1
|
Chen JT, Qiu H, Ran XX, Cao W, Chen X, Gao JM, Cao CY. The diphenylpyrimidine derivative as a novel HDAC6 inhibitor alleviates atopic dermatitis through anti-inflammatory effects facilitated via TLR4/MAPK, STAT3 and NF-κB pathways. Bioorg Chem 2025; 160:108451. [PMID: 40250253 DOI: 10.1016/j.bioorg.2025.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Atopic dermatitis (AD) is a systemic immune disease that primarily affects infants and children, characterized by recurring severe pruritus and chronic eczema. Studies have demonstrated that histone deacetylase 6 inhibitors (HDAC6is) can exhibit anti-inflammatory activities by regulating the acetylation level of target proteins. Building on these findings, our research focused on a synthetic diphenylpyrimidine derivative, specifically 15b, which we identified as a potent HDAC6i and an effective anti-inflammatory agent. This designation was determined by its safety profile, HDAC6 inhibitory activity, selectivity, and its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In 2,4-dinitrochlorobenzene (DNCB)-induced AD mice, daily intraperitoneal injections of 15b significantly alleviated symptoms such as skin edema, dryness, crusting, and peeling, and reduced the frequency of scratching. Moreover, 15b mitigated ear swelling, addressed the increase in epidermal thickness, and reduced mast cell infiltration. Further mechanistic studies revealed that 15b selectively inhibited HDAC6, enhanced the acetylation of α-tubulin and heat shock protein 90 (HSP90) in RAW264.7 cells and BALB/c mice back skin tissue, and attenuated the activation of TLR4/MAPK, STAT3, NF-κB pathways. Consequently, both inflammatory cytokines (IL-4 and IFN-γ) and proteins (iNOS and COX-2) were dose-dependently decreased. These findings suggest that the HDAC6 inhibitor 15b can serve as a potential anti-inflammatory agent for the treatment of AD.
Collapse
Affiliation(s)
- Jin-Ting Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Qiu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin-Xin Ran
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China; Northwest A&F University ShenZhen Research Institute, ShenZhen 518000, Guangdong, China.
| | - Chen-Yu Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Chang X, Guo Y, Zhang Q, Zheng X, Cui X, Hu J, Zhang Z, Zhang F, Wang X. GRP78 recognizes EV-F 3D protein and activates NF-κB to repress virus replication by interacting with CHUK/IKBKB. J Virol 2024; 98:e0026824. [PMID: 38775480 PMCID: PMC11237669 DOI: 10.1128/jvi.00268-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 06/14/2024] Open
Abstract
Enteroviruses are the causative agents associated with several human and animal diseases, posing a significant threat to human and animal health. As one of the host immune defense strategies, innate immunity plays a crucial role in defending against invading pathogens, where the host utilizes a variety of mechanisms to inhibit or eliminate the pathogen. Here, we report a new strategy for the host to repress enterovirus replication by the 78 kDa glucose-regulated protein (GRP78), also known as heat shock protein family A member 5 (HSPA5). The GRP78 recognizes the EV-encoded RNA-dependent RNA polymerases (RdRPs) 3D protein and interacts with the nuclear factor kappa B kinase complex (CHUK) and subunit beta gene (IKBKB) to facilitate the phosphorylation and nuclear translocation of NF-κB, which induces the production of inflammatory factors and leads to a broad inhibition of enterovirus replication. These findings demonstrate a new role of GRP78 in regulating host innate immunity in response to viral infection and provide new insights into the mechanism underlying enterovirus replication and NF-κB activation.IMPORTANCEGRP78 is known as a molecular chaperone for protein folding and plays a critical role in maintaining protein folding and participating in cell proliferation, cell survival, apoptosis, and metabolism. However, the functions of GRP78 to participate in enterovirus genome replication and innate immune responses are rarely documented. In this study, we explored the functions of the EV-3D-interacting protein GRP78 and found that GRP78 inhibits enterovirus replication by activating NF-κB through binding to EV-F 3D and interacting with the NF-κB signaling molecules CHUK/IKBKB. This is the first report that GRP78 interacts with CHUK/IKBKB to activate the NF-κB signaling pathway, which leads to the expression of the proinflammatory cytokines and inhibition of enterovirus replication. These results demonstrate a unique mechanism of virus replication regulation by GRP78 and provide insights into the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Xiaoran Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yidi Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qun Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuebo Zheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuyuan Cui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Junying Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiyuan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Fan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinping Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Ma J, Yang Z, Gao H, Huda N, Jiang Y, Liangpunsakul S. FK-binding protein 5: Possible relevance to the pathogenesis of metabolic dysfunction and alcohol-associated liver disease. J Investig Med 2024; 72:128-138. [PMID: 37807186 DOI: 10.1177/10815589231207793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The FK506-binding protein (FKBP5) plays significant roles in mediating stress responses by interacting with glucocorticoids, participating in adipogenesis, and influencing various cellular pathways throughout the body. In this review, we described the potential role of FKBP5 in the pathogenesis of two common chronic liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD), and alcohol-associated liver disease (ALD). We provided an overview of the FK-binding protein family and elucidated their roles in cellular stress responses, metabolic diseases, and adipogenesis. We explored how FKBP5 may mechanistically influence the pathogenesis of MASLD and ALD and provided insights for further investigation into the role of FKBP5 in these two diseases.
Collapse
Affiliation(s)
- Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
4
|
Luo S, Ye D, Wang Y, Liu X, Wang X, Xie L, Ji Y. Roles of Protein S-Nitrosylation in Endothelial Homeostasis and Dysfunction. Antioxid Redox Signal 2024; 40:186-205. [PMID: 37742108 DOI: 10.1089/ars.2023.0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Significance: Nitric oxide (NO) plays several distinct roles in endothelial homeostasis. Except for activating the guanylyl cyclase enzyme-dependent cyclic guanosine monophosphate signaling pathway, NO can bind reactive cysteine residues in target proteins, a process known as S-nitrosylation (SNO). SNO is proposed to explain the multiple biological functions of NO in the endothelium. Investigating the targets and mechanism of protein SNO in endothelial cells (ECs) can provide new strategies for treating endothelial dysfunction-related diseases. Recent Advances: In response to different environments, proteomics has identified multiple SNO targets in ECs. Functional studies confirm that SNO regulates NO bioavailability, inflammation, permeability, oxidative stress, mitochondrial function, and insulin sensitivity in ECs. It also influences EC proliferation, migration, apoptosis, and transdifferentiation. Critical Issues: Single-cell transcriptomic analysis of ECs isolated from different mouse tissues showed heterogeneous gene signatures. However, litter research focuses on the heterogeneous properties of SNO proteins in ECs derived from different tissues. Although metabolism reprogramming plays a vital role in endothelial functions, little is known about how protein SNO regulates metabolism reprogramming in ECs. Future Directions: Precisely deciphering the effects of protein SNO in ECs isolated from different tissues under different conditions is necessary to further characterize the relationship between protein SNO and endothelial dysfunction-related diseases. In addition, identifying SNO targets that can influence endothelial metabolic reprogramming and the underlying mechanism can offer new views on the crosstalk between metabolism and post-translational protein modification. Antioxid. Redox Signal. 40, 186-205.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Danyu Ye
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xingeng Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiaoqian Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| |
Collapse
|
5
|
Konrath F, Willenbrock M, Busse D, Scheidereit C, Wolf J. A computational model of the DNA damage-induced IKK/ NF-κB pathway reveals a critical dependence on irradiation dose and PARP-1. iScience 2023; 26:107917. [PMID: 37817938 PMCID: PMC10561052 DOI: 10.1016/j.isci.2023.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
The activation of IKK/NF-κB by genotoxic stress is a crucial process in the DNA damage response. Due to the anti-apoptotic impact of NF-κB, it can affect cell-fate decisions upon DNA damage and therefore interfere with tumor therapy-induced cell death. Here, we developed a dynamical model describing IKK/NF-κB signaling that faithfully reproduces quantitative time course data and enables a detailed analysis of pathway regulation. The approach elucidates a pathway topology with two hubs, where the first integrates signals from two DNA damage sensors and the second forms a coherent feedforward loop. The analyses reveal a critical role of the sensor protein PARP-1 in the pathway regulation. Introducing a method for calculating the impact of changes in individual components on pathway activity in a time-resolved manner, we show how irradiation dose influences pathway activation. Our results give a mechanistic understanding relevant for the interpretation of experimental and clinical studies.
Collapse
Affiliation(s)
- Fabian Konrath
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michael Willenbrock
- Laboratory for Signal Transduction in Tumor Cells, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Dorothea Busse
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claus Scheidereit
- Laboratory for Signal Transduction in Tumor Cells, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Mathematics and Computer Science, Free University Berlin, Germany
| |
Collapse
|
6
|
CTNNAL1 enhances glucocorticoid sensitivity in HDM-induced asthma mouse model through deactivating hsp90 signaling pathway. Life Sci 2023; 313:121304. [PMID: 36535402 DOI: 10.1016/j.lfs.2022.121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
AIMS Adhesion molecules play vital roles in the induction of airway hyperresponsiveness (AHR) or airway inflammation. The down-regulation of catenin alpha-like 1 (CTNNAL1) in the bronchial epithelial cells of asthma patients and mice models has been noted in our previous study. In this work, we further explore the underlying mechanism of CTNNAL1 in asthma. MAIN METHODS We constructed a house dust mite (HDM)-induced asthma animal model on control mice and applied CTNNAL1-siRNA transfection to create CTNNAL1-deficient mice. KEY FINDINGS We documented much more severe airway inflammation and increased leukocyte infiltration in the lungs of the CTNNAL1-deficient mice comparing to control mice, along with elevated expression of inflammatory cytokines. Dexamethasone (DEX) treatment led to less reduced inflammation in CTNNAL1-deficient mice compared with control mice. Immunoprecipitation confirmed the interaction between heat shock protein90 (hsp90) and CTNNAL1. The expression of hsp90 was upregulated after CTNNAL1 silencing. Meanwhile, the use of hsp90 inhibitor geldanamycin significantly decreased the expression of NR3C1, ICAM-1 and the ratio of p-p65/p65 in CTNNAL1-silenced 16HBE14o- cells. Both geldanamycin and DEX could function to suppress the expression of ICAM-1 and the phosphorylation level of p65. Nevertheless, the anti-inflammatory effect of DEX proved less potent than geldanamycin in the CTNNAL1-silenced group. The combined therapy of geldanamycin and DEX significantly decreased the inflammatory responses in CTNNAL1-deficient HBE cells than DEX monotherapy. SIGNIFICANCE Our study corroborates that CTNNAL1 deficiency induced aggravated airway inflammation and rendered insensitivity to glucocorticoids via triggering hsp90 signaling pathway.
