1
|
Penzler JF, Naranjo B, Walz S, Marino G, Kleine T, Leister D. A pgr5 suppressor screen uncovers two distinct suppression mechanisms and links cytochrome b6f complex stability to PGR5. THE PLANT CELL 2024; 36:4245-4266. [PMID: 38781425 PMCID: PMC11449078 DOI: 10.1093/plcell/koae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
PROTON GRADIENT REGULATION5 (PGR5) is thought to promote cyclic electron flow, and its deficiency impairs photosynthetic control and increases photosensitivity of photosystem (PS) I, leading to seedling lethality under fluctuating light (FL). By screening for Arabidopsis (Arabidopsis thaliana) suppressor mutations that rescue the seedling lethality of pgr5 plants under FL, we identified a portfolio of mutations in 12 different genes. These mutations affect either PSII function, cytochrome b6f (cyt b6f) assembly, plastocyanin (PC) accumulation, the CHLOROPLAST FRUCTOSE-1,6-BISPHOSPHATASE1 (cFBP1), or its negative regulator ATYPICAL CYS HIS-RICH THIOREDOXIN2 (ACHT2). The characterization of the mutants indicates that the recovery of viability can in most cases be explained by the restoration of PSI donor side limitation, which is caused by reduced electron flow to PSI due to defects in PSII, cyt b6f, or PC. Inactivation of cFBP1 or its negative regulator ACHT2 results in increased levels of the NADH dehydrogenase-like complex. This increased activity may be responsible for suppressing the pgr5 phenotype under FL conditions. Plants that lack both PGR5 and DE-ETIOLATION-INDUCED PROTEIN1 (DEIP1)/NEW TINY ALBINO1 (NTA1), previously thought to be essential for cyt b6f assembly, are viable and accumulate cyt b6f. We suggest that PGR5 can have a negative effect on the cyt b6f complex and that DEIP1/NTA1 can ameliorate this negative effect.
Collapse
Affiliation(s)
- Jan-Ferdinand Penzler
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Belén Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Sabrina Walz
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Giada Marino
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried D-82152, Germany
| |
Collapse
|
2
|
Rolo D, Schöttler MA, Sandoval-Ibáñez O, Bock R. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. THE PLANT CELL 2024; 36:4080-4108. [PMID: 38848316 PMCID: PMC11449065 DOI: 10.1093/plcell/koae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
The photosynthetic apparatus is formed by thylakoid membrane-embedded multiprotein complexes that carry out linear electron transport in oxygenic photosynthesis. The machinery is largely conserved from cyanobacteria to land plants, and structure and function of the protein complexes involved are relatively well studied. By contrast, how the machinery is assembled in thylakoid membranes remains poorly understood. The complexes participating in photosynthetic electron transfer are composed of many proteins, pigments, and redox-active cofactors, whose temporally and spatially highly coordinated incorporation is essential to build functional mature complexes. Several proteins, jointly referred to as assembly factors, engage in the biogenesis of these complexes to bring the components together in a step-wise manner, in the right order and time. In this review, we focus on the biogenesis of the terminal protein supercomplex of the photosynthetic electron transport chain, PSI, in vascular plants. We summarize our current knowledge of the assembly process and the factors involved and describe the challenges associated with resolving the assembly pathway in molecular detail.
Collapse
Affiliation(s)
- David Rolo
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
3
|
Zhang J, Tang C, Xie J, Li J, Zhang X, Wang C. Exogenous strigolactones alleviate low-temperature stress in peppers seedlings by reducing the degree of photoinhibition. BMC PLANT BIOLOGY 2024; 24:907. [PMID: 39349999 PMCID: PMC11441246 DOI: 10.1186/s12870-024-05622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The growth and yield of pepper, a typical temperature-loving vegetable, are limited by low-temperature environments. Using low-temperature sensitive 'Hangjiao No. 4' (Capsicum annuum L.) as experimental material, this study analyzed the changes in plant growth and photosynthesis under different treatments: normal control (NT), low-temperature stress alone (LT), low-temperature stress in strigolactone pretreated plants (SL_LT), and low-temperature stress in strigolactone biosynthesis inhibitor pretreated plants (Tis_LT). RESULTS SL pretreatment increased the net photosynthetic rate (Pn) and PSII actual photochemical efficiency (φPSII), reducing the inhibition of LT on the growth of pepper by 17.44% (dry weight of shoot). Due to promoting the accumulation of carotenoids, such as lutein, and the de-epoxidation of the xanthophyll cycle [(Z + A)/(Z + A + V)] by strigolactone after long-term low-temperature stress (120 h), non-photochemical quenching (NPQ) of pepper was increased to reduce the excess excitation energy [(1-qP)/NPQ] and the photoinhibition degree (Fv/Fm) of pepper seedlings under long-term low-temperature stress was alleviated. Twelve cDNA libraries were constructed from pepper leaves by transcriptome sequencing. There were 8776 differentially expressed genes (DEGs), including 4473 (51.0%) upregulated and 4303 (49.0%) downregulated genes. Gene ontology pathway annotation showed that based on LT, the DEGs of SL_LT and Tis_LT were significantly enriched in the cellular component, which is mainly related to the photosystem and thylakoids. Further analysis of the porphyrin and chlorophyll biosynthesis, carotenoid biosynthesis, photosynthesis-antenna protein, and photosynthetic metabolic pathways and the Calvin cycle under low-temperature stress highlighted 18, 15, 21, 29, and 31 DEGs for further study, which were almost all highly expressed under SL_LT treatment and moderately expressed under LT treatment, whereas Tis_LT showed low expression. CONCLUSION The positive regulatory effect of SLs on the low-temperature tolerance of pepper seedlings was confirmed. This study provided new insights for the development of temperature-tolerant pepper lines through breeding programs.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China.
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, China
| |
Collapse
|
4
|
Heuermann MC, Meyer RC, Knoch D, Tschiersch H, Altmann T. Strong prevalence of light regime-specific QTL in Arabidopsis detected using automated high-throughput phenotyping in fluctuating or constant light. PHYSIOLOGIA PLANTARUM 2024; 176:e14255. [PMID: 38528708 DOI: 10.1111/ppl.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Plants have evolved and adapted under dynamic environmental conditions, particularly to fluctuating light, but plant research has often focused on constant growth conditions. To quantitatively asses the adaptation to fluctuating light, a panel of 384 natural Arabidopsis thaliana accessions was analyzed in two parallel independent experiments under fluctuating and constant light conditions in an automated high-throughput phenotyping system upgraded with supplemental LEDs. While the integrated daily photosynthetically active radiation was the same under both light regimes, plants in fluctuating light conditions accumulated significantly less biomass and had lower leaf area during their measured vegetative growth than plants in constant light. A total of 282 image-derived architectural and/or color-related traits at six common time points, and 77 photosynthesis-related traits from one common time point were used to assess their associations with genome-wide natural variation for both light regimes. Out of the 3000 significant marker-trait associations (MTAs) detected, only 183 (6.1%) were common for fluctuating and constant light conditions. The prevalence of light regime-specific QTL indicates a complex adaptation. Genes in linkage disequilibrium with fluctuating light-specific MTAs with an adjusted repeatability value >0.5 were filtered for gene ontology terms containing "photo" or "light", yielding 15 selected candidates. The candidate genes are involved in photoprotection, PSII maintenance and repair, maintenance of linear electron flow, photorespiration, phytochrome signaling, and cell wall expansion, providing a promising starting point for further investigations into the response of Arabidopsis thaliana to fluctuating light conditions.
Collapse
Affiliation(s)
- Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| |
Collapse
|
5
|
Marzorati F, Rossi R, Bernardo L, Mauri P, Silvestre DD, Lauber E, Noël LD, Murgia I, Morandini P. Arabidopsis thaliana Early Foliar Proteome Response to Root Exposure to the Rhizobacterium Pseudomonas simiae WCS417. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:737-748. [PMID: 37470457 DOI: 10.1094/mpmi-05-23-0071-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Pseudomonas simiae WCS417 is a plant growth-promoting rhizobacterium that improves plant health and development. In this study, we investigate the early leaf responses of Arabidopsis thaliana to WCS417 exposure and the possible involvement of formate dehydrogenase (FDH) in such responses. In vitro-grown A. thaliana seedlings expressing an FDH::GUS reporter show a significant increase in FDH promoter activity in their roots and shoots after 7 days of indirect exposure (without contact) to WCS417. After root exposure to WCS417, the leaves of FDH::GUS plants grown in the soil also show an increased FDH promoter activity in hydathodes. To elucidate early foliar responses to WCS417 as well as FDH involvement, the roots of A. thaliana wild-type Col and atfdh1-5 knock-out mutant plants grown in soil were exposed to WCS417, and proteins from rosette leaves were subjected to proteomic analysis. The results reveal that chloroplasts, in particular several components of the photosystems PSI and PSII, as well as members of the glutathione S-transferase family, are among the early targets of the metabolic changes induced by WCS417. Taken together, the alterations in the foliar proteome, as observed in the atfdh1-5 mutant, especially after exposure to WCS417 and involving stress-responsive genes, suggest that FDH is a node in the early events triggered by the interactions between A. thaliana and the rhizobacterium WCS417. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Francesca Marzorati
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Rossana Rossi
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Letizia Bernardo
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Emmanuelle Lauber
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Laurent D Noël
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Irene Murgia
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Li N, Pu K, Ding D, Yang Y, Niu T, Li J, Xie J. Foliar Spraying of Glycine Betaine Alleviated Growth Inhibition, Photoinhibition, and Oxidative Stress in Pepper ( Capsicum annuum L.) Seedlings under Low Temperatures Combined with Low Light. PLANTS (BASEL, SWITZERLAND) 2023; 12:2563. [PMID: 37447123 DOI: 10.3390/plants12132563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Low temperature combined with low light (LL stress) is a typical environmental stress that limits peppers' productivity, yield, and quality in northwestern China. Glycine betaine (GB), an osmoregulatory substance, has increasingly valuable effects on plant stress resistance. In this study, pepper seedlings were treated with different concentrations of GB under LL stress, and 20 mM of GB was the best treatment. To further explore the mechanism of GB in response to LL stress, four treatments, including CK (normal temperature and light, 28/18 °C, 300 μmol m-2 s-1), CB (normal temperature and light + 20 mM GB), LL (10/5 °C, 100 μmol m-2 s-1), and LB (10/5 °C, 100 μmol m-2 s-1 + 20 mM GB), were investigated in terms of pepper growth, biomass accumulation, photosynthetic capacity, expression levels of encoded proteins Capsb, cell membrane permeability, antioxidant enzyme gene expression and activity, and subcellular localization. The results showed that the pre-spraying of GB under LL stress significantly alleviated the growth inhibition of pepper seedlings; increased plant height by 4.64%; increased root activity by 63.53%; and decreased photoinhibition by increasing the chlorophyll content; upregulating the expression levels of encoded proteins Capsb A, Capsb B, Capsb C, Capsb D, Capsb S, Capsb P1, and Capsb P2 by 30.29%, 36.69%, 18.81%, 30.05%, 9.01%, 6.21%, and 16.45%, respectively; enhancing the fluorescence intensity (OJIP curves), the photochemical efficiency (Fv/Fm, Fv'/Fm'), qP, and NPQ; improving the light energy distribution of PSΠ (Y(II), Y(NPQ), and Y(NO)); and increasing the photochemical reaction fraction and reduced heat dissipation, thereby increasing plant height by 4.64% and shoot bioaccumulation by 13.55%. The pre-spraying of GB under LL stress also upregulated the gene expression of CaSOD, CaPOD, and CaCAT; increased the activity of the ROS-scavenging ability in the pepper leaves; and coordinately increased the SOD activity in the mitochondria, the POD activity in the mitochondria, chloroplasts, and cytosol, and the CAT activity in the cytosol, which improved the LL resistance of the pepper plants by reducing excess H2O2, O2-, MDA, and soluble protein levels in the leaf cells, leading to reduced biological membrane damage. Overall, pre-spraying with GB effectively alleviated the negative effects of LL stress in pepper seedlings.
