1
|
Adeoye AO, Lobb KA. Malaria parasite cysteine and aspartic proteases as key drug targets for antimalarial therapy. J Mol Model 2025; 31:78. [PMID: 39920505 DOI: 10.1007/s00894-025-06303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
CONTEXT Cysteine and aspartic proteases are enzyme families that play crucial roles in the life cycle of Plasmodium, the parasite responsible for malaria. These proteases are involved in vital biological processes, such as hemoglobin degradation within the host's red blood cells, protein turnover, and regulation of parasite development. Inhibiting these proteases with small molecule drugs can block the parasite's growth and survival. Chemically, these enzymes have specific active sites where inhibitors can bind, preventing the breakdown of key proteins, making them attractive targets for the design of novel antimalarial compounds. Understanding the structure and catalytic mechanisms of these proteases is critical for developing selective and potent inhibitors. The degradation of hemoglobin occurs in the parasite's digestive vacuole, and disruption of this process by targeting these proteases can inhibit parasite development, leading to the death of the parasite. Hence, these proteases are critical for maintaining the parasite's metabolic functions, and inhibiting them can disrupt the parasite's life cycle. Malaria remains a major global health problem, particularly in tropical and subtropical regions, where resistance to existing antimalarial drugs, such as chloroquine and artemisinin-based therapies, is an escalating issue. The emergence of drug-resistant Plasmodium strains highlights the urgent need for new therapeutic strategies. Targeting cysteine and aspartic proteases offers a novel approach to antimalarial drug development, as these enzymes are crucial for parasite survival and have not been widely exploited in current therapies. By inhibiting these proteases, researchers aim to develop new antimalarial treatments that could overcome resistance mechanisms and provide more effective options for malaria control and eradication. METHODS The application of computational methods such as molecular docking, dynamics simulations, and quantum mechanical calculations, combined with powerful molecular modeling tools, provides a comprehensive framework for discovering and optimizing inhibitors targeting Plasmodium cysteine and aspartic proteases. These methods facilitate the rational design of novel antimalarial drugs, offering a pathway to overcome drug resistance and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Akinwunmi O Adeoye
- Biomembrane and Toxicology Unit, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria.
- Department of Chemistry, Rhodes University, Grahamstown, South Africa.
| | - Kevin A Lobb
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
2
|
Nagar P, Bhowmick K, Chawla A, Malik MZ, Subbarao N, Kaur I, Dhar SK. Plasmodium falciparum cysteine protease Falcipain 3: A potential enzyme for proteolytic processing of histone acetyltransferase PfGCN5. Biotechnol Appl Biochem 2024; 71:1304-1315. [PMID: 38924147 DOI: 10.1002/bab.2630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In spite of 150 years of studying malaria, the unique features of the malarial parasite, Plasmodium, still perplex researchers. One of the methods by which the parasite manages its gene expression is epigenetic regulation, the champion of which is PfGCN5, an essential enzyme responsible for acetylating histone proteins. PfGCN5 is a ∼170 kDa chromatin-remodeling enzyme that harbors the conserved bromodomain and acetyltransferase domain situated in its C-terminus domain. Although the PfGCN5 proteolytic processing is essential for its activity, the specific protease involved in this process still remains elusive. Identification of PfGCN5 interacting proteins through immunoprecipitation (IP) followed by LC-tandem mass spectrometry analysis revealed the presence of food vacuolar proteins, such as the cysteine protease Falcipain 3 (FP3), in addition to the typical members of the PfGCN5 complex. The direct interaction between FP3 and PfGCN5 was further validated by in vitro pull-down assay as well as IP assay. Subsequently, use of cysteine protease inhibitor E64d led to the inhibition of protease-specific processing of PfGCN5 with concomitant enrichment and co-localization of PfGCN5 and FP3 around the food vacuole as evidenced by confocal microscopy as well as electron microscopy. Remarkably, the proteolytic cleavage of the nuclear protein PfGCN5 by food vacuolar protease FP3 is exceptional and atypical in eukaryotic organisms. Targeting the proteolytic processing of GCN5 and the associated protease FP3 could provide a novel approach for drug development aimed at addressing the growing resistance of parasites to current antimalarial drugs.
Collapse
Affiliation(s)
- Poonam Nagar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- The Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Aishwarya Chawla
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- TERI School of Advanced Studies, Vasant Kunj, New Delhi, India
| |
Collapse
|
3
|
Wendt C, Miranda K. Endocytosis in malaria parasites: An ultrastructural perspective of membrane interplay in a unique infection model. CURRENT TOPICS IN MEMBRANES 2024; 93:27-49. [PMID: 39181577 DOI: 10.1016/bs.ctm.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Malaria remains a major global threat, representing a severe public health problem worldwide. Annually, it is responsible for a high rate of morbidity and mortality in many tropical developing countries where the disease is endemic. The causative agent of malaria, Plasmodium spp., exhibits a complex life cycle, alternating between an invertebrate vector, which transmits the disease, and the vertebrate host. The disease pathology observed in the vertebrate host is attributed to the asexual development of Plasmodium spp. inside the erythrocyte. Once inside the red blood cell, malaria parasites cause extensive changes in the host cell, increasing membrane rigidity and altering its normal discoid shape. Additionally, during their intraerythrocytic development, malaria parasites incorporate and degrade up to 70 % of host cell hemoglobin. This mechanism is essential for parasite development and represents an important drug target. Blocking the steps related to hemoglobin endocytosis or degradation impairs parasite development and can lead to its death. The ultrastructural analysis of hemoglobin endocytosis on Plasmodium spp. has been broadly explored along the years. However, it is only recently that the proteins involved in this process have started to emerge. Here, we will review the most important features related to hemoglobin endocytosis and catabolism on malaria parasites. A special focus will be given to the recent analysis obtained through 3D visualization approaches and to the molecules involved in these mechanisms.
Collapse
Affiliation(s)
- Camila Wendt
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Biomineralização, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Wiser MF. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024; 13:182. [PMID: 38535526 PMCID: PMC10974218 DOI: 10.3390/pathogens13030182] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid transporter has also been identified on the digestive vacuole membrane. The environment of the digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites. The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for the treatment of malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112-2824, USA
| |
Collapse
|
5
|
Jonsdottir TK, Elsworth B, Cobbold S, Gabriela M, Ploeger E, Parkyn Schneider M, Charnaud SC, Dans MG, McConville M, Bullen HE, Crabb BS, Gilson PR. PTEX helps efficiently traffic haemoglobinases to the food vacuole in Plasmodium falciparum. PLoS Pathog 2023; 19:e1011006. [PMID: 37523385 PMCID: PMC10414648 DOI: 10.1371/journal.ppat.1011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/10/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
A key element of Plasmodium biology and pathogenesis is the trafficking of ~10% of the parasite proteome into the host red blood cell (RBC) it infects. To cross the parasite-encasing parasitophorous vacuole membrane, exported proteins utilise a channel-forming protein complex termed the Plasmodium translocon of exported proteins (PTEX). PTEX is obligatory for parasite survival, both in vitro and in vivo, suggesting that at least some exported proteins have essential metabolic functions. However, to date only one essential PTEX-dependent process, the new permeability pathways, has been described. To identify other essential PTEX-dependant proteins/processes, we conditionally knocked down the expression of one of its core components, PTEX150, and examined which pathways were affected. Surprisingly, the food vacuole mediated process of haemoglobin (Hb) digestion was substantially perturbed by PTEX150 knockdown. Using a range of transgenic parasite lines and approaches, we show that two major Hb proteases; falcipain 2a and plasmepsin II, interact with PTEX core components, implicating the translocon in the trafficking of Hb proteases. We propose a model where these proteases are translocated into the PV via PTEX in order to reach the cytostome, located at the parasite periphery, prior to food vacuole entry. This work offers a second mechanistic explanation for why PTEX function is essential for growth of the parasite within its host RBC.