Collapse
|
7
|
Zhao S, Tang X, Miao Z, Chen Y, Cao J, Song T, You D, Zhong Y, Lin Z, Wang D, Shi Z, Tang X, Wang D, Chen S, Wang L, Gu A, Chen F, Xie L, Huang Z, Wang H, Ji Y. Hsp90 S-nitrosylation at Cys521, as a conformational switch, modulates cycling of Hsp90-AHA1-CDC37 chaperone machine to aggravate atherosclerosis. Redox Biol 2022; 52:102290. [PMID: 35334246 PMCID: PMC8942817 DOI: 10.1016/j.redox.2022.102290] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Endothelial dysfunction is the initial process of atherosclerosis. Heat shock protein 90 (Hsp90), as a molecular chaperone, plays a crucial role in various cardiovascular diseases. Hsp90 function is regulated by S-nitrosylation (SNO). However, the precise role of SNO-Hsp90 in endothelial dysfunction during atherosclerosis remains unclear. We here identified Hsp90 as a highly S-nitrosylated target in endothelial cells (ECs) by biotin switch assay combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The elevation of SNO-Hsp90 was observed in atherosclerotic human and rodent aortas as well as in oxidized LDL (oxLDL)-treated ECs. Inhibition of inducible nitric oxide synthase (iNOS) or transfection with Hsp90 cysteine 521 (Cys521) mutation plasmid decreased the level of SNO-Hsp90 in oxLDL-cultured ECs. Coimmunoprecipitation and proximity ligation assay demonstrated that SNO-Hsp90 at Cys521 suppressed the interaction between Hsp90 and activator of Hsp90 ATPase activity 1 (AHA1), but promoted the association of Hsp90 and cell division cycle 37 (CDC37). Hsp90 Cys521 mutation increased endothelial nitric oxide synthase (eNOS) activity and inhibited nuclear factor kappa-B (NF-κB) signaling, thereby increasing nitric oxide (NO) bioavailability and alleviating endothelial adhesion, inflammation and oxidative stress in oxLDL-treated ECs. Also, administration of endothelial-specific adeno-associated viruses of Cys521-mutated Hsp90 significantly mitigated vascular oxidative stress, macrophage infiltration and atherosclerosis lesion areas in high fat diet-fed ApoE-/- mice. In conclusion, SNO-Hsp90 at Cys521, that serves as a conformational switch, disrupts Hsp90/AHA1 interaction but promotes recruitment of CDC37 to exacerbate atherosclerosis. Hsp90 S-nitrosylation at Cys521 acts as a conformational switch to modulate Hsp90/AHA1 and Hsp90/CDC37 interaction. SNO-Hsp90 induces endothelial adhesion, inflammation and oxidative stress. SNO-Hsp90 mediates endothelial dysfunction to exacerbate atherosclerosis.
Collapse
|
8
|
Wang Y, Cao Y, Ji X, Li T, Xue L, Li C, Jia R, Ding H. The Novel Peptide AEDPPE Alleviates Trophoblast Cell Dysfunction Associated With Preeclampsia by Regulating the NF-κB Signaling Pathway. Front Cardiovasc Med 2022; 8:738378. [PMID: 34977169 PMCID: PMC8719592 DOI: 10.3389/fcvm.2021.738378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Preeclampsia (PE) is a serious risk to the health of pregnant women and fetuses during pregnancy, and there is no effective treatment for this condition. Although many reports have confirmed the therapeutic effects of peptides in diseases, the role of peptides in PE remains poorly understood. Methods: A differentially expressed peptide in PE (AEDPPE) is derived from heat-shock protein beta-1 (HSPB1), amino acids 100 to 109 (DVNHFAPDEL), which we identified in a previous study. We synthesized AEDPPE and investigated its effect on HTR-8/SVneo cell function using a Cell Counting Kit-8, flow cytometric assay, and Transwell and wound-healing assays. Quantitative reverse transcription-PCR and ELISA were used to determine cytokine expression. Pull-down assay, mass spectrometry, Western blot analysis, and immunofluorescence were used to explore the potential targets and signaling pathways regulated by AEDPPE. Finally, we assessed the effect of AEDPPE in the lipopolysaccharide (LPS)-induced PE-like rat model. Results: AEDPPE significantly promoted the migration and invasion of HTR-8/SVneo cells, and it decreased the expression of interleukins 1 beta (IL-1β), interleukin 6 (IL-6), and interleukin 8 (IL-8). These functions performed by AEDPPE remained evident after injury to HTR-8/SVneo cells with tumor necrosis factor-alpha (TNF-α), and AEDPPE reversed the elevated sFlt-1/PlGF ratio induced by TNF-α. AEDPPE may exert these biological effects by binding to heat-shock protein 90β (HSP 90β) and, thus, affect the NF-κB signaling pathway. In an LPS-induced PE-like rat model, AEDPPE significantly improved PE symptoms and fetal rat outcomes. Conclusion: Our study showed that AEDPPE enhanced trophoblast migration and invasion and reduced inflammatory cytokine expression, and we hypothesized that these actions involved the NF-κB signaling pathway. The use of AEDPPE may thus develop into a novel modality in the treatment of PE.
Collapse
Affiliation(s)
- Yixiao Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Cao
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaohong Ji
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ting Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lu Xue
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chanjuan Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ruizhe Jia
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hongjuan Ding
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
9
|
Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis. Commun Biol 2021; 4:590. [PMID: 34002013 PMCID: PMC8128904 DOI: 10.1038/s42003-021-02095-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/05/2021] [Indexed: 02/03/2023] Open
Abstract
The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host-pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.
Collapse
|
10
|
Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther 2020; 215:107623. [PMID: 32622856 DOI: 10.1016/j.pharmthera.2020.107623] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
FK506 binding (FKBP) proteins are part of the highly conserved immunophilin family and its members have fundamental roles in the regulation of signalling pathways involved in inflammation, adaptive immune responses, cancer and developmental biology. The original member of this family, FKBP12, is a well-known binding partner for the immunosuppressive drugs tacrolimus (FK506) and sirolimus (rapamycin). FKBP12 and its analog, FKBP12.6, function as cis/trans peptidyl prolyl isomerases (PPIase) and they catalyse the interconversion of cis/trans prolyl conformations. Members of this family uniquely contain a PPIase domain, which may not be functional. The larger FKBPs, such as FKBP51, FKBP52 and FKBPL, contain extra regions, including tetratricopeptide repeat (TPR) domains, which are important for their versatile protein-protein interactions with inflammation-related signalling pathways. In this review we focus on the pivotal role of FKBP proteins in regulating glucocorticoid signalling, canonical and non-canonical NF-κB signalling, mTOR/AKT signalling and TGF-β signalling. We examine the mechanism of action of FKBP based immunosuppressive drugs on these cell signalling pathways and how off target interactions lead to the development of side effects often seen in the clinic. Finally, we discuss the latest advances in the role of FKBPs as therapeutic targets and the development of novel agents for a range of indications of unmet clinical need, including glucocorticoid resistance, obesity, stress-induced inflammation and novel cancer immunotherapy.
Collapse
Affiliation(s)
- Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
11
|
Fusella F, Seclì L, Cannata C, Brancaccio M. The one thousand and one chaperones of the NF-κB pathway. Cell Mol Life Sci 2020; 77:2275-2288. [PMID: 31811308 PMCID: PMC11104964 DOI: 10.1007/s00018-019-03402-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
The NF-κB pathway represents a crucial signaling mechanism in sensing and integrating a multitude of environmental and intracellular stimuli and directing a coordinated response that from the cellular level may impact on the entire organism. A plethora of chaperone proteins work at multiple steps of the pathway, from membrane receptor activation to transcription factor binding to DNA. Indeed, chaperones are required to assist protein conformational changes, to assemble supramolecular complexes and to regulate protein ubiquitination, required for pathway activation. Some chaperones acquired a role as integral components of the signaling complexes, needed for signal progression. Here we describe the chaperones involved in the NF-κB pathway and their specific roles in the different contexts.
Collapse
Affiliation(s)
- Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Cristiana Cannata
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
12
|
Dembny P, Newman AG, Singh M, Hinz M, Szczepek M, Krüger C, Adalbert R, Dzaye O, Trimbuch T, Wallach T, Kleinau G, Derkow K, Richard BC, Schipke C, Scheidereit C, Stachelscheid H, Golenbock D, Peters O, Coleman M, Heppner FL, Scheerer P, Tarabykin V, Ruprecht K, Izsvák Z, Mayer J, Lehnardt S. Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight 2020; 5:131093. [PMID: 32271161 DOI: 10.1172/jci.insight.131093] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/04/2020] [Indexed: 01/27/2023] Open
Abstract
Although human endogenous retroviruses (HERVs) represent a substantial proportion of the human genome and some HERVs, such as HERV-K(HML-2), are reported to be involved in neurological disorders, little is known about their biological function. We report that RNA from an HERV-K(HML-2) envelope gene region binds to and activates human Toll-like receptor (TLR) 8, as well as murine Tlr7, expressed in neurons and microglia, thereby causing neurodegeneration. HERV-K(HML-2) RNA introduced into the cerebrospinal fluid (CSF) of either C57BL/6 wild-type mice or APPPS1 mice, a mouse model for Alzheimer's disease (AD), resulted in neurodegeneration and microglia accumulation. Tlr7-deficient mice were protected against neurodegenerative effects but were resensitized toward HERV-K(HML-2) RNA when neurons ectopically expressed murine Tlr7 or human TLR8. Transcriptome data sets of human AD brain samples revealed a distinct correlation of upregulated HERV-K(HML-2) and TLR8 RNA expression. HERV-K(HML-2) RNA was detectable more frequently in CSF from individuals with AD compared with controls. Our data establish HERV-K(HML-2) RNA as an endogenous ligand for species-specific TLRs 7/8 and imply a functional contribution of human endogenous retroviral transcripts to neurodegenerative processes, such as AD.
Collapse
Affiliation(s)
- Paul Dembny
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Andrew G Newman
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Manvendra Singh
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael Hinz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michal Szczepek
- Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Omar Dzaye
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Radiology.,Department of Neuroradiology
| | | | - Thomas Wallach
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Gunnar Kleinau
- Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany
| | - Katja Derkow
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Carola Schipke
- Department of Psychiatry and Psychotherapy, and.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH.,German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Claus Scheidereit
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Harald Stachelscheid
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Douglas Golenbock
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, and.,Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH.,German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Michael Coleman
- Babraham Institute and John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Frank L Heppner
- NeuroCure Cluster of Excellence.,Department of Neuropathology.,German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Patrick Scheerer
- Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany.,German Centre for Cardiovascular Research, partner site Berlin, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jens Mayer
- Institute of Human Genetics, Universität des Saarlandes, Hamburg, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and BIH, Berlin, Germany
| |
Collapse
|
13
|
Erazo T, Espinosa-Gil S, Diéguez-Martínez N, Gómez N, Lizcano JM. SUMOylation Is Required for ERK5 Nuclear Translocation and ERK5-Mediated Cancer Cell Proliferation. Int J Mol Sci 2020; 21:ijms21062203. [PMID: 32209980 PMCID: PMC7139592 DOI: 10.3390/ijms21062203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
The MAP kinase ERK5 contains an N-terminal kinase domain and a unique C-terminal tail including a nuclear localization signal and a transcriptional activation domain. ERK5 is activated in response to growth factors and stresses and regulates transcription at the nucleus by either phosphorylation or interaction with transcription factors. MEK5-ERK5 pathway plays an important role regulating cancer cell proliferation and survival. Therefore, it is important to define the precise molecular mechanisms implicated in ERK5 nucleo-cytoplasmic shuttling. We previously described that the molecular chaperone Hsp90 stabilizes and anchors ERK5 at the cytosol and that ERK5 nuclear shuttling requires Hsp90 dissociation. Here, we show that MEK5 or overexpression of Cdc37—mechanisms that increase nuclear ERK5—induced ERK5 Small Ubiquitin-related Modifier (SUMO)-2 modification at residues Lys6/Lys22 in cancer cells. Furthermore, mutation of these SUMO sites abolished the ability of ERK5 to translocate to the nucleus and to promote prostatic cancer PC-3 cell proliferation. We also show that overexpression of the SUMO protease SENP2 completely abolished endogenous ERK5 nuclear localization in response to epidermal growth factor (EGF) stimulation. These results allow us to propose a more precise mechanism: in response to MEK5 activation, ERK5 SUMOylation favors the dissociation of Hsp90 from the complex, allowing ERK5 nuclear shuttling and activation of the transcription.
Collapse
|
14
|
Liu Y, Yin W, Wang J, Lei Y, Sun G, Li W, Huang Z, Guo M. KRAB-Zinc Finger Protein ZNF268a Deficiency Attenuates the Virus-Induced Pro-Inflammatory Response by Preventing IKK Complex Assembly. Cells 2019; 8:cells8121604. [PMID: 31835635 PMCID: PMC6953056 DOI: 10.3390/cells8121604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Despite progress in understanding how virus-induced, NF-κB-dependent pro-inflammatory cytokines are regulated, there are still factors and mechanisms that remain to be explored. We aimed to uncover the relationship between KRAB-zinc finger protein ZNF268a and NF-κB-mediated cytokine production in response to viral infection. To this end, we established a ZNF268a-knockout cell line using a pair of sgRNAs that simultaneously target exon 3 in the coding sequence of the ZNF268 gene in HEK293T. HEK293T cells lacking ZNF268a showed less cytokine expression at the transcription and protein levels in response to Sendai virus/vesicular stomatitis virus (SeV/VSV) infection than wild-type cells. Consistent with HEK293T, knock-down of ZNF268a by siRNAs in THP-1 cells significantly dampened the inflammatory response. Mechanistically, ZNF268a facilitated NF-κB activation by targeting IKKα, helping to maintain the IKK signaling complex and thus enabling proper p65 phosphorylation and nuclear translocation. Taken together, our data suggest that ZNF268a plays a positive role in the regulation of virus-induced pro-inflammatory cytokine production. By interacting with IKKα, ZNF268a promotes NF-κB signal transduction upon viral infection by helping to maintain the association between IKK complex subunits.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Key Laboratory of Cell Homeostasis & State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Yin
- Hubei Key Laboratory of Cell Homeostasis & State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jingwen Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yucong Lei
- Hubei Key Laboratory of Cell Homeostasis & State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China
| | - Wenxin Li
- Hubei Key Laboratory of Cell Homeostasis & State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zan Huang
- Hubei Key Laboratory of Cell Homeostasis & State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (Z.H.); (M.G.)
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis & State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (Z.H.); (M.G.)
| |
Collapse
|
15
|
Lei W, Duron DI, Stine C, Mishra S, Blagg BSJ, Streicher JM. The Alpha Isoform of Heat Shock Protein 90 and the Co-chaperones p23 and Cdc37 Promote Opioid Anti-nociception in the Brain. Front Mol Neurosci 2019; 12:294. [PMID: 31849607 PMCID: PMC6895903 DOI: 10.3389/fnmol.2019.00294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
Opioid activation of the mu opioid receptor (MOR) promotes signaling cascades that evoke both analgesic responses to pain and side effects like addiction and dependence. Manipulation of these cascades, such as by biased agonism, has great promise to improve opioid therapy. However, the signaling cascades of the MOR are in general poorly understood, providing few targets for drug development. In our earlier work, we identified Heat shock protein 90 (Hsp90) as a novel and crucial regulator of opioid anti-nociception in the brain by promoting ERK MAPK activation. In this study, we sought to identify the molecular isoforms and co-chaperones by which Hsp90 carried out this role, which could provide specific targets for future clinical intervention. We used novel selective small molecule inhibitors as well as CRISPR/Cas9 gene editing constructs delivered by the intracerebroventricular (icv) route to the brains of adult CD-1 mice to target Hsp90 isoforms (Hsp90α/β, Grp94) and co-chaperones (p23, Cdc37, Aha1). We found that inhibition of the isoform Hsp90α fully blocked morphine anti-nociception in a model of post-surgical paw incision pain, while blocking ERK and JNK MAPK activation, suggesting Hsp90α as the main regulator of opioid response in the brain. We further found that inhibition of the co-chaperones p23 and Cdc37 blocked morphine anti-nociception, suggesting that these co-chaperones assist Hsp90α in promoting opioid anti-nociception. Lastly, we used cycloheximide treatment in the brain to demonstrate that rapid protein translation within 30 min of opioid treatment is required for Hsp90 regulation of opioid response. Together these studies provide insight into the molecular mechanisms by which Hsp90 promotes opioid anti-nociception. These findings thus both improve our basic science knowledge of MOR signal transduction and could provide future targets for clinical intervention to improve opioid therapy.
Collapse
Affiliation(s)
- Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC, United States
| | - David I. Duron
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Carrie Stine
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Sanket Mishra
- Department of Chemistry & Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, United States
| | - Brian S. J. Blagg
- Department of Chemistry & Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN, United States
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Gracia L, Lora G, Blair LJ, Jinwal UK. Therapeutic Potential of the Hsp90/Cdc37 Interaction in Neurodegenerative Diseases. Front Neurosci 2019; 13:1263. [PMID: 31824256 PMCID: PMC6882380 DOI: 10.3389/fnins.2019.01263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's, Huntington's, and Parkinson's are devastating neurodegenerative diseases that are prevalent in the aging population. Patient care costs continue to rise each year, because there is currently no cure or disease modifying treatments for these diseases. Numerous efforts have been made to understand the molecular interactions governing the disease development. These efforts have revealed that the phosphorylation of proteins by kinases may play a critical role in the aggregation of disease-associated proteins, which is thought to contribute to neurodegeneration. Interestingly, a molecular chaperone complex consisting of the 90 kDa heat shock protein (Hsp90) and Cell Division Cycle 37 (Cdc37) has been shown to regulate the maturation of many of these kinases as well as regulate some disease-associated proteins directly. Thus, the Hsp90/Cdc37 complex may represent a potential drug target for regulating proteins linked to neurodegenerative diseases, through both direct and indirect interactions. Herein, we discuss the broad understanding of many Hsp90/Cdc37 pathways and how this protein complex may be a useful target to regulate the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Liam Gracia
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida-Health, Tampa, FL, United States
| | - Gabriella Lora
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida-Health, Tampa, FL, United States
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Umesh K. Jinwal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida-Health, Tampa, FL, United States
| |
Collapse
|
17
|
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as a key regulator of endocrine stress responses in mammals and as a potential therapeutic target for stress-related disorders (depression, post-traumatic stress disorder), metabolic disorders (obesity and diabetes) and chronic pain. Recently, FKBP51 has been implicated in several cellular pathways and numerous interacting protein partners have been reported. However, no consensus on the underlying molecular mechanisms has yet emerged. Here, we review the protein interaction partners reported for FKBP51, the proposed pathways involved, their relevance to FKBP51’s physiological function(s), the interplay with other FKBPs, and implications for the development of FKBP51-directed drugs.
Collapse
|
18
|
Hsp90 Interacts with the Bacterial Effector NleH1. Pathogens 2018; 7:pathogens7040087. [PMID: 30428538 PMCID: PMC6313503 DOI: 10.3390/pathogens7040087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 11/17/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) utilizes a type III secretion system (T3SS) to inject effector proteins into host cells. The EHEC NleH1 effector inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway by reducing the nuclear translocation of the ribosomal protein S3 (RPS3). NleH1 prevents RPS3 phosphorylation by the IκB kinase-β (IKKβ). IKKβ is a central kinase in the NF-κB pathway, yet NleH1 only restricts the phosphorylation of a subset of the IKKβ substrates. We hypothesized that a protein cofactor might dictate this inhibitory specificity. We determined that heat shock protein 90 (Hsp90) interacts with both IKKβ and NleH1 and that inhibiting Hsp90 activity reduces RPS3 nuclear translocation.
Collapse
|
19
|
The Therapeutic Strategy of HDAC6 Inhibitors in Lymphoproliferative Disease. Int J Mol Sci 2018; 19:ijms19082337. [PMID: 30096875 PMCID: PMC6121661 DOI: 10.3390/ijms19082337] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022] Open
Abstract
Histone deacetylases (HDACs) are master regulators of chromatin remodeling, acting as epigenetic regulators of gene expression. In the last decade, inhibition of HDACs has become a target for specific epigenetic modifications related to cancer development. Overexpression of HDAC has been observed in several hematologic malignancies. Therefore, the observation that HDACs might play a role in various hematologic malignancies has brought to the development of HDAC inhibitors as potential antitumor agents. Recently, the class IIb, HDAC6, has emerged as one potential selective HDACi. This isoenzyme represents an important pharmacological target for selective inhibition. Its selectivity may reduce the toxicity related to the off-target effects of pan-HDAC inhibitors. HDAC6 has also been studied in cancer especially for its ability to coordinate a variety of cellular processes that are important for cancer pathogenesis. HDAC6 has been reported to be overexpressed in lymphoid cells and its inhibition has demonstrated activity in preclinical and clinical study of lymphoproliferative disease. Various studies of HDAC6 inhibitors alone and in combination with other agents provide strong scientific rationale for the evaluation of these new agents in the clinical setting of hematological malignancies. In this review, we describe the HDACs, their inhibitors, and the recent advances of HDAC6 inhibitors, their mechanisms of action and role in lymphoproliferative disorders.
Collapse
|
20
|
Interactome analysis of transforming growth factor-β-activated kinase 1 in Helicobacter pylori-infected cells revealed novel regulators tripartite motif 28 and CDC37. Oncotarget 2018; 9:14366-14381. [PMID: 29581850 PMCID: PMC5865676 DOI: 10.18632/oncotarget.24544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ)-activated kinase 1 (TAK1) plays a central role in controlling the cellular pro-inflammatory response via the activation of the nuclear factor κB (NF-κB)- and mitogen-activated protein (MAP) kinases-dependent transcriptional programs. Here, we show that depletion of TAK1 and the TAK1-binding proteins TAB1 and TAB2 affects NF-κB, JNK and p38 phosphorylation and suppresses NF-κB activity in AGS cells infected with Helicobacter pylori or stimulated with the cytokines TNF and IL-1β. To increase our understanding of TAK1 regulation and function, we performed mass spectrometry (MS)-based TAK1 interactomics. In addition to the identification of known and novel TAK1 interacting proteins, including TRIM28, CDC37 and STOML2, analysis of the MS data revealed various post-translational modifications within the TAK1/TAB complex. By applying siRNAs, TRIM28 and CDC37 were found to regulate phosphorylations of TAK1, IκB kinases IKKα/IKKβ and MAP kinases, NF-κB transactivation activity and IL-8 expression in the infected epithelial cells.
Collapse
|
21
|
The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat Commun 2017; 8:1636. [PMID: 29158506 PMCID: PMC5696377 DOI: 10.1038/s41467-017-01829-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a transcription factor involved in the regulation of multiple physiological and pathological cellular processes, including inflammation, cell survival, proliferation, and cancer cell metastasis. NF-κB is frequently hyperactivated in several cancers, including triple-negative breast cancer. Here we show that NF-κB activation in breast cancer cells depends on the presence of the CHORDC1 gene product Morgana, a previously unknown component of the IKK complex and essential for IκBα substrate recognition. Morgana silencing blocks metastasis formation in breast cancer mouse models and this phenotype is reverted by IκBα downregulation. High Morgana expression levels in cancer cells decrease recruitment of natural killer cells in the first phases of tumor growth and induce the expression of cytokines able to attract neutrophils in the primary tumor, as well as in the pre-metastatic lungs, fueling cancer metastasis. In accordance, high Morgana levels positively correlate with NF-κB target gene expression and poor prognosis in human patients. NF-κB regulates inflammation, cell survival, proliferation, and metastasis and is often hyperactivated in triple-negative breast cancer. Here the authors show that Morgana, a protein highly expressed in triple-negative breast cancers, drives NF-kB activation to promote metastasis and neutrophil recruitment.
Collapse
|
22
|
Bekhbat M, Rowson SA, Neigh GN. Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad. Front Neuroendocrinol 2017; 46:15-31. [PMID: 28502781 PMCID: PMC5523465 DOI: 10.1016/j.yfrne.2017.05.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 01/23/2023]
Abstract
Mutual regulation and balance between the endocrine and immune systems facilitate an organism's stress response and are impaired following chronic stress or prolonged immune activation. Concurrent alterations in stress physiology and immunity are increasingly recognized as contributing factors to several stress-linked neuropsychiatric disorders including depression, anxiety, and post-traumatic stress disorder. Accumulating evidence suggests that impaired balance and crosstalk between the glucocorticoid receptor (GR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) - effectors of the stress and immune axes, respectively - may play a key role in mediating the harmful effects of chronic stress on mood and behavior. Here, we first review the molecular mechanisms of GR and NFκB interactions in health, then describe potential shifts in the GR-NFκB dynamics in chronic stress conditions within the context of brain circuitry relevant to neuropsychiatric diseases. Furthermore, we discuss developmental influences and sex differences in the regulation of these two transcription factors.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Emory University, Graduate Division of Biological Sciences, Neuroscience Graduate Program, United States
| | - Sydney A Rowson
- Emory University, Graduate Division of Biological Sciences, Molecular and Systems Pharmacology Graduate Studies Program, United States
| | - Gretchen N Neigh
- Virginia Commonwealth University, Department of Anatomy & Neurobiology, United States.
| |
Collapse
|
23
|
LeMaster DM, Hernandez G. Conformational Dynamics in FKBP Domains: Relevance to Molecular Signaling and Drug Design. Curr Mol Pharmacol 2016; 9:5-26. [PMID: 25986571 DOI: 10.2174/1874467208666150519113146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/25/2015] [Accepted: 05/17/2015] [Indexed: 01/05/2023]
Abstract
Among the 22 FKBP domains in the human genome, FKBP12.6 and the first FKBP domains (FK1) of FKBP51 and FKBP52 are evolutionarily and structurally most similar to the archetypical FKBP12. As such, the development of inhibitors with selectivity among these four FKBP domains poses a significant challenge for structure-based design. The pleiotropic effects of these FKBP domains in a range of signaling processes such as the regulation of ryanodine receptor calcium channels by FKBP12 and FKBP12.6 and steroid receptor regulation by the FK1 domains of FKBP51 and FKBP52 amply justify the efforts to develop selective therapies. In contrast to their close structural similarities, these four FKBP domains exhibit a substantial diversity in their conformational flexibility. A number of distinct conformational transitions have been characterized for FKBP12 spanning timeframes from 20 s to 10 ns and in each case these dynamics have been shown to markedly differ from the conformational behavior for one or more of the other three FKBP domains. Protein flexibilitybased inhibitor design could draw upon the transitions that are significantly populated in only one of the targeted proteins. Both the similarities and differences among these four proteins valuably inform the understanding of how dynamical effects propagate across the FKBP domains as well as potentially how such intramolecular transitions might couple to the larger scale transitions that are central to the signaling complexes in which these FKBP domains function.
Collapse
Affiliation(s)
| | - Griselda Hernandez
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, 12201, USA; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, New York, 12201, USA.
| |
Collapse
|
24
|
HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis 2016; 7:e2051. [PMID: 26775703 PMCID: PMC4816171 DOI: 10.1038/cddis.2015.386] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 01/02/2023]
Abstract
Necroptosis is a caspase-independent form of regulated cell death that has been implicated in the development of a range of inflammatory, autoimmune and neurodegenerative diseases. The pseudokinase, Mixed Lineage Kinase Domain-Like (MLKL), is the most terminal known obligatory effector in the necroptosis pathway, and is activated following phosphorylation by Receptor Interacting Protein Kinase-3 (RIPK3). Activated MLKL translocates to membranes, leading to membrane destabilisation and subsequent cell death. However, the molecular interactions governing the processes downstream of RIPK3 activation remain poorly defined. Using a phenotypic screen, we identified seven heat-shock protein 90 (HSP90) inhibitors that inhibited necroptosis in both wild-type fibroblasts and fibroblasts expressing an activated mutant of MLKL. We observed a modest reduction in MLKL protein levels in human and murine cells following HSP90 inhibition, which was only apparent after 15 h of treatment. The delayed reduction in MLKL protein abundance was unlikely to completely account for defective necroptosis, and, consistent with this, we also found inhibition of HSP90 blocked membrane translocation of activated MLKL. Together, these findings implicate HSP90 as a modulator of necroptosis at the level of MLKL, a function that complements HSP90's previously demonstrated modulation of the upstream necroptosis effector kinases, RIPK1 and RIPK3.
Collapse
|
25
|
Borges PV, Moret KH, Maya-Monteiro CM, Souza-Silva F, Alves CR, Batista PR, Caffarena ER, Pacheco P, Henriques MDG, Penido C. Gedunin Binds to Myeloid Differentiation Protein 2 and Impairs Lipopolysaccharide-Induced Toll-Like Receptor 4 Signaling in Macrophages. Mol Pharmacol 2015; 88:949-61. [PMID: 26330549 DOI: 10.1124/mol.115.098970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/26/2015] [Indexed: 12/16/2022] Open
Abstract
Recognition of bacterial lipopolysaccharide (LPS) by innate immune system is mediated by the cluster of differentiation 14/Toll-like receptor 4/myeloid differentiation protein 2 (MD-2) complex. In this study, we investigated the modulatory effect of gedunin, a limonoid from species of the Meliaceae family described as a heat shock protein Hsp90 inhibitor, on LPS-induced response in immortalized murine macrophages. The pretreatment of wild-type (WT) macrophages with gedunin (0.01-100 µM, noncytotoxic concentrations) inhibited LPS (50 ng/ml)-induced calcium influx, tumor necrosis factor-α, and nitric oxide production in a concentration-dependent manner. The selective effect of gedunin on MyD88-adapter-like/myeloid differentiation primary response 88- and TRIF-related adaptor molecule/TIR domain-containing adapter-inducing interferon-β-dependent signaling pathways was further investigated. The pretreatment of WT, TIR domain-containing adapter-inducing interferon-β knockout, and MyD88 adapter-like knockout macrophages with gedunin (10 µM) significantly inhibited LPS (50 ng/ml)-induced tumor necrosis factor-α and interleukin-6 production, at 6 hours and 24 hours, suggesting that gedunin modulates a common event between both signaling pathways. Furthermore, gedunin (10 µM) inhibited LPS-induced prostaglandin E2 production, cyclooxygenase-2 expression, and nuclear factor κB translocation into the nucleus of WT macrophages, demonstrating a wide-range effect of this chemical compound. In addition to the ability to inhibit LPS-induced proinflammatory mediators, gedunin also triggered anti-inflammatory factors interleukin-10, heme oxygenase-1, and Hsp70 in macrophages stimulated or not with LPS. In silico modeling studies revealed that gedunin efficiently docked into the MD-2 LPS binding site, a phenomenon further confirmed by surface plasmon resonance. Our results reveal that, in addition to Hsp90 modulation, gedunin acts as a competitive inhibitor of LPS, blocking the formation of the Toll-like receptor 4/MD-2/LPS complex.
Collapse
Affiliation(s)
- Perla Villani Borges
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Katelim Hottz Moret
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Clarissa Menezes Maya-Monteiro
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Franklin Souza-Silva
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carlos Roberto Alves
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Ricardo Batista
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ernesto Raúl Caffarena
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia Pacheco
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria das Graças Henriques
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carmen Penido
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Haase M, Fitze G. HSP90AB1: Helping the good and the bad. Gene 2015; 575:171-86. [PMID: 26358502 DOI: 10.1016/j.gene.2015.08.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/30/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
27
|
You DJ, Park CR, Furlong M, Koo O, Lee C, Ahn C, Seong JY, Hwang JI. Dimer of arfaptin 2 regulates NF-κB signaling by interacting with IKKβ/NEMO and inhibiting IKKβ kinase activity. Cell Signal 2015; 27:2173-81. [PMID: 26296658 DOI: 10.1016/j.cellsig.2015.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/15/2015] [Indexed: 12/30/2022]
Abstract
IκB kinases (IKKs) are a therapeutic target due to their crucial roles in various biological processes, including the immune response, the stress response, and tumor development. IKKs integrate various upstream signals that activate NF-κB by phosphorylating IκB and also regulate many proteins related to cell growth and metabolism. Although they function as a heteromeric complex comprised of kinase subunits and an adaptor, these kinases produce distinct cellular responses by phosphorylating different target molecules, suggesting that they may also be regulated in a subtype-specific manner. In this study, arfaptin 2 was identified as an IKKβ-specific binding partner. Interestingly, arfaptin 2 also interacted with NEMO. Domain mapping studies revealed that the C-terminal region, including the IKKβ HLH domain and the first coiled-coil NEMO region were respectively required for interactions with the arfaptin 2 N-terminal flexible region. Overexpression of arfaptin 2 inhibited tumor necrosis factor (TNF)-α-stimulated nuclear factor-κB (NF-κB) signaling, whereas downregulation of arfaptin 2 by small interfering RNA enhanced NF-κB activity. Dimerization of arfaptin 2 through the Bin-Amphiphysin-Rvs domain may be essential to inhibit activation of NF-κB through multimodal interactions with IKKβs or IKKβ/NEMO, as ectopic expression of the arfaptin 2 fragment responsible for IKK interactions did not change TNFα-stimulated NF-κB activation. These data indicate that arfaptin 2 is the first molecule to regulate NF-κB signaling by interacting with the functional IKK complex but not by direct inhibiting IKKβ phosphorylation.
Collapse
Affiliation(s)
- Dong-Joo You
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Cho Rong Park
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Michael Furlong
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Okjae Koo
- Samsung Biomedical Research Institute, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 433-803, Republic of Korea
| | - Cheolju Lee
- Life Sciences Division, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Curie Ahn
- Transplantation Research Institute, Cancer Research Institute, Seoul National University, Yongun-dong, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Republic of Korea.
| |
Collapse
|
28
|
Romano S, Xiao Y, Nakaya M, D'Angelillo A, Chang M, Jin J, Hausch F, Masullo M, Feng X, Romano MF, Sun SC. FKBP51 employs both scaffold and isomerase functions to promote NF-κB activation in melanoma. Nucleic Acids Res 2015; 43:6983-93. [PMID: 26101251 PMCID: PMC4538817 DOI: 10.1093/nar/gkv615] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 06/02/2015] [Indexed: 12/24/2022] Open
Abstract
Melanoma is the most aggressive skin cancer; its prognosis, particularly in advanced stages, is disappointing largely due to the resistance to conventional anticancer treatments and high metastatic potential. NF-κB constitutive activation is a major factor for the apoptosis resistance of melanoma. Several studies suggest a role for the immunophilin FKBP51 in NF-κB activation, but the underlying mechanism is still unknown. In the present study, we demonstrate that FKBP51 physically interacts with IKK subunits, and facilitates IKK complex assembly. FKBP51-knockdown inhibits the binding of IKKγ to the IKK catalytic subunits, IKK-α and -β, and attenuates the IKK catalytic activity. Using FK506, an inhibitor of the FKBP51 isomerase activity, we found that the IKK-regulatory role of FKBP51 involves both its scaffold function and its isomerase activity. Moreover, FKBP51 also interacts with TRAF2, an upstream mediator of IKK activation. Interestingly, both FKBP51 TPR and PPIase domains are required for its interaction with TRAF2 and IKKγ, whereas only the TPR domain is involved in interactions with IKKα and β. Collectively, these results suggest that FKBP51 promotes NF-κB activation by serving as an IKK scaffold as well as an isomerase. Our findings have profound implications for designing novel melanoma therapies based on modulation of FKBP51.
Collapse
Affiliation(s)
- Simona Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yichuan Xiao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Mako Nakaya
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna D'Angelillo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy
| | - Mikyoung Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin Jin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Felix Hausch
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, München 80804, Germany
| | - Mariorosario Masullo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy Department of Movement Sciences and Wellness, University of Naples 'Parthenope', Naples 80133, Italy
| | - Xixi Feng
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, München 80804, Germany
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
29
|
Mazaira GI, Camisay MF, De Leo S, Erlejman AG, Galigniana MD. Biological relevance of Hsp90-binding immunophilins in cancer development and treatment. Int J Cancer 2015; 138:797-808. [PMID: 25754838 DOI: 10.1002/ijc.29509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Immunophilins are a family of intracellular receptors for immunosuppressive drugs. Those immunophilins that are related to immunosuppression are the smallest proteins of the family, i.e., FKBP12 and CyPA, whereas the other members of the family have higher molecular weight because the show additional domains to the drug-binding site. Among these extra domains, the TPR-domain is perhaps the most relevant because it permits the interaction of high molecular weight immunophilins with the 90-kDa heat-shock protein, Hsp90. This essential molecular chaperone regulates the biological function of several protein-kinases, oncogenes, protein phosphatases, transcription factors and cofactors . Hsp90-binding immunophilins where first characterized due to their association with steroid receptors. They regulate the cytoplasmic transport and the subcellular localization of these and other Hsp90 client proteins, as well as transcriptional activity, cell proliferation, cell differentiation and apoptosis. Hsp90-binding immunophilins are frequently overexpressed in several types of cancers and play a key role in cell survival. In this article we analyze the most important biological actions of the best characterized Hsp90-binding immunophilins in both steroid receptor function and cancer development and discuss the potential use of these immunophilins for therapeutic purposes as potential targets of specific small molecules.
Collapse
Affiliation(s)
- Gisela I Mazaira
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - María F Camisay
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Sonia De Leo
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Alejandra G Erlejman
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mario D Galigniana
- Departamento De Química Biológica, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires and IQUIBICEN-CONICET, Buenos Aires, Argentina.,Instituto De Biología Y Medicina Experimental-CONICET, Buenos Aires, Argentina
| |
Collapse
|
30
|
Wang L, Bao QC, Xu XL, Jiang F, Gu K, Jiang ZY, Zhang XJ, Guo XK, You QD, Sun HP. Discovery and identification of Cdc37-derived peptides targeting the Hsp90–Cdc37 protein–protein interaction. RSC Adv 2015. [DOI: 10.1039/c5ra20408a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In order to explore the key residues of the Hsp90–Cdc37 binding interface for further design of peptide inhibitors, a combined strategy of molecular dynamics simulation and MM-PBSA analysis was performed.
Collapse
|
31
|
Lee MY, Sun KH, Chiang CP, Huang CF, Sun GH, Tsou YC, Liu HY, Tang SJ. Nitric oxide suppresses LPS-induced inflammation in a mouse asthma model by attenuating the interaction of IKK and Hsp90. Exp Biol Med (Maywood) 2014; 240:498-507. [PMID: 25519430 DOI: 10.1177/1535370214554880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/16/2014] [Indexed: 02/01/2023] Open
Abstract
A feature of allergic airway disease is the observed increase of nitric oxide (NO) in exhaled breath. Gram-negative bacterial infections have also been linked with asthma exacerbations. However, the role of NO in asthma exacerbations with gram-negative bacterial infections is still unclear. In this study, we examined the role of NO in lipopolysaccharide (LPS)-induced inflammation in an ovalbumin (OVA)-challenged mouse asthma model. To determine whether NO affected the LPS-induced response, a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) or a selective inhibitor of NO synthase (1400W) was injected intraperitoneally into the mice before the LPS stimulation. Decreased levels of proinflammatory cytokines were demonstrated in the bronchoalveolar lavage fluid from mice treated with SNAP, whereas increased levels of cytokines were found in the 1400W-treated mice. To further explore the molecular mechanism of NO-mediated inhibition of proinflammatory responses in macrophages, RAW 264.7 cells were treated with 1400W or SNAP before LPS stimulation. LPS-induced inflammation in the cells was attenuated by the presence of NO. The LPS-induced IκB kinase (IKK) activation and the expression of IKK were reduced by NO through attenuation of the interaction between Hsp90 and IKK in the cells. The IKK decrease in the lung immunohistopathology was verified in SNAP-treated asthma mice, whereas IKK increased in the 1400W-treated group. We report for the first time that NO attenuates the interaction between Hsp90 and IKK, decreasing the stability of IKK and causing the down-regulation of the proinflammatory response. Furthermore, the results suggest that NO may repress LPS-stimulated innate immunity to promote pulmonary bacterial infection in asthma patients.