Collapse
Affiliation(s)
- Nenghui Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Kaiguo Pu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Dongxia Ding
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Yan Yang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
7
|
Zhao Q, Shen W, Gu Y, Hu J, Ma Y, Zhang X, Du Y, Zhang Y, Du J. Exogenous melatonin mitigates saline-alkali stress by decreasing DNA oxidative damage and enhancing photosynthetic carbon metabolism in soybean (Glycine max [L.] Merr.) leaves. PHYSIOLOGIA PLANTARUM 2023; 175:e13983. [PMID: 37616002 DOI: 10.1111/ppl.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Saline-alkali stress (SS) is a common abiotic stress affecting crop cultivation worldwide, seriously inhibiting plant growth and biomass accumulation. Melatonin has been proven to relieve the inhibition of multiple abiotic stresses on plant growth. Therefore, soybean cultivars Heihe 49 (HH49, SS-tolerant) and Henong 95 (HN95, SS-sensitive) were pot-cultured in SS soil and then treated with 300 μM melatonin at the V1 stage, when the first trifoliate leaves were fully unfolded, to investigate if melatonin has an effect on SS. SS increased reactive oxygen species (ROS) accumulation in soybean leaves and thereby induced DNA oxidative damage. In addition, SS retarded cell growth and decreased the mesophyll cell size, chloroplast number, photosynthetic pigment content, which further reduced the light energy capture and electron transport rate in soybean leaves, and affected carbohydrate accumulation and metabolism. However, melatonin treatment reduced SS-induced ROS accumulation in the soybean leaves by increasing antioxidant content and oxidase activity. Effective removal of ROS reduced SS-induced DNA oxidative damage in the soybean leaf genome, which was represented by decreased random-amplified polymorphic DNA polymorphism, 8-hydroxy-20-deoxyguanine content, and relative density of apurinic/apyrimidinic-sites. Melatonin treatment also increased the volume of mesophyll cells, the numbers of chloroplast and starch grains, the contents of chlorophyll a and b and carotenoids in soybean seedling leaves treated with SS, thereby increasing the efficiency of effective light capture and electron transfer and improving photosynthesis. Subsequently, carbohydrate accumulation and metabolism in soybean leaves under SS were improved by melatonin treatment, which contributes to providing basic substances and energy for cell growth and metabolism, ultimately improving soybean SS tolerance.
Collapse
Affiliation(s)
- Qiang Zhao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
- Research Center of Saline and Alkali Land Improvement Engineering Technology in Heilongjiang Province, Daqing, PR China
| | - Wanzheng Shen
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Yanhua Gu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Jiachen Hu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Yue Ma
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Xinlin Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Yanli Du
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
- National Coarse Cereals Engineering Research Center, Daqing, PR China
| | - Jidao Du
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
- Research Center of Saline and Alkali Land Improvement Engineering Technology in Heilongjiang Province, Daqing, PR China
- National Coarse Cereals Engineering Research Center, Daqing, PR China
| |
Collapse
|
8
|
Breen S, McLellan H, Birch PRJ, Gilroy EM. Tuning the Wavelength: Manipulation of Light Signaling to Control Plant Defense. Int J Mol Sci 2023; 24:ijms24043803. [PMID: 36835216 PMCID: PMC9958957 DOI: 10.3390/ijms24043803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The growth-defense trade-off in plants is a phenomenon whereby plants must balance the allocation of their resources between developmental growth and defense against attack by pests and pathogens. Consequently, there are a series of points where growth signaling can negatively regulate defenses and where defense signaling can inhibit growth. Light perception by various photoreceptors has a major role in the control of growth and thus many points where it can influence defense. Plant pathogens secrete effector proteins to manipulate defense signaling in their hosts. Evidence is emerging that some of these effectors target light signaling pathways. Several effectors from different kingdoms of life have converged on key chloroplast processes to take advantage of regulatory crosstalk. Moreover, plant pathogens also perceive and react to light in complex ways to regulate their own growth, development, and virulence. Recent work has shown that varying light wavelengths may provide a novel way of controlling or preventing disease outbreaks in plants.
Collapse
Affiliation(s)
- Susan Breen
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R. J. Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Eleanor M. Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: ; Tel.: +44-1382568827
| |
Collapse
|
9
|
Huang C, Peng J, Zhang W, Chethana T, Wang X, Wang H, Yan J. LtGAPR1 Is a Novel Secreted Effector from Lasiodiplodia theobromae That Interacts with NbPsQ2 to Negatively Regulate Infection. J Fungi (Basel) 2023; 9:jof9020188. [PMID: 36836303 PMCID: PMC9967411 DOI: 10.3390/jof9020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The effector proteins secreted by a pathogen not only promote the virulence and infection of the pathogen but also trigger plant defense response. Lasiodiplodia theobromae secretes many effectors that modulate and hijack grape processes to colonize host cells, but the underlying mechanisms remain unclear. Herein, we report LtGAPR1, which has been proven to be a secreted protein. In our study, LtGAPR1 played a negative role in virulence. By co-immunoprecipitation, 23 kDa oxygen-evolving enhancer 2 (NbPsbQ2) was identified as a host target of LtGAPR1. The overexpression of NbPsbQ2 in Nicotiana benthamiana reduced susceptibility to L. theobromae, and the silencing of NbPsbQ2 enhanced L. theobromae infection. LtGAPR1 and NbPsbQ2 were confirmed to interact with each other. Transiently, expressed LtGAPR1 activated reactive oxygen species (ROS) production in N. benthamiana leaves. However, in NbPsbQ2-silenced leaves, ROS production was impaired. Overall, our report revealed that LtGAPR1 promotes ROS accumulation by interacting with NbPsbQ2, thereby triggering plant defenses that negatively regulate infection.
Collapse
Affiliation(s)
- Caiping Huang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: ; Tel.: +86-010-5150-3212
| |
Collapse
|
10
|
Li J, Liu X, Xu L, Li W, Yao Q, Yin X, Wang Q, Tan W, Xing W, Liu D. Low nitrogen stress-induced transcriptome changes revealed the molecular response and tolerance characteristics in maintaining the C/N balance of sugar beet ( Beta vulgaris L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1164151. [PMID: 37152145 PMCID: PMC10160481 DOI: 10.3389/fpls.2023.1164151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants, acting as a common limiting factor for crop yield. The application of nitrogen fertilizer is related to the sustainable development of both crops and the environment. To further explore the molecular response of sugar beet under low nitrogen (LN) supply, transcriptome analysis was performed on the LN-tolerant germplasm '780016B/12 superior'. In total, 580 differentially expressed genes (DEGs) were identified in leaves, and 1,075 DEGs were identified in roots (log2 |FC| ≥ 1; q value < 0.05). Gene Ontology (GO), protein-protein interaction (PPI), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses clarified the role and relationship of DEGs under LN stress. Most of the downregulated DEGs were closely related to "photosynthesis" and the metabolism of "photosynthesis-antenna proteins", "carbon", "nitrogen", and "glutathione", while the upregulated DEGs were involved in flavonoid and phenylalanine biosynthesis. For example, GLUDB (glutamate dehydrogenase B) was identified as a key downregulated gene, linking carbon, nitrogen, and glutamate metabolism. Thus, low nitrogen-tolerant sugar beet reduced energy expenditure mainly by reducing the synthesis of energy-consuming amino acids, which in turn improved tolerance to low nitrogen stress. The glutathione metabolism biosynthesis pathway was promoted to quench reactive oxygen species (ROS) and protect cells from oxidative damage. The expression levels of nitrogen assimilation and amino acid transport genes, such as NRT2.5 (high-affinity nitrate transporter), NR (nitrate reductase [NADH]), NIR (ferredoxin-nitrite reductase), GS (glutamine synthetase leaf isozyme), GLUDB, GST (glutathione transferase) and GGT3 (glutathione hydrolase 3) at low nitrogen levels play a decisive role in nitrogen utilization and may affect the conversion of the carbon skeleton. DFRA (dihydroflavonol 4-reductase) in roots was negatively correlated with NIR in leaves (coefficient = -0.98, p < 0.05), suggesting that there may be corresponding remote regulation between "flavonoid biosynthesis" and "nitrogen metabolism" in roots and leaves. FBP (fructose 1,6-bisphosphatase) and PGK (phosphoglycerate kinase) were significantly positively correlated (p < 0.001) with Ci (intercellular CO2 concentration). The reliability and reproducibility of the RNA-seq data were further confirmed by real-time fluorescence quantitative PCR (qRT-PCR) validation of 22 genes (R2 = 0.98). This study reveals possible pivotal genes and metabolic pathways for sugar beet adaptation to nitrogen-deficient environments.
Collapse
Affiliation(s)
- Jiajia Li
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced agriculture and ecological environment, Heilongjiang University, Harbin, China
| | - Xinyu Liu
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced agriculture and ecological environment, Heilongjiang University, Harbin, China
- Key Laboratory of Molecular Biology, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Lingqing Xu
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced agriculture and ecological environment, Heilongjiang University, Harbin, China
| | - Wangsheng Li
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced agriculture and ecological environment, Heilongjiang University, Harbin, China
| | - Qi Yao
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced agriculture and ecological environment, Heilongjiang University, Harbin, China
- Key Laboratory of Molecular Biology, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xilong Yin
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced agriculture and ecological environment, Heilongjiang University, Harbin, China
| | - Qiuhong Wang
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced agriculture and ecological environment, Heilongjiang University, Harbin, China
| | - Wenbo Tan
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced agriculture and ecological environment, Heilongjiang University, Harbin, China
| | - Wang Xing
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced agriculture and ecological environment, Heilongjiang University, Harbin, China
- *Correspondence: Dali Liu, ; Wang Xing,
| | - Dali Liu
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced agriculture and ecological environment, Heilongjiang University, Harbin, China
- *Correspondence: Dali Liu, ; Wang Xing,
| |
Collapse
|
11
|
Lu Q, Yu X, Wang H, Yu Z, Zhang X, Zhao Y. Quantitative trait locus mapping for important yield traits of a sorghum-sudangrass hybrid using a high-density single nucleotide polymorphism map. FRONTIERS IN PLANT SCIENCE 2022; 13:1098605. [PMID: 36605962 PMCID: PMC9808045 DOI: 10.3389/fpls.2022.1098605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The sorghum-sudangrass hybrid is a vital gramineous herbage.The F2 population was obtained to clarify genetic regularities among the traits of sorghum-sudangrass hybrids by bagging and selfing in the F1 generation using 'scattered ear sorghum' and 'red hull sudangrass.' This hybrid combines the characteristics of the strong resistance of parents, high yield, and good palatability and has clear heterosis. A thorough understanding of the genetic mechanisms of yield traits in sorghum-sudangrass hybrids is essential in improving their yield. Therefore, we conducted quantitative trait locus (QTL) mapping for plant height, stem diameter, tiller number, leaf number, leaf length, leaf width, and fresh weight of each plant in three different environments, using a high-density genetic linkage map based on single nucleotide polymorphism markers previously constructed by our team. A total of 55 QTLs were detected, uniformly distributed over the 10 linkage groups (LGs), with logarithm of odds values ranging between 2.5 and 7.1, which could explain the 4.9-52.44% phenotypic variation. Furthermore, 17 yield-related relatively high-frequency QTL (RHF-QTL) loci were repeatedly detected in at least two environments, with an explanatory phenotypic variation of 4.9-30.97%. No RHF-QTLs were associated with the tiller number. The genes within the confidence interval of RHF-QTL were annotated, and seven candidate genes related to yield traits were screened. Three QTL sites overlapping or adjacent to previous studies were detected by comparative analysis. We also found that QTL was enriched and that qLL-10-1 and qFW-10-4 were located at the same location of 25.81 cM on LG10. The results of this study provide a foundation for QTL fine mapping, candidate gene cloning, and molecular marker-assisted breeding of sorghum-sudangrass hybrids.
Collapse
|
12
|
Li M, Zhang Y, Xu X, Chen Y, Chu J, Yao X. The combined treatments of brassinolide and zeaxanthin better alleviate oxidative damage and improve hypocotyl length, biomass, and the quality of radish sprouts stored at low temperature. Food Chem X 2022; 15:100394. [PMID: 36211765 PMCID: PMC9532720 DOI: 10.1016/j.fochx.2022.100394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The rot and deterioration of sprouts are closely related to their physiological state and postharvest storage quality. The study investigated the influences of brassinolide, zeaxanthin, and their combination on physiological metabolism, chlorophyll fluorescence, and nutritional quality of radish sprouts stored at 4 °C. The combined treatments enhanced hypocotyl length, fresh weight, contents of secondary metabolites, nutritional ingredients, glutathione, the photoprotective capacity of PSII, and FRAP level in radish sprouts compared with zeaxanthin alone. The combined treatments enhanced hypocotyl length, fresh weight, glutathione content, Fv/Fm value, and antioxidant capacity in sprouts compared to brassinolide alone. The combined treatment of zeaxanthin and brassinolide could make radish sprouts keep high biomass and antioxidant capacity by increasing the contents of stress-resistant metabolites and by weakening the photoinhibition of PSII in radish sprouts stored at 4 °C.
Collapse
Affiliation(s)
- Minghui Li
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yanfen Zhang
- Technology Transfer Center of Hebei University, Baoding 071002, China
| | - Xihang Xu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Ying Chen
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China
| |
Collapse
|
13
|
Imaizumi K, Ifuku K. Binding and functions of the two chloride ions in the oxygen-evolving center of photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 153:135-156. [PMID: 35698013 DOI: 10.1007/s11120-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Light-driven water oxidation in photosynthesis occurs at the oxygen-evolving center (OEC) of photosystem II (PSII). Chloride ions (Cl-) are essential for oxygen evolution by PSII, and two Cl- ions have been found to specifically bind near the Mn4CaO5 cluster in the OEC. The retention of these Cl- ions within the OEC is critically supported by some of the membrane-extrinsic subunits of PSII. The functions of these two Cl- ions and the mechanisms of their retention both remain to be fully elucidated. However, intensive studies performed recently have advanced our understanding of the functions of these Cl- ions, and PSII structures from various species have been reported, aiding the interpretation of previous findings regarding Cl- retention by extrinsic subunits. In this review, we summarize the findings to date on the roles of the two Cl- ions bound within the OEC. Additionally, together with a short summary of the functions of PSII membrane-extrinsic subunits, we discuss the mechanisms of Cl- retention by these extrinsic subunits.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
14
|
Macromolecular conformational changes in photosystem II: interaction between structure and function. Biophys Rev 2022; 14:871-886. [DOI: 10.1007/s12551-022-00979-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/02/2022] [Indexed: 01/08/2023] Open
|
15
|
Imaizumi K, Nishimura T, Nagao R, Saito K, Nakano T, Ishikita H, Noguchi T, Ifuku K. D139N mutation of PsbP enhances the oxygen-evolving activity of photosystem II through stabilized binding of a chloride ion. PNAS NEXUS 2022; 1:pgac136. [PMID: 36741451 PMCID: PMC9896922 DOI: 10.1093/pnasnexus/pgac136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Photosystem II (PSII) is a multisubunit membrane protein complex that catalyzes light-driven oxidation of water to molecular oxygen. The chloride ion (Cl-) has long been known as an essential cofactor for oxygen evolution by PSII, and two Cl- ions (Cl-1 and Cl-2) have been found to specifically bind near the Mn4CaO5 cluster within the oxygen-evolving center (OEC). However, despite intensive studies on these Cl- ions, little is known about the function of Cl-2, the Cl- ion that is associated with the backbone nitrogens of D1-Asn338, D1-Phe339, and CP43-Glu354. In green plant PSII, the membrane extrinsic subunits-PsbP and PsbQ-are responsible for Cl- retention within the OEC. The Loop 4 region of PsbP, consisting of highly conserved residues Thr135-Gly142, is inserted close to Cl-2, but its importance has not been examined to date. Here, we investigated the importance of PsbP-Loop 4 using spinach PSII membranes reconstituted with spinach PsbP proteins harboring mutations in this region. Mutations in PsbP-Loop 4 had remarkable effects on the rate of oxygen evolution by PSII. Moreover, we found that a specific mutation, PsbP-D139N, significantly enhances the oxygen-evolving activity in the absence of PsbQ, but not significantly in its presence. The D139N mutation increased the Cl- retention ability of PsbP and induced a unique structural change in the OEC, as indicated by light-induced Fourier transform infrared (FTIR) difference spectroscopy and theoretical calculations. Our findings provide insight into the functional significance of Cl-2 in the water-oxidizing reaction of PSII.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taishi Nishimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8654 , Japan
| | - Takeshi Nakano
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8654 , Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Jiao Y, Zeng H, Xia H, Wang Y, Wang J, Jin C. RNA-seq and phytohormone analysis reveals the culm color variation of Bambusa oldhamii Munro. PeerJ 2022; 10:e12796. [PMID: 35070510 PMCID: PMC8761368 DOI: 10.7717/peerj.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The clumping bamboo Bambusa oldhamii Munro, known as "green bamboo", is famous for its edible bamboo shoots and fast-growing timber. The green and yellow striped-culm B. oldhamii variety, named B. oldhamii f. revoluta W.T. Lin & J. Y. Lin, is an attractive system for researching the culm color variation of B. oldhamii. METHODS Millions of clean reads were generated and assembled into 604,900 transcripts, and 383,278 unigenes were acquired with RNA-seq technology. The quantification of ABA, IAA, JA, GA1, GA3, GA4, and GA7 was performed using HPLC-MS/MS platforms. RESULTS Differential expression analysis showed that 449 unigenes were differentially expressed genes (DEGs), among which 190 DEGs were downregulated and 259 DEGs were upregulated in B. oldhamii f. revoluta. Phytohormone contents, especially GA1 and GA7, were higher in B. oldhamii. Approximately 21 transcription factors (TFs) were differentially expressed between the two groups: the bZIP, MYB, and NF-YA transcription factor families had the most DEGs, indicating that those TFs play important roles in B. oldhamii culm color variation. RNA-seq data were confirmed by quantitative RT-PCR analysis of the selected genes; moreover, phytohormone contents, especially those of ABA, GA1 and GA7, were differentially accumulated between the groups. Our study provides a basal gene expression and phytohormone analysis of B. oldhamii culm color variation, which could provide a solid fundamental theory for investigating bamboo culm color variation.
Collapse
Affiliation(s)
- Yulian Jiao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China,Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Lin’an, Zhejiang, China
| | - Hu Zeng
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Haitao Xia
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Yueying Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Jinwang Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Chuan Jin
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
He F, Shi YJ, Chen Q, Li JL, Niu MX, Feng CH, Lu MM, Tian FF, Zhang F, Lin TT, Chen LH, Liu QL, Wan XQ. Genome-Wide Investigation of the PtrCHLP Family Reveals That PtrCHLP3 Actively Mediates Poplar Growth and Development by Regulating Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:870970. [PMID: 35620683 PMCID: PMC9127975 DOI: 10.3389/fpls.2022.870970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 05/15/2023]
Abstract
Chlorophyll (Chl) plays a crucial role in plant photosynthesis. The geranylgeraniol reductase gene (CHLP) participates in the terminal hydrogenation of chlorophyll biosynthesis. Although there are many studies related to the genome-wide analysis of Populus trichocarpa, little research has been conducted on CHLP family genes, especially those concerning growth and photosynthesis. In this study, three CHLP genes were identified in Populus. The evolutionary tree indicated that the CHLP family genes were divided into six groups. Moreover, one pair of genes was derived from segmental duplications in Populus. Many elements related to growth were detected by cis-acting element analysis of the promoters of diverse PtrCHLPs. Furthermore, PtrCHLPs exhibit different tissue expression patterns. In addition, PtrCHLP3 is preferentially expressed in the leaves and plays an important role in regulating chlorophyll biosynthesis. Silencing of PtrCHLP3 in poplar resulted in a decrease in chlorophyll synthesis in plants, thus blocking electron transport during photosynthesis. Furthermore, inhibition of PtrCHLP3 expression in poplar can inhibit plant growth through the downregulation of photosynthesis. Ultimately, PtrCHLP3 formed a co-expression network with photosynthesis and chlorophyll biosynthesis-related genes, which synergistically affected the growth and photosynthesis of poplars. Thus, this study provides genetic resources for the improved breeding of fast-growing tree traits.
Collapse
Affiliation(s)
- Fang He
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu-Jie Shi
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Qi Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jun-Lin Li
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Meng-Xue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Meng-Meng Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fei-Fei Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Tian-Tian Lin
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Liang-Hua Chen
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Qin-lin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xue-Qin Wan
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xue-Qin Wan,
| |
Collapse
|
18
|
Liu R, Chen T, Yin X, Xiang G, Peng J, Fu Q, Li M, Shang B, Ma H, Liu G, Wang Y, Xu Y. A Plasmopara viticola RXLR effector targets a chloroplast protein PsbP to inhibit ROS production in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1557-1570. [PMID: 33783031 DOI: 10.1111/tpj.15252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Pathogens secrete a large number of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Plasmopara viticola effectors manipulate host plant cells remain largely unclear. In this study, we reported that RXLR31154, a P. viticola RXLR effector, was highly expressed during the early stages of P. viticola infection. In our study, stable expression of RXLR31154 in grapevine (Vitis vinifera) and Nicotiana benthamiana promoted leaf colonization by P. viticola and Phytophthora capsici, respectively. By yeast two-hybrid screening, the 23-kDa oxygen-evolving enhancer 2 (VpOEE2 or VpPsbP), encoded by the PsbP gene, in Vitis piasezkii accession Liuba-8 was identified as a host target of RXLR31154. Overexpression of VpPsbP enhanced susceptibility to P. viticola in grapevine and P. capsici in N. benthamiana, and silencing of NbPsbPs, the homologs of PsbP in N. benthamiana, reduced P. capcisi colonization, indicating that PsbP is a susceptibility factor. RXLR31154 and VpPsbP protein were co-localized in the chloroplast. Moreover, VpPsbP reduced H2 O2 accumulation and activated the 1 O2 signaling pathway in grapevine. RXLR31154 could stabilize PsbP. Together, our data revealed that RXLR31154 reduces H2 O2 accumulation and activates the 1 O2 signaling pathway through stabilizing PsbP, thereby promoting disease.
Collapse
Affiliation(s)
- Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Jing Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Mengyuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Boxing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Hui Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| |
Collapse
|
19
|
Tang C, Xie J, Lv J, Li J, Zhang J, Wang C, Liang G. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L.) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:395-409. [PMID: 33740679 DOI: 10.1016/j.plaphy.2021.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/05/2021] [Indexed: 05/03/2023]
Abstract
As a typical thermophilous vegetable, the growth and yield of peppers are easily limited by chilling conditions. Zeaxanthin, a crucial carotenoid, positively regulates plant abiotic stress responses. Therefore, this study investigated the regulatory mechanisms of zeaxanthin-induced chilling tolerance in peppers. The results indicated that the pretreatment with zeaxanthin effectively alleviated chilling damage in pepper leaves and increased the plant fresh weight and photosynthetic pigment content under chilling stress. Additionally, alterations in photosynthetic chlorophyll fluorescence parameters and chlorophyll fluorescence induction curves after zeaxanthin treatment highlighted the participation of zeaxanthin in improving the photosystem response to chilling stress by heightening the quenching of excess excitation energy and protection of the photosynthetic electron transport system. In chill-stressed plants, zeaxanthin treatment also enhanced antioxidant enzyme activity and transcript expression, and reduced hydrogen peroxide (H2O2) and superoxide anion (O2•-) content, resulting in a decrease in biological membrane damage. Additionally, exogenous zeaxanthin upregulated the expression levels of key genes encoding β-carotene hydroxylase (CaCA1, CaCA2), zeaxanthin epoxidase (CaZEP) and violaxanthin de-epoxidase (CaVDE), and promoted the synthesis of endogenous zeaxanthin during chilling stress. Collectively, exogenous zeaxanthin pretreatment enhances plant tolerance to chilling by improving the photosystem process, increasing oxidation resistance, and inducing alterations in endogenous zeaxanthin metabolism.
Collapse
Affiliation(s)
- Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China.
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, PR China
| |
Collapse
|
20
|
Pan Z, Bajsa‐Hirschel J, Vaughn JN, Rimando AM, Baerson SR, Duke SO. In vivo assembly of the sorgoleone biosynthetic pathway and its impact on agroinfiltrated leaves of Nicotiana benthamiana. THE NEW PHYTOLOGIST 2021; 230:683-697. [PMID: 33460457 PMCID: PMC8048663 DOI: 10.1111/nph.17213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Sorgoleone, a hydrophobic compound exuded from root hair cells of Sorghum spp., accounts for much of the allelopathic activity of the genus. The enzymes involved in the biosynthesis of this compound have been identified and functionally characterized. Here, we report the successful assembly of the biosynthetic pathway and the significant impact of in vivo synthesized sorgoleone on the heterologous host Nicotiana benthamiana. A multigene DNA construct was prepared for the expression of genes required for sorgoleone biosynthesis in planta and deployed in N. benthamiana leaf tissues via Agrobacterium-mediated transient expression. RNA-sequencing was conducted to investigate the effects of sorgoleone, via expression of its biosynthesis pathway, on host gene expression. The production of sorgoleone in agroinfiltrated leaves as detected by gas chromatography/mass spectrometry (GC/MS) resulted in the formation of necrotic lesions, indicating that the compound caused severe phytotoxicity to these tissues. RNA-sequencing profiling revealed significant changes in gene expression in the leaf tissues expressing the pathway during the formation of sorgoleone-induced necrotic lesions. Transcriptome analysis suggested that the compound produced in vivo impaired the photosynthetic system as a result of downregulated gene expression for the photosynthesis apparatus and elevated expression of proteasomal genes which may play a major role in the phytotoxicity of sorgoleone.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Natural Products Utilization Research UnitUS Department of Agriculture, Agricultural Research ServiceUniversityMS38677USA
| | - Joanna Bajsa‐Hirschel
- Natural Products Utilization Research UnitUS Department of Agriculture, Agricultural Research ServiceUniversityMS38677USA
| | - Justin N. Vaughn
- Genomics and Bioinformatics Research UnitUSDA, ARSAthensGA30605USA
| | - Agnes M. Rimando
- Natural Products Utilization Research UnitUS Department of Agriculture, Agricultural Research ServiceUniversityMS38677USA
| | - Scott R. Baerson
- Natural Products Utilization Research UnitUS Department of Agriculture, Agricultural Research ServiceUniversityMS38677USA
| | - Stephen O. Duke
- Natural Products Utilization Research UnitUS Department of Agriculture, Agricultural Research ServiceUniversityMS38677USA
| |
Collapse
|
21
|
Podmaniczki A, Nagy V, Vidal-Meireles A, Tóth D, Patai R, Kovács L, Tóth SZ. Ascorbate inactivates the oxygen-evolving complex in prolonged darkness. PHYSIOLOGIA PLANTARUM 2021; 171:232-245. [PMID: 33215703 DOI: 10.1111/ppl.13278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Ascorbate (Asc, vitamin C) is an essential metabolite participating in multiple physiological processes of plants, including environmental stress management and development. In this study, we acquired knowledge on the role of Asc in dark-induced leaf senescence using Arabidopsis thaliana as a model organism. One of the earliest effects of prolonged darkness is the inactivation of oxygen-evolving complexes (OEC) as demonstrated here by fast chlorophyll a fluorescence and thermoluminescence measurements. We found that inactivation of OEC due to prolonged darkness was attenuated in the Asc-deficient vtc2-4 mutant. On the other hand, the severe photosynthetic phenotype of a psbo1 knockout mutant, lacking the major extrinsic OEC subunit PSBO1, was further aggravated upon a 24-h dark treatment. The psbr mutant, devoid of the PSBR subunit of OEC, performed only slightly disturbed photosynthetic activity under normal growth conditions, whereas it showed a strongly diminished B thermoluminescence band upon dark treatment. We have also generated a double psbo1 vtc2 mutant, and it showed a slightly milder photosynthetic phenotype than the single psbo1 mutant. Our results, therefore, suggest that Asc leads to the inactivation of OEC in prolonged darkness by over-reducing the Mn-complex that is probably enabled by a dark-induced dissociation of the extrinsic OEC subunits. Our study is an example that Asc may negatively affect certain cellular processes and thus its concentration and localization need to be highly controlled.
Collapse
Affiliation(s)
- Anna Podmaniczki
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Valéria Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | - Dávid Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
22
|
Guo J, Bai Y, Chen Z, Mo J, Li Q, Sun H, Zhang Q. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110737. [PMID: 32505758 DOI: 10.1016/j.ecoenv.2020.110737] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Macrolide antibiotics are common contaminants in the aquatic environment. They are toxic to a wide range of primary producers, inhibiting the algal growth and further hindering the delivery of several ecosystem services. Yet the molecular mechanisms of macrolides in algae remain undetermined. The objectives of this study were therefore to: 1. evaluate whether macrolides at the environmentally relevant level inhibit the growth of algae; and 2. test the hypothesis that macrolides bind to ribosome and inhibit protein translocation in algae, as it does in bacteria. In this study, transcriptomic analysis was applied to elucidate the toxicological mechanism in a model green alga Raphidocelis subcapitata treated with 5 and 90 μg L-1 of a typical macrolide roxithromycin (ROX). While exposure to ROX at 5 μg L-1 for 7 days did not affect algal growth and the transciptome, ROX at 90 μg L-1 resulted in 45% growth inhibition and 2306 (983 up- and 1323 down-regulated) DEGs, which were primarily enriched in the metabolism of energy, lipid, vitamins, and DNA replication and repair pathways. Nevertheless, genes involved in pathways in relation to translation and protein translocation and processing were dysregulated. Surprisingly, we found that genes involved in the base excision repair process were mostly repressed, suggesting that ROX may be genotoxic and cause DNA damage in R. subcapitata. Taken together, ROX was unlikely to pose a threat to green algae in the environment and the mode of action of macrolides in bacteria may not be directly extrapolated to green algae.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Yi Bai
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
23
|
Vilas JM, Corigliano MG, Clemente M, Maiale SJ, Rodríguez AA. Close relationship between the state of the oxygen evolving complex and rice cold stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110488. [PMID: 32540008 DOI: 10.1016/j.plantsci.2020.110488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 05/21/2023]
Abstract
The results of the present work suggested a relationship between the growth stability and functional/structural parameters associated to the primary photochemistry and oxygen evolving complex (OEC) in tolerant rice plants under suboptimal low temperatures (SLT) stress. This was concluded from the absence of changes in net photosynthetic rate and in fraction of reaction centers to reduce quinone A, and very small changes in P680 efficiency to trap and donate electrons to quinone A and in fraction of active OEC in tolerant plants under cold stress but not in sensitive plants. The SLT stress also induced OEC activity limitations in both genotypes, but in a greater extent in sensitive plants. However, an assay using an artificial electron donor to replace OEC indicated that the P680+ capacity to accept electrons was not altered in both genotypes under SLT stress from the beginning of the stress treatment, suggesting that the OEC structure stability is related to rice SLT tolerance to sustain the photosynthesis. This hypothesis was also supported by the fact that tolerant plants but not sensitive plants did not alter the gene expression and protein content of PsbP under SLT stress, an OEC subunit with a role in stabilizing of OEC structure.
Collapse
Affiliation(s)
- Juan Manuel Vilas
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología 1, INTECH-CONICET-UNSAM, Chascomús, Argentina.
| | | | - Marina Clemente
- Laboratorio de Biotecnología Vegetal, INTECH-CONICET-UNSAM, Chascomús, Argentina.
| | - Santiago Javier Maiale
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología 1, INTECH-CONICET-UNSAM, Chascomús, Argentina.
| | - Andrés Alberto Rodríguez
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología 1, INTECH-CONICET-UNSAM, Chascomús, Argentina.
| |
Collapse
|
24
|
Che Y, Kusama S, Matsui S, Suorsa M, Nakano T, Aro EM, Ifuku K. Arabidopsis PsbP-Like Protein 1 Facilitates the Assembly of the Photosystem II Supercomplexes and Optimizes Plant Fitness under Fluctuating Light. PLANT & CELL PHYSIOLOGY 2020; 61:1168-1180. [PMID: 32277833 DOI: 10.1093/pcp/pcaa045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
In green plants, photosystem II (PSII) forms multisubunit supercomplexes (SCs) containing a dimeric core and light-harvesting complexes (LHCs). In this study, we show that Arabidopsis thaliana PsbP-like protein 1 (PPL1) is involved in the assembly of the PSII SCs and is required for adaptation to changing light intensity. PPL1 is a homolog of PsbP protein that optimizes the water-oxidizing reaction of PSII in green plants and is required for the efficient repair of photodamaged PSII; however, its exact function has been unknown. PPL1 was enriched in stroma lamellae and grana margins and associated with PSII subcomplexes including PSII monomers and PSII dimers, and several LHCII assemblies, while PPL1 was not detected in PSII-LHCII SCs. In a PPL1 null mutant (ppl1-2), assembly of CP43, PsbR and PsbW was affected, resulting in a reduced accumulation of PSII SCs even under moderate light intensity. This caused the abnormal association of LHCII in ppl1-2, as indicated by lower maximal quantum efficiency of PSII (Fv/Fm) and accelerated State 1 to State 2 transitions. These differences would lower the capability of plants to adapt to changing light environments, thereby leading to reduced growth under natural fluctuating light environments. Phylogenetic and structural analyses suggest that PPL1 is closely related to its cyanobacterial homolog CyanoP, which functions as an assembly factor in the early stage of PSII biogenesis. Our results suggest that PPL1 has a similar function, but the data also indicate that it could aid the association of LHCII with PSII.
Collapse
Affiliation(s)
- Yufen Che
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shoko Kusama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shintaro Matsui
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Takeshi Nakano
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
26
|
Understanding Mechanisms of Salinity Tolerance in Barley by Proteomic and Biochemical Analysis of Near-Isogenic Lines. Int J Mol Sci 2020; 21:ijms21041516. [PMID: 32098451 PMCID: PMC7073193 DOI: 10.3390/ijms21041516] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Salt stress is one of the major environmental factors impairing crop production. In our previous study, we identified a major QTL for salinity tolerance on chromosome 2H on barley (Hordeum vulgare L.). For further investigation of the mechanisms responsible for this QTL, two pairs of near-isogenic lines (NILs) differing in this QTL were developed. Sensitive NILs (N33 and N53) showed more severe damage after exposure to 300 mM NaCl than tolerant ones (T46 and T66). Both tolerant NILs maintained significantly lower Na+ content in leaves and much higher K+ content in the roots than sensitive lines under salt conditions, thus indicating the presence of a more optimal Na+/K+ ratio in plant tissues. Salinity stress caused significant accumulation of H2O2, MDA, and proline in salinity-sensitive NILs, and a greater enhancement in antioxidant enzymatic activities at one specific time or tissues in tolerant lines. One pair of NILs (N33 and T46) were used for proteomic studies using two-dimensional gel electrophoresis. A total of 53 and 51 differentially expressed proteins were identified through tandem mass spectrometry analysis in the leaves and roots, respectively. Proteins which are associated with photosynthesis, reactive oxygen species (ROS) scavenging, and ATP synthase were found to be specifically upregulated in the tolerant NIL. Proteins identified in this study can serve as a useful resource with which to explore novel candidate genes for salinity tolerance in barley.
Collapse
|
27
|
Gnanasekaran P, Ponnusamy K, Chakraborty S. A geminivirus betasatellite encoded βC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. MOLECULAR PLANT PATHOLOGY 2019; 20:943-960. [PMID: 30985068 PMCID: PMC6589724 DOI: 10.1111/mpp.12804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Geminivirus disease complexes potentially interfere with plants physiology and cause disastrous effects on a wide range of economically important crops throughout the world. Diverse geminivirus betasatellite associations exacerbate the epidemic threat for global food security. Our previous study showed that βC1, the pathogenicity determinant of geminivirus betasatellites induce symptom development by disrupting the ultrastructure and function of chloroplasts. Here we explored the betasatellite-virus-chloroplast interaction in the scope of viral pathogenesis as well as plant defence responses, using Nicotiana benthamiana-Radish leaf curl betasatellite (RaLCB) as the model system. We have shown an interaction between RaLCB-encoded βC1 and one of the extrinsic subunit proteins of oxygen-evolving complex of photosystem II both in vitro and in vivo. Further, we demonstrate a novel function of the Nicotiana benthamiana oxygen-evolving enhancer protein 2 (PsbP), in that it binds DNA, including geminivirus DNA. Transient silencing of PsbP in N. benthamiana plants enhances pathogenicity and viral DNA accumulation. Overexpression of PsbP impedes disease development during the early phase of infection, suggesting that PsbP is involved in generation of defence response during geminivirus infection. In addition, βC1-PsbP interaction hampers non-specific binding of PsbP to the geminivirus DNA. Our findings suggest that betasatellite-encoded βC1 protein accomplishes counter-defence by physical interaction with PsbP reducing the ability of PsbP to bind geminivirus DNA to establish infection.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Kalaiarasan Ponnusamy
- Synthetic Biology Laboratory, School of BiotechnologyJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
28
|
Dong C, Zhang H, Yang Y, He X, Liu L, Fu J, Shi J, Wu Z. Physiological and transcriptomic analyses to determine the responses to phosphorus utilization in Nostoc sp. HARMFUL ALGAE 2019; 84:10-18. [PMID: 31128794 DOI: 10.1016/j.hal.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phosphorus (P) is an important factor driving algal growth in aquatic ecosystems. In the present study, the growth, P uptake and utilization, photosynthesis, and transcriptome profile of Nostoc sp. were measured when Nostoc sp. cultured in media containing β-glycerol phosphate (β-gly, containing COP bonds), 2-aminoethylphosphonic acid (2-amin, containing CP bonds), or orthophosphate (K2HPO4), and in P-free (NP) medium. The results revealed that NP treatment adversely affected the growth and photosynthesis of Nostoc sp. and significantly down-regulated the expression of genes related to nutrient transport and material metabolism. Furthermore, 2-amin treatment reduced the growth of Nostoc sp. but did not significantly reduce photosynthesis, and the treatments of NP and 2-amin up-regulated the expressions of genes related antioxidation and stress. Additionally, there were no obvious differences in growth, photosynthesis, and phosphorus utilization between the β-gly and K2HPO4 treatments. These results suggested that Nostoc had a flexible ability to utilize P, which might play an important role in its widespread distribution in the environment.
Collapse
Affiliation(s)
- Congcong Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Hongbo Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Yanjun Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Xinyu He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Li Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Junke Fu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
29
|
Herritt M, Dhanapal AP, Purcell LC, Fritschi FB. Identification of genomic loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean. BMC PLANT BIOLOGY 2018; 18:312. [PMID: 30497384 DOI: 10.1186/s12870-018-1517-1519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/02/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Photosynthesis is able to convert solar energy into chemical energy in the form of biomass, but the efficiency of photosynthetic solar energy conversion is low. Chlorophyll fluorescence measurements are rapid, non-destructive, and can provide a wealth of information about the efficiencies of the photosynthetic light reaction processes. Efforts aimed at assessing genetic variation and/or mapping of genetic loci associated with chlorophyll fluorescence phenotypes have been rather limited. RESULTS Evaluation of SoySNP50K iSelect SNP Beadchip data from the 189 genotypes phenotyped in this analysis identified 32,453 SNPs with a minor allele frequency (MAF) ≥ 5%. A total of 288 (non-unique) SNPs were significantly associated with one or more of the 21 chlorophyll fluorescence phenotypes. Of these, 155 were unique SNPs and 100 SNPs were only associated with a single fluorescence phenotype, while 28, 11, 2, and 14 SNPs, were associated with two, three, four and five or more fluorescence phenotypes, respectively. The 288 non-unique SNPs represent 155 unique SNPs that mark 53 loci. The 155 unique SNPs included 27 that were associated with three or more phenotypes, and thus were called multi-phenotype SNPs. These 27 multi-phenotype SNPs marked 13 multi-phenotype loci (MPL) identified by individual SNPs associated with multiple chlorophyll fluorescence phenotypes or by more than one SNP located within 0.5 MB of other multi-phenotype SNPs. CONCLUSION A search in the genomic regions highlighted by these 13 MPL identified genes with annotations indicating involvement in photosynthetic light dependent reactions. These, as well as loci associated with only one or two chlorophyll fluorescence traits, should be useful to develop a better understanding of the genetic basis of photosynthetic light dependent reactions as a whole as well as of specific components of the electron transport chain in soybean. Accordingly, additional genetic and physiological analyses are necessary to determine the relevance and effectiveness of the identified loci for crop improvement efforts.
Collapse
Affiliation(s)
- Matthew Herritt
- Division of Plant Science, University of Missouri, Columbia, MO, 65211, USA
| | | | - Larry C Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72704, USA
| | - Felix B Fritschi
- Division of Plant Science, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
30
|
Herritt M, Dhanapal AP, Purcell LC, Fritschi FB. Identification of genomic loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean. BMC PLANT BIOLOGY 2018; 18:312. [PMID: 30497384 PMCID: PMC6267906 DOI: 10.1186/s12870-018-1517-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/02/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Photosynthesis is able to convert solar energy into chemical energy in the form of biomass, but the efficiency of photosynthetic solar energy conversion is low. Chlorophyll fluorescence measurements are rapid, non-destructive, and can provide a wealth of information about the efficiencies of the photosynthetic light reaction processes. Efforts aimed at assessing genetic variation and/or mapping of genetic loci associated with chlorophyll fluorescence phenotypes have been rather limited. RESULTS Evaluation of SoySNP50K iSelect SNP Beadchip data from the 189 genotypes phenotyped in this analysis identified 32,453 SNPs with a minor allele frequency (MAF) ≥ 5%. A total of 288 (non-unique) SNPs were significantly associated with one or more of the 21 chlorophyll fluorescence phenotypes. Of these, 155 were unique SNPs and 100 SNPs were only associated with a single fluorescence phenotype, while 28, 11, 2, and 14 SNPs, were associated with two, three, four and five or more fluorescence phenotypes, respectively. The 288 non-unique SNPs represent 155 unique SNPs that mark 53 loci. The 155 unique SNPs included 27 that were associated with three or more phenotypes, and thus were called multi-phenotype SNPs. These 27 multi-phenotype SNPs marked 13 multi-phenotype loci (MPL) identified by individual SNPs associated with multiple chlorophyll fluorescence phenotypes or by more than one SNP located within 0.5 MB of other multi-phenotype SNPs. CONCLUSION A search in the genomic regions highlighted by these 13 MPL identified genes with annotations indicating involvement in photosynthetic light dependent reactions. These, as well as loci associated with only one or two chlorophyll fluorescence traits, should be useful to develop a better understanding of the genetic basis of photosynthetic light dependent reactions as a whole as well as of specific components of the electron transport chain in soybean. Accordingly, additional genetic and physiological analyses are necessary to determine the relevance and effectiveness of the identified loci for crop improvement efforts.
Collapse
Affiliation(s)
- Matthew Herritt
- Division of Plant Science, University of Missouri, Columbia, MO 65211 USA
| | | | - Larry C. Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704 USA
| | - Felix B. Fritschi
- Division of Plant Science, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
31
|
Trotta A, Barera S, Marsano F, Osella D, Musso D, Pagliano C, Andreucci F, Barbato R. Isolation and characterization of a photosystem II preparation from thylakoid membranes of the extreme halophyte Salicornia veneta Pignatti et Lausi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:356-362. [PMID: 30261469 DOI: 10.1016/j.plaphy.2018.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Salicornia veneta (Pignatti et Lausi) is an extreme halophyte living in salt marsh where NaCl concentration may be as high as 1 M. Here we report on the isolation and characterization of a PSII preparation obtained by Triton X-100 solubilisation of the thylakoid membrane. By a combination of gel electrophoresis, immunoblotting and mass spectrometry, the depletion of a number of PSII proteins such as PsbQ, PsbM and PsbT was highlighted. Moreover, the requirement of Cl- and Ca2+ for optimal oxygen evolution was determined, showing that in absence of PsbQ a higher level of these ions are required. At high Cl- concentrations, oxygen evolution was inhibited in the same way in Salicornia veneta and spinach. Reconstitution of Salicornia veneta PSII preparation with partially purified spinach PsbP and PsbQ restored oxygen evolution activity at low Cl- and Ca2+ concentrations. Adaptation to high salt makes several PSII proteins dispensable.
Collapse
Affiliation(s)
- Andrea Trotta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Michel 11, I-15121, Alessandria, Italy; Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014, Turku, Finland
| | - Simone Barera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Michel 11, I-15121, Alessandria, Italy
| | - Francesco Marsano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Michel 11, I-15121, Alessandria, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Michel 11, I-15121, Alessandria, Italy
| | - Davide Musso
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Michel 11, I-15121, Alessandria, Italy
| | - Cristina Pagliano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Viale Duca degli Abruzzi 24, I-10129, Torino, Italy
| | - Flora Andreucci
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Michel 11, I-15121, Alessandria, Italy
| | - Roberto Barbato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Michel 11, I-15121, Alessandria, Italy.
| |
Collapse
|
32
|
Pawłowicz I, Waśkiewicz A, Perlikowski D, Rapacz M, Ratajczak D, Kosmala A. Remodeling of chloroplast proteome under salinity affects salt tolerance of Festuca arundinacea. PHOTOSYNTHESIS RESEARCH 2018; 137:475-492. [PMID: 29881986 DOI: 10.1007/s11120-018-0527-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Acclimation of photosynthetic apparatus to variable environmental conditions is an important component of tolerance to dehydration stresses, including salinity. The present study deals with the research on alterations in chloroplast proteome of the forage grasses. Based on chlorophyll fluorescence parameters, two genotypes of a model grass species-Festuca arundinacea with distinct levels of salinity tolerance: low salt tolerant (LST) and high salt tolerant (HST), were selected. Next, two-dimensional electrophoresis and mass spectrometry were applied under both control and salt stress conditions to identify proteins accumulated differentially between these two genotypes. The physiological analysis revealed that under NaCl treatment the studied plants differed in photosystem II activity, water content, and ion accumulation. The differentially accumulated proteins included ATPase B, ATP synthase, ribulose-1,5-bisphosphate carboxylase large and small subunits, cytochrome b6-f complex iron-sulfur subunit, oxygen-evolving enhancer proteins (OEE), OEE1 and OEE2, plastidic fructose-bisphosphate aldolase (pFBA), and lipocalin. A higher level of lipocalin, potentially involved in prevention of lipid peroxidation under stress, was also observed in the HST genotype. Our physiological and proteomic results performed for the first time on the species of forage grasses clearly showed that chloroplast metabolism adjustment could be a crucial factor in developing salinity tolerance.
Collapse
Affiliation(s)
- Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479, Poznan, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-637, Poznan, Poland
| | - Dawid Perlikowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479, Poznan, Poland
| | - Marcin Rapacz
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Podluzna 3, 30-239, Krakow, Poland
| | - Dominika Ratajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479, Poznan, Poland
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479, Poznan, Poland
| |
Collapse
|
33
|
Asada M, Nishimura T, Ifuku K, Mino H. Location of the extrinsic subunit PsbP in photosystem II studied by pulsed electron-electron double resonance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018. [DOI: 10.1016/j.bbabio.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Regulation of Long Noncoding RNAs Responsive to Phytoplasma Infection in Paulownia tomentosa. Int J Genomics 2018; 2018:3174352. [PMID: 29675420 PMCID: PMC5841072 DOI: 10.1155/2018/3174352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Paulownia witches' broom caused by phytoplasma infection affects the production of Paulownia trees worldwide. Emerging evidence showed that long noncoding RNAs (lncRNA) play a protagonist role in regulating the expression of genes in plants. So far, the identification of lncRNAs has been limited to a few model plant species, and their roles in mediating responses to Paulownia tomentosa that free of phytoplasma infection are yet to be characterized. Here, whole-genome identification of lncRNAs, based on strand-specific RNA sequencing, from four Paulownia tomentosa samples, was performed and identified 3689 lncRNAs. These lncRNAs showed low conservation among plant species and some of them were miRNA precursors. Further analysis revealed that the 112 identified lncRNAs were related to phytoplasma infection. We predicted the target genes of these phytoplasma-responsive lncRNAs, and our analysis showed that 51 of the predicted target genes were alternatively spliced. Moreover, we found the expression of the lncRNAs plays vital roles in regulating the genes involved in the reactive oxygen species induced hypersensitive response and effector-triggered immunity in phytoplasma-infected Paulownia. This study indicated that diverse sets of lncRNAs were responsive to Paulownia witches' broom, and the results will provide a starting point to understand the functions and regulatory mechanisms of Paulownia lncRNAs in the future.
Collapse
|
35
|
Nishimura T, Sato F, Ifuku K. In vivo system for analyzing the function of the PsbP protein using Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2017; 133:117-127. [PMID: 28341915 DOI: 10.1007/s11120-017-0370-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
The PsbP protein is an extrinsic subunit of photosystem II (PSII) specifically developed in green-plant species including land plants and green algae. The protein-protein interactions involving PsbP and its effect on oxygen evolution have been investigated in vitro using isolated PSII membranes. However, the importance of those interactions needs to be examined at the cellular level. To this end, we developed a system expressing exogenous PsbP in the background of the Chlamydomonas BF25 mutant lacking native PsbP. Expression of His-tagged PsbP successfully restored the oxygen-evolving activity and photoautotrophic growth of the mutant, while PsbP-∆15 lacking the N-terminal 15 residues, which are crucial for the oxygen-evolving activity of spinach PSII in vitro, only partially did. This demonstrated the importance of N-terminal sequence of PsbP for the photosynthetic activity in vivo. Furthermore, the PSII-LHCII supercomplex can be specifically purified from the Chlamydomonas cells having His-tagged PsbP using a metal affinity chromatography. This study provides a platform not only for the functional analysis of PsbP in vivo but also for structural analysis of the PSII-LHCII supercomplex from green algae.
Collapse
Affiliation(s)
- Taishi Nishimura
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
36
|
Ševčíková H, Mašková P, Tarkowská D, Mašek T, Lipavská H. Carbohydrates and gibberellins relationship in potato tuberization. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:53-63. [PMID: 28441523 DOI: 10.1016/j.jplph.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Potato represents the third most important crop worldwide and therefore to understand regulations of tuber onset is crucial from both theoretical and practical points of view. Photosynthesis and related carbohydrate status along with phytohormone balance belong to the essential factors in regulation of plant development including storage organ formation. In our work we used potato (Solanum tuberosum) cv. Lada and its spontaneously tuberizing mutant (ST plants) grown in vitro under low carbohydrate availability (non-inductive conditions). Small plant phenotype and readiness to tuberization of ST plants was, however, not accompanied by lower gibberellins levels, as determined by UHPLC-MS/MS. Therefore, we focused on the other inducing factor, carbohydrate status. Using HPLC, we followed changes in carbohydrate distribution under mixotrophic (2.5% sucrose in medium) and photoautotrophic conditions (no sucrose addition and higher gas and light availability) and observed changes in soluble carbohydrate allocation and starch deposition, favouring basal stem part in mutants. In addition, the determination of tuber-inducing marker gene expressions revealed increased levels of StSP6A in ST leaves. Collectively these data point towards the possibility of two parallel cross-talking pathways (carbohydrate - and gibberellin- dependent ones) with the power of both to outcompete the other one when its signal is for some reason extraordinary strong.
Collapse
Affiliation(s)
- Hana Ševčíková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-12844 Prague, Czech Republic.
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-12844 Prague, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Academy of Sciences of the Czech Republic and Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Tomáš Mašek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12844 Prague, Czech Republic
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-12844 Prague, Czech Republic
| |
Collapse
|
37
|
Kohzuma K, Froehlich JE, Davis GA, Temple JA, Minhas D, Dhingra A, Cruz JA, Kramer DM. The Role of Light-Dark Regulation of the Chloroplast ATP Synthase. FRONTIERS IN PLANT SCIENCE 2017; 8:1248. [PMID: 28791032 PMCID: PMC5522872 DOI: 10.3389/fpls.2017.01248] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/03/2017] [Indexed: 05/18/2023]
Abstract
The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead, ATP synthase redox regulation may be impacting a number of cellular processes such as (1) the accumulation of chloroplast proteins and/or ions or (2) the responses of photosynthesis to rapid changes in light intensity. A model highlighting the complex interplay between ATP synthase regulation and pmf in maintaining various chloroplast functions in the dark is presented. Significance Statement: We uncover an unexpected role for thioredoxin modulation of the chloroplast ATP synthase in regulating the dark-stability of the photosynthetic apparatus, most likely by controlling thylakoid membrane transport of proteins and ions.
Collapse
Affiliation(s)
- Kaori Kohzuma
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
| | - John E. Froehlich
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
- *Correspondence: John E. Froehlich,
| | - Geoffry A. Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
- Department of Cell and Molecular Biology, Michigan State University, East LansingMI, United States
| | - Joshua A. Temple
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
| | - Deepika Minhas
- Department of Horticulture and Landscape Architecture, Washington State University, WashingtonDC, United States
| | - Amit Dhingra
- Department of Horticulture and Landscape Architecture, Washington State University, WashingtonDC, United States
| | - Jeffrey A. Cruz
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
| | - David M. Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East LansingMI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, United States
| |
Collapse
|
38
|
Kang L, Kim HS, Kwon YS, Ke Q, Ji CY, Park SC, Lee HS, Deng X, Kwak SS. IbOr Regulates Photosynthesis under Heat Stress by Stabilizing IbPsbP in Sweetpotato. FRONTIERS IN PLANT SCIENCE 2017; 8:989. [PMID: 28642783 PMCID: PMC5462972 DOI: 10.3389/fpls.2017.00989] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/24/2017] [Indexed: 05/19/2023]
Abstract
The Orange (Or) protein regulates carotenoid biosynthesis and environmental stress in plants. Previously, we reported that overexpression of the sweetpotato [Ipomoea batatas (L.) Lam] Or gene (IbOr) in transgenic Arabidopsis (referred to as IbOr-OX/At) increased the efficiency of photosystem II (PSII) and chlorophyll content after heat shock. However, little is known about the role of IbOr in PSII-mediated protection against abiotic stress. In this study, comparative proteomics revealed that expression of PsbP (an extrinsic subunit of PSII) is up-regulated in heat-treated IbOr-OX/At plants. We then identified and functionally characterized the PsbP-like gene (IbPsbP) from sweetpotato. IbPsbP is predominantly localized in chloroplast, and its transcripts are tissue-specifically expressed and up-regulated in response to abiotic stress. In addition, IbOr interacts with IbPsbP and protects it from heat-induced denaturation, consistent with the observation that transgenic sweetpotato overexpressing IbOr maintained higher PSII efficiency and chlorophyll content upon exposure to heat stress. These results indicate that IbOr can protect plants from environmental stress not only by controlling carotenoid biosynthesis but also by directly stabilizing PSII.
Collapse
Affiliation(s)
- Le Kang
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and TechnologyDaejeon, South Korea
| | - Ho S. Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Young S. Kwon
- Environmental Biology and Chemistry Center, Korea Institute of ToxicologyJinju, South Korea
| | - Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Chang Y. Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and TechnologyDaejeon, South Korea
| | - Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and TechnologyDaejeon, South Korea
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityShaanxi, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and TechnologyDaejeon, South Korea
- *Correspondence: Sang-Soo Kwak,
| |
Collapse
|
39
|
Fu S, Shao J, Zhou C, Hartung JS. Co-infection of Sweet Orange with Severe and Mild Strains of Citrus tristeza virus Is Overwhelmingly Dominated by the Severe Strain on Both the Transcriptional and Biological Levels. FRONTIERS IN PLANT SCIENCE 2017; 8:1419. [PMID: 28912786 PMCID: PMC5583216 DOI: 10.3389/fpls.2017.01419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/31/2017] [Indexed: 05/18/2023]
Abstract
Citrus tristeza is one of the most destructive citrus diseases and is caused by the phloem-restricted Closterovirus, Citrus tristeza virus. Mild strain CTV-B2 does not cause obvious symptoms on indicators whereas severe strain CTV-B6 causes symptoms, including stem pitting, cupping, yellowing, and stiffening of leaves, and vein corking. Our laboratory has previously characterized changes in transcription in sweet orange separately infected with CTV-B2 and CTV-B6. In the present study, transcriptome analysis of Citrus sinensis in response to double infection by CTV-B2 and CTV-B6 was carried out. Four hundred and eleven transcripts were up-regulated and 356 transcripts were down-regulated prior to the onset of symptoms. Repressed genes were overwhelmingly associated with photosynthesis, and carbon and nucleic acid metabolism. Expression of genes related to the glycolytic, oxidative pentose phosphate (OPP), tricarboxylic acid cycle (TCA) pathways, tetrapyrrole synthesis, redox homeostasis, nucleotide metabolism, protein synthesis and post translational protein modification and folding, and cell organization were all reduced. Ribosomal composition was also greatly altered in response to infection by CTV-B2/CTV-B6. Genes that were induced were related to cell wall structure, secondary and hormone metabolism, responses to biotic stress, regulation of transcription, signaling, and secondary metabolism. Transport systems dedicated to metal ions were especially disturbed and ZIPs (Zinc Transporter Precursors) showed different expression patterns in response to co-infection by CTV-B2/CTV-B6 and single infection by CTV-B2. Host plants experienced root decline that may have contributed to Zn, Fe, and other nutrient deficiencies. Though defense responses, such as, strengthening of the cell wall, alteration of hormone metabolism, secondary metabolites, and signaling pathways, were activated, these defense responses did not suppress the spread of the pathogens and the development of symptoms. The mild strain CTV-B2 did not provide a useful level of cross-protection to citrus against the severe strain CTV-B6.
Collapse
Affiliation(s)
- Shimin Fu
- Citrus Research Institute, Southwest UniversityChongqing, China
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research ServiceBeltsville, MD, United States
| | - Jonathan Shao
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research ServiceBeltsville, MD, United States
| | - Changyong Zhou
- Citrus Research Institute, Southwest UniversityChongqing, China
| | - John S. Hartung
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research ServiceBeltsville, MD, United States
- *Correspondence: John S. Hartung
| |
Collapse
|
40
|
Schmidt SB, Jensen PE, Husted S. Manganese Deficiency in Plants: The Impact on Photosystem II. TRENDS IN PLANT SCIENCE 2016; 21:622-632. [PMID: 27150384 DOI: 10.1016/j.tplants.2016.03.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/08/2016] [Accepted: 03/19/2016] [Indexed: 05/04/2023]
Abstract
Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability.
Collapse
Affiliation(s)
- Sidsel Birkelund Schmidt
- Plant and Soil Science Section, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Poul Erik Jensen
- Molecular Plant Biology Section, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
41
|
Mummadisetti MP, Frankel LK, Bellamy HD, Sallans L, Goettert JS, Brylinski M, Bricker TM. Use of Protein Cross-Linking and Radiolytic Labeling To Elucidate the Structure of PsbO within Higher-Plant Photosystem II. Biochemistry 2016; 55:3204-13. [PMID: 27203407 DOI: 10.1021/acs.biochem.6b00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have used protein cross-linking with the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and radiolytic footprinting coupled with high-resolution tandem mass spectrometry, to examine the structure of higher-plant PsbO when it is bound to Photosystem II. Twenty intramolecular cross-linked residue pairs were identified. On the basis of this cross-linking data, spinach PsbO was modeled using the Thermosynechococcus vulcanus PsbO structure as a template, with the cross-linking distance constraints incorporated using the MODELLER program. Our model of higher-plant PsbO identifies several differences between the spinach and cyanobacterial proteins. The N-terminal region is particularly interesting, as this region has been suggested to be important for oxygen evolution and for the specific binding of PsbO to Photosystem II. Additionally, using radiolytic mapping, we have identified regions on spinach PsbO that are shielded from the bulk solvent. These domains may represent regions on PsbO that interact with other components, as yet unidentified, of the photosystem.
Collapse
Affiliation(s)
- Manjula P Mummadisetti
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Henry D Bellamy
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, Louisiana State University , Baton Rouge, Louisiana 70806, United States
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | - Jost S Goettert
- The J. Bennett Johnston, Sr. Center for Advanced Microstructures & Devices, Louisiana State University , Baton Rouge, Louisiana 70806, United States
| | - Michal Brylinski
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
42
|
Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:799-809. [DOI: 10.1016/j.bbabio.2016.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 11/19/2022]
|
43
|
Kundu P, Biswas R, Mukherjee S, Reinhard L, Dutta A, Mueller-Dieckmann J, Weiss MS, Pal NK, Das AK. Structure-based Epitope Mapping of Mycobacterium tuberculosis Secretary Antigen MTC28. J Biol Chem 2016; 291:13943-13954. [PMID: 27189947 DOI: 10.1074/jbc.m116.726422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
Secretary proteins of Mycobacterium tuberculosis are key players of the mycobacterial infection pathway. MTC28 is a 28-kDa proline-rich secretary antigen of Mycobacterium tuberculosis and is only conserved in pathogenic strains of mycobacteria. Here we report the crystal structure of MTC28 at 2.8- and 2.15-Å resolutions for the structure-based epitope design. MTC28 shares a "mog1p"-fold consisting of seven antiparallel β strands stacked between α helices. Five probable epitopes have been located on a solvent-accessible flexible region by computational analysis of the structure of MTC28. Simultaneously, the protein is digested with trypsin and the resulting fragments are purified by HPLC. Such 10 purified peptide fragments are screened against sera from patients infected with pulmonary tuberculosis (PTB). Two of these 10 fragments, namely (127)ALDITLPMPPR(137) and (138)WTQVPDPNVPDAFVVIADR(156),are found to be major immunogenic epitopes that are localized on the outer surface of the protein molecule and are part of a single continuous epitope that have been predicted in silico Mutagenesis and antibody inhibition studies are in accordance with the results obtained from epitope mapping.
Collapse
Affiliation(s)
- Prasun Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Rupam Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Somnath Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Linda Reinhard
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden,; Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology, c/o DESY, D-22607 Hamburg, Germany,; European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany
| | - Anirudha Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Jochen Mueller-Dieckmann
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststraße18, 22609 Hamburg, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Nishit Kumar Pal
- Nil Ratan Sirkar Medical College and Hospital,138 AJC Bose Road, Sealdah, Raja Bazar, Kolkata, West Bengal 700014, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India,.
| |
Collapse
|
44
|
Wang J, Yu Q, Xiong H, Wang J, Chen S, Yang Z, Dai S. Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness. PLoS One 2016; 11:e0154235. [PMID: 27137770 PMCID: PMC4854468 DOI: 10.1371/journal.pone.0154235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
Chloroplast function in photosynthesis is essential for plant growth and development. It is well-known that chloroplasts respond to various light conditions. However, it remains poorly understood about how chloroplasts respond to darkness. In this study, we found 81 darkness-responsive proteins in Arabidopsis chloroplasts under 8 h darkness treatment. Most of the proteins are nucleus-encoded, indicating that chloroplast darkness response is closely regulated by the nucleus. Among them, 17 ribosome proteins were obviously reduced after darkness treatment. The protein expressional patterns and physiological changes revealed the mechanisms in chloroplasts in response to darkness, e.g., (1) inhibition of photosystem II resulted in preferential cyclic electron flow around PSI; (2) promotion of starch degradation; (3) inhibition of chloroplastic translation; and (4) regulation by redox and jasmonate signaling. The results have improved our understanding of molecular regulatory mechanisms in chloroplasts under darkness.
Collapse
Affiliation(s)
- Jing Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
| | - Qingbo Yu
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Haibo Xiong
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Jun Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, United States of America
| | - Zhongnan Yang
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Shaojun Dai
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| |
Collapse
|
45
|
Pi Z, Stevanato P, Sun F, Yang Y, Sun X, Zhao H, Geng G, Yu L. Proteomic changes induced by potassium deficiency and potassium substitution by sodium in sugar beet. JOURNAL OF PLANT RESEARCH 2016; 129:527-538. [PMID: 26860314 DOI: 10.1007/s10265-016-0800-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
In this study, sugar beets (Beta vulgaris L.) were grown at different K(+)/Na(+) concentrations: mmol/L, 3/0 (control); 0.03/2.97 (K-Na replacement group; T(rep)); 0.03/0 (K deficiency group; T(def)) in order to investigate the effects of K(+) deficiency and replacement of K(+) by Na(+) on plant proteomics, and to explore the physiological processes influenced by Na(+) to compensate for a lack of K(+). After 22 days, fresh and dry weight as well as the Na(+) and K(+) concentration were measured and changes in proteomics were tested by 2D gel electrophoresis. Interestingly, Na(+) showed stimulation in growth of seedlings and hindrance of K(+) assimilation in T(rep). Significant changes were also observed in 27 protein spots among the treatments. These are proteins involved in photosynthesis, cellular respiration, protein folding and degradation, stress and defense, other metabolisms, transcription related, and protein synthesis. A wide range of physiological processes, including light reaction, CO2 assimilation, glycolysis, and tricaboxylic acid cycle, was impaired owing to K(+) starvation. Compensating for the effect of K(+) starvation, an increase in photosynthesis was also observed in T(rep). However, we also found a limitation of cellular respiration by Na(+). Na(+) is therefore in some ways able to recover damage due to K deficiency at protein level, but cannot functionally replace K as an essential nutrient.
Collapse
Affiliation(s)
- Zhi Pi
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Room 410 Nongxue Building, Xuefu Road NO. 74, Nangang District, Harbin, 150080, Heilongjiang Province, China
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Viale dell'Università 16, Legnaro, Padova, 35020, Italy
| | - Fei Sun
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Room 410 Nongxue Building, Xuefu Road NO. 74, Nangang District, Harbin, 150080, Heilongjiang Province, China
| | - Yun Yang
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Room 410 Nongxue Building, Xuefu Road NO. 74, Nangang District, Harbin, 150080, Heilongjiang Province, China
| | - Xuewei Sun
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Room 410 Nongxue Building, Xuefu Road NO. 74, Nangang District, Harbin, 150080, Heilongjiang Province, China
| | - Huijie Zhao
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Room 410 Nongxue Building, Xuefu Road NO. 74, Nangang District, Harbin, 150080, Heilongjiang Province, China
| | - Gui Geng
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Room 410 Nongxue Building, Xuefu Road NO. 74, Nangang District, Harbin, 150080, Heilongjiang Province, China.
- Chinese Academy of Agricultural Science, Institute of Sugar Beet, Harbin, 150080, China.
| | - Lihua Yu
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Room 410 Nongxue Building, Xuefu Road NO. 74, Nangang District, Harbin, 150080, Heilongjiang Province, China.
- Chinese Academy of Agricultural Science, Institute of Sugar Beet, Harbin, 150080, China.
| |
Collapse
|
46
|
Roose JL, Frankel LK, Mummadisetti MP, Bricker TM. The extrinsic proteins of photosystem II: update. PLANTA 2016; 243:889-908. [PMID: 26759350 DOI: 10.1007/s00425-015-2462-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/25/2015] [Indexed: 05/24/2023]
Abstract
Recent investigations have provided important new insights into the structures and functions of the extrinsic proteins of Photosystem II. This review is an update of the last major review on the extrinsic proteins of Photosystem II (Bricker et al., Biochemistry 31:4623-4628 2012). In this report, we will examine advances in our understanding of the structure and function of these components. These proteins include PsbO, which is uniformly present in all oxygenic organisms, the PsbU, PsbV, CyanoQ, and CyanoP proteins, found in the cyanobacteria, and the PsbP, PsbQ and PsbR proteins, found in the green plant lineage. These proteins serve to stabilize the Mn4CaO5 cluster and optimize oxygen evolution at physiological calcium and chloride concentrations. The mechanisms used to perform these functions, however, remain poorly understood. Recently, important new findings have significantly advanced our understanding of the structures, locations and functions of these important subunits. We will discuss the biochemical, structural and genetic studies that have been used to elucidate the roles played by these proteins within the photosystem and their locations within the photosynthetic complex. Additionally, we will examine open questions needing to be addressed to provide a coherent picture of the role of these components within the photosystem.
Collapse
Affiliation(s)
- Johnna L Roose
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Manjula P Mummadisetti
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
47
|
Zhao W, Yang P, Kang L, Cui F. Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. THE NEW PHYTOLOGIST 2016; 210:196-207. [PMID: 26585422 PMCID: PMC5063192 DOI: 10.1111/nph.13747] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/06/2015] [Indexed: 05/11/2023]
Abstract
Persistent plant viruses usually depend on insects for their transmission; they cannot be transmitted between plants or through mechanical inoculation. However, the mechanism by which persistent viruses become pathogenic in insect vectors remains unknown. In this study, we used Rice stripe virus (RSV), its insect vector Laodelphax striatellus and host plant (Oryza sativa) to explore how persistent viruses acquire pathogenicity from insect vectors. RSV acquired phytopathogenicity in both the alimentary tract and the salivary gland of L. striatellus. We mechanically inoculated RSV into rice O. sativa leaves through midrib microinjection. Insect-derived RSV induced a typical stripe symptom, whereas plant-derived RSV only produced chlorosis in rice leaves. Insect-derived RSV had higher expression of genes rdrp, ns2, nsvc2, sp and nsvc4 than plant-derived RSV, and the latter had higher expression of genes cp and ns3 than the former in rice leaves. Different from plant-derived RSV, insect-derived RSV damaged grana stacks within the chloroplast and inhibited photosynthesis by suppressing the photosystem II subunit psbp. This study not only presented a convenient method to mechanically inoculate RSV into plants, but also provided insights into the different pathogenic mechanisms of RSV from the insect vector and from viruliferous plants.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Pengcheng Yang
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
48
|
Nishimura T, Nagao R, Noguchi T, Nield J, Sato F, Ifuku K. The N-terminal sequence of the extrinsic PsbP protein modulates the redox potential of Cyt b559 in photosystem II. Sci Rep 2016; 6:21490. [PMID: 26887804 PMCID: PMC4757834 DOI: 10.1038/srep21490] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
The PsbP protein, an extrinsic subunit of photosystem II (PSII) in green plants, is known to induce a conformational change around the catalytic Mn4CaO5 cluster securing the binding of Ca2+ and Cl– in PSII. PsbP has multiple interactions with the membrane subunits of PSII, but how these affect the structure and function of PSII requires clarification. Here, we focus on the interactions between the N-terminal residues of PsbP and the α subunit of Cytochrome (Cyt) b559 (PsbE). A key observation was that a peptide fragment formed of the first N-terminal 15 residues of PsbP, ‘pN15’, was able to convert Cyt b559 into its HP form. Interestingly, addition of pN15 to NaCl-washed PSII membranes decreased PSII’s oxygen-evolving activity, even in the presence of saturating Ca2+ and Cl– ions. In fact, pN15 reversibly inhibited the S1 to S2 transition of the OEC in PSII. These data suggest that pN15 can modulate the redox property of Cyt b559 involved in the side-electron pathway in PSII. This potential change of Cyt b559, in the absence of the C-terminal domain of PsbP, however, would interfere with any electron donation from the Mn4CaO5 cluster, leading to the possibility that multiple interactions of PsbP, binding to PSII, have distinct roles in regulating electron transfer within PSII.
Collapse
Affiliation(s)
- Taishi Nishimura
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryo Nagao
- Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Takumi Noguchi
- Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Jon Nield
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
49
|
Ifuku K, Noguchi T. Structural Coupling of Extrinsic Proteins with the Oxygen-Evolving Center in Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:84. [PMID: 26904056 PMCID: PMC4743485 DOI: 10.3389/fpls.2016.00084] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/17/2016] [Indexed: 05/24/2023]
Abstract
Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The PSII extrinsic proteins shield the catalytic Mn4CaO5 cluster from the outside bulk solution and enhance binding of inorganic cofactors, such as Ca(2+) and Cl(-), in the oxygen-evolving center (OEC) of PSII. Among PSII extrinsic proteins, PsbO is commonly found in all oxygenic organisms, while PsbP and PsbQ are specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP exist in cyanobacteria. In addition, red algae and diatoms have unique PSII extrinsic proteins, such as PsbQ' and Psb31, suggesting functional divergence during evolution. Recent studies with reconstitution experiments combined with Fourier transform infrared spectroscopy have revealed how the individual PSII extrinsic proteins affect the structure and function of the OEC in different organisms. In this review, we summarize our recent results and discuss changes that have occurred in the structural coupling of extrinsic proteins with the OEC during evolutionary history.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Graduate School of Biostudies, Kyoto UniversityKyoto, Japan
| | - Takumi Noguchi
- Graduate School of Science, Nagoya UniversityAichi, Japan
| |
Collapse
|
50
|
Ifuku K. Localization and functional characterization of the extrinsic subunits of photosystem II: an update. Biosci Biotechnol Biochem 2015; 79:1223-31. [DOI: 10.1080/09168451.2015.1031078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The extrinsic proteins of PSII shield the catalytic Mn4CaO5 cluster from exogenous reductants and serve to optimize oxygen evolution at physiological ionic conditions. These proteins include PsbO, found in all oxygenic organisms, PsbP and PsbQ, specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP in cyanobacteria. Furthermore, red algal PSII has PsbQ′ in addition to PsbO, PsbV, and PsbU, and diatoms have Psb31 in supplement to red algal-type extrinsic proteins, exemplifying the functional divergence of these proteins during evolution. This review provides an updated summary of recent findings on PSII extrinsic proteins and discusses their binding, function, and evolution within various photosynthetic organisms.
Collapse
Affiliation(s)
- Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|