1
|
Bedi O, Sapra V, Kumar M, Krishan P. Newer mitochondrial dynamics and their role of calcium signalling in liver regeneration. Mitochondrion 2024; 79:101969. [PMID: 39305943 DOI: 10.1016/j.mito.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 11/18/2024]
Abstract
Liver regeneration is a crucial process involved in cellular proliferation, differentiation, and tissue repair. Calcium signaling impact key pathways like hepatocyte growth factor-Met-tyrosine kinase (HGF-Met) transduction pathway, the epidermal growth factor receptor (EGFR) signaling and Ca-mediated nuclear SKHep1 cell proliferation pathway. Intracellular hepatocyte calcium stores are considered as base for the induction of ca-mediated regeneration process. Calcium signaling interplays with HGF, TGF-β, and NF-κB signaling, influence stem cell behavior and triggers MAPK cascade. The mitochondria calcium is impacting on liver rejuvenation by regulating apoptosis and cell division. In conclusion, it is stated that calcium-signaling holds promise for therapeutic liver interventions.
Collapse
Affiliation(s)
- Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Vaibhav Sapra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
2
|
Rinne A, Pluteanu F. Ca 2+ Signaling in Cardiovascular Fibroblasts. Biomolecules 2024; 14:1365. [PMID: 39595542 PMCID: PMC11592142 DOI: 10.3390/biom14111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrogenesis is a physiological process required for wound healing and tissue repair. It is induced by activation of quiescent fibroblasts, which first proliferate and then change their phenotype into migratory, contractile myofibroblasts. Myofibroblasts secrete extracellular matrix proteins, such as collagen, to form a scar. Once the healing process is terminated, most myofibroblasts undergo apoptosis. However, in some tissues, such as the heart, myofibroblasts remain active and sensitive to neurohumoral factors and inflammatory mediators, which lead eventually to excessive organ fibrosis. Many cellular processes involved in fibroblast activation, including cell proliferation, protein secretion and cell contraction, are highly regulated by intracellular Ca2+ signals. This review summarizes current research on Ca2+ signaling pathways underlying fibroblast activation. We present receptor- and ion channel-mediated Ca2+ signaling pathways, discuss how localized Ca2+ signals of the cell nucleus may be involved in fibroblast activation and present Ca2+-sensitive transcription pathways relevant for fibroblast biology. When investigated, we highlight how the function of Ca2+-handling proteins changes during cardiac and pulmonary fibrosis. Many aspects of Ca2+ signaling remain unexplored in different types of cardiovascular fibroblasts in relation to pathologies, and a better understanding of Ca2+ signaling in fibroblasts will help to design targeted therapies against fibrosis.
Collapse
Affiliation(s)
- Andreas Rinne
- Department of Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania;
| | - Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
3
|
Armijos MJG, Bassani TF, Fernandez CC, Rodrigues MA, Gomes DA. Decoding how receptor tyrosine kinases (RTKs) mediate nuclear calcium signaling. Adv Biol Regul 2024; 92:101033. [PMID: 38739986 PMCID: PMC11156257 DOI: 10.1016/j.jbior.2024.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) is a highly versatile intracellular messenger that regulates several cellular processes. Although it is unclear how a single-second messenger coordinates various effects within a cell, there is growing evidence that spatial patterns of Ca2+ signals play an essential role in determining their specificity. Ca2+ signaling patterns can differ in various cell regions, and Ca2+ signals in the nuclear and cytoplasmic compartments have been observed to occur independently. The initiation and function of Ca2+ signaling within the nucleus are not yet fully understood. Receptor tyrosine kinases (RTKs) induce Ca2+ signaling resulting from phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and inositol 1,4,5-trisphosphate (InsP3) formation within the nucleus. This signaling mechanism may be responsible for the effects of specific growth factors on cell proliferation and gene transcription. This review highlights the recent advances in RTK trafficking to the nucleus and explains how these receptors initiate nuclear calcium signaling.
Collapse
Affiliation(s)
- María José González Armijos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thais Fernandes Bassani
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Couto Fernandez
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Michele Angela Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Grit JL, McGee LE, Tovar EA, Essenburg CJ, Wolfrum E, Beddows I, Williams K, Sheridan RTC, Schipper JL, Adams M, Arumugam M, Vander Woude T, Gurunathan S, Field JM, Wulfkuhle J, Petricoin EF, Graveel CR, Steensma MR. p53 modulates kinase inhibitor resistance and lineage plasticity in NF1-related MPNSTs. Oncogene 2024; 43:1411-1430. [PMID: 38480916 PMCID: PMC11068581 DOI: 10.1038/s41388-024-03000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.
Collapse
Affiliation(s)
- Jamie L Grit
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Lauren E McGee
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Elizabeth A Tovar
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Curt J Essenburg
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Emily Wolfrum
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ian Beddows
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Kaitlin Williams
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | | | - Joshua L Schipper
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Menusha Arumugam
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Thomas Vander Woude
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Sharavana Gurunathan
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jeffrey M Field
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Carrie R Graveel
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Matthew R Steensma
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
- Helen DeVos Children's Hospital, Corewell Health System, Grand Rapids, MI, 49503, USA.
- Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
5
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
6
|
Humbert A, Lefebvre R, Nawrot M, Caussy C, Rieusset J. Calcium signalling in hepatic metabolism: Health and diseases. Cell Calcium 2023; 114:102780. [PMID: 37506596 DOI: 10.1016/j.ceca.2023.102780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The flexibility between the wide array of hepatic functions relies on calcium (Ca2+) signalling. Indeed, Ca2+ is implicated in the control of many intracellular functions as well as intercellular communication. Thus, hepatocytes adapt their Ca2+ signalling depending on their nutritional and hormonal environment, leading to opposite cellular functions, such as glucose storage or synthesis. Interestingly, hepatic metabolic diseases, such as obesity, type 2 diabetes and non-alcoholic fatty liver diseases, are associated with impaired Ca2+ signalling. Here, we present the hepatocytes' toolkit for Ca2+ signalling, complete with regulation systems and signalling pathways activated by nutrients and hormones. We further discuss the current knowledge on the molecular mechanisms leading to alterations of Ca2+ signalling in hepatic metabolic diseases, and review the literature on the clinical impact of Ca2+-targeting therapeutics.
Collapse
Affiliation(s)
- Alexandre Humbert
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Rémy Lefebvre
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Margaux Nawrot
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cyrielle Caussy
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France; Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France.
| |
Collapse
|
7
|
Pizzoni A, Zhang X, Naim N, Altschuler DL. Soluble cyclase-mediated nuclear cAMP synthesis is sufficient for cell proliferation. Proc Natl Acad Sci U S A 2023; 120:e2208749120. [PMID: 36656863 PMCID: PMC9942871 DOI: 10.1073/pnas.2208749120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
cAMP, a key player in many physiological processes, was classically considered to originate solely from the plasma membrane (PM). This view was recently challenged by observations showing that upon internalization GsPCRs can sustain signaling from endosomes and/or the trans-Golgi network (TGN). In this new view, after the first PM-generated cAMP wave, the internalization of GsPCRs and ACs generates a second wave that was strictly associated with nuclear transcriptional events responsible for triggering specific biological responses. Here, we report that the endogenously expressed TSHR, a canonical GsPCR, triggers an internalization-dependent, calcium-mediated nuclear sAC activation that drives PKA activation and CREB phosphorylation. Both pharmacological and genetic sAC inhibition, which did not affect the cytosolic cAMP levels, blunted nuclear cAMP accumulation, PKA activation, and cell proliferation, while an increase in nuclear sAC expression significantly enhanced cell proliferation. Furthermore, using novel nuclear-targeted optogenetic actuators, we show that light-stimulated nuclear cAMP synthesis can mimic the proliferative action of TSH by activating PKA and CREB. Therefore, based on our results, we propose a novel three-wave model in which the "third" wave of cAMP is generated by nuclear sAC. Despite being downstream of events occurring at the PM (first wave) and endosomes/TGN (second wave), the nuclear sAC-generated cAMP (third wave) is sufficient and rate-limiting for thyroid cell proliferation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Nyla Naim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Daniel L. Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
8
|
Mani I, Singh V. An overview of receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:1-18. [PMID: 36631188 DOI: 10.1016/bs.pmbts.2022.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endocytosis is a cellular process which mediates receptor internalization, nutrient uptake, and the regulation of cell signaling. Microorganisms (many bacteria and viruses) and toxins also use the same process and enter the cells. Generally, endocytosis is considered in the three forms such as phagocytosis (cell eating), pinocytosis (cell drinking), and highly selective receptor-mediated endocytosis (clathrin-dependent and independent). Several endocytic routes exist in an analogous, achieving diverse functions. Most studies on endocytosis have used transformed cells in culture. To visualize the receptor internalization, trafficking, and signaling in subcellular organelles, a green fluorescent protein-tagged receptor has been utilized. It also helps to visualize the endocytosis effects in live-cell imaging. Confocal laser microscopy increases our understanding of receptor endocytosis and signaling. Site-directed mutagenesis studies demonstrated that many short-sequence motifs of the cytoplasmic domain of receptors significantly play a vital role in receptor internalization, subcellular trafficking, and signaling. However, other factors also regulate receptor internalization through clathrin-coated vesicles. Receptor endocytosis can occur through clathrin-dependent and clathrin-independent pathways. This chapter briefly discusses the internalization, trafficking, and signaling of various receptors in normal conditions. In addition, it also highlights the malfunction of the receptor in disease conditions.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
9
|
Herceg S, Janoštiak R. Diagnostic and Prognostic Profiling of Nucleocytoplasmic Shuttling Genes in Hepatocellular Carcinoma. Folia Biol (Praha) 2023; 69:133-148. [PMID: 38410971 DOI: 10.14712/fb2023069040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
One of the key features of eukaryotic cells is the separation of nuclear and cytoplasmic compartments by a double-layer nuclear envelope. This separation is crucial for timely regulation of gene expression, mRNA biogenesis, cell cycle, and differentiation. Since transcription takes place in the nucleus and the major part of translation in the cytoplasm, proper distribution of biomolecules between these two compartments is ensured by nucleocytoplasmic shuttling proteins - karyopherins. Karyopherins transport biomolecules through nuclear pores bidirectionally in collaboration with Ran GTPases and utilize GTP as the source of energy. Different karyopherins transport different cargo molecules that play important roles in the regulation of cell physiology. In cancer cells, this nucleocytoplasmic transport is significantly dysregulated to support increased demands for the import of cell cycle-promoting biomolecules and export of cell cycle inhibitors and mRNAs. Here, we analysed genomic, transcriptomic and proteomic data from published datasets to comprehensively profile karyopherin genes in hepatocellular carcinoma. We have found out that expression of multiple karyopherin genes is increased in hepatocellular carcinoma in comparison to the normal liver, with importin subunit α-1, exportin 2, importin subunit β-1 and importin 9 being the most over-expressed. More-over, we have found that increased expression of these genes is associated with higher neoplasm grade as well as significantly worse overall survival of liver cancer patients. Taken together, our bioinformatic data-mining analysis provides a comprehensive geno-mic and transcriptomic landscape of karyopherins in hepatocellular carcinoma and identifies potential members that could be targeted in order to develop new treatment regimens.