Collapse
Affiliation(s)
- Ming-Yung Lee
- Institute of Bioscience and Biotechnology, Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China Department of Pediatrics, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, Republic of China Department of Education and Research, Taipei City Hospital, Taipei 100, Taiwan
| | - Chien-Ping Chiang
- Department of Dermatology, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Ching-Feng Huang
- Department of Pediatrics, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yu-Chi Tsou
- Institute of Bioscience and Biotechnology, Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China
| | - Huan-Yun Liu
- Division of Urology, Department of Surgery, Taoyuan Armed Forces General Hospital 32551, Taiwan, Republic of China
| | - Shye-Jye Tang
- Institute of Bioscience and Biotechnology, Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China
| |
Collapse
|
32
|
Differential conformational dynamics in the closely homologous FK506-binding domains of FKBP51 and FKBP52. Biochem J 2014; 461:115-23. [PMID: 24749623 PMCID: PMC4060953 DOI: 10.1042/bj20140232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As co-chaperones of Hsp90 (heat-shock protein 90), FKBP51 (FK506-binding protein of 51 kDa) and FKBP52 (FK506-binding protein of 52 kDa) act as antagonists in regulating the hormone affinity and nuclear transport of steroid receptor complexes. Exchange of Leu119 in FKBP51 for Pro119 in FKBP52 has been shown to largely reverse the steroid receptor activities of FKBP51 and FKBP52. To examine whether differences in conformational dynamics/plasticity might correlate with changes in the reported receptor activities, 15N-NMR relaxation measurements were carried out on the N-terminal FKBP domains of FKBP51 and FKBP52 as well as their residue-swapped variants. Both proteins exhibit a similar pattern of motion in the picosecond–nanosecond timeframe as well as a small degree of 15N line-broadening, indicative of motion in the microsecond–millisecond timeframe, in the β3a strand of the central sheet. Only the FKBP51 domain exhibits much larger line-broadening in the adjacent β3 bulge (40′s loop of FKBP12) and throughout the long β4–β5 loop (80′s loop of FKBP12). The L119P mutation at the tip of the β4–β5 loop completely suppressed the line-broadening in this loop while partially suppressing the line-broadening in the neighbouring β2 and β3a strands. The complementary P119L and P119L/P124S variants of FKBP52 yielded similar patterns of line-broadening for the β4–β5 loop as that for FKBP51, although only 20% and 60% as intense respectively. However, despite the close structural similarity in the packing interactions between the β4–β5 loop and the β3a strand for FKBP51 and FKBP52, the line-broadening in the β3a strand is unaffected by the P119L or P119L/P124S mutations in FKBP52. Unlike FKBP52, the FK1 domain of FKBP51 exhibits microsecond–millisecond conformational dynamics in the β3 bulge and the β4–β5 loop, known sites of protein signalling interactions. Swapping residue 119 yields altered conformational dynamics in a pattern reminiscent of reported modulations in steroid receptor activity.
Collapse
|
33
|
Erlejman AG, De Leo SA, Mazaira GI, Molinari AM, Camisay MF, Fontana V, Cox MB, Piwien-Pilipuk G, Galigniana MD. NF-κB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: a role for peptidyl-prolyl isomerase activity. J Biol Chem 2014; 289:26263-26276. [PMID: 25104352 DOI: 10.1074/jbc.m114.582882] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hsp90 binding immunophilins FKBP51 and FKBP52 modulate steroid receptor trafficking and hormone-dependent biological responses. With the purpose to expand this model to other nuclear factors that are also subject to nuclear-cytoplasmic shuttling, we analyzed whether these immunophilins modulate NF-κB signaling. It is demonstrated that FKBP51 impairs both the nuclear translocation rate of NF-κB and its transcriptional activity. The inhibitory action of FKBP51 requires neither the peptidylprolyl-isomerase activity of the immunophilin nor its association with Hsp90. The TPR domain of FKBP51 is essential. On the other hand, FKBP52 favors the nuclear retention time of RelA, its association to a DNA consensus binding sequence, and NF-κB transcriptional activity, the latter effect being strongly dependent on the peptidylprolyl-isomerase activity and also on the TPR domain of FKBP52, but its interaction with Hsp90 is not required. In unstimulated cells, FKBP51 forms endogenous complexes with cytoplasmic RelA. Upon cell stimulation with phorbol ester, the NF-κB soluble complex exchanges FKBP51 for FKBP52, and the NF-κB biological effect is triggered. Importantly, FKBP52 is functionally recruited to the promoter region of NF-κB target genes, whereas FKBP51 is released. Competition assays demonstrated that both immunophilins antagonize one another, and binding assays with purified proteins suggest that the association of RelA and immunophilins could be direct. These observations suggest that the biological action of NF-κB in different cell types could be positively regulated by a high FKBP52/FKBP51 expression ratio by favoring NF-κB nuclear retention, recruitment to the promoter regions of target genes, and transcriptional activity.
Collapse
Affiliation(s)
- Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - Sonia A De Leo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - Gisela I Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - Alejandro M Molinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - María Fernanda Camisay
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - Vanina Fontana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas, El Paso, Texas 79968
| | - Graciela Piwien-Pilipuk
- Laboratorio de Arquitectura Nuclear, Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires C1428ADN, Argentina, and
| | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica de Ciencias Exactas y Naturales (IQUIBICEN)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428ADN Argentina,; Laboratorio de Receptores Nucleares, Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
34
|
Gamboni F, Escobar GA, Moore EE, Dzieciatkowska M, Hansen KC, Mitra S, Nydam TA, Silliman CC, Banerjee A. Clathrin complexes with the inhibitor kappa B kinase signalosome: imaging the interactome. Physiol Rep 2014; 2:2/7/e12035. [PMID: 24994893 PMCID: PMC4187570 DOI: 10.14814/phy2.12035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many receptors involved with innate immunity activate the inhibitor kappa B kinase signalosome
(IKK). The active complex appears to be assembled from the two kinase units,
IKKα and IKKβ with the regulatory protein NEMO.
Because we previously found that RNA silencing of clathrin heavy chains (CHC), in transformed human
lung pneumocytes (A549), decreased TNFα‐induced signaling and
phosphorylation of inhibitor kappa B (IκB), we hypothesized that CHC forms
cytoplasmic complexes with members of the IKK signalosome. Widely available antibodies were used to
immunoprecipitate IKKα and NEMO interactomes. Analysis of the affinity
interactomes by mass spectrometry detected clathrin with both baits with high confidence. Using the
same antibodies for indirect digital immunofluorescence microscopy and FRET, the CHC–IKK
complexes were visualized together with NEMO or HSP90. The natural variability of protein amounts in
unsynchronized A549 cells was used to obtain statistical correlation for several complexes, at
natural levels and without invasive labeling. Analyses of voxel numbers indicated that: (i)
CHC–IKK complexes are not part of the IKK signalosome itself but, likely, precursors of
IKK–NEMO complexes. (ii) CHC–IKKβ complexes may arise from
IKKβ–HSP90 complexes. Clathrin forms complexes with IKKa, IKKb, and NEMO, but apparently not the canonical signalosome.
These complexes are identified, for the first time, by affinity proteomics and triple FRET without
altering molecular structure.
Collapse
Affiliation(s)
- Fabia Gamboni
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Guillermo A Escobar
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ernest E Moore
- Department of Surgery, University of Colorado Denver, Aurora, Colorado Department of Surgery, Denver Health Medical Center, Denver, Colorado
| | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, UC Denver Mass Spectrometry and Proteomics Facility, Aurora, Colorado
| | - Sanchayita Mitra
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Trevor A Nydam
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Christopher C Silliman
- Department of Surgery, University of Colorado Denver, Aurora, Colorado Belle Bonfils Blood Center, Denver, Colorado
| | - Anirban Banerjee
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
35
|
Shinohara H, Behar M, Inoue K, Hiroshima M, Yasuda T, Nagashima T, Kimura S, Sanjo H, Maeda S, Yumoto N, Ki S, Akira S, Sako Y, Hoffmann A, Kurosaki T, Okada-Hatakeyama M. Positive feedback within a kinase signaling complex functions as a switch mechanism for NF-κB activation. Science 2014; 344:760-4. [PMID: 24833394 DOI: 10.1126/science.1250020] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A switchlike response in nuclear factor-κB (NF-κB) activity implies the existence of a threshold in the NF-κB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-κB (IκB) kinase-β (IKKβ) module is a switch mechanism for NF-κB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKβ to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKβ target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-κB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Marcelo Behar
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Kentaro Inoue
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Michio Hiroshima
- Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tomoharu Yasuda
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Nagashima
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shuhei Kimura
- Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan
| | - Hideki Sanjo
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shiori Maeda
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Noriko Yumoto
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Sewon Ki
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Mariko Okada-Hatakeyama
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
36
|
You DJ, Park CR, Lee HB, Moon MJ, Kang JH, Lee C, Oh SH, Ahn C, Seong JY, Hwang JI. A splicing variant of NME1 negatively regulates NF-κB signaling and inhibits cancer metastasis by interacting with IKKβ. J Biol Chem 2014; 289:17709-20. [PMID: 24811176 DOI: 10.1074/jbc.m114.553552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IKKβ functions as a principal upstream activator of the canonical NF-κB pathway by phosphorylating IκB, leading to its proteasomal degradation. Because IKKβ is considered a therapeutic target, understanding its regulation may facilitate the design of efficient regulators of this molecule. Here, we report a novel IKKβ-interacting molecule, NME1L, a splicing variant of the NME1 protein. NME1 has attracted attention in cancer research because of its antimetastatic activity and reduced expression in multiple aggressive types of cancer. However, the effect was just moderate but not dramatic in anti-cancer activities. We found that only NME1L interacts with IKKβ. Exogenous expression of NME1L resulted in a potent decrease in TNFα-stimulated NF-κB activation, whereas knockdown of NME1/NME1L with shRNA enhanced activity of NF-κB. NME1L down-regulates IKKβ signaling by blocking IKKβ-mediated IκB degradation. When NME1L was introduced into highly metastatic HT1080 cells, the mobility was efficiently inhibited. Furthermore, in a metastasis assay, NME1L-expressing cells did not colonize the lung. Based on these results, NME1L is a potent antimetastatic protein and may be a useful weapon in the fight against cancers.
Collapse
Affiliation(s)
- Dong-Joo You
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Cho Rong Park
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Hyun Bok Lee
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Mi Jin Moon
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Ju-Hee Kang
- the National Cancer Center, Goyang-si, Gyeonggi-do 410-769, Korea
| | - Cheolju Lee
- the Life Sciences Division, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136-791, Korea
| | - Seong-Hyun Oh
- the College of Pharmacy, Gachon University, Incheon 406-840, Korea, and
| | - Curie Ahn
- the Transplantation Research Institute, Cancer Research Institute, Seoul National University, Yongun-dong, Jongno-gu, Seoul 110-799, Korea
| | - Jae Young Seong
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea
| | - Jong-Ik Hwang
- From the Graduate School of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705, Korea,
| |
Collapse
|
37
|
Liu D, Wu A, Cui L, Hao R, Wang Y, He J, Guo D. Hepatitis B virus polymerase suppresses NF-κB signaling by inhibiting the activity of IKKs via interaction with Hsp90β. PLoS One 2014; 9:e91658. [PMID: 24618592 PMCID: PMC3950214 DOI: 10.1371/journal.pone.0091658] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 01/04/2023] Open
Abstract
Nuclear factor-κB (NF-κB) plays a central role in the regulation of diverse biological processes, including immune responses, development, cell growth, and cell survival. To establish persistent infection, many viruses have evolved strategies to evade the host’s antiviral immune defenses. In the case of hepatitis B virus (HBV), which can cause chronic infection in the liver, immune evasion strategies used by the virus are not fully understood. It has recently been reported that the polymerase of HBV (Pol) inhibits interferon-β (IFN-β) activity by disrupting the interaction between IKKε and the DDX3. In the current study, we found that HBV Pol suppressed NF-κB signaling, which can also contribute to IFN-β production. HBV Pol did not alter the level of NF-κB expression, but it prevented NF-κB subunits involved in both the canonical and non-canonical NF-κB pathways from entering the nucleus. Further experiments demonstrated that HBV Pol preferentially suppressed the activity of the IκB kinase (IKK) complex by disrupting the association of IKK/NEMO with Cdc37/Hsp90, which is critical for the assembly of the IKK complex and recruitment of the IKK complex to the tumor necrosis factor type 1 receptor (TNF-R1). Furthermore, we found that HBV Pol inhibited the NF-κB-mediated transcription of target genes. Taken together, it is suggested that HBV Pol could counteract host innate immune responses by interfering with two distinct signaling pathways required for IFN-β activation. Our studies therefore shed light on a potential therapeutic target for persistent infection with HBV.
Collapse
Affiliation(s)
- Dan Liu
- National Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan City, P. R. China
| | - An’dong Wu
- National Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan City, P. R. China
| | - Lei Cui
- National Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan City, P. R. China
| | - Ruidong Hao
- National Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan City, P. R. China
| | - Yuan Wang
- National Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan City, P. R. China
| | - Jing He
- National Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan City, P. R. China
| | - Deyin Guo
- National Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan City, P. R. China
- * E-mail:
| |
Collapse
|
38
|
Ávila MF, Torrente D, Cabezas R, Morales L, García-Segura LM, Gonzalez J, Barreto GE. Structural insights from GRP78–NF-κB binding interactions: A computational approach to understand a possible neuroprotective pathway in brain injuries. J Theor Biol 2014; 345:43-51. [DOI: 10.1016/j.jtbi.2013.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/23/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
|
39
|
Tunable signal processing through a kinase control cycle: the IKK signaling node. Biophys J 2014; 105:231-41. [PMID: 23823243 DOI: 10.1016/j.bpj.2013.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 04/19/2013] [Accepted: 05/02/2013] [Indexed: 12/31/2022] Open
Abstract
The transcription factor NFκB, a key component of the immune system, shows intricate stimulus-specific temporal dynamics. Those dynamics are thought to play a role in controlling the physiological response to cytokines and pathogens. Biochemical evidence suggests that the NFκB inducing kinase, IKK, a signaling hub onto which many signaling pathways converge, is regulated via a regulatory cycle comprising a poised, an active, and an inactive state. We hypothesize that it operates as a modulator of signal dynamics, actively reshaping the signals generated at the receptor proximal level. Here we show that a regulatory cycle can function in at least three dynamical regimes, tunable by regulating a single kinetic parameter. In particular, the simplest three-state regulatory cycle can generate signals with two well-defined phases, each with distinct coding capabilities in terms of the information they can carry about the stimulus. We also demonstrate that such a kinase cycle can function as a signal categorizer classifying diverse incoming signals into outputs with a limited set of temporal activity profiles. Finally, we discuss the extension of the results to other regulatory motifs that could be understood in terms of the regimes of the three-state cycle.
Collapse
|
40
|
Hinz M, Scheidereit C. The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep 2013; 15:46-61. [PMID: 24375677 DOI: 10.1002/embr.201337983] [Citation(s) in RCA: 412] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The IκB kinase (IKK) complex is the signal integration hub for NF-κB activation. Composed of two serine-threonine kinases (IKKα and IKKβ) and the regulatory subunit NEMO (also known as IKKγ), the IKK complex integrates signals from all NF-κB activating stimuli to catalyze the phosphorylation of various IκB and NF-κB proteins, as well as of other substrates. Since the discovery of the IKK complex components about 15 years ago, tremendous progress has been made in the understanding of the IKK architecture and its integration into signaling networks. In addition to the control of NF-κB, IKK subunits mediate the crosstalk with other pathways, thereby extending the complexity of their biological function. This review summarizes recent advances in IKK biology and focuses on emerging aspects of IKK structure, regulation and function.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
41
|
|
42
|
Fabian AK, März A, Neimanis S, Biondi RM, Kozany C, Hausch F. InterAKTions with FKBPs--mutational and pharmacological exploration. PLoS One 2013; 8:e57508. [PMID: 23469007 PMCID: PMC3585324 DOI: 10.1371/journal.pone.0057508] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/22/2013] [Indexed: 11/27/2022] Open
Abstract
The FK506-binding protein 51 (FKBP51) is an Hsp90-associated co-chaperone which regulates steroid receptors and kinases. In pancreatic cancer cell lines, FKBP51 was shown to recruit the phosphatase PHLPP to facilitate dephosphorylation of the kinase Akt, which was associated with reduced chemoresistance. Here we show that in addition to FKBP51 several other members of the FKBP family bind directly to Akt. FKBP51 can also form complexes with other AGC kinases and mapping studies revealed that FKBP51 interacts with Akt via multiple domains independent of their activation or phosphorylation status. The FKBP51-Akt1 interaction was not affected by FK506 analogs or Akt active site inhibitors, but was abolished by the allosteric Akt inhibitor VIII. None of the FKBP51 inhibitors affected AktS473 phosphorylation or downstream targets of Akt. In summary, we show that FKBP51 binds to Akt directly as well as via Hsp90. The FKBP51-Akt interaction is sensitive to the conformation of Akt1, but does not depend on the FK506-binding pocket of FKBP51. Therefore, FKBP inhibitors are unlikely to inhibit the Akt-FKBP-PHLPP network.
Collapse
Affiliation(s)
- Anne-Katrin Fabian
- Research Group Chemical Genomics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Andreas März
- Research Group Chemical Genomics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sonja Neimanis
- Research Group PhosphoSites, Universitaetsklinikum Frankfurt, Medizinische Klinik I, Frankfurt/Main, Germany
| | - Ricardo M. Biondi
- Research Group PhosphoSites, Universitaetsklinikum Frankfurt, Medizinische Klinik I, Frankfurt/Main, Germany
| | - Christian Kozany
- Research Group Chemical Genomics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Felix Hausch
- Research Group Chemical Genomics, Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail:
| |
Collapse
|
43
|
Canonical and kinase activity-independent mechanisms for extracellular signal-regulated kinase 5 (ERK5) nuclear translocation require dissociation of Hsp90 from the ERK5-Cdc37 complex. Mol Cell Biol 2013; 33:1671-86. [PMID: 23428871 DOI: 10.1128/mcb.01246-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase 5 (ERK5) plays a crucial role in cell proliferation, regulating gene transcription. ERK5 has a unique C-terminal tail which contains a transcriptional activation domain, and activates transcription by phosphorylating transcription factors and acting itself as a transcriptional coactivator. However, the molecular mechanisms that regulate its nucleocytoplasmatic traffic are unknown. We have used tandem affinity purification to identify proteins that interact with ERK5. We show that ERK5 interacts with the Hsp90-Cdc37 chaperone in resting cells, and that inhibition of Hsp90 or Cdc37 results in ERK5 ubiquitylation and proteasomal degradation. Interestingly, activation of cellular ERK5 induces Hsp90 dissociation from the ERK5-Cdc37 complex, leading to ERK5 nuclear translocation and activation of transcription, by a mechanism which requires the autophosphorylation at its C-terminal tail. Consequently, active ERK5 is no longer sensitive to Hsp90 or Cdc37 inhibitors. Cdc37 overexpression also induces Hsp90 dissociation and the nuclear translocation of a kinase-inactive form of ERK5 which retains transcriptional activity. This is the first example showing that ERK5 transcriptional activity does not require kinase activity. Since Cdc37 cooperates with ERK5 to promote cell proliferation, Cdc37 overexpression (as happens in some cancers) might represent a new, noncanonical mechanism by which ERK5 regulates tumor proliferation.
Collapse
|
44
|
Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kälin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 2012; 15:827-35. [PMID: 22610069 DOI: 10.1038/nn.3113] [Citation(s) in RCA: 594] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/19/2012] [Indexed: 12/12/2022]
Abstract
Activation of innate immune receptors by host-derived factors exacerbates CNS damage, but the identity of these factors remains elusive. We uncovered an unconventional role for the microRNA let-7, a highly abundant regulator of gene expression in the CNS, in which extracellular let-7 activates the RNA-sensing Toll-like receptor (TLR) 7 and induces neurodegeneration through neuronal TLR7. Cerebrospinal fluid (CSF) from individuals with Alzheimer’s disease contains increased amounts of let-7b, and extracellular introduction of let-7b into the CSF of wild-type mice by intrathecal injection resulted in neurodegeneration. Mice lacking TLR7 were resistant to this neurodegenerative effect, but this susceptibility to let-7 was restored in neurons transfected with TLR7 by intrauterine electroporation of Tlr7(−/−) fetuses. Our results suggest that microRNAs can function as signaling molecules and identify TLR7 as an essential element in a pathway that contributes to the spread of CNS damage.
Collapse
Affiliation(s)
- Sabrina M Lehmann
- Department of Neurology, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Context-Dependent Regulation of Autophagy by IKK-NF-κB Signaling: Impact on the Aging Process. Int J Cell Biol 2012; 2012:849541. [PMID: 22899934 PMCID: PMC3412117 DOI: 10.1155/2012/849541] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022] Open
Abstract
The NF-κB signaling system and the autophagic degradation pathway are crucial cellular survival mechanisms, both being well conserved during evolution. Emerging studies have indicated that the IKK/NF-κB signaling axis regulates autophagy in a context-dependent manner. IKK complex and NF-κB can enhance the expression of Beclin 1 and other autophagy-related proteins and stimulate autophagy whereas as a feedback response, autophagy can degrade IKK components. Moreover, NF-κB signaling activates the expression of autophagy inhibitors (e.g., A20 and Bcl-2/xL) and represses the activators of autophagy (BNIP3, JNK1, and ROS). Several studies have indicated that NF-κB signaling is enhanced both during aging and cellular senescence, inducing a proinflammatory phenotype. The aging process is also associated with a decline in autophagic degradation. It seems that the activity of Beclin 1 initiation complex could be impaired with aging, since the expression of Beclin 1 decreases as does the activity of type III PI3K. On the other hand, the expression of inhibitory Bcl-2/xL proteins increases with aging. We will review the recent literature on the control mechanisms of autophagy through IKK/NF-κB signaling and emphasize that NF-κB signaling could be a potent repressor of autophagy with ageing.
Collapse
|
46
|
Schmidt MV, Paez-Pereda M, Holsboer F, Hausch F. The prospect of FKBP51 as a drug target. ChemMedChem 2012; 7:1351-9. [PMID: 22581765 DOI: 10.1002/cmdc.201200137] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/13/2012] [Indexed: 12/24/2022]
Abstract
The FK506 binding protein 51 (FKBP51) is best known as an Hsp90-associated co-chaperone that regulates the responsiveness of steroid hormone receptors. In human genetic association studies, FKBP51 has repeatedly been associated with emotion processing and numerous stress-related affective disorders. It has also been implicated in contributing to the glucocorticoid hyposensitivity observed in New World primates. More recently, several research groups have consistently shown a protective effect of FKBP51 knockout or knockdown on stress endocrinology and stress-coping behavior in animal models of depression and anxiety. The principal druggability of FKBP51 is exemplified by the prototypic FKBP ligands FK506 and rapamycin. Moreover, FKBP51 is highly suited for X-ray co-crystallography, which should facilitate the rational drug design of improved FKBP51 ligands. In summary, FKBP51 has emerged as a promising new drug target for stress-related disorders that should be amenable to drug discovery.
Collapse
Affiliation(s)
- Mathias V Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich (Germany)
| | | | | | | |
Collapse
|
47
|
Qu X, Du J, Zhang C, Fu W, Xi H, Zou J, Hou J. Arsenic trioxide exerts antimyeloma effects by inhibiting activity in the cytoplasmic substrates of histone deacetylase 6. PLoS One 2012; 7:e32215. [PMID: 22384180 PMCID: PMC3284565 DOI: 10.1371/journal.pone.0032215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/25/2012] [Indexed: 11/19/2022] Open
Abstract
Arsenic trioxide (As(2)O(3)) has shown remarkable efficacy for the treatment of multiple myeloma (MM). Histone deacetylases (HDAC) play an important role in the control of gene expression, and their dysregulation has been linked to myeloma. Especially, HDAC6, a unique cytoplasmic member of class II, which mainly functions as α-tubulin deacetylase and Hsp90 deacetylase, has become a target for drug development to treat cancer due to its major contribution in oncogenic cell transformation. However, the mechanisms of action for As(2)O(3) have not yet been defined. In this study, we investigated the effect of As(2)O(3) on proliferation and apoptosis in human myeloma cell line and primary myeloma cells, and then we studied that As(2)O(3) exerts antimyeloma effects by inhibiting activity in the α-tubulin and Hsp90 through western blot analysis and immunoprecipitation. We found that As(2)O(3) acts directly on MM cells at relatively low concentrations of 0.5~2.5 µM, which effects survival and apoptosis of MM cells. However, As(2)O(3) inhibited HDAC activity at the relatively high concentration and dose-dependent manner (great than 4 µM). Subsequently, we found that As(2)O(3) treatment in a dose- and time-dependent fashion markedly increased the level of acetylated α-tubulin and acetylated Hsp90, and inhibited the chaperone association with IKKα activities and increased degradation of IKKα. Importantly, the loss of IKKα-associated Hsp90 occurred prior to any detectable loss in the levels of IKKα, indicating a novel pathway by which As(2)O(3) down-regulates HDAC6 to destabilize IKKα protein via Hsp90 chaperone function. Furthermore, we observed the effect of As(2)O(3) on TNF-α-induced NF-κB signaling pathway was to significantly reduced phosphorylation of Ser-536 on NF-κB p65. Therefore, our studies provide an important insight into the molecular mechanism of anti-myeloma activity of As(2)O(3) in HDAC6-Hsp90-IKKα-NFκB signaling axis and the rationale for As(2)O(3) can be extended readily using all the HDAC associated diseases.
Collapse
Affiliation(s)
- Xiaoyan Qu
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Juan Du
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Chunyang Zhang
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Weijun Fu
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Hao Xi
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jianfeng Zou
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jian Hou
- Department of Hematology, The Myeloma and Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
48
|
Leotoing L, Chereau F, Baron S, Hube F, Valencia HJ, Bordereaux D, Demmers JA, Strouboulis J, Baud V. A20-binding inhibitor of nuclear factor-kappaB (NF-kappaB)-2 (ABIN-2) is an activator of inhibitor of NF-kappaB (IkappaB) kinase alpha (IKKalpha)-mediated NF-kappaB transcriptional activity. J Biol Chem 2011; 286:32277-88. [PMID: 21784860 DOI: 10.1074/jbc.m111.236448] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NF-κB transcription factors are pivotal players in controlling inflammatory and immune responses, as well as cell proliferation and apoptosis. Aberrant regulation of NF-κB and the signaling pathways that regulate its activity have been involved in various pathologies, particularly cancers, as well as inflammatory and autoimmune diseases. NF-κB activation is tightly regulated by the IκB kinase (IKK) complex, which is composed of two catalytic subunits IKKα and IKKβ, and a regulatory subunit IKKγ/NEMO. Although IKKα and IKKβ share structural similarities, IKKα has been shown to have distinct biological functions. However, the molecular mechanisms that modulate IKKα activity have not yet been fully elucidated. To understand better the regulation of IKKα activity, we purified IKKα-associated proteins and identified ABIN-2. Here, we demonstrate that IKKα and IKKβ both interact with ABIN-2 and impair its constitutive degradation by the proteasome. Nonetheless, ABIN-2 enhances IKKα- but not IKKβ-mediated NF-κB activation by specifically inducing IKKα autophosphorylation and kinase activity. Furthermore, we found that ABIN-2 serine 146 is critical for the ABIN-2-dependent IKKα transcriptional up-regulation of specific NF-κB target genes. These results imply that ABIN-2 acts as a positive regulator of NF-κB-dependent transcription by activating IKKα.
Collapse
|
49
|
Farhana L, Dawson MI, Murshed F, Fontana JA. Maximal adamantyl-substituted retinoid-related molecule-induced apoptosis requires NF-κB noncanonical and canonical pathway activation. Cell Death Differ 2011; 18:164-73. [PMID: 20671747 PMCID: PMC2970660 DOI: 10.1038/cdd.2010.84] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 01/20/2023] Open
Abstract
NF-κB transcription factors have a critical role in regulating cell survival and apoptosis. We have previously shown that 4-(3-Cl-(1-adamantyl)-4-hydroxyphenyl)-3-chlorocinnamic acid (3-Cl-AHPC), an adamantyl-substituted retinoid molecule, induced apoptosis and required NF-κB activation in prostate and breast carcinoma cells. Here, we show that 3-Cl-AHPC activated both IκB kinase (IKK)α and IKKβ with subsequent activation of the canonical and noncanonical NF-κB pathways in the human breast carcinoma and leukemia cell lines. 3-Cl-AHPC-mediated activation of the NF-κB canonical pathway occurred within 6 h, whereas maximal activation of the NF-κB noncanonical pathway required 48 h. Knockout of IKKα or IKKβ expression in mouse embryonic fibroblast cells and knockdown of IKKα or IKKβ in MDA-MB-468 cells resulted in the inhibition of 3-Cl-AHPC-mediated apoptosis, indicating that activation of canonical and noncanonical pathways are required for maximal 3-Cl-AHPC-mediated apoptosis. 3-Cl-AHPC activation of the noncanonical pathway was preceded by caspase-mediated decrease in the E3-ligase c-IAP1 with subsequent stabilization of NF-κB-inducing kinase (NIK) expression, increased binding of NIK by TRAF3, activation of IKKα, and the resultant increased levels of RelB and p52. Increased expression of c-IAP1 blocked 3-Cl-AHPC-mediated stabilization of NIK levels and 3-Cl-AHPC-mediated apoptosis. Cdc37 expression was required for activation of IKKα and IKKβ by 3-Cl-AHPC. These findings suggest that NF-κB pathways have an important role in 3-Cl-AHPC-mediated apoptosis.
Collapse
Affiliation(s)
- L Farhana
- Deparment of Medicine, John D Dingell VA Medical Center, Wayne State University, Detroit, MI, USA.
| | | | | | | |
Collapse
|
50
|
Kim JE, You DJ, Lee C, Ahn C, Seong JY, Hwang JI. Suppression of NF-κB signaling by KEAP1 regulation of IKKβ activity through autophagic degradation and inhibition of phosphorylation. Cell Signal 2010; 22:1645-54. [DOI: 10.1016/j.cellsig.2010.06.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 06/16/2010] [Indexed: 01/13/2023]
|