Collapse
Affiliation(s)
- Thorey K. Jonsdottir
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Brendan Elsworth
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Simon Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Mikha Gabriela
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Ellen Ploeger
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | | | - Sarah C. Charnaud
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Madeline G. Dans
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Malcolm McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Hayley E. Bullen
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Brendan S. Crabb
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Paul R. Gilson
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Matz JM. Plasmodium’s bottomless pit: properties and functions of the malaria parasite's digestive vacuole. Trends Parasitol 2022; 38:525-543. [DOI: 10.1016/j.pt.2022.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
|
7
|
Florentin A, Cobb DW, Kudyba HM, Muralidharan V. Directing traffic: Chaperone-mediated protein transport in malaria parasites. Cell Microbiol 2020; 22:e13215. [PMID: 32388921 PMCID: PMC7282954 DOI: 10.1111/cmi.13215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
The ability of eukaryotic parasites from the phylum Apicomplexa to cause devastating diseases is predicated upon their ability to maintain faithful and precise protein trafficking mechanisms. Their parasitic life cycle depends on the trafficking of effector proteins to the infected host cell, transport of proteins to several critical organelles required for survival, as well as transport of parasite and host proteins to the digestive organelles to generate the building blocks for parasite growth. Several recent studies have shed light on the molecular mechanisms parasites utilise to transform the infected host cells, transport proteins to essential metabolic organelles and for biogenesis of organelles required for continuation of their life cycle. Here, we review key pathways of protein transport originating and branching from the endoplasmic reticulum, focusing on the essential roles of chaperones in these processes. Further, we highlight key gaps in our knowledge that prevents us from building a holistic view of protein trafficking in these deadly human pathogens.
Collapse
Affiliation(s)
- Anat Florentin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - David W Cobb
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Heather M Kudyba
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
Rosenthal PJ. Falcipain cysteine proteases of malaria parasites: An update. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140362. [DOI: 10.1016/j.bbapap.2020.140362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
|
9
|
Bhowmick K, Tehlan A, Sunita, Sudhakar R, Kaur I, Sijwali PS, Krishnamachari A, Dhar SK. Plasmodium falciparum GCN5 acetyltransferase follows a novel proteolytic processing pathway that is essential for its function. J Cell Sci 2020; 133:jcs.236489. [PMID: 31862795 DOI: 10.1242/jcs.236489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The pathogenesis of human malarial parasite Plasmodium falciparum is interlinked with its timely control of gene expression during its complex life cycle. In this organism, gene expression is partially controlled through epigenetic mechanisms, the regulation of which is, hence, of paramount importance to the parasite. The P. falciparum (Pf)-GCN5 histone acetyltransferase (HAT), an essential enzyme, acetylates histone 3 and regulates global gene expression in the parasite. Here, we show the existence of a novel proteolytic processing for PfGCN5 that is crucial for its activity in vivo We find that a cysteine protease-like enzyme is required for the processing of PfGCN5 protein. Immunofluorescence and immuno-electron microscopy analysis suggest that the processing event occurs in the vicinity of the digestive vacuole of the parasite following its trafficking through the classical ER-Golgi secretory pathway, before it subsequently reaches the nucleus. Furthermore, blocking of PfGCN5 processing leads to the concomitant reduction of its occupancy at the gene promoters and a reduced H3K9 acetylation level at these promoters, highlighting the important correlation between the processing event and PfGCN5 activity. Altogether, our study reveals a unique processing event for a nuclear protein PfGCN5 with unforeseen role of a food vacuolar cysteine protease. This leads to a possibility of the development of new antimalarials against these targets.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Tehlan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sunita
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Renu Sudhakar
- Centre for Cellular and Molecular Biology, Hyderabad, Telengana 500007, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Puran Singh Sijwali
- Centre for Cellular and Molecular Biology, Hyderabad, Telengana 500007, India
| | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
10
|
Siddiqui FA, Cabrera M, Wang M, Brashear A, Kemirembe K, Wang Z, Miao J, Chookajorn T, Yang Z, Cao Y, Dong G, Rosenthal PJ, Cui L. Plasmodium falciparum Falcipain-2a Polymorphisms in Southeast Asia and Their Association With Artemisinin Resistance. J Infect Dis 2019; 218:434-442. [PMID: 29659945 DOI: 10.1093/infdis/jiy188] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 11/14/2022] Open
Abstract
Background Falcipain-2a ([FP2a] PF3D7_1115700) is a Plasmodium falciparum cysteine protease and hemoglobinase. Functional FP2a is required for potent activity of artemisinin, and in vitro selection for artemisinin resistance selected for an FP2a nonsense mutation. Methods To investigate associations between FP2a polymorphisms and artemisinin resistance and to characterize the diversity of the enzyme in parasites from the China-Myanmar border, we sequenced the full-length FP2a gene in 140 P falciparum isolates collected during 2004-2011. Results The isolates were grouped into 8 different haplotype groups. Haplotype group I appeared in samples obtained after 2008, coinciding with implementation of artemisinin-based combination therapy in this region. In functional studies, compared with wild-type parasites, the FP2a haplotypes demonstrated increased ring survival, and all haplotype groups exhibited significantly reduced FP2a activity, with group I showing the slowest protease kinetics and reduced parasite fitness. Conclusions These results suggest that altered hemoglobin digestion due to FP2a mutations may contribute to artemisinin resistance.
Collapse
Affiliation(s)
- Faiza A Siddiqui
- Department of Entomology, Pennsylvania State University, University Park
| | - Mynthia Cabrera
- Department of Entomology, Pennsylvania State University, University Park
| | - Meilian Wang
- College of Basic Medical Sciences, China Medical University, Shenyang
| | - Awtum Brashear
- Department of Entomology, Pennsylvania State University, University Park
| | - Karen Kemirembe
- Department of Entomology, Pennsylvania State University, University Park
| | - Zenglei Wang
- Department of Entomology, Pennsylvania State University, University Park
| | - Jun Miao
- Department of Entomology, Pennsylvania State University, University Park
| | - Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, China
| | - Yaming Cao
- College of Basic Medical Sciences, China Medical University, Shenyang
| | - Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, Austria
| | | | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park
| |
Collapse
|
11
|
Allangba KNPG, Keita M, Kre N'Guessan R, Megnassan E, Frecer V, Miertus S. Virtual design of novel Plasmodium falciparum cysteine protease falcipain-2 hybrid lactone-chalcone and isatin-chalcone inhibitors probing the S2 active site pocket. J Enzyme Inhib Med Chem 2019; 34:547-561. [PMID: 30696325 PMCID: PMC6352947 DOI: 10.1080/14756366.2018.1564288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report computer-aided design of new lactone–chalcone and isatin–chalcone (HLCIC) inhibitors of the falcipain-2 (PfFP-2). 3D models of 15 FP-2:HLCIC1-15 complexes with known observed activity (IC50exp) were prepared to establish a quantitative structure–activity (QSAR) model and linear correlation between relative Gibbs free energy of enzyme:inhibitor complex formation (ΔΔGcom) and IC50exp: pIC50exp = −0.0236 × ΔΔGcom+5.082(#); R2 = 0.93. A 3D pharmacophore model (PH4) derived from the QSAR directed our effort to design novel HLCIC analogues. During the design, an initial virtual library of 2621440 HLCIC was focused down to 18288 drug-like compounds and finally, PH4 screened to identify 81 promising compounds. Thirty-three others were added from an intuitive substitution approach intended to fill better the enzyme S2 pocket. One hundred and fourteen theoretical IC50 (IC50pre) values were predicted by means of (#) and their pharmacokinetics (ADME) profiles. More than 30 putative HLCICs display IC50pre 100 times superior to that of the published most active training set inhibitor HLCIC1.
Collapse
Affiliation(s)
| | - Mélalie Keita
- a Laboratoire de Physique Fondamentale et Appliquée (LPFA) , University of Abobo Adjamé (now Nangui Abrogoua) , Abidjan , Côte d'Ivoire
| | - Raymond Kre N'Guessan
- a Laboratoire de Physique Fondamentale et Appliquée (LPFA) , University of Abobo Adjamé (now Nangui Abrogoua) , Abidjan , Côte d'Ivoire
| | - Eugene Megnassan
- a Laboratoire de Physique Fondamentale et Appliquée (LPFA) , University of Abobo Adjamé (now Nangui Abrogoua) , Abidjan , Côte d'Ivoire.,b Laboratoire de Chimie Organique Structurale et Théorique , University of Cocody (now Felix Houphouët Boigny) , Abidjan , Côte d'Ivoire.,c ICS-UNIDO , Trieste , Italy
| | - Vladimir Frecer
- c ICS-UNIDO , Trieste , Italy.,d Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia.,e International Centre for Applied Research and Sustainable Technology , Bratislava , Slovakia
| | - Stanislav Miertus
- c ICS-UNIDO , Trieste , Italy.,e International Centre for Applied Research and Sustainable Technology , Bratislava , Slovakia.,f Faculty of Natural Sciences , University of SS. Cyril and Methodius , Trnava , Slovakia
| |
Collapse
|
12
|
Verma S, Dixit R, Pandey KC. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets. Front Pharmacol 2016; 7:107. [PMID: 27199750 PMCID: PMC4842899 DOI: 10.3389/fphar.2016.00107] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.
Collapse
Affiliation(s)
- Sonia Verma
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical ResearchNew Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical ResearchNew Delhi, India
| | - Kailash C. Pandey
- Department of Biochemistry, National Institute for Research in Environmental Health, Indian Council of Medical ResearchBhopal, India
| |
Collapse
|
13
|
Xie SC, Dogovski C, Hanssen E, Chiu F, Yang T, Crespo MP, Stafford C, Batinovic S, Teguh S, Charman S, Klonis N, Tilley L. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J Cell Sci 2015; 129:406-16. [PMID: 26675237 PMCID: PMC4732288 DOI: 10.1242/jcs.178830] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/02/2015] [Indexed: 11/30/2022] Open
Abstract
Current first-line artemisinin antimalarials are threatened by the emergence of resistant Plasmodium falciparum. Decreased sensitivity is evident in the initial (early ring) stage of intraerythrocytic development, meaning that it is crucial to understand the action of artemisinins at this stage. Here, we examined the roles of iron (Fe) ions and haem in artemisinin activation in early rings using Fe ion chelators and a specific haemoglobinase inhibitor (E64d). Quantitative modelling of the antagonism accounted for its complex dependence on the chemical features of the artemisinins and on the drug exposure time, and showed that almost all artemisinin activity in early rings (>80%) is due to haem-mediated activation. The surprising implication that haemoglobin uptake and digestion is active in early rings is supported by identification of active haemoglobinases (falcipains) at this stage. Genetic down-modulation of the expression of the two main cysteine protease haemoglobinases, falcipains 2 and 3, renders early ring stage parasites resistant to artemisinins. This confirms the important role of haemoglobin-degrading falcipains in artemisinin activation, and shows that changes in the rate of artemisinin activation could mediate high-level artemisinin resistance. Summary: Down-modulation of the expression of haemoglobin-degrading falcipains in P. falciparum renders early ring stage parasites resistant to artemisinins.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric Hanssen
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Francis Chiu
- Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Melbourne, Victoria 3010, Australia
| | - Tuo Yang
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Maria P Crespo
- Department of Microbiology, University of Valle, 13 #100-00, Cali, Valle del Cauca, Colombia Department of Biomedical Sciences, Santiago de Cali University, 25, Cali, Valle del Cauca, Colombia
| | - Che Stafford
- Walter+Eliza Hall Institute, Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Steven Batinovic
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Silvia Teguh
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Susan Charman
- Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Melbourne, Victoria 3010, Australia
| | - Nectarios Klonis
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Erythrocyte lysis and Xenopus laevis oocyte rupture by recombinant Plasmodium falciparum hemolysin III. EUKARYOTIC CELL 2014; 13:1337-45. [PMID: 25148832 DOI: 10.1128/ec.00088-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malaria kills more than 1 million people per year worldwide, with severe malaria anemia accounting for the majority of the deaths. Malaria anemia is multifactorial in etiology, including infected erythrocyte destruction and decrease in erythrocyte production, as well as destruction or clearance of noninfected erythrocytes. We identified a panspecies Plasmodium hemolysin type III related to bacterial hemolysins. The identification of a hemolysin III homologue in Plasmodium suggests a potential role in host erythrocyte lysis. Here, we report the first characterization of Plasmodium falciparum hemolysin III, showing that the soluble recombinant P. falciparum hemolysin III is a pore-forming protein capable of lysing human erythrocytes in a dose-, time-, and temperature-dependent fashion. The recombinant P. falciparum hemolysin III-induced hemolysis was partially inhibited by glibenclamide, a known channel antagonist. Studies with polyethylene glycol molecules of different molecular weights indicated a pore size of approximately 3.2 nm. Heterologous expression of recombinant P. falciparum hemolysin III in Xenopus oocytes demonstrated early hypotonic lysis similar to that of the pore-forming aquaporin control. Live fluorescence microscopy localized transfected recombinant green fluorescent protein (GFP)-tagged P. falciparum hemolysin III to the essential digestive vacuole of the P. falciparum parasite. These transfected trophozoites also possessed a swollen digestive vacuole phenotype. Native Plasmodium hemolysin III in the digestive vacuole may contribute to lysis of the parasitophorous vacuole membrane derived from the host erythrocyte. After merozoite egress from infected erythrocytes, remnant P. falciparum hemolysin III released from digestive vacuoles could potentially contribute to lysis of uninfected erythrocytes to contribute to severe life-threatening anemia.
Collapse
|
15
|
Sundararaj S, Saxena AK, Sharma R, Vashisht K, Sharma S, Anvikar A, Dixit R, Rosenthal PJ, Pandey KC. Cross-talk between malarial cysteine proteases and falstatin: the BC loop as a hot-spot target. PLoS One 2014; 9:e93008. [PMID: 24699522 PMCID: PMC3974720 DOI: 10.1371/journal.pone.0093008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/27/2014] [Indexed: 02/05/2023] Open
Abstract
Cysteine proteases play a crucial role in the development of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Our earlier studies demonstrated that these enzymes are equipped with specific domains for defined functions and further suggested the mechanism of activation of cysteine proteases. The activities of these proteases are regulated by a new class of endogenous inhibitors of cysteine proteases (ICPs). Structural studies of the ICPs of Trypanosoma cruzi (chagasin) and Plasmodium berghei (PbICP) indicated that three loops (termed BC, DE, and FG) are crucial for binding to target proteases. Falstatin, an ICP of P. falciparum, appears to play a crucial role in invasion of erythrocytes and hepatocytes. However, the mechanism of inhibition of cysteine proteases by falstatin has not been established. Our study suggests that falstatin is the first known ICP to function as a multimeric protein. Using site-directed mutagenesis, hemoglobin hydrolysis assays and peptide inhibition studies, we demonstrate that the BC loop, but not the DE or FG loops, inhibits cysteine proteases of P. falciparum and P. vivax via hydrogen bonds. These results suggest that the BC loop of falstatin acts as a hot-spot target for inhibiting malarial cysteine proteases. This finding suggests new strategies for the development of anti-malarial agents based on protease-inhibitor interactions.
Collapse
Affiliation(s)
- Srinivasan Sundararaj
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Ajay K. Saxena
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ruby Sharma
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kapil Vashisht
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Supriya Sharma
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Anup Anvikar
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Rajnikant Dixit
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Philip J. Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Kailash C. Pandey
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| |
Collapse
|
16
|
Trafficked Proteins-Druggable in Plasmodium falciparum? Int J Cell Biol 2013; 2013:435981. [PMID: 23710183 PMCID: PMC3655585 DOI: 10.1155/2013/435981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/12/2013] [Indexed: 01/09/2023] Open
Abstract
Malaria is an infectious disease that results in serious health problems in the countries in which it is endemic. Annually this parasitic disease leads to more than half a million deaths; most of these are children in Africa. An effective vaccine is not available, and the treatment of the disease is solely dependent on chemotherapy. However, drug resistance is spreading, and the identification of new drug targets as well as the development of new antimalarials is urgently required. Attention has been drawn to a variety of essential plasmodial proteins, which are targeted to intra- or extracellular destinations, such as the digestive vacuole, the apicoplast, or into the host cell. Interfering with the action or the transport of these proteins will impede proliferation of the parasite. In this mini review, we will shed light on the present discovery of chemotherapeutics and potential drug targets involved in protein trafficking processes in the malaria parasite.
Collapse
|
17
|
Substrate specificity studies of the cysteine peptidases falcipain-2 and falcipain-3 from Plasmodium falciparum and demonstration of their kininogenase activity. Mol Biochem Parasitol 2013; 187:111-6. [DOI: 10.1016/j.molbiopara.2013.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/20/2012] [Accepted: 01/16/2013] [Indexed: 01/19/2023]
|
18
|
Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite. PLoS One 2012; 7:e51619. [PMID: 23251596 PMCID: PMC3520923 DOI: 10.1371/journal.pone.0051619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/02/2012] [Indexed: 01/09/2023] Open
Abstract
Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4). Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5), suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3) to moderate (KP4) preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease inhibitor libraries against knowpains for developing broadly effective compounds active against multiple human malaria parasites.
Collapse
|
19
|
Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, Spielmann T, Przyborski JM. Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol 2012; 186:95-116. [DOI: 10.1016/j.molbiopara.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
|
20
|
Sundararaj S, Singh D, Saxena AK, Vashisht K, Sijwali PS, Dixit R, Pandey KC. The Ionic and hydrophobic interactions are required for the auto activation of cysteine proteases of Plasmodium falciparum. PLoS One 2012; 7:e47227. [PMID: 23077573 PMCID: PMC3473063 DOI: 10.1371/journal.pone.0047227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/11/2012] [Indexed: 02/05/2023] Open
Abstract
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 are major hemoglobinases and potential antimalarial drug targets. Our previous studies demonstrated that these enzymes are equipped with specific domains for specific functions. Structural and functional analysis of falcipains showed that they have unique domains including a refolding domain and a hemoglobin binding domain. As with many proteases, falcipain-2 and falcipain-3 are synthesized as inactive zymogens. However, it is not known how these enzymes get activated for hemoglobin hydrolysis. In this study, we are presenting the first evidence that salt bridges and hydrophobic interactions are required for the auto activation of cysteine proteases of P.falciparum. To investigate the mechanism of activation of these enzymes, we expressed the wild type protein as well as different mutants in E.coli. Refolding was assessed by circular dichroism. Both CD and trans activation data showed that the wild type enzymes and mutants are rich in secondary structures with similar folds. Our study revealed that prodomain-mature domain of falcipain-2 and falcipain-3 interacts via salt bridges and hydrophobic interactions. We mutated specific residues of falcipain-2 and falcipain-3, and evaluated their ability to undergo auto processing. Mutagenesis result showed that two salt bridges (Arg¹⁸⁵- Glu²²¹, Glu²¹⁰- Lys⁴⁰³) in falcipain-2, and one salt bridge (Arg²⁰²-Glu²³⁸) in falcipain-3, play crucial roles in the activation of these enzymes. Further study revealed that hydrophobic interactions present both in falcipain-2 (Phe²¹⁴ Trp⁴⁴⁹ Trp⁴⁵³) and falcipain-3 (Phe²³¹ Trp⁴⁵⁷ Trp⁴⁶¹) also play important roles in the activation of these enzymes. Our results revealed the interactions involved in auto processing of two major hemoglobinases of malaria parasite.
Collapse
Affiliation(s)
- Srinivasan Sundararaj
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Deepak Singh
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Ajay K. Saxena
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kapil Vashisht
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | | | - Rajnikant Dixit
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| | - Kailash C. Pandey
- Host–Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Dwarka, New Delhi, India
| |
Collapse
|
21
|
Denloye T, Dalal S, Klemba M. Characterization of a glycerophosphodiesterase with an unusual tripartite distribution and an important role in the asexual blood stages of Plasmodium falciparum. Mol Biochem Parasitol 2012; 186:29-37. [PMID: 23000576 DOI: 10.1016/j.molbiopara.2012.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
Catabolism of glycerophospholipids during the rapid growth of the asexual intraerythrocytic malaria parasite may contribute to membrane recycling and the acquisition of lipid biosynthetic precursors from the host. To better understand the scope of lipid catabolism in Plasmodium falciparum, we have characterized a malarial homolog of bacterial glycerophosphodiesterases. These enzymes catalyze the hydrolysis of glycerophosphodiesterases that are generated by phospholipase-catalyzed removal of the two acyl groups from glycerophospholipids. The P. falciparum glycerophosphodiesterase (PfGDPD) exhibits an unusual tripartite distribution during the asexual blood stage with pools of enzyme in the parasitophorous vacuole, food vacuole and cytosol. Efforts to disrupt the chromosomal PfGDPD coding sequence were unsuccessful, which implies that the enzyme is important for efficient parasite growth. Tagging of the endogenous pool of PfGDPD with a conditional aggregation domain partially perturbed the distribution of the enzyme in the parasitophorous vacuole but had no discernable effect on growth in culture. Kinetic characterization of the hydrolysis of glycerophosphocholine by recombinant PfGDPD, an Mg(2+)-dependent enzyme, yielded steady-state parameters that were comparable to those of a homologous bacterial glycerophosphodiesterase. Together, these results suggest a physiological role for PfGDPD in glycerophospholipid catabolism in multiple subcellular compartments. Possibilities for what this role might be are discussed.
Collapse
Affiliation(s)
- Titilola Denloye
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
22
|
Pandey KC, Dixit R. Structure-function of falcipains: malarial cysteine proteases. J Trop Med 2012; 2012:345195. [PMID: 22529862 PMCID: PMC3317066 DOI: 10.1155/2012/345195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/12/2011] [Accepted: 10/27/2011] [Indexed: 02/05/2023] Open
Abstract
Evidence indicates that cysteine proteases play essential role in malaria parasites; therefore an obvious area of investigation is the inhibition of these enzymes to treat malaria. Studies with cysteine protease inhibitors and manipulating cysteine proteases genes have suggested a role for cysteine proteases in hemoglobin hydrolysis. The best characterized Plasmodium cysteine proteases are falcipains, which are papain family enzymes. Falcipain-2 and falcipain-3 are major hemoglobinases of P. falciparum. Structural and functional analysis of falcipains showed that they have unique domains including a refolding domain and a hemoglobin binding domain. Overall, the complexes of falcipain-2 and falcipain-3 with small and macromolecular inhibitors provide structural insight to facilitate the design or modification of effective drug treatment against malaria. Drug development targeting falcipains should be aided by a strong foundation of biochemical and structural studies.
Collapse
Affiliation(s)
- Kailash C. Pandey
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi 110 077, India
| | | |
Collapse
|
23
|
Centenary celebrations article: Cysteine proteases of human malaria parasites. J Parasit Dis 2011; 35:94-103. [PMID: 23024488 DOI: 10.1007/s12639-011-0084-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/09/2011] [Indexed: 01/07/2023] Open
Abstract
There is an urgent need for new drugs against malaria, which takes millions of lives annually. Cysteine proteases are potential new drug targets, especially when current drugs are showing resistance. Falcipains and vivapains are well characterized cysteine proteases of P. falciparum and P. vivax, respectively. Studies with cysteine protease inhibitors and manipulating cysteine proteases specific genes have suggested their roles in hemoglobin hydrolysis. In P. falciparum, falcipain-2 and falcipain-3 are major hemoglobinases that hydrolyze host erythrocyte hemoglobin in the parasite food vacuole. It is confirmed that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis, and disruption of falcipain-3 gene was not possible, suggesting that protease is essential for erythrocytic parasites. On the other hand, vivapain-2, vivapain-3 and vivapain-4 are important cysteine proteases of P. vivax, which shared a number of features with falcipain-2 and falcipain-3. A recent study indicates that vivapains and aspartic protease of P. vivax works collaboratively to enhance the parasites' ability to hydrolyze host erythrocyte hemoglobin. Studies also indicate that falcipains and vivapains also hydrolyse the erythrocyte cytoskeleton proteins and involved in rupture of red blood cell. Structural and biochemical analysis of falcipains and vivapains showed that they have unique domains for specific functions. Overall, the complexes of cysteine proteases with small and macromolecular inhibitors provide structural insight to facilitate the drug design. Therefore, giving due importance to the cysteine proteases, this review will briefly focus the recent advancement in the field of cysteine proteases of human malaria parasites.
Collapse
|
24
|
Lin TH, Murphy RF, Bar-Joseph Z. Discriminative motif finding for predicting protein subcellular localization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011; 8:441-51. [PMID: 21233524 PMCID: PMC3050600 DOI: 10.1109/tcbb.2009.82] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many methods have been described to predict the subcellular location of proteins from sequence information. However, most of these methods either rely on global sequence properties or use a set of known protein targeting motifs to predict protein localization. Here, we develop and test a novel method that identifies potential targeting motifs using a discriminative approach based on hidden Markov models (discriminative HMMs). These models search for motifs that are present in a compartment but absent in other, nearby, compartments by utilizing an hierarchical structure that mimics the protein sorting mechanism. We show that both discriminative motif finding and the hierarchical structure improve localization prediction on a benchmark data set of yeast proteins. The motifs identified can be mapped to known targeting motifs and they are more conserved than the average protein sequence. Using our motif-based predictions, we can identify potential annotation errors in public databases for the location of some of the proteins. A software implementation and the data set described in this paper are available from http://murphylab.web.cmu.edu/software/2009_TCBB_motif/.
Collapse
Affiliation(s)
- Tien-ho Lin
- Carnegie Mellon University, Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
25
|
Rosenthal PJ. Falcipains and other cysteine proteases of malaria parasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:30-48. [PMID: 21660657 DOI: 10.1007/978-1-4419-8414-2_3] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of cysteine proteases of malaria parasites have been described and many more are suggested by analysis of the Plasmodium falciparum genome sequence. The best characterized of these proteases are the falcipains, a family of four papain-family enzymes. Falcipain-2 and falcipain-3 act in concert with other proteases to hydrolyze host erythrocyte hemoglobin in the parasite food vacuole. Disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis and parasites with increased sensitivity to protease inhibitors. Disruption of the falcipain-3 gene was not possible, strongly suggesting that this protease is essential for erythrocytic parasites. Disruption of the falcipain-1 gene did not alter development in erythrocytes, but led to decreased production of oocysts in mosquitoes. other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog and serine-repeat antigens (SERAs). Dipeptidyl aminopeptidase 1 appears to be essential and localized to the food vacuole, suggesting a role in hemoglobin hydrolysis. Dipeptidyl aminopeptidase 3 appears to play a role in the rupture of erythrocytes by mature parasites. the P. falciparum calpain homolog gene could not be disrupted, suggesting that the protein is essential and a role in the parasite cell cycle has been suggested. Nine P. falciparum SERAs have cysteine protease motifs, but in some the active site cys is replaced by a Ser. Gene disruption studies suggested that SERA-5 and SERA-6 are essential. activation of SERA-5 by a serine protease seems to be required for merozoite egress from the erythrocyte. New drugs for malaria are greatly needed and cysteine proteases represent potential drug targets. cysteine protease inhibitors have demonstrated potent antimalarial effects and the optimization and testing of falcipain inhibitor antimalarials is underway.
Collapse
Affiliation(s)
- Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California, USA.
| |
Collapse
|
26
|
Mesplet M, Echaide I, Dominguez M, Mosqueda JJ, Suarez CE, Schnittger L, Florin-Christensen M. Bovipain-2, the falcipain-2 ortholog, is expressed in intraerythrocytic stages of the tick-transmitted hemoparasite Babesia bovis. Parasit Vectors 2010; 3:113. [PMID: 21092313 PMCID: PMC3003645 DOI: 10.1186/1756-3305-3-113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/23/2010] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cysteine proteases have been shown to be highly relevant for Apicomplexan parasites. In the case of Babesia bovis, a tick-transmitted hemoparasite of cattle, inhibitors of these enzymes were shown to hamper intraerythrocytic replication of the parasite, underscoring their importance for survival. RESULTS Four papain-like cysteine proteases were found to be encoded by the B. bovis genome using the MEROPS database. One of them, the ortholog of Plasmodium falciparum falcipain-2, here named bovipain-2, was further characterized. Bovipain-2 is encoded in B. bovis chromosome 4 by an ORF of 1.3 kb, has a predicted molecular weight of 42 kDa, and is hydrophilic with the exception of a transmembrane region. It has orthologs in several other apicomplexans, and its predicted amino acid sequence shows a high degree of conservation among several B. bovis isolates from North and South America. Synteny studies demonstrated that the bovipain-2 gene has expanded in the genomes of two related piroplasmids, Theileria parva and T. annulata, into families of 6 and 7 clustered genes respectively. The bovipain-2 gene is transcribed in in vitro cultured intra-erythrocyte forms of a virulent and an attenuated B. bovis strain from Argentina, and has no introns, as shown by RT-PCR followed by sequencing. Antibodies against a recombinant form of bovipain-2 recognized two parasite protein bands of 34 and 26 kDa, which coincide with the predicted sizes of the pro-peptidase and mature peptidase, respectively. Immunofluorescence studies showed an intracellular localization of bovipain-2 in the middle-rear region of in vitro cultured merozoites, as well as diffused in the cytoplasm of infected erythrocytes. Anti-bovipain-2 antibodies also reacted with B. bigemina-infected erythrocytes giving a similar pattern, which suggests cross-reactivity among these species. Antibodies in sera of two out of six B. bovis-experimentally infected bovines tested, reacted specifically with recombinant bovipain-2 in immunoblots, thus demonstrating expression and immunogenicity during bovine-infecting stages. CONCLUSIONS Overall, we present the characterization of bovipain-2 and demonstrate its in vitro and in vivo expression in virulent and attenuated strains. Given the involvement of apicomplexan cysteine proteases in essential parasite functions, bovipain-2 constitutes a new vaccine candidate and potential drug target for bovine babesiosis.
Collapse
Affiliation(s)
- María Mesplet
- Instituto de Patobiología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, INTA-Castelar, Argentina.
| | | | | | | | | | | | | |
Collapse
|
27
|
Bowyer PW, Simon GM, Cravatt BF, Bogyo M. Global profiling of proteolysis during rupture of Plasmodium falciparum from the host erythrocyte. Mol Cell Proteomics 2010; 10:M110.001636. [PMID: 20943600 PMCID: PMC3098579 DOI: 10.1074/mcp.m110.001636] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The obligate intracellular parasite pathogen Plasmodium falciparum is the causative agent of malaria, a disease that results in nearly one million deaths per year. A key step in disease pathology in the human host is the parasite-mediated rupture of red blood cells, a process that requires extensive proteolysis of a number of host and parasite proteins. However, only a relatively small number of specific proteolytic processing events have been characterized. Here we describe the application of the Protein Topography and Migration Analysis Platform (PROTOMAP) (Dix, M. M., Simon, G. M., and Cravatt, B. F. (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134, 679-691; Simon, G. M., Dix, M. M., and Cravatt, B. F. (2009) Comparative assessment of large-scale proteomic studies of apoptotic proteolysis. ACS Chem. Biol. 4, 401-408) technology to globally profile proteolytic events occurring over the last 6-8 h of the intraerythrocytic cycle of P. falciparum. Using this method, we were able to generate peptographs for a large number of proteins at 6 h prior to rupture as well as at the point of rupture and in purified merozoites after exit from the host cell. These peptographs allowed assessment of proteolytic processing as well as changes in both protein localization and overall stage-specific expression of a large number of parasite proteins. Furthermore, by using a highly selective inhibitor of the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) that has been shown to be a key regulator of host cell rupture, we were able to identify specific substrates whose processing may be of particular importance to the process of host cell rupture. These results provide the first global map of the proteolytic processing events that take place as the human malarial parasite extracts itself from the host red blood cell. These data also provide insight into the biochemical events that take place during host cell rupture and are likely to be valuable for the study of proteases that could potentially be targeted for therapeutic gain.
Collapse
Affiliation(s)
- Paul W Bowyer
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
28
|
Na BK, Bae YA, Zo YG, Choe Y, Kim SH, Desai PV, Avery MA, Craik CS, Kim TS, Rosenthal PJ, Kong Y. Biochemical properties of a novel cysteine protease of Plasmodium vivax, vivapain-4. PLoS Negl Trop Dis 2010; 4:e849. [PMID: 20967286 PMCID: PMC2953480 DOI: 10.1371/journal.pntd.0000849] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/14/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Multiple cysteine proteases of malaria parasites are required for maintenance of parasite metabolic homeostasis and egress from the host erythrocyte. In Plasmodium falciparum these proteases appear to mediate the processing of hemoglobin and aspartic proteases (plasmepsins) in the acidic food vacuole and the hydrolysis of erythrocyte structural proteins at neutral pH. Two cysteine proteases, vivapain (VX)-2 and VX-3 have been characterized in P. vivax, but comprehensive studies of P. vivax cysteine proteases remain elusive. FINDINGS We characterized a novel cysteine protease of P. vivax, VX-4, of which orthologs appears to have evolved differentially in primate plasmodia with strong cladistic affinity toward those of rodent Plasmodium. Recombinant VX-4 demonstrated dual substrate specificity depending on the surrounding micro-environmental pH. Its hydrolyzing activity against benzyloxycarbonyl-Leu-Arg-4-methyl-coumaryl-7-amide (Z-Leu-Arg-MCA) and Z-Phe-Arg-MCA was highest at acidic pH (5.5), whereas that against Z-Arg-Arg-MCA was maximal at neutral pH (6.5-7.5). VX-4 preferred positively charged amino acids and Gln at the P1 position, with less strict specificity at P3 and P4. P2 preferences depended on pH (Leu at pH 5.5 and Arg at pH 7.5). Three amino acids that delineate the S2 pocket were substituted in VX-4 compared to VX-2 and VX-3 (Ala90, Gly157 and Glu180). Replacement of Glu180 abolished activity against Z-Arg-Arg-MCA at neutral pH, indicating the importance of this amino acid in the pH-dependent substrate preference. VX-4 was localized in the food vacuoles and cytoplasm of the erythrocytic stage of P. vivax. VX-4 showed maximal activity against actin at neutral pH, and that against P. vivax plasmepsin 4 and hemoglobin was detected at neutral/acidic and acidic pH, respectively. CONCLUSION VX-4 demonstrates pH-dependent substrate switching, which might offer an efficient mechanism for the specific cleavage of different substrates in different intracellular environments. VX-4 might function as a hemoglobinase in the acidic parasite food vacuole, a maturase of P. vivax plasmepsin 4 at neutral or acidic pH, and a cytoskeleton-degrading protease in the neutral erythrocyte cytosol.
Collapse
Affiliation(s)
- Byoung-Kuk Na
- Department of Molecular Parasitology and Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Young-An Bae
- Department of Molecular Parasitology and Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Young-Gun Zo
- Department of Molecular Parasitology and Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Youngchool Choe
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Seon-Hee Kim
- Department of Molecular Parasitology and Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Prashant V. Desai
- Department of Medicinal Chemistry, National Center for Natural Products Research, University of Mississippi, University, Mississippi, United States of America
| | - Mitchell A. Avery
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, Unites States of America
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Tong-Soo Kim
- Department of Parasitology, Inha University College of Medicine, Incheon, Korea
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Yoon Kong
- Department of Molecular Parasitology and Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
29
|
Fu Y, Tilley L, Kenny S, Klonis N. Dual labeling with a far red probe permits analysis of growth and oxidative stress in P. falciparum-infected erythrocytes. Cytometry A 2010; 77:253-63. [PMID: 20091670 DOI: 10.1002/cyto.a.20856] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The malaria parasite, Plasmodium falciparum, develops within human erythrocytes, consuming host hemoglobin to support its own growth. Reactive oxygen species (superoxide and hydrogen peroxide) are by-products of hemoglobin digestion and are believed to exert significant oxidative stress on the parasite. We have characterized a cell permeant, far red fluorescent nucleic acid-binding dye, SYTO 61, that can be used to distinguish between uninfected and infected erythrocytes in a flow cytometric format. The spectral properties of SYTO 61 make it suitable for use in combination with the fluorescent reactive oxygen species reporter 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-fluorescein diacetate acetyl ester. We have used this probe combination to measure oxidative stress in different stages of live P. falciparum. Low levels of the oxidized, fluorescent form of the reporter (2',7'-dichlorofluorescein, DCF) are detected in ring stage parasites; the DCF signal increases as the intraerythrocytic parasite matures into the trophozoite stage where active hemoglobin digestion occurs. Treatment of infected erythrocytes with the cysteine protease inhibitor, E-64, which inhibits hemoglobin digestion, decreases the DCF signal. We show that E-64 prevents schizont rupture but also causes delayed lethal effects when ring stage cultures are exposed to the drug. We also examined cultures of parasites in erythrocytes harboring 98% catalase inactivation and found no effect on growth and only a modest increase in DCF oxidation.
Collapse
Affiliation(s)
- Ying Fu
- Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
30
|
Kuhn Y, Sanchez CP, Ayoub D, Saridaki T, van Dorsselaer A, Lanzer M. Trafficking of the Phosphoprotein PfCRT to the Digestive Vacuolar Membrane inPlasmodium falciparum. Traffic 2010; 11:236-49. [DOI: 10.1111/j.1600-0854.2009.01018.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Ragheb D, Bompiani K, Dalal S, Klemba M. Evidence for catalytic roles for Plasmodium falciparum aminopeptidase P in the food vacuole and cytosol. J Biol Chem 2009; 284:24806-15. [PMID: 19574214 DOI: 10.1074/jbc.m109.018424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloenzyme aminopeptidase P catalyzes the hydrolysis of amino acids from the amino termini of peptides with a prolyl residue in the second position. The human malaria parasite Plasmodium falciparum expresses a homolog of aminopeptidase P during its asexual intraerythrocytic cycle. P. falciparum aminopeptidase P (PfAPP) shares with mammalian cytosolic aminopeptidase P a three-domain, homodimeric organization and is most active with Mn(II) as the cofactor. A distinguishing feature of PfAPP is a 120-amino acid amino-terminal extension that appears to be removed from the mature protein. PfAPP is present in the food vacuole and cytosol of the parasite, a distribution that suggests roles in vacuolar hemoglobin catabolism and cytosolic peptide turnover. To evaluate the plausibility of these putative functions, the stability and kinetic properties of recombinant PfAPP were evaluated at the acidic pH of the food vacuole and at the near-neutral pH of the cytosol. PfAPP exhibited high stability at 37 degrees C in the pH range 5.0-7.5. In contrast, recombinant human cytosolic APP1 was unstable and formed a high molecular weight aggregate at acidic pH. At both acidic and slightly basic pH values, PfAPP efficiently hydrolyzed the amino-terminal X-Pro bond of the nonapeptide bradykinin and of two globin pentapeptides that are potential in vivo substrates. These results provide support for roles for PfAPP in peptide catabolism in both the food vacuole and the cytosol and suggest that PfAPP has evolved a dual distribution in response to the metabolic needs of the intraerythrocytic parasite.
Collapse
Affiliation(s)
- Daniel Ragheb
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
32
|
Pandey KC, Barkan DT, Sali A, Rosenthal PJ. Regulatory elements within the prodomain of Falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. PLoS One 2009; 4:e5694. [PMID: 19479029 PMCID: PMC2682653 DOI: 10.1371/journal.pone.0005694] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/24/2009] [Indexed: 11/18/2022] Open
Abstract
Falcipain-2, a papain family cysteine protease of the malaria parasite Plasmodium falciparum, plays a key role in parasite hydrolysis of hemoglobin and is a potential chemotherapeutic target. As with many proteases, falcipain-2 is synthesized as a zymogen, and the prodomain inhibits activity of the mature enzyme. To investigate the mechanism of regulation of falcipain-2 by its prodomain, we expressed constructs encoding different portions of the prodomain and tested their ability to inhibit recombinant mature falcipain-2. We identified a C-terminal segment (Leu155–Asp243) of the prodomain, including two motifs (ERFNIN and GNFD) that are conserved in cathepsin L sub-family papain family proteases, as the mediator of prodomain inhibitory activity. Circular dichroism analysis showed that the prodomain including the C-terminal segment, but not constructs lacking this segment, was rich in secondary structure, suggesting that the segment plays a crucial role in protein folding. The falcipain-2 prodomain also efficiently inhibited other papain family proteases, including cathepsin K, cathepsin L, cathepsin B, and cruzain, but it did not inhibit cathepsin C or tested proteases of other classes. A structural model of pro-falcipain-2 was constructed by homology modeling based on crystallographic structures of mature falcipain-2, procathepsin K, procathepsin L, and procaricain, offering insights into the nature of the interaction between the prodomain and mature domain of falcipain-2 as well as into the broad specificity of inhibitory activity of the falcipain-2 prodomain.
Collapse
Affiliation(s)
- Kailash C. Pandey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - David T. Barkan
- Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- Graduate Group in Bioinformatics, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Andrej Sali
- Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Subramanian S, Hardt M, Choe Y, Niles RK, Johansen EB, Legac J, Gut J, Kerr ID, Craik CS, Rosenthal PJ. Hemoglobin cleavage site-specificity of the Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3. PLoS One 2009; 4:e5156. [PMID: 19357776 PMCID: PMC2663817 DOI: 10.1371/journal.pone.0005156] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/10/2009] [Indexed: 11/18/2022] Open
Abstract
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 degrade host hemoglobin to provide free amino acids for parasite protein synthesis. Hemoglobin hydrolysis has been described as an ordered process initiated by aspartic proteases, but cysteine protease inhibitors completely block the process, suggesting that cysteine proteases can also initiate hemoglobin hydrolysis. To characterize the specific roles of falcipains, we used three approaches. First, using random P1 – P4 amino acid substrate libraries, falcipain-2 and falcipain-3 demonstrated strong preference for cleavage sites with Leu at the P2 position. Second, with overlapping peptides spanning α and β globin and proteolysis-dependent 18O labeling, hydrolysis was seen at many cleavage sites. Third, with intact hemoglobin, numerous cleavage products were identified. Our results suggest that hemoglobin hydrolysis by malaria parasites is not a highly ordered process, but rather proceeds with rapid cleavage by falcipains at multiple sites. However, falcipain-2 and falcipain-3 show strong specificity for P2 Leu in small peptide substrates, in agreement with the specificity in optimized small molecule inhibitors that was identified previously. These results are consistent with a principal role of falcipain-2 and falcipain-3 in the hydrolysis of hemoglobin by P. falciparum and with the possibility of developing small molecule inhibitors with optimized specificity as antimalarial agents.
Collapse
Affiliation(s)
- Shoba Subramanian
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Markus Hardt
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Youngchool Choe
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Richard K. Niles
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Eric B. Johansen
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Jennifer Legac
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Jiri Gut
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
| | - Iain D. Kerr
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Philip J. Rosenthal
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Huang R, Que X, Hirata K, Brinen LS, Lee JH, Hansell E, Engel J, Sajid M, Reed S. The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol 2009; 164:86-94. [PMID: 19111576 PMCID: PMC2663568 DOI: 10.1016/j.molbiopara.2008.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite of all vertebrates, including man. Successful invasion and replication requires the synchronized release of parasite proteins, many of which require proteolytic processing. Unlike most parasites, T. gondii has a limited number of Clan CA, family C1 cysteine proteinases with one cathepsin B (TgCPB), one cathepsin L (TgCPL) and three cathepsin Cs (TgCPC1, 2, 3). Previously, we characterized toxopain, the only cathepsin B enzyme, which localizes to the rhoptry organelle. Two cathepsin Cs are trafficked through dense granules to the parasitophorous vacuole where they degrade peptides. We now report the cloning, expression, and modeling of the sole cathepsin L gene and the identification of two new endogenous inhibitors. TgCPL differs from human cathepsin L with a pH optimum of 6.5 and its substrate preference for leucine (vs. phenylalanine) in the P2 position. This distinct preference is explained by homology modeling, which reveals a non-canonical aspartic acid (Asp 216) at the base of the predicted active site S2 pocket, which limits substrate access. To further our understanding of the regulation of cathepsins in T. gondii, we identified two genes encoding endogenous cysteine proteinase inhibitors (ICPs or toxostatins), which are active against both TgCPB and TgCPL in the nanomolar range. Over expression of toxostatin-1 significantly decreased overall cysteine proteinase activity in parasite lysates, but had no detectable effect on invasion or intracellular multiplication. These findings provide important insights into the proteolytic cascades of T. gondii and their endogenous control.
Collapse
Affiliation(s)
- Robert Huang
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Xuchu Que
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Ken Hirata
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| | - Linda S. Brinen
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Ji Hyun Lee
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Elizabeth Hansell
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Juan Engel
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Mohammed Sajid
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Sharon Reed
- Department of Medicine, University of California, San Diego, San Diego, California 92103
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| |
Collapse
|
35
|
HDP-a novel heme detoxification protein from the malaria parasite. PLoS Pathog 2008; 4:e1000053. [PMID: 18437218 PMCID: PMC2291572 DOI: 10.1371/journal.ppat.1000053] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 03/28/2008] [Indexed: 11/19/2022] Open
Abstract
When malaria parasites infect host red blood cells (RBC) and proteolyze hemoglobin, a unique, albeit poorly understood parasite-specific mechanism, detoxifies released heme into hemozoin (Hz). Here, we report the identification and characterization of a novel Plasmodium Heme Detoxification Protein (HDP) that is extremely potent in converting heme into Hz. HDP is functionally conserved across Plasmodium genus and its gene locus could not be disrupted. Once expressed, the parasite utilizes a circuitous "Outbound-Inbound" trafficking route by initially secreting HDP into the cytosol of infected RBC. A subsequent endocytosis of host cytosol (and hemoglobin) delivers HDP to the food vacuole (FV), the site of Hz formation. As Hz formation is critical for survival, involvement of HDP in this process suggests that it could be a malaria drug target.
Collapse
|
36
|
Drew ME, Banerjee R, Uffman EW, Gilbertson S, Rosenthal PJ, Goldberg DE. Plasmodium food vacuole plasmepsins are activated by falcipains. J Biol Chem 2008; 283:12870-6. [PMID: 18308731 DOI: 10.1074/jbc.m708949200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intraerythrocytic malaria parasites use host hemoglobin as a major nutrient source. Aspartic proteases (plasmepsins) and cysteine proteases (falcipains) function in the early steps of the hemoglobin degradation pathway. There is extensive functional redundancy within and between these protease families. Plasmepsins are synthesized as integral membrane proenzymes that are activated by cleavage from the membrane. This cleavage is mediated by a maturase activity whose identity has been elusive. We have used a combination of cell biology, chemical biology, and enzymology approaches to analyze this processing event. These studies reveal that plasmepsin processing occurs primarily via the falcipains; however, if falcipain activity is blocked, autoprocessing can take place, serving as an alternate activation system. These results establish a further level of redundancy between the protease families involved in Plasmodium hemoglobin degradation.
Collapse
Affiliation(s)
- Mark E Drew
- Department of Medicine and Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|