j.mce.2017.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. All steps in a sperm's lifetime crucially rely on changes in the second messenger cAMP (cyclic adenosine monophosphate). In recent years, it has become clear that signal transduction in sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm head and the sperm flagellum, with the latter being further separated into the midpiece, principal piece, and endpiece. To understand the underlying signaling pathways controlling sperm function in more detail, experimental approaches are needed that allow to study sperm signaling with spatial and temporal precision. Here, we will give a comprehensive overview on cAMP signaling in mammalian sperm, describing the molecular players involved in these pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight recent advances in analyzing and manipulating sperm signaling with spatio-temporal precision using light.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research (caesar), Department of Molecular Sensory Systems, Bonn, Germany
| | - Vera Beckert
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany; Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany.
| |
Collapse
|
13
|
Abstract
Idiopathic infertility, an etiology not identified as part of standard clinical assessment, represents approximately 20% of all infertility cases. Current male infertility diagnosis focuses on the concentration, motility, and morphology of spermatozoa. This is of limited value when predicting birth success and of limited utility when selecting the optimum treatment. At fertilization, spermatozoa provide their genomic contribution, as well as a set of RNAs and proteins that have distinct roles in development. The potential of spermatozoal RNAs to be used as a prognostic of live birth has been shown [Jodar et al. (2015) Science Translational Medicine 7(295):295re6]. This relied on a set of 648 sperm RNA elements derived from 285 genes that are perhaps indicative of future health status. To address this tenet, the present study correlated the levels of each transcript among all samples to assess linkage between transcript absence, birth success, and possible disease association. Correlations between transcript levels of the 285 genes were analyzed amongst themselves, and within the context of the entire transcript population for these samples. The transcripts ACE, GIGYF2, and ODF2 had many negative correlations and form the majority of correlations, suggesting an important function for these transcripts. Eleven of the 285 queried genes had disease-associated variants within a sperm RNA element. Three genes, GPX4, NDRG1, and RPS24 had SREs were absent in at least one individual from the test cohort. GPX4 and RPS24 are associated with developmental defects and/or neonatal lethality. This leaves the intriguing possibility that, while sperm RNAs delivered to the oocyte inform the success of live birth, they may also be predictors of human health. ABBREVIATIONS GO: Gene Ontology; ART: assisted reproductive technology; IVF: in vitro fertilization; ICSI: intra-cytoplasmic sperm injection; RNA-seq: RNA-sequencing; TIC: timed intercourse; IUI: intrauterine insemination; SRE: sperm RNA elements; HPA: Human Protein Atlas; SMDS: sedaghatian-type spondylometaphyseal dysplasia; DBA: Diamond-Blackfan anemia; RPKM: reads per kilobase per million; TPM: transcripts per million; IPA: Ingenuity Pathway Analysis; OMIM: Online Mendelian Inheritance in Man.
Collapse
Affiliation(s)
- Rayanne B Burl
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine
| | | | - Edward Sendler
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine
| | - Molly Estill
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine.,c Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Stephen A Krawetz
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine.,c Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
14
|
Lehti MS, Sironen A. Formation and function of sperm tail structures in association with sperm motility defects†. Biol Reprod 2017; 97:522-536. [DOI: 10.1093/biolre/iox096] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
|
15
|
Young SAM, Miyata H, Satouh Y, Aitken RJ, Baker MA, Ikawa M. CABYR is essential for fibrous sheath integrity and progressive motility in mouse spermatozoa. J Cell Sci 2016; 129:4379-4387. [PMID: 27802166 DOI: 10.1242/jcs.193151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022] Open
Abstract
Ca2+-binding tyrosine-phosphorylation-regulated protein (CABYR) has been implicated in sperm physiological function in several in vitro studies. It has also been implicated as a potential cause of and diagnostic tool in asthenozoospermic human males. CABYR is known to be localized to the fibrous sheath, an accessory structure in the flagellar principal piece. Utilizing the CRISPR-Cas9 technology, we have knocked out this gene in mice to understand its role in male fertility. Cabyr-knockout male mice showed severe subfertility with a defect in sperm motility as well as a significant disorganization in the fibrous sheath. Further, abnormal configuration of doublet microtubules was observed in the Cabyr-knockout spermatozoa, suggesting that the fibrous sheath is important for the correct organization of the axoneme. Our results show that it is the role of CABYR in the formation of the fibrous sheath that is essential for male fertility.
Collapse
Affiliation(s)
- Samantha A M Young
- Priority Research Centre in Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuhkoh Satouh
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Robert John Aitken
- Priority Research Centre in Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan .,Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Exome Array Analysis of Susceptibility to Pneumococcal Meningitis. Sci Rep 2016; 6:29351. [PMID: 27389768 PMCID: PMC4937363 DOI: 10.1038/srep29351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022] Open
Abstract
Host genetic variability may contribute to susceptibility of bacterial meningitis, but which genes contribute to the susceptibility to this complex disease remains undefined. We performed a genetic association study in 469 community-acquired pneumococcal meningitis cases and 2072 population-based controls from the Utrecht Health Project in order to find genetic variants associated with pneumococcal meningitis susceptibility. A HumanExome BeadChip was used to genotype 102,097 SNPs in the collected DNA samples. Associations were tested with the Fisher exact test. None of the genetic variants tested reached Bonferroni corrected significance (p-value <5 × 10(-7)). Our strongest signals associated with susceptibility to pneumococcal meningitis were rs139064549 on chromosome 1 in the COL11A1 gene (p = 1.51 × 10(-6); G allele OR 3.21 [95% CI 2.05-5.02]) and rs9309464 in the EXOC6B gene on chromosome 2 (p = 6.01 × 10(-5); G allele OR 0.66 [95% CI 0.54-0.81]). The sequence kernel association test (SKAT) tests for associations between multiple variants in a gene region and pneumococcal meningitis susceptibility yielded one significant associated gene namely COL11A1 (p = 1.03 × 10(-7)). Replication studies are needed to validate these results. If replicated, the functionality of these genetic variations should be further studied to identify by which means they influence the pathophysiology of pneumococcal meningitis.
Collapse
|
17
|
Kawashima A, Kigoshi T, Katoh Y, Ishikawa Y, Shawki HH, Inoue N, Tamba M, Matsuda M, Okamura N. CABCOCO1, a novel coiled-coil protein With calcium-binding activity, is localized in the sperm flagellum. Mol Reprod Dev 2016; 83:912-926. [PMID: 26990073 DOI: 10.1002/mrd.22639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
The gene 1700040L02Rik (GenBank accession number NM_028491, NP_082767.1) was selected by in silico screening as candidate that encodes a calcium-binding protein in sperm from a database of predicted mouse cilia-related genes. The predicted amino acid sequence revealed the presence of coiled-coil domain at the C-terminus and a CLAMP motif containing a leucine zipper domain in the middle of the protein. Assessment of a recombinant version of this protein by Stains-all and ruthenium red staining and by direct measurement of terbium binding revealed its calcium-binding activities. We therefore named this protein CABCOCO1 for calcium-binding coiled-coil protein-1. Immunohistochemical analyses showed its localization in spermatogenic cells of mouse testis. CABCOCO1 was first observed in the cytoplasm of murine spermatocytes, concentrated around centrioles of spermatids and co-localized with the centrosomal protein pericentrin. During the stage when centrosome number is reduced, CABCOCO1 relocalized to the murine sperm flagellum. On the other hand, in porcine sperm, whose proximal centriole remains intact while the distal centriole degenerates during spermiogenesis, CABCOCO1 localized both in the basal body and the flagellum. These results suggested that CABCOCO1 is involved in the control of sperm flagellar movement. Mol. Reprod. Dev. 83: 912-926, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Akihiro Kawashima
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takumi Kigoshi
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuki Katoh
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Ibaraki, Japan
| | - Yu Ishikawa
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hossam H Shawki
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Faculty of Medicine, Department of Anatomy and Embryology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Inoue
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michiko Tamba
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manabu Matsuda
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naomichi Okamura
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
18
|
Abstract
Vertebrate reproduction requires a myriad of precisely orchestrated events-in particular, the maternal production of oocytes, the paternal production of sperm, successful fertilization, and initiation of early embryonic cell divisions. These processes are governed by a host of signaling pathways. Protein kinase and phosphatase signaling pathways involving Mos, CDK1, RSK, and PP2A regulate meiosis during maturation of the oocyte. Steroid signals-specifically testosterone-regulate spermatogenesis, as does signaling by G-protein-coupled hormone receptors. Finally, calcium signaling is essential for both sperm motility and fertilization. Altogether, this signaling symphony ensures the production of viable offspring, offering a chance of genetic immortality.
Collapse
Affiliation(s)
- Sally Kornbluth
- Duke University School of Medicine, Durham, North Carolina 27710
| | - Rafael Fissore
- University of Massachusetts, Amherst, Veterinary and Animal Sciences, Amherst, Massachusetts 01003
| |
Collapse
|
19
|
|
20
|
Chung JJ, Shim SH, Everley RA, Gygi SP, Zhuang X, Clapham DE. Structurally distinct Ca(2+) signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell 2014; 157:808-22. [PMID: 24813608 PMCID: PMC4032590 DOI: 10.1016/j.cell.2014.02.056] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 01/21/2014] [Accepted: 02/24/2014] [Indexed: 11/23/2022]
Abstract
Spermatozoa must leave one organism, navigate long distances, and deliver their paternal DNA into a mature egg. For successful navigation and delivery, a sperm-specific calcium channel is activated in the mammalian flagellum. The genes encoding this channel (CatSpers) appear first in ancient uniflagellates, suggesting that sperm use adaptive strategies developed long ago for single-cell navigation. Here, using genetics, super-resolution fluorescence microscopy, and phosphoproteomics, we investigate the CatSper-dependent mechanisms underlying this flagellar switch. We find that the CatSper channel is required for four linear calcium domains that organize signaling proteins along the flagella. This unique structure focuses tyrosine phosphorylation in time and space as sperm acquire the capacity to fertilize. In heterogeneous sperm populations, we find unique molecular phenotypes, but only sperm with intact CatSper domains that organize time-dependent and spatially specific protein tyrosine phosphorylation successfully migrate. These findings illuminate flagellar adaptation, signal transduction cascade organization, and fertility.
Collapse
Affiliation(s)
- Jean-Ju Chung
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sang-Hee Shim
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Robert A Everley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Department of Physics, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | - David E Clapham
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Chiriva-Internati M, Pandey A, Saba R, Kim M, Saadeh C, Lukman T, Chiaramonte R, Jenkins M, Cobos E, Jumper C, Alalawi R. Cancer testis antigens: a novel target in lung cancer. Int Rev Immunol 2013; 31:321-43. [PMID: 23083344 DOI: 10.3109/08830185.2012.723512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the main cause of cancer mortality worldwide. This is mainly due to the fact that it is diagnosed in advanced stage patients, which are no more surgically curable. Consequently, searching for novel treatments and new modalities for early diagnosis offers great promise to improve the clinical outcome. Recently, a new group of antigens, the cancer testis antigens, have been described as possible early diagnostic tools and therapeutic targets in cancer therapy.This review will report emerging evidences of cancer testis antigens deregulation in lung cancer and explore the state of the art of their currently known role and potential as markers for early diagnosis and disease progression and targets of an immunotherapeutic approach aiming to improve the cure rate of this tumor.
Collapse
Affiliation(s)
- Maurizio Chiriva-Internati
- Department of Internal Medicine, Division of Hematology & Oncology and Pulmonary and Critical Care Medicine, The Southwest Cancer Treatment and Research Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fiedler SE, Dudiki T, Vijayaraghavan S, Carr DW. Loss of R2D2 proteins ROPN1 and ROPN1L causes defects in murine sperm motility, phosphorylation, and fibrous sheath integrity. Biol Reprod 2013; 88:41. [PMID: 23303679 DOI: 10.1095/biolreprod.112.105262] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The fibrous sheath (FS) is a flagellar cytoskeletal structure unique to sperm that surrounds the outer dense fibers and axoneme. Its primary components are A-kinase anchoring proteins (AKAPs) 3 and 4, which suggests that the FS affects flagellar beating via the scaffolding of signaling pathways necessary for motility. Sperm proteins ROPN1 and ROPN1L bind AKAP3. To determine the role of ROPN1 and ROPN1L in sperm function, we created mice deficient in ROPN1 (RKO), mice deficient in ROPN1L (RLKO), and double knockout mice (DKO). All three strains of mice had normal testicular morphology and spermatogenesis. Only the DKOs had obvious defects in sperm morphology (thinning and shredding of the principal piece), which was accompanied by a reduction in AKAP3 levels. RLKO mice had slightly reduced sperm motility and increased levels of ROPN1. RKO mice had moderately impaired motility and increased levels of ROPN1L. DKO sperm were immotile. We have previously determined that RKO male mice are subfertile, and DKO males are infertile. Together these data indicate that ROPN1L and ROPN1 compensate for each other in the absence of the opposing protein, possibly to maintain AKAP3 incorporation in the FS. Sperm from mice lacking ROPN1L exhibited reductions in both cAMP-dependent protein kinase (PKA) phosphorylation of a 270-kDa protein (perhaps FSCB), and in capacitation-induced tyrosine phosphorylation. Sperm from mice lacking ROPN1 had reduced levels of FSCB and increased tyrosine phosphorylation of noncapacitated sperm. These data demonstrate that mutations in ROPN1 and ROPN1L can cause defects in FS integrity, sperm motility, and PKA-dependent signaling processes, leading to male infertility.
Collapse
Affiliation(s)
- Sarah E Fiedler
- Portland Veterans Affairs Medical Center and Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
23
|
Delbes G, Yanagiya A, Sonenberg N, Robaire B. PABP interacting protein 2A (PAIP2A) regulates specific key proteins during spermiogenesis in the mouse. Biol Reprod 2012; 86:95. [PMID: 22190698 DOI: 10.1095/biolreprod.111.092619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During spermiogenesis, expression of the specific proteins needed for proper differentiation of male germ cells is under translational control. We have shown that PAIP2A is a major translational regulator involved in the maturation of male germ cells and male fertility. To identify the proteins controlled by PAIP2A during spermiogenesis, we characterized the proteomic profiles of elongated spermatids from wild-type (WT) mice and mice that were Paip2a/Paip2b double-null mutants (DKO). Elongated spermatid populations were obtained and proteins were extracted and separated on gradient polyacrylamide gels. The gels were digested with trypsin and peptides were identified by mass spectrometry. We identified 632 proteins with at least two unique peptides and a confidence level of 95%. Only 209 proteins were consistently detected in WT or DKO replicates with more than five spectra. Twenty-nine proteins were differentially expressed with at least a 1.5-fold change; 10 and 19 proteins were down- and up-regulated, respectively, in DKO compared to WT mice. We confirmed the significantly different expression levels of three proteins, EIF4G1, AKAP4, and HK1, by Western blot analysis. We have characterized novel proteins that have their expression controlled by PAIP2A; of these, 50% are involved in flagellar structure and sperm motility. Although several proteins affected by abrogation of Paip2a have established roles in reproduction, the roles of many others remain to be determined.
Collapse
Affiliation(s)
- Geraldine Delbes
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
24
|
Liu SL, Ni B, Wang XW, Huo WQ, Zhang J, Tian ZQ, Huang ZM, Tian Y, Tang J, Zheng YH, Jin FS, Li YF. FSCB phosphorylation in mouse spermatozoa capacitation. BMB Rep 2011; 44:541-6. [PMID: 21871179 DOI: 10.5483/bmbrep.2011.44.8.541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is generally accepted that spermatozoa capacitation is associated with protein kinase A-mediated tyrosine phosphorylation. In our previous study, we identified the fibrous sheath CABYR binding protein (FSCB), which was phosphorylated by PKA. However, the phosphorylation status of FSCB protein during spermatozoa capacitation should be further investigated. To this aim, in this study, we found that phosphorylation of this 270-kDa protein occurred as early as 1 min after mouse spermatozoa capacitation, which increased over time and remained stable after 60 min. Immunoprecipitation assays demonstrated that the tyrosine and Ser/Thr phosphorylation of FSCB occurred during spermatozoa capacitation. The extent of phosphorylation and was closely associated with the PKA activity and spermatozoa motility characteristics. FSCB phosphorylation could be induced by PKA agonist DB-cAMP, but was blocked by PKA antagonist H-89.Therefore, FSCB contributes to spermatozoa capacitation in a tyrosine-phosphorylated format, which may help in further elucidating the molecular mechanism of spermatozoa capacitation.
Collapse
Affiliation(s)
- Shun-Li Liu
- Department of Urology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lan J, Zhao J, Liu Y. Molecular cloning, sequence characterization, polymorphism and association analysis of porcine ROPN1 gene. Mol Biol Rep 2011; 39:2739-43. [PMID: 21667248 DOI: 10.1007/s11033-011-1029-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/03/2011] [Indexed: 11/24/2022]
Abstract
The full-length cDNA sequence of one porcine gene, ROPN1, was isolated using the rapid amplification of cDNA ends (RACE) method based on one pig EST sequence which was highly homologous to the coding sequence of human ROPN1 gene. The porcine ROPN1 gene encodes a protein of 212 amino acids which shares high homology with the rhophilin associated protein 1 (ROPN1) of eight species: gray short-tailed opossum (96%), horse (95%), cattle (94%), mouse (93%), rat (92%), chimpanzee (85%), human (85%) and rhesus monkey (85%). Phylogenetic analysis revealed that the porcine ROPN1 gene has a closer genetic relationship with the ROPN1 gene of gray short-tailed opossum. Polymorphism analysis showed that there was a T/C mutation at the position of 536 bp of mRNA and this leaded to the amino acid alteration from the Arg residue to the Cys residue. PCR-Hae III-RFLP was established to detect this T/C mutation and eight pig breeds display obvious genotype and allele frequency differences at this mutation locus. Association of this SNP with litter size traits was assessed in Large White (n = 100) and Landrace (n = 100) pig populations, and results demonstrated that this polymorphic locus was significantly associated with the litter size of first parity (P < 0.01) and all parities (P < 0.05) in Large White sows, and also significantly associated with the litter size of all parities in Landrace sows (P < 0.01). Therefore, ROPN1 gene could be a useful candidate gene in selection for increasing litter size in pigs. These data serve as a foundation for further insight into this novel porcine gene.
Collapse
Affiliation(s)
- Jing Lan
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | | | | |
Collapse
|
26
|
Li YF, He W, Mandal A, Kim YH, Digilio L, Klotz K, Flickinger CJ, Herr JC, Herr JC. CABYR binds to AKAP3 and Ropporin in the human sperm fibrous sheath. Asian J Androl 2011; 13:266-74. [PMID: 21240291 DOI: 10.1038/aja.2010.149] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Calcium-binding tyrosine phosphorylation-regulated protein (CABYR) is a highly polymorphic calcium-binding tyrosine- and serine-/threonine-phosphorylated fibrous sheath (FS) protein involved in capacitation. A putative domain (amino acids 12-48) homologous to the regulatory subunit of type II cAMP-dependent protein kinase A (RII) dimerisation and A kinase-anchoring protein (AKAP)-binding domains of protein kinase A at the N-terminus suggests that CABYR may self-assemble and bind to AKAPs. Moreover, there is evidence that CABYR has limited interaction with AKAPs. However, further evidence and new relationships between CABYR and other FS proteins, including AKAPs, will be helpful in understanding the basic physiology of FS. In this study, a new strategy for co-immunoprecipitation of insoluble proteins, as well as the standard co-immunoprecipitation method in combination with mass spectrometry and western blot, was employed to explore the relationship between CABYR, AKAP3 and Ropporin. The results showed that AKAP3 was co-immunoprecipitated with CABYR by the anti-CABYR-A polyclonal antibody, and, conversely, CABYR was also co-immunoprecipitated with AKAP3 by the anti-AKAP3 polyclonal antibody. Another RII-like domain containing protein, Ropporin, was also co-immunoprecipitated with CABYR, indicating that Ropporin is one of CABYR's binding partners. The interactions between CABYR, AKAP3 and Ropporin were confirmed by yeast two-hybrid assays. Further analysis showed that CABYR not only binds to AKAP3 by its RII domain but binds to Ropporin through other regions besides the RII-like domain. This is the first demonstration that CABYR variants form a complex not only with the scaffolding protein AKAP3 but also with another RII-like domain-containing protein in the human sperm FS.
Collapse
Affiliation(s)
- Yan-Feng Li
- Department of Urology, Daping Hospital, Institute of Surgery Research, Third Military Medical University, Chongqing 400042, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li YF, He W, Kim YH, Mandal A, Digilio L, Klotz K, Flickinger CJ, Herr JC. CABYR isoforms expressed in late steps of spermiogenesis bind with AKAPs and ropporin in mouse sperm fibrous sheath. Reprod Biol Endocrinol 2010; 8:101. [PMID: 20731842 PMCID: PMC3398308 DOI: 10.1186/1477-7827-8-101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 08/23/2010] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND CABYR is a polymorphic calcium-binding protein of the sperm fibrous sheath (FS) which gene contains two coding regions (CR-A and CR-B) and is tyrosine as well as serine/threonine phosphorylated during in vitro sperm capacitation. Thus far, the detailed information on CABYR protein expression in mouse spermatogenesis is lacking. Moreover, because of the complexity of this polymorphic protein, there are no data on how CABYR isoforms associate and assemble into the FS. METHODS The capacity of mouse CABYR isoforms to associate into dimers and oligomers, and the relationships between CABYR and other FS proteins were studied by gel electrophoresis, Western blotting, immunofluorescence, immunoprecipitation and yeast two-hybrid analyses. RESULTS The predominant form of mouse CABYR in the FS is an 80 kDa variant that contains only CABYR-A encoded by coding region A. CABYR isoforms form dimers by combining the 80 kDa CABYR-A-only variant with the 50 kDa variant that contains both CABYR-A and CABYR-B encoded by full length or truncated coding region A and B. It is proposed that this step is followed by the formation of larger oligomers, which then participate in the formation of the supramolecular structure of the FS in mouse sperm. The initial expression of CABYR occurs in the cytoplasm of spermatids at step 11 of spermiogenesis and increases progressively during steps 12-15. CABYR protein gradually migrates into the sperm flagellum and localizes to the FS of the principal piece during steps 15-16. Deletion of the CABYR RII domain abolished the interaction between CABYR and AKAP3/AKAP4 but did not abolish the interaction between CABYR and ropporin suggesting that CABYR binds to AKAP3/AKAP4 by its RII domain but binds to ropporin through another as yet undefined region. CONCLUSIONS CABYR expresses at the late stage of spermiogenesis and its isoforms oligomerize and bind with AKAPs and ropporin. These interactions strongly suggest that CABYR participates in the assembly of complexes in the FS, which may be related to calcium signaling.
Collapse
Affiliation(s)
- Yan-Feng Li
- Department of Urology, Daping Hospital, Institute of Surgery Research, Third Military Medical University, Chongqing 400042, PR China
| | - Wei He
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Young-Hwan Kim
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Arabinda Mandal
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Laura Digilio
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Ken Klotz
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Charles J Flickinger
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - John C Herr
- Center for Research in Contraceptive and Reproductive Health, Department of Cell Biology, University of Virginia, P.O. Box 800732, Charlottesville, VA 22908, USA
| |
Collapse
|
28
|
STILLMAN JONATHONH, TAGMOUNT ABDERRAHMANE. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes. Mol Ecol 2009; 18:4206-26. [DOI: 10.1111/j.1365-294x.2009.04354.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Calvel P, Kervarrec C, Lavigne R, Vallet-Erdtmann V, Guerrois M, Rolland AD, Chalmel F, Jégou B, Pineau C. CLPH, a novel casein kinase 2-phosphorylated disordered protein, is specifically associated with postmeiotic germ cells in rat spermatogenesis. J Proteome Res 2009; 8:2953-65. [PMID: 19271754 DOI: 10.1021/pr900082m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a recent proteomic study of rat spermatogenesis, we identified CLPH (for Casein-Like PHosphoprotein), a new testis-specific protein expressed exclusively in postmeiotic germ cells. In situ hybridization showed that the CLPH transcript was mainly present in round spermatids, whereas the protein was specifically detected by immunohistochemistry in elongated spermatids and in residual bodies. Electron microscopy showed the protein to be mostly cytoplasmic, but also frequently associated with the mitochondrial inner membrane during the last steps of spermatid differentiation. The Clph gene was found to be present solely in mammalian genomes, in a chromosomal region syntenic to the mammalian cluster of secretory calcium-binding phosphoprotein (SCPP) genes. CLPH has several distinctive properties in common with SCPPs: calcium overlay experiments showed that CLPH was a calcium-binding protein, whereas trypsin digestion assay, circular dichroism and fluorescence experiments demonstrated its intrinsically disordered structure. We also showed that CLPH was phosphorylated in vitro and in vivo by casein kinase 2, an enzyme critical for spermatid elongation. Given the specific and strong production of CLPH during rat spermiogenesis, together with the particular biochemical properties of this protein, we suggest that CLPH is involved in the extremely complex structural rearrangements occurring in haploid germ cells during spermiogenesis.
Collapse
Affiliation(s)
- Pierre Calvel
- Inserm, U625, Rennes, Universite Rennes I, Campus de Beaulieu, IFR-140, GERHM, Rennes, F-35042, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch Biochem Biophys 2009; 485:72-81. [DOI: 10.1016/j.abb.2009.02.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/06/2009] [Accepted: 02/07/2009] [Indexed: 01/28/2023]
|
31
|
Kawashima A, Osman BAH, Takashima M, Kikuchi A, Kohchi S, Satoh E, Tamba M, Matsuda M, Okamura N. CABS1 is a novel calcium-binding protein specifically expressed in elongate spermatids of mice. Biol Reprod 2009; 80:1293-304. [PMID: 19208547 DOI: 10.1095/biolreprod.108.073866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Single intraperitoneal injection of busulfan at 20 mg/kg body weight to mature male mice induced the deletion of the spermatogenic cells, followed by the restoration of the spermatogenesis by the surviving undifferentiated spermatogonia. The changes of the protein contents in testis during these processes were analyzed by two-dimensional gel electrophoresis in order to identify the proteins expressed at the specific stages of spermatogenesis. An acidic protein that disappeared and recovered in the same time course as spermatids after the busulfan treatment was identified as CABS1 by mass spectrometry. It was found that CABS1 was specifically expressed in the elongate spermatids at steps 13 to 16 in stages I to VIII of the seminiferous epithelium cycle of the mouse, and then it localized to the principal piece of flagellum of the mature sperm in the cauda epididymis. We have found for the first time that CABS1 is a calcium-binding protein that binds calcium during the maturation in the epididymis.
Collapse
|
32
|
Baker MA, Hetherington L, Reeves GM, Aitken RJ. The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 2008; 8:1720-30. [PMID: 18340633 DOI: 10.1002/pmic.200701020] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteomic profiling of the mouse spermatozoon has generated a unique and valuable inventory of candidates that can be mined for potential contraceptive targets and to further our understanding of the PTMs that regulate the functionality of this highly specialized cell. Here we report the identification of 858 proteins derived from mouse spermatozoa, 23 of which demonstrated testis only expression. The list contained many proteins that are known constituents of murine spermatozoa including Izumo, Spaca 1, 3, and 5, Spam 1, Zonadhesin, Spesp1, Smcp, Spata 6, 18, and 19, Zp3r, Zpbp 1 and 2, Spa17, Spag 6, 16, and 17, CatSper4, Acr, Cylc2, Odf1 and 2, Acrbp, and Acrv1. Certain protein families were highly represented in the proteome. For example, of the 42 gene products classified as proteases, 26 belonged to the 26S-proteasome. Of the many chaperones identified in this proteome, eight proteins with a TCP-1 domain were found, as were seven Rab guanosine triphosphatases. Finally, our list yielded three putative seven-transmembrane proteins, two of which have no known tissue distribution, an extragenomic progesterone receptor and three unique testis-specific kinases all of which may have some potential in the future regulation of male fertility.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, NSW, Australia.
| | | | | | | |
Collapse
|