Collapse
Affiliation(s)
- Samuel Herceg
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Janoštiak
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
10
|
Altintas DM, Gallo S, Basilico C, Cerqua M, Bocedi A, Vitacolonna A, Botti O, Casanova E, Rancati I, Milanese C, Notari S, Gambardella G, Ricci G, Mastroberardino PG, Boccaccio C, Crepaldi T, Comoglio PM. The PSI Domain of the MET Oncogene Encodes a Functional Disulfide Isomerase Essential for the Maturation of the Receptor Precursor. Int J Mol Sci 2022; 23:ijms232012427. [PMID: 36293286 PMCID: PMC9604360 DOI: 10.3390/ijms232012427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
The tyrosine kinase receptor encoded by the MET oncogene has been extensively studied. Surprisingly, one extracellular domain, PSI, evolutionary conserved between plexins, semaphorins, and integrins, has no established function. The MET PSI sequence contains two CXXC motifs, usually found in protein disulfide isomerases (PDI). Using a scrambled oxidized RNAse enzymatic activity assay in vitro, we show, for the first time, that the MET extracellular domain displays disulfide isomerase activity, abolished by PSI domain antibodies. PSI domain deletion or mutations of CXXC sites to AXXA or SXXS result in a significant impairment of the cleavage of the MET 175 kDa precursor protein, abolishing the maturation of α and β chains, of, respectively, 50 kDa and 145 kDa, disulfide-linked. The uncleaved precursor is stuck in the Golgi apparatus and, interestingly, is constitutively phosphorylated. However, no signal transduction is observed as measured by AKT and MAPK phosphorylation. Consequently, biological responses to the MET ligand—hepatocyte growth factor (HGF)—such as growth and epithelial to mesenchymal transition, are hampered. These data show that the MET PSI domain is functional and is required for the maturation, surface expression, and biological functions of the MET oncogenic protein.
Collapse
Affiliation(s)
- Dogus Murat Altintas
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
- Correspondence: (D.M.A.); (P.M.C.)
| | - Simona Gallo
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | | | - Marina Cerqua
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Orsola Botti
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Casanova
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Ilaria Rancati
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Chiara Milanese
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Sara Notari
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giorgia Gambardella
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Pier Giorgio Mastroberardino
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
- Department of Life, Health, and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Carla Boccaccio
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, Italy
| | - Paolo Maria Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
- Correspondence: (D.M.A.); (P.M.C.)
| |
Collapse
|
11
|
Rodrigues MA, Gomes DA, Fiorotto R, Guerra MT, Weerachayaphorn J, Bo T, Sessa WC, Strazzabosco M, Nathanson MH. Molecular determinants of peri-apical targeting of inositol 1,4,5-trisphosphate receptor type 3 in cholangiocytes. Hepatol Commun 2022; 6:2748-2764. [PMID: 35852334 PMCID: PMC9512452 DOI: 10.1002/hep4.2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Fluid and bicarbonate secretion is a principal function of cholangiocytes, and impaired secretion results in cholestasis. Cholangiocyte secretion depends on peri-apical expression of the type 3 inositol trisphosphate receptor (ITPR3), and loss of this intracellular Ca2+ release channel is a final common event in most cholangiopathies. Here we investigated the mechanism by which ITPR3 localizes to the apical region to regulate secretion. Isolated bile duct units, primary mouse cholangiocytes, and polarized Madin-Darby canine kidney (MDCK) cells were examined using a combination of biochemical and fluorescence microscopy techniques to investigate the mechanism of ITPR3 targeting to the apical region. Apical localization of ITPR3 depended on the presence of intact lipid rafts as well as interactions with both caveolin 1 (CAV1) and myosin heavy chain 9 (MYH9). Chemical disruption of lipid rafts or knockdown of CAV1 or MYH9 redistributed ITPR3 away from the apical region. MYH9 interacted with the five c-terminal amino acids of the ITPR3 peptide. Disruption of lipid rafts impaired Ca2+ signaling, and absence of CAV1 impaired both Ca2+ signaling and fluid secretion. Conclusion: A cooperative mechanism involving MYH9, CAV1, and apical lipid rafts localize ITPR3 to the apical region to regulate Ca2+ signaling and secretion in cholangiocytes.
Collapse
Affiliation(s)
- Michele A. Rodrigues
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
- Department of Biochemistry and ImmunologyFederal University of Minas Gerais (UFMG)Belo HorizonteMGBrazil
| | - Dawidson A. Gomes
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
- Department of Biochemistry and ImmunologyFederal University of Minas Gerais (UFMG)Belo HorizonteMGBrazil
| | - Romina Fiorotto
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
| | - Mateus T. Guerra
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
| | | | - Tao Bo
- Department of Pharmacology and Program in Vascular Cell Signaling and TherapeuticsYale University School of MedicineNew HavenConnecticutUSA
| | - William C. Sessa
- Department of Pharmacology and Program in Vascular Cell Signaling and TherapeuticsYale University School of MedicineNew HavenConnecticutUSA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
| | - Michael H. Nathanson
- Section of Digestive Diseases, Internal MedicineYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
12
|
Pal D, De K, Shanks CM, Feng K, Yates TB, Morrell-Falvey J, Davidson RB, Parks JM, Muchero W. Core cysteine residues in the Plasminogen-Apple-Nematode (PAN) domain are critical for HGF/c-MET signaling. Commun Biol 2022; 5:646. [PMID: 35778602 PMCID: PMC9249922 DOI: 10.1038/s42003-022-03582-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
The Plasminogen-Apple-Nematode (PAN) domain, with a core of four to six cysteine residues, is found in > 28,000 proteins across 959 genera. Still, its role in protein function is not fully understood. The PAN domain was initially characterized in numerous proteins, including HGF. Dysregulation of HGF-mediated signaling results in multiple deadly cancers. The binding of HGF to its cell surface receptor, c-MET, triggers all biological impacts. Here, we show that mutating four core cysteine residues in the HGF PAN domain reduces c-MET interaction, subsequent c-MET autophosphorylation, and phosphorylation of its downstream targets, perinuclear localization, cellular internalization of HGF, and its receptor, c-MET, and c-MET ubiquitination. Furthermore, transcriptional activation of HGF/c-MET signaling-related genes involved in cancer progression, invasion, metastasis, and cell survival were impaired. Thus, targeting the PAN domain of HGF may represent a mechanism for selectively regulating the binding and activation of the c-MET pathway.
Collapse
Affiliation(s)
- Debjani Pal
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Kuntal De
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Carly M Shanks
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Kai Feng
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Timothy B Yates
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA.,Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jennifer Morrell-Falvey
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Russell B Davidson
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Jerry M Parks
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Wellington Muchero
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA. .,Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
13
|
Li T, Guan L, Tang G, He B, Huang L, Wang J, Li M, Bai Y, Li X, Zhang H. Downregulation of TMEM220 promotes tumor progression in Hepatocellular Carcinoma. Cancer Gene Ther 2022; 29:835-844. [PMID: 34321624 DOI: 10.1038/s41417-021-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
During the process of long-term carcinogenesis, cells accumulate many mutations. Deregulated genes expression causes profound changes in cell proliferation, which is one of the hallmarks of HCC. A comprehensive understanding of these changes will contribute to the molecular mechanism of HCC progression. Through clinical sample analysis, we found that TMEM220 is downregulated in tumor and lower levels of TMEM220 is associated with poor prognosis in HCC patients. Through overexpressing TMEM220 in HCC cell lines, we found that the proliferation of cancer cells was significantly slowed down and metastasis was significantly reduced. For further study of its molecular mechanism, we performed a reverse-phase protein array (RPPA). The results suggest that phenotypic changes caused by TMEM220 in HCC cells might be associated with FOXO and PI3K-Akt pathways. Mechanism studies showed that overexpression of TMEM220 could regulate β-catenin and FOXO3 transcriptional activity by altering their subcellular localization, affecting the expression of downstream gene p21 and SNAIL, and ultimately reducing the progression of HCC. Altogether, our study proposes a working model in which upregulation of TMEM220 expression alters the genes expression involved in cell proliferation, thereby inhibiting HCC progression, which suggests that TMEM220 might serve as a clinical biomarker.
Collapse
Affiliation(s)
- Ting Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Lei Guan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Guangbo Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Bing He
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Juan Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, PR China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanxia Bai
- Department of Otolaryngology-Head-Neck Surgery, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, PR China
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
14
|
McMahon DB, Kuek LE, Johnson ME, Johnson PO, Horn RL, Carey RM, Adappa ND, Palmer JN, Lee RJ. The bitter end: T2R bitter receptor agonists elevate nuclear calcium and induce apoptosis in non-ciliated airway epithelial cells. Cell Calcium 2022; 101:102499. [PMID: 34839223 PMCID: PMC8752513 DOI: 10.1016/j.ceca.2021.102499] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 01/03/2023]
Abstract
Bitter taste receptors (T2Rs) localize to airway motile cilia and initiate innate immune responses in retaliation to bacterial quorum sensing molecules. Activation of cilia T2Rs leads to calcium-driven NO production that increases cilia beating and directly kills bacteria. Several diseases, including chronic rhinosinusitis, COPD, and cystic fibrosis, are characterized by loss of motile cilia and/or squamous metaplasia. To understand T2R function within the altered landscape of airway disease, we studied T2Rs in non-ciliated airway cell lines and primary cells. Several T2Rs localize to the nucleus in de-differentiated cells that typically localize to cilia in differentiated cells. As cilia and nuclear import utilize shared proteins, some T2Rs may target to the nucleus in the absence of motile cilia. T2R agonists selectively elevated nuclear and mitochondrial calcium through a G-protein-coupled receptor phospholipase C mechanism. Additionally, T2R agonists decreased nuclear cAMP, increased nitric oxide, and increased cGMP, consistent with T2R signaling. Furthermore, exposure to T2R agonists led to nuclear calcium-induced mitochondrial depolarization and caspase activation. T2R agonists induced apoptosis in primary bronchial and nasal cells differentiated at air-liquid interface but then induced to a squamous phenotype by apical submersion. Air-exposed well-differentiated cells did not die. This may be a last-resort defense against bacterial infection. However, it may also increase susceptibility of de-differentiated or remodeled epithelia to damage by bacterial metabolites. Moreover, the T2R-activated apoptosis pathway occurs in airway cancer cells. T2Rs may thus contribute to microbiome-tumor cell crosstalk in airway cancers. Targeting T2Rs may be useful for activating cancer cell apoptosis while sparing surrounding tissue.
Collapse
Affiliation(s)
- Derek B. McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Correspondence: Derek B. McMahon, PhD or Robert J. Lee, PhD, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA, 215-573-9766, (D.B.M.) or (R.J.L)
| | - Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madeline E. Johnson
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paige O. Johnson
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rachel L.J. Horn
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan M. Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nithin D. Adappa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James N. Palmer
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert J. Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Correspondence: Derek B. McMahon, PhD or Robert J. Lee, PhD, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA, 215-573-9766, (D.B.M.) or (R.J.L)
| |
Collapse
|
15
|
Zheng HC, Jiang HM. Shuttling of cellular proteins between the plasma membrane and nucleus (Review). Mol Med Rep 2021; 25:14. [PMID: 34779504 PMCID: PMC8600410 DOI: 10.3892/mmr.2021.12530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Recently accumulated evidence has indicated that the nucleomembrane shuttling of cellular proteins is common, which provides new insight into the subcellular translocation and biological functions of proteins synthesized in the cytoplasm. The present study aimed to clarify the trafficking of proteins between the plasma membrane and nucleus. These proteins primarily consist of transmembrane receptors, membrane adaptor proteins, adhesive proteins, signal proteins and nuclear proteins, which contribute to proliferation, apoptosis, chemoresistance, adhesion, migration and gene expression. The proteins frequently undergo cross-talk, such as the interaction of transmembrane proteins with signal proteins. The transmembrane proteins undergo endocytosis, infusion into organelles or proteolysis into soluble forms for import into the nucleus, while nuclear proteins interact with membrane proteins or act as receptors. The nucleocytosolic translocation involves export or import through nuclear membrane pores by importin or exportin. Nuclear proteins generally interact with other transcription factors, and then binding to the promoter for gene expression, while membrane proteins are responsible for signal initiation by binding to other membrane and/or adaptor proteins. Protein translocation occurs in a cell-specific manner and is closely linked to cellular biological events. The present review aimed to improve understanding of cytosolic protein shuttling between the plasma membrane and nucleus and the associated signaling pathways.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Hua-Mao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
16
|
Chen D, Yu W, Aitken L, Gunn-Moore F. Willin/FRMD6: A Multi-Functional Neuronal Protein Associated with Alzheimer's Disease. Cells 2021; 10:cells10113024. [PMID: 34831245 PMCID: PMC8616527 DOI: 10.3390/cells10113024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The FERM domain-containing protein 6 (FRMD6), also known as Willin, is an upstream regulator of Hippo signaling that has recently been shown to modulate actin cytoskeleton dynamics and mechanical phenotype of neuronal cells through ERK signaling. Physiological functions of Willin/FRMD6 in the nervous system include neuronal differentiation, myelination, nerve injury repair, and vesicle exocytosis. The newly established neuronal role of Willin/FRMD6 is of particular interest given the mounting evidence suggesting a role for Willin/FRMD6 in Alzheimer's disease (AD), including a series of genome wide association studies that position Willin/FRMD6 as a novel AD risk gene. Here we describe recent findings regarding the role of Willin/FRMD6 in the nervous system and its actions in cellular perturbations related to the pathogenesis of AD.
Collapse
|
17
|
The basis of nuclear phospholipase C in cell proliferation. Adv Biol Regul 2021; 82:100834. [PMID: 34710785 DOI: 10.1016/j.jbior.2021.100834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022]
Abstract
Ca2+ is a highly versatile intracellular signal that regulates many biological processes such as cell death and proliferation. Broad Ca2+-signaling machinery is used to assemble signaling systems with a precise spatial and temporal resolution to achieve this versatility. Ca2+-signaling components can be organized in different regions of the cell and local increases in Ca2+ within the nucleus can regulate different cellular functions from the increases in cytosolic Ca2+. However, the mechanisms and pathways that promote localized increases in Ca2+ levels in the nucleus are still under investigation. This review presents evidence that the nucleus has its own Ca2+ stores and signaling machinery, which modulate processes such as cell proliferation and tumor growth. We focus on what is known about the functions of nuclear Phospholipase C (PLC) in the generation of nuclear Ca2+ transients that are involved in cell proliferation.
Collapse
|
18
|
Maguire WF, Schmitz JC, Scemama J, Czambel K, Lin Y, Green AG, Wu S, Lin H, Puhalla S, Rhee J, Stoller R, Tawbi H, Lee JJ, Wright JJ, Beumer JH, Chu E, Appleman LJ. Phase 1 study of safety, pharmacokinetics, and pharmacodynamics of tivantinib in combination with bevacizumab in adult patients with advanced solid tumors. Cancer Chemother Pharmacol 2021; 88:643-654. [PMID: 34164713 DOI: 10.1007/s00280-021-04317-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/10/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE We investigated the combination of tivantinib, a c-MET tyrosine kinase inhibitor (TKI), and bevacizumab, an anti-VEGF-A antibody. METHODS Patients with advanced solid tumors received bevacizumab (10 mg/kg intravenously every 2 weeks) and escalating doses of tivantinib (120-360 mg orally twice daily). In addition to safety and preliminary efficacy, we evaluated pharmacokinetics of tivantinib and its metabolites, as well as pharmacodynamic biomarkers in peripheral blood and skin. RESULTS Eleven patients received the combination treatment, which was generally well tolerated. The main dose-limiting toxicity was grade 3 hypertension, which was observed in four patients. Other toxicities included lymphopenia and electrolyte disturbances. No exposure-toxicity relationship was observed for tivantinib or metabolites. No clinical responses were observed. Mean levels of the serum cytokine bFGF increased (p = 0.008) after the bevacizumab-only lead-in and decreased back to baseline (p = 0.047) after addition of tivantinib. Tivantinib reduced levels of both phospho-MET (7/11 patients) and tubulin (4/11 patients) in skin. CONCLUSIONS The combination of tivantinib and bevacizumab produced toxicities that were largely consistent with the safety profiles of the individual drugs. The study was terminated prior to establishment of the recommended phase II dose (RP2D) due to concerns regarding the mechanism of tivantinib, as well as lack of clinical efficacy seen in this and other studies. Tivantinib reversed the upregulation of bFGF caused by bevacizumab, which has been considered a potential mechanism of resistance to therapies targeting the VEGF pathway. The findings from this study suggest that the mechanism of action of tivantinib in humans may involve inhibition of both c-MET and tubulin expression. TRIAL REGISTRATION NCT01749384 (First posted 12/13/2012).
Collapse
Affiliation(s)
- William F Maguire
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John C Schmitz
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Jonas Scemama
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Ken Czambel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA
| | - Yan Lin
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center Biostatistics Facility, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony G Green
- Pitt Biospecimen Core Research Histology Department, Health Sciences Core Research Facilities, Pittsburgh, PA, USA
| | - Shaoyu Wu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Huang Lin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Roche Product Development, Roche (China) Holding Ltd., Shanghai, China
| | - Shannon Puhalla
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Rhee
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald Stoller
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hussein Tawbi
- Department of Melanoma and Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - James J Lee
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John J Wright
- Cancer Therapy Evaluation Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jan H Beumer
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Edward Chu
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Oncology and Cancer Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Leonard J Appleman
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5150 Centre Avenue, Pittsburgh, PA, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | |
Collapse
|
19
|
Mozolewski P, Jeziorek M, Schuster CM, Bading H, Frost B, Dobrowolski R. The role of nuclear Ca2+ in maintaining neuronal homeostasis and brain health. J Cell Sci 2021; 134:jcs254904. [PMID: 33912918 PMCID: PMC8084578 DOI: 10.1242/jcs.254904] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear Ca2+ has emerged as one of the most potent mediators of the dialogue between neuronal synapses and the nucleus that regulates heterochromatin states, transcription factor activity, nuclear morphology and neuronal gene expression induced by synaptic activity. Recent studies underline the importance of nuclear Ca2+ signaling in long-lasting, activity-induced adaptation and maintenance of proper brain function. Diverse forms of neuroadaptation require transient nuclear Ca2+ signaling and cyclic AMP-responsive element-binding protein (CREB1, referred to here as CREB) as its prime target, which works as a tunable switch to drive and modulate specific gene expression profiles associated with memory, pain, addiction and neuroprotection. Furthermore, a reduction of nuclear Ca2+ levels has been shown to be neurotoxic and a causal factor driving the progression of neurodegenerative disorders, as well as affecting neuronal autophagy. Because of its central role in the brain, deficits in nuclear Ca2+ signaling may underlie a continuous loss of neuroprotection in the aging brain, contributing to the pathophysiology of Alzheimer's disease. In this Review, we discuss the principles of the 'nuclear calcium hypothesis' in the context of human brain function and its role in controlling diverse forms of neuroadaptation and neuroprotection. Furthermore, we present the most relevant and promising perspectives for future studies.
Collapse
Affiliation(s)
- Pawel Mozolewski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Maciej Jeziorek
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Christoph M. Schuster
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 345 and INF 366, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 345 and INF 366, 69120 Heidelberg, Germany
| | - Bess Frost
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
20
|
Lee N, Lee SH, Lee J, Lee MY, Lim J, Kim S, Kim S. Hepatocyte growth factor is necessary for efficient outgrowth of injured peripheral axons in in vitro culture system and in vivo nerve crush mouse model. Biochem Biophys Rep 2021; 26:100973. [PMID: 33718632 PMCID: PMC7933716 DOI: 10.1016/j.bbrep.2021.100973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/12/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a neurotrophic factor and its role in peripheral nerves has been relatively unknown. In this study, biological functions of HGF and its receptor c-met have been investigated in the context of regeneration of damaged peripheral nerves. Axotomy of the peripheral branch of sensory neurons from embryonic dorsal root ganglia (DRG) resulted in the increased protein levels of HGF and phosphorylated c-met. When the neuronal cultures were treated with a pharmacological inhibitor of c-met, PHA665752, the length of axotomy-induced outgrowth of neurite was significantly reduced. On the other hand, the addition of recombinant HGF proteins to the neuronal culture facilitated axon outgrowth. In the nerve crush mouse model, the protein level of HGF was increased around the injury site by almost 5.5-fold at 24 h post injury compared to control mice and was maintained at elevated levels for another 6 days. The amount of phosphorylated c-met receptor in sciatic nerve was also observed to be higher than control mice. When PHA665752 was locally applied to the injury site of sciatic nerve, axon outgrowth and injury mediated induction of cJun protein were effectively inhibited, indicating the functional involvement of HGF/c-met pathway in the nerve regeneration process. When extra HGF was exogenously provided by intramuscular injection of plasmid DNA expressing HGF, axon outgrowth from damaged sciatic nerve and cJun expression level were enhanced. Taken together, these results suggested that HGF/c-met pathway plays important roles in axon outgrowth by directly interacting with sensory neurons and thus HGF might be a useful tool for developing therapeutics for peripheral neuropathy. In in vitro primary eDRGs, axotomy-induced HGF/c-met pathway enhanced the neurite outgrowth process. Nerve injury induced the expression of HGF, consequently leading to the activation of c-met in peripheral axons. HGF/c-met pathway played an important role in the regeneration process of injured peripheral nerves. Additional supply of HGF, in the form of plasmid DNA, enhanced the regeneration of damaged peripheral nerves.
Collapse
Affiliation(s)
- Nayeon Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.,Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| | - Sang Hwan Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Junghun Lee
- Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| | - Mi-Young Lee
- Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| | - Jaegook Lim
- Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| | - Subin Kim
- Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| | - Sunyoung Kim
- Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| |
Collapse
|
21
|
Srivastava S, Pang KM, Iida M, Nelson MS, Liu J, Nam A, Wang J, Mambetsariev I, Pillai R, Mohanty A, McDaniel N, Behal A, Kulkarni P, Wheeler DL, Salgia R. Activation of EPHA2-ROBO1 Heterodimer by SLIT2 Attenuates Non-canonical Signaling and Proliferation in Squamous Cell Carcinomas. iScience 2020; 23:101692. [PMID: 33196021 PMCID: PMC7644594 DOI: 10.1016/j.isci.2020.101692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/21/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
The tyrosine kinase receptor ephrin receptor A2 (EPHA2) is overexpressed in lung (LSCC) and head and neck (HNSCC) squamous cell carcinomas. Although EPHA2 can inhibit tumorigenesis in a ligand-dependent fashion via phosphorylation of Y588 and Y772, it can promote tumorigenesis in a ligand-independent manner via phosphorylation of S897. Here, we show that EPHA2 and Roundabout Guidance Receptor 1 (ROBO1) interact to form a functional heterodimer. Furthermore, we show that the ROBO1 ligand Slit Guidance Ligand 2 (SLIT2) and ensartinib, an inhibitor of EPHA2, can attenuate growth of HNSCC cells and act synergistically in LSCC cells. Our results suggest that patients with LSCC and HNSCC may be stratified and treated based on their EPHA2 and ROBO1 expression patterns. Although ~73% of patients with LSCC could benefit from SLIT2+ensartinib treatment, ~41% of patients with HNSCC could be treated with either SLIT2 or ensartinib. Thus, EPHA2 and ROBO1 represent potential LSCC and HNSCC theranostics.
Collapse
Affiliation(s)
- Saumya Srivastava
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ka Ming Pang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Michael S. Nelson
- Light Microscopy Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Jiayi Liu
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jiale Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Raju Pillai
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Nellie McDaniel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Amita Behal
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
22
|
Chen MK, Hsu JL, Hung MC. Nuclear receptor tyrosine kinase transport and functions in cancer. Adv Cancer Res 2020; 147:59-107. [PMID: 32593407 DOI: 10.1016/bs.acr.2020.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling functions of plasma membrane-localized receptor tyrosine kinases (RTKs) have been extensively studied after they were first described in the mid-1980s. Plasma membrane RTKs are activated by extracellular ligands and cellular stress stimuli, and regulate cellular responses by activating the downstream effector proteins to initiate a wide range of signaling cascades in the cells. However, increasing evidence indicates that RTKs can also be transported into the intracellular compartments where they phosphorylate traditional effector proteins and non-canonical substrate proteins. In general, internalization that retains the RTK's transmembrane domain begins with endocytosis, and endosomal RTK remains active before being recycled or degraded. Further RTK retrograde transport from endosome-Golgi-ER to the nucleus is primarily dependent on membranes vesicles and relies on the interaction with the COP-I vesicle complex, Sec61 translocon complex, and importin. Internalized RTKs have non-canonical substrates that include transcriptional co-factors and DNA damage response proteins, and many nuclear RTKs harbor oncogenic properties and can enhance cancer progression. Indeed, nuclear-localized RTKs have been shown to positively correlate with cancer recurrence, therapeutic resistance, and poor prognosis of cancer patients. Therefore, understanding the functions of nuclear RTKs and the mechanisms of nuclear RTK transport will further improve our knowledge to evaluate the potential of targeting nuclear RTKs or the proteins involved in their transport as new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jennifer L Hsu
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
23
|
Lemos FDO, França A, Lima Filho ACM, Florentino RM, Santos ML, Missiaggia DG, Rodrigues GOL, Dias FF, Souza Passos IB, Teixeira MM, Andrade AMDF, Lima CX, Vidigal PVT, Costa VV, Fonseca MC, Nathanson MH, Leite MF. Molecular Mechanism for Protection Against Liver Failure in Human Yellow Fever Infection. Hepatol Commun 2020; 4:657-669. [PMID: 32363317 PMCID: PMC7193135 DOI: 10.1002/hep4.1504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Yellow fever (YF) is a viral hemorrhagic fever that typically involves the liver. Brazil recently experienced its largest recorded YF outbreak, and the disease was fatal in more than a third of affected individuals, mostly because of acute liver failure. Affected individuals are generally treated only supportively, but during the recent Brazilian outbreak, selected patients were treated with liver transplant. We took advantage of this clinical experience to better characterize the clinical and pathological features of YF-induced liver failure and to examine the mechanism of hepatocellular injury in YF, to identify targets that would be amenable to therapeutic intervention in preventing progression to liver failure and death. Patients with YF liver failure rapidly developed massive transaminase elevations, with jaundice, coagulopathy, thrombocytopenia, and usually hepatic encephalopathy, along with pathological findings that included microvesicular steatosis and lytic necrosis. Hepatocytes began to express the type 3 isoform of the inositol trisphosphate receptor (ITPR3), an intracellular calcium (Ca2+) channel that is not normally expressed in hepatocytes. Experiments in an animal model, isolated hepatocytes, and liver-derived cell lines showed that this new expression of ITPR3 was associated with increased nuclear Ca2+ signaling and hepatocyte proliferation, and reduced steatosis and cell death induced by the YF virus. Conclusion: Yellow fever often induces liver failure characterized by massive hepatocellular damage plus steatosis. New expression of ITPR3 also occurs in YF-infected hepatocytes, which may represent an endogenous protective mechanism that could suggest approaches to treat affected individuals before they progress to liver failure, thereby decreasing the mortality of this disease in a way that does not rely on the costly and limited resource of liver transplantation.
Collapse
Affiliation(s)
| | - Andressa França
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Rodrigo M. Florentino
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Marcone Loiola Santos
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Dabny G. Missiaggia
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Felipe Ferraz Dias
- Center of MicroscopyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Mauro M. Teixeira
- Department of Biochemistry and ImmunologyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Cristiano Xavier Lima
- Hepatic Transplant ServiceHospital Felício RochoBelo HorizonteBrazil
- SurgeryUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | | | - Matheus Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and MaterialsRua Giuseppe Máximo ScolfaroCampinasBrazil
| | - Michael H. Nathanson
- Section of Digestive DiseasesDepartment of Internal MedicineYale University School of MedicineNew HavenCT
| | - M. Fatima Leite
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
24
|
A common MET polymorphism harnesses HER2 signaling to drive aggressive squamous cell carcinoma. Nat Commun 2020; 11:1556. [PMID: 32214092 PMCID: PMC7096530 DOI: 10.1038/s41467-020-15318-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 02/25/2020] [Indexed: 02/08/2023] Open
Abstract
c-MET receptors are activated in cancers through genomic events like tyrosine kinase domain mutations, juxtamembrane splicing mutation and amplified copy numbers, which can be inhibited by c-MET small molecule inhibitors. Here, we discover that the most common polymorphism known to affect MET gene (N375S), involving the semaphorin domain, confers exquisite binding affinity for HER2 and enables METN375S to interact with HER2 in a ligand-independent fashion. The resultant METN375S/HER2 dimer transduces potent proliferative, pro-invasive and pro-metastatic cues through the HER2 signaling axis to drive aggressive squamous cell carcinomas of the head and neck (HNSCC) and lung (LUSC), and is associated with poor prognosis. Accordingly, HER2 blockers, but not c-MET inhibitors, are paradoxically effective at restraining in vivo and in vitro models expressing METN375S. These results establish METN375S as a biologically distinct and clinically actionable molecular subset of SCCs that are uniquely amenable to HER2 blocking therapies. The MET receptor is frequently activated in cancer. Here, the authors show that in head and neck and lung squamous carcinoma, a polymorphic MET variant enhances binding to HER2, resulting in activation of HER2 signalling and progression of the cancers.
Collapse
|
25
|
The Novel Nuclear Targeting and BFRF1-Interacting Domains of BFLF2 Are Essential for Efficient Epstein-Barr Virus Virion Release. J Virol 2020; 94:JVI.01498-19. [PMID: 31694953 DOI: 10.1128/jvi.01498-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/27/2019] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) genomic DNA is replicated and packaged into procapsids in the nucleus to form nucleocapsids, which are then transported into the cytoplasm for tegumentation and final maturation. The process is facilitated by the coordination of the viral nuclear egress complex (NEC), which consists of BFLF2 and BFRF1. By expression alone, BFLF2 is distributed mainly in the nucleus. However, it colocalizes with BFRF1 at the nuclear rim and in cytoplasmic nuclear envelope-derived vesicles in coexpressing cells, suggesting temporal control of the interaction between BFLF2 and BFRF1 is critical for their proper function. The N-terminal sequence of BFLF2 is less conserved than that of alpha- and betaherpesvirus homologs. Here, we found that BFLF2 amino acids (aa) 2 to 102 are required for both nuclear targeting and its interaction with BFRF1. Coimmunoprecipitation and confocal analysis indicated that aa 82 to 106 of BFLF2 are important for its interaction with BFRF1. Three crucial amino acids (R47, K50, and R52) and several noncontinuous arginine and histidine residues within aa 59 to 80 function together as a noncanonical nuclear localization signal (NLS), which can be transferred onto yellow fluorescent protein (YFP)-LacZ for nuclear targeting in an importin β-dependent manner. Virion secretion is defective in 293 cells harboring a BFLF2 knockout EBV bacmid upon lytic induction and is restored by trans-complementation of wild-type BFLF2, but not NLS or BFRF1-interacting defective mutants. In addition, multiple domains of BFRF1 were found to bind BFLF2, suggesting multiple contact regions within BFRF1 and BFLF2 are required for proper nuclear egress of EBV nucleocapsids.IMPORTANCE Although Epstein-Barr virus (EBV) BFRF1 and BFLF2 are homologs of conserved viral nuclear egress complex (NEC) in all human herpesviruses, unique amino acid sequences and functions were identified in both proteins. In this study, the nuclear targeting and BFRF1-interacting domains were found within the N terminus of BFLF2. We showed that amino acids (aa) 82 to 106 are the major region required for BFLF2 to interact with BFRF1. However, the coimmunoprecipitation (Co-IP) data and glutathione transferase (GST) pulldown experiments revealed that multiple regions of both proteins contribute to reciprocal interactions. Different from the canonical nuclear localization signal (NLS) in other herpes viral homologs, BFLF2 contains a novel importin-dependent nuclear localization signal, including R47, K50, and R52 and several neighboring discontinuous arginine and histidine residues. Using a bacmid complementation system, we show that both the nuclear targeting and the novel nuclear localization signal within aa 82 to 106 of BFLF2 are required for virion secretion.
Collapse
|
26
|
Type 3 inositol 1,4,5-trisphosphate receptor: A calcium channel for all seasons. Cell Calcium 2019; 85:102132. [PMID: 31790953 DOI: 10.1016/j.ceca.2019.102132] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022]
Abstract
Inositol 1,4,5 trisphosphate receptors (ITPRs) are a family of endoplasmic reticulum Ca2+ channels essential for the control of intracellular Ca2+ levels in virtually every mammalian cell type. The three isoforms (ITPR1, ITPR2 and ITPR3) are highly homologous in amino acid sequence, but they differ considerably in terms of biophysical properties, subcellular localization, and tissue distribution. Such differences underscore the variety of cellular responses triggered by each isoform and suggest that the expression/activity of specific isoforms might be linked to particular pathophysiological states. Indeed, recent findings demonstrate that changes in expression of ITPR isoforms are associated with a number of human diseases ranging from fatty liver disease to cancer. ITPR3 is emerging as the isoform that is particularly important in the pathogenesis of various human diseases. Here we review the physiological and pathophysiological roles of ITPR3 in various tissues and the mechanisms by which the expression of this isoform is modulated in health and disease.
Collapse
|
27
|
Modica TME, Dituri F, Mancarella S, Pisano C, Fabregat I, Giannelli G. Calcium Regulates HCC Proliferation as well as EGFR Recycling/Degradation and Could Be a New Therapeutic Target in HCC. Cancers (Basel) 2019; 11:cancers11101588. [PMID: 31635301 PMCID: PMC6826902 DOI: 10.3390/cancers11101588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 01/08/2023] Open
Abstract
Calcium is the most abundant element in the human body. Its role is essential in physiological and biochemical processes such as signal transduction from outside to inside the cell between the cells of an organ, as well as the release of neurotransmitters from neurons, muscle contraction, fertilization, bone building, and blood clotting. As a result, intra- and extracellular calcium levels are tightly regulated by the body. The liver is the most specialized organ of the body, as its functions, carried out by hepatocytes, are strongly governed by calcium ions. In this work, we analyze the role of calcium in human hepatoma (HCC) cell lines harboring a wild type form of the Epidermal Growth Factor Receptor (EGFR), particularly its role in proliferation and in EGFR downmodulation. Our results highlight that calcium is involved in the proliferative capability of HCC cells, as its subtraction is responsible for EGFR degradation by proteasome machinery and, as a consequence, for EGFR intracellular signaling downregulation. However, calcium-regulated EGFR signaling is cell line-dependent. In cells responding weakly to the epidermal growth factor (EGF), calcium seems to have an opposite effect on EGFR internalization/degradation mechanisms. These results suggest that besides EGFR, calcium could be a new therapeutic target in HCC.
Collapse
Affiliation(s)
- Teresa Maria Elisa Modica
- Department of Biomedical Science and Human Oncology, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy.
- Biogem S.C.A.R.L., 83031 Ariano Irpino (AV), Italy.
| | | | | | | | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, 08907 Barcelona, Spain.
- Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain.
- Oncology Program, CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | | |
Collapse
|
28
|
de Miranda MC, Rodrigues MA, de Angelis Campos AC, Faria JAQA, Kunrath-Lima M, Mignery GA, Schechtman D, Goes AM, Nathanson MH, Gomes DA. Epidermal growth factor (EGF) triggers nuclear calcium signaling through the intranuclear phospholipase Cδ-4 (PLCδ4). J Biol Chem 2019; 294:16650-16662. [PMID: 31537645 DOI: 10.1074/jbc.ra118.006961] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Calcium (Ca2+) signaling within the cell nucleus regulates specific cellular events such as gene transcription and cell proliferation. Nuclear and cytosolic Ca2+ levels can be independently regulated, and nuclear translocation of receptor tyrosine kinases (RTKs) is one way to locally activate signaling cascades within the nucleus. Nuclear RTKs, including the epidermal growth factor receptor (EGFR), are important for processes such as transcriptional regulation, DNA-damage repair, and cancer therapy resistance. RTKs can hydrolyze phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) within the nucleus, leading to Ca2+ release from the nucleoplasmic reticulum by inositol 1,4,5-trisphosphate receptors. PI(4,5)P2 hydrolysis is mediated by phospholipase C (PLC). However, it is unknown which nuclear PLC isoform is triggered by EGFR. Here, using subcellular fractionation, immunoblotting and fluorescence, siRNA-based gene knockdowns, and FRET-based biosensor reporter assays, we investigated the role of PLCδ4 in epidermal growth factor (EGF)-induced nuclear Ca2+ signaling and downstream events. We found that EGF-induced Ca2+ signals are inhibited when translocation of EGFR is impaired. Nuclear Ca2+ signals also were reduced by selectively buffering inositol 1,4,5-trisphosphate (InsP3) within the nucleus. EGF induced hydrolysis of nuclear PI(4,5)P2 by the intranuclear PLCδ4, rather than by PLCγ1. Moreover, protein kinase C, a downstream target of EGF, was active in the nucleus of stimulated cells. Furthermore, PLCδ4 and InsP3 modulated cell cycle progression by regulating the expression of cyclins A and B1. These results provide evidence that EGF-induced nuclear signaling is mediated by nuclear PLCδ4 and suggest new therapeutic targets to modulate the proliferative effects of this growth factor.
Collapse
Affiliation(s)
- Marcelo Coutinho de Miranda
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627 Belo Horizonte-MG, 31270-901, Brazil.,Section of Digestive Diseases, Internal Medicine, Yale University, New Haven, Connecticut 06520-8056
| | - Michele Angela Rodrigues
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627 Belo Horizonte-MG, 31270-901, Brazil.,Section of Digestive Diseases, Internal Medicine, Yale University, New Haven, Connecticut 06520-8056
| | - Ana Carolina de Angelis Campos
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627 Belo Horizonte-MG, 31270-901, Brazil.,Section of Digestive Diseases, Internal Medicine, Yale University, New Haven, Connecticut 06520-8056
| | | | - Marianna Kunrath-Lima
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627 Belo Horizonte-MG, 31270-901, Brazil
| | - Gregory A Mignery
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Deborah Schechtman
- Department of Biochemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, São Paulo-SP 05508-900, Brazil
| | - Alfredo Miranda Goes
- Department of Pathology, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627 Belo Horizonte-MG, 31270-901, Brazil
| | - Michael H Nathanson
- Section of Digestive Diseases, Internal Medicine, Yale University, New Haven, Connecticut 06520-8056
| | - Dawidson A Gomes
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627 Belo Horizonte-MG, 31270-901, Brazil .,Section of Digestive Diseases, Internal Medicine, Yale University, New Haven, Connecticut 06520-8056
| |
Collapse
|
29
|
Guerra MT, Florentino RM, Franca A, Filho ACL, dos Santos ML, Fonseca RC, Lemos FO, Fonseca MC, Kruglov E, Mennone A, Njei B, Gibson J, Guan F, Cheng YC, Ananthanarayanam M, Gu J, Jiang J, Zhao H, Lima CX, Vidigal PT, Oliveira AG, Nathanson MH, Leite MF. Expression of the type 3 InsP 3 receptor is a final common event in the development of hepatocellular carcinoma. Gut 2019; 68:1676-1687. [PMID: 31315892 PMCID: PMC7087395 DOI: 10.1136/gutjnl-2018-317811] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/25/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & OBJECTIVES Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. Several types of chronic liver disease predispose to HCC, and several different signalling pathways have been implicated in its pathogenesis, but no common molecular event has been identified. Ca2+ signalling regulates the proliferation of both normal hepatocytes and liver cancer cells, so we investigated the role of intracellular Ca2+ release channels in HCC. DESIGN Expression analyses of the type 3 isoform of the inositol 1, 4, 5-trisphosphate receptor (ITPR3) in human liver samples, liver cancer cells and mouse liver were combined with an evaluation of DNA methylation profiles of ITPR3 promoter in HCC and characterisation of the effects of ITPR3 expression on cellular proliferation and apoptosis. The effects of de novo ITPR3 expression on hepatocyte calcium signalling and liver growth were evaluated in mice. RESULTS ITPR3 was absent or expressed in low amounts in hepatocytes from normal liver, but was expressed in HCC specimens from three independent patient cohorts, regardless of the underlying cause of chronic liver disease, and its increased expression level was associated with poorer survival. The ITPR3 gene was heavily methylated in control liver specimens but was demethylated at multiple sites in specimens of patient with HCC. Administration of a demethylating agent in a mouse model resulted in ITPR3 expression in discrete areas of the liver, and Ca2+ signalling was enhanced in these regions. In addition, cell proliferation and liver regeneration were enhanced in the mouse model, and deletion of ITPR3 from human HCC cells enhanced apoptosis. CONCLUSIONS These results provide evidence that de novo expression of ITPR3 typically occurs in HCC and may play a role in its pathogenesis.
Collapse
MESH Headings
- Adult
- Animals
- Apoptosis/physiology
- Calcium Signaling/physiology
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation/physiology
- Cells, Cultured
- DNA Methylation
- Female
- Gene Expression Regulation, Neoplastic/physiology
- Hepatocytes/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/deficiency
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Liver/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Regeneration/physiology
- Male
- Mice, Knockout
- Middle Aged
- Survival Analysis
Collapse
Affiliation(s)
- Mateus T Guerra
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rodrigo M Florentino
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andressa Franca
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio C Lima Filho
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcone L dos Santos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Roberta C Fonseca
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda O Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus C Fonseca
- Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Emma Kruglov
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert Mennone
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Basile Njei
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joanna Gibson
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fulan Guan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jianlei Gu
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, China
| | - Jianping Jiang
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cristiano X Lima
- Department of Surgery, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula T Vidigal
- Department of Pathological Anatomy and Forensic Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andre G Oliveira
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michael H Nathanson
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Fatima Leite
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
30
|
Choi W, Lee J, Lee J, Lee SH, Kim S. Hepatocyte Growth Factor Regulates Macrophage Transition to the M2 Phenotype and Promotes Murine Skeletal Muscle Regeneration. Front Physiol 2019; 10:914. [PMID: 31404148 PMCID: PMC6672745 DOI: 10.3389/fphys.2019.00914] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/04/2019] [Indexed: 01/10/2023] Open
Abstract
Hepatocyte growth factor (HGF) is well known for its role in the migration of embryonic muscle progenitors and the activation of adult muscle stem cells, yet its functions during the adult muscle regeneration process remain to be elucidated. In this study, we showed that HGF/c-met signaling was activated during muscle regeneration, and that among various infiltrated cells, the macrophage is the major cell type affected by HGF. Pharmacological inhibition of the c-met receptor by PHA-665752 increased the expression levels of pro-inflammatory (M1) macrophage markers such as IL-1β and iNOS while lowering those of pro-regenerative (M2) macrophage markers like IL-10 and TGF-β, resulting in compromised muscle repair. In Raw 264.7 cells, HGF decreased the RNA level of LPS-induced TNF-α, IL-1β, and iNOS while enhancing that of IL-10. HGF was also shown to increase the phosphorylation of AMPKα through CaMKKβ, thereby overcoming the effects of the LPS-induced deactivation of AMPKα. Transfection with specific siRNA to AMPKα diminished the effects of HGF on the LPS-induced gene expressions of M1 and M2 markers. Exogenous delivery of HGF through intramuscular injection of the HGF-expressing plasmid vector promoted the transition to M2 macrophage and facilitated muscle regeneration. Taken together, our findings suggested that HGF/c-met might play an important role in the transition of the macrophage during muscle repair, indicating the potential use of HGF as a basis for developing therapeutics for muscle degenerative diseases.
Collapse
Affiliation(s)
- Wooshik Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jaeman Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Junghun Lee
- R&D Center for Innovative Medicines, ViroMed Co., Ltd, Seoul, South Korea
| | - Sang Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Sunyoung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,R&D Center for Innovative Medicines, ViroMed Co., Ltd, Seoul, South Korea
| |
Collapse
|
31
|
Bencheikh L, Diop MK, Rivière J, Imanci A, Pierron G, Souquere S, Naimo A, Morabito M, Dussiot M, De Leeuw F, Lobry C, Solary E, Droin N. Dynamic gene regulation by nuclear colony-stimulating factor 1 receptor in human monocytes and macrophages. Nat Commun 2019; 10:1935. [PMID: 31028249 PMCID: PMC6486619 DOI: 10.1038/s41467-019-09970-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Despite their location at the cell surface, several receptor tyrosine kinases (RTK) are also found in the nucleus, as either intracellular domains or full length proteins. However, their potential nuclear functions remain poorly understood. Here we find that a fraction of full length Colony Stimulating Factor-1 Receptor (CSF-1R), an RTK involved in monocyte/macrophage generation, migrates to the nucleus upon CSF-1 stimulation in human primary monocytes. Chromatin-immunoprecipitation identifies the preferential recruitment of CSF-1R to intergenic regions, where it co-localizes with H3K4me1 and interacts with the transcription factor EGR1. When monocytes are differentiated into macrophages with CSF-1, CSF-1R is redirected to transcription starting sites, colocalizes with H3K4me3, and interacts with ELK and YY1 transcription factors. CSF-1R expression and chromatin recruitment is modulated by small molecule CSF-1R inhibitors and altered in monocytes from chronic myelomonocytic leukemia patients. Unraveling this dynamic non-canonical CSF-1R function suggests new avenues to explore the poorly understood functions of this receptor and its ligands. Receptor tyrosine kinases localize to the cell surface and have been suggested to also have nuclear function. Here the authors provide evidence that Colony Stimulating Factor-1 Receptor (CSF-1R) migrates to the nucleus upon CSF-1 stimulation in monocytes and that upon differentiation into macrophages, CSF-1R localizes to TSS, co-localizes with H3K4me3, and interacts with ELK and YY1.
Collapse
Affiliation(s)
- Laura Bencheikh
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Faculté de Médecine, Université Paris-Sud, 94270, Le Kremlin-Bicêtre, France
| | | | - Julie Rivière
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Aygun Imanci
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Faculté de Médecine, Université Paris-Sud, 94270, Le Kremlin-Bicêtre, France
| | - Gerard Pierron
- CNRS UMR9196, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Sylvie Souquere
- CNRS UMR9196, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Audrey Naimo
- INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Margot Morabito
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Michaël Dussiot
- INSERM U1163, CNRS UMR8254, Institut Imagine, Hôpital Necker Enfants Malades, 75015, Paris, France.,Institut Imagine, Hôpital Necker Enfants Malades, Université Sorbonne-Paris-Cité, 75015, Paris, France.,Laboratoire d'excellence GR-Ex, Institut Imagine, Hôpital Necker Enfants Malades, 75015, Paris, France
| | - Frédéric De Leeuw
- INSERM US23, CNRS UMS 3655, AMMICa, Imaging and Cytometry Platform, Gustave Roussy Cancer Center, 94805, Villejuif, France
| | - Camille Lobry
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France.,Faculté de Médecine, Université Paris-Sud, 94270, Le Kremlin-Bicêtre, France
| | - Eric Solary
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Faculté de Médecine, Université Paris-Sud, 94270, Le Kremlin-Bicêtre, France. .,Department of Hematology, Gustave Roussy Cancer Center, 94805, Villejuif, France.
| | - Nathalie Droin
- INSERM U1170, Gustave Roussy Cancer Center, 94805, Villejuif, France. .,Faculté de Médecine, Université Paris-Sud, 94270, Le Kremlin-Bicêtre, France. .,INSERM US23, CNRS UMS 3655, AMMICa, Genomic platform, Gustave Roussy Cancer Center, 94805, Villejuif, France.
| |
Collapse
|
32
|
Chen MK, Du Y, Sun L, Hsu JL, Wang YH, Gao Y, Huang J, Hung MC. H 2O 2 induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism. J Biol Chem 2019; 294:8516-8528. [PMID: 30962283 DOI: 10.1074/jbc.ra118.005953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/27/2019] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are cellular by-products produced from metabolism and also anticancer agents, such as ionizing irradiation and chemotherapy drugs. The ROS H2O2 has high rates of production in cancer cells because of their rapid proliferation. ROS oxidize DNA, protein, and lipids, causing oxidative stress in cancer cells and making them vulnerable to other stresses. Therefore, cancer cell survival relies on maintaining ROS-induced stress at tolerable levels. Hepatocyte growth factor receptor (c-MET) is a receptor tyrosine kinase overexpressed in malignant cancer types, including breast cancer. Full-length c-MET triggers a signal transduction cascade from the plasma membrane that, through downstream signaling proteins, up-regulates cell proliferation and migration. Recently, c-MET was shown to interact and phosphorylate poly(ADP-ribose) polymerase 1 in the nucleus and to induce poly(ADP-ribose) polymerase inhibitor resistance. However, it remains unclear how c-MET moves from the cell membrane to the nucleus. Here, we demonstrate that H2O2 induces retrograde transport of membrane-associated full-length c-MET into the nucleus of human MCF10A and MCF12A or primary breast cancer cells. We further show that knocking down either coatomer protein complex subunit γ1 (COPG1) or Sec61 translocon β subunit (SEC61β) attenuates the accumulation of full-length nuclear c-MET. However, a c-MET kinase inhibitor did not block nuclear c-MET transport. Moreover, nuclear c-MET interacted with KU proteins in breast cancer cells, suggesting a role of full-length nuclear c-MET in ROS-induced DNA damage repair. We conclude that a membrane-bound retrograde vesicle transport mechanism facilitates membrane-to-nucleus transport of c-MET in breast cancer cells.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yi Du
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Linlin Sun
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yu-Han Wang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan
| | - Yuan Gao
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mien-Chie Hung
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan; Center of Molecular Medicine, China Medical University, Taichung 402, Taiwan.
| |
Collapse
|
33
|
Xie Y, Nurkesh AA, Ibragimova N, Zhanzak Z, Meyerbekova A, Alexeyeva Z, Yesbolatova A, Satayeva M, Mustafa A, Manarbek L, Maipas A, Altaikyzy A, Keneskhanova Z, Akbay B, Chen Z. Systematic analysis of NLMP suggests nuclear localization of RTK/MET kinases resemble cancer cell clearance. J Exp Clin Cancer Res 2019; 38:43. [PMID: 30700325 PMCID: PMC6354337 DOI: 10.1186/s13046-018-1004-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Some membrane proteins can translocate into the nucleus, defined as nuclear localized membrane proteins (NLMPs), including receptor tyrosine kinases (RTKs). We previously showed that nuclear MET (nMET), a member of RTKs, mediates cancer stem-like cells self-renewal to promote cancer recurrence. However, it is unknown that nMET or mMET, which is the ancestor in the evolution of cancer cell survival and clearance. Here, we aim to study the NLMP functions in cell death, differentiation and survival. METHOD We applied the systematic reanalysis of functional NLMP and clinical investigations of nMET from databases. In addition, we used soft agar assay, immunoblotting, flow cytometry, and immunofluorescence confocal microscopy for examinations of nMET functions including stem-like cell formation, cell signaling, cell cycle regulation, and co-localization with regulators of cell signaling. ShRNA, antibody of recognizing surface membrane MET based treatment were used to downregulate endogenous nMET to uncover its function. RESULTS We predicted and demonstrated that nMET and nEGFR are most likely not ancestors. nMET overexpression induces both cell death and survival with drug resistance and stem cell-like characters. Moreover, the paradoxical function of nMET in both cell death and cell survival is explained by the fact that nMET induces stem cell-like cell growth, DNA damage repair, to evade the drug sensitization for survival of single cells while non-stem cell-like nMET expressing single cells may undergo clearance by cell death through cell cycle arrest induced by p21. CONCLUSION Taken together, our data suggest a link between nuclear RTK and cancer cell evolutionary clearance via cell death, and drug resistance for survival through stemness selection. Targeting evolved nuclear RTKs in cancer stem cells would be a novel avenue for precision cancer therapy.
Collapse
Affiliation(s)
- Yingqiu Xie
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Ayan A. Nurkesh
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Nazgul Ibragimova
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Zhuldyz Zhanzak
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Aizhan Meyerbekova
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Zhanna Alexeyeva
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Aiya Yesbolatova
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Madina Satayeva
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Aidana Mustafa
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Limara Manarbek
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Aisulu Maipas
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Akerke Altaikyzy
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Zhibek Keneskhanova
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Burkitkan Akbay
- Department of Biology, School of Science and Technology, Nazarbayev University, Qabanbay Batyr Ave 53, Astana, 010000 Kazakhstan
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 USA
| |
Collapse
|
34
|
Oliva-Vilarnau N, Hankeova S, Vorrink SU, Mkrtchian S, Andersson ER, Lauschke VM. Calcium Signaling in Liver Injury and Regeneration. Front Med (Lausanne) 2018; 5:192. [PMID: 30023358 PMCID: PMC6039545 DOI: 10.3389/fmed.2018.00192] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
The liver fulfills central roles in metabolic control and detoxification and, as such, is continuously exposed to a plethora of insults. Importantly, the liver has a unique ability to regenerate and can completely recoup from most acute, non-iterative insults. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease (NAFLD), long-term alcohol abuse and chronic use of certain medications, can cause persistent injury in which the regenerative capacity eventually becomes dysfunctional, resulting in hepatic scaring and cirrhosis. Calcium is a versatile secondary messenger that regulates multiple hepatic functions, including lipid and carbohydrate metabolism, as well as bile secretion and choleresis. Accordingly, dysregulation of calcium signaling is a hallmark of both acute and chronic liver diseases. In addition, recent research implicates calcium transients as essential components of liver regeneration. In this review, we provide a comprehensive overview of the role of calcium signaling in liver health and disease and discuss the importance of calcium in the orchestration of the ensuing regenerative response. Furthermore, we highlight similarities and differences in spatiotemporal calcium regulation between liver insults of different etiologies. Finally, we discuss intracellular calcium control as an emerging therapeutic target for liver injury and summarize recent clinical findings of calcium modulation for the treatment of ischemic-reperfusion injury, cholestasis and NAFLD.
Collapse
Affiliation(s)
- Nuria Oliva-Vilarnau
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simona Hankeova
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Sabine U Vorrink
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Fonseca MDC, França A, Florentino RM, Fonseca RC, Lima Filho ACM, Vidigal PTV, Oliveira AG, Dubuquoy L, Nathanson MH, Leite MF. Cholesterol-enriched membrane microdomains are needed for insulin signaling and proliferation in hepatic cells. Am J Physiol Gastrointest Liver Physiol 2018; 315:G80-G94. [PMID: 29471671 PMCID: PMC6109708 DOI: 10.1152/ajpgi.00008.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte proliferation during liver regeneration is a well-coordinated process regulated by the activation of several growth factor receptors, including the insulin receptor (IR). The IR can be localized in part to cholesterol-enriched membrane microdomains, but the role of such domains in insulin-mediated events in hepatocytes is not known. We investigated whether partitioning of IRs into cholesterol-enriched membrane rafts is important for the mitogenic effects of insulin in the hepatic cells. IR and lipid rafts were labeled in HepG2 cells and primary rat hepatocytes. Membrane cholesterol was depleted in vitro with metyl-β-cyclodextrin (MβCD) and in vivo with lovastatin. Insulin-induced calcium (Ca2+) signals studies were examined in HepG2 cells and in freshly isolated rat hepatocytes as well as in whole liver in vivo by intravital confocal imaging. Liver regeneration was studied by 70% partial hepatectomy (PH), and hepatocyte proliferation was assessed by PCNA staining. A subpopulation of IR was found in membrane microdomains enriched in cholesterol. Depletion of cholesterol from plasma membrane resulted in redistribution of the IR along the cells, which was associated with impaired insulin-induced nuclear Ca2+ signals, a signaling event that regulates hepatocyte proliferation. Cholesterol depletion also led to ERK1/2 hyper-phosphorylation. Lovastatin administration to rats decreased hepatic cholesterol content, disrupted lipid rafts and decreased insulin-induced Ca2+ signaling in hepatocytes, and delayed liver regeneration after PH. Therefore, membrane cholesterol content and lipid rafts integrity showed to be important for the proliferative effects of insulin in hepatic cells. NEW & NOTEWORTHY One of insulin's actions is to stimulate liver regeneration. Here we show that a subpopulation of insulin receptors is in a specialized cholesterol-enriched region of the cell membrane and this subfraction is important for insulin's proliferative effects.
Collapse
Affiliation(s)
- Matheus de Castro Fonseca
- 1Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Sao Paulo, Brazil,2Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andressa França
- 2Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,3Department of Molecular Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Machado Florentino
- 2Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roberta Cristelli Fonseca
- 2Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,4Center for Gastrointestinal Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Paula Teixeira Vieira Vidigal
- 5Department of Pathological Anatomy and Forensic Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - André Gustavo Oliveira
- 2Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,4Center for Gastrointestinal Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laurent Dubuquoy
- 6Lille Inflammation Research International Center–UMR995, INSERM, University of Lille, Lille, France
| | - Michael H. Nathanson
- 7Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - M. Fátima Leite
- 2Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
36
|
Kunrath-Lima M, de Miranda MC, Ferreira ADF, Faraco CCF, de Melo MIA, Goes AM, Rodrigues MA, Faria JAQA, Gomes DA. Phospholipase C delta 4 (PLCδ4) is a nuclear protein involved in cell proliferation and senescence in mesenchymal stromal stem cells. Cell Signal 2018; 49:59-67. [PMID: 29859928 DOI: 10.1016/j.cellsig.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023]
Abstract
Ca2+ is an important second messenger, and it is involved in many cellular processes such as cell death and proliferation. The rise in intracellular Ca2+ levels can be due to the generation of inositol 1,4,5-trisphosphate (InsP3), which is a product of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipases C (PLCs), that leads to Ca2+ release from endoplasmic reticulum by InsP3 receptors (InsP3R). Ca2+ signaling patterns can vary in different regions of the cell and increases in nuclear Ca2+ levels have specific biological effects that differ from those of Ca2+ increase in the cytoplasm. There are PLCs in the cytoplasm and nucleus, but little is known about the functions of nuclear PLCs. This work aimed to characterize phenotypically the human PLCδ4 (hPLCδ4) in mesenchymal stem cells. This nuclear isoform of PLC is present in different cell types and has a possible role in proliferative processes. In this work, hPLCδ4 was found to be mainly nuclear in human adipose-derived mesenchymal stem cells (hASC). PLCδ4 knockdown demonstrated that it is essential for hASC proliferation, without inducing cell death. An increase of cells in G1, and a reduction of cells on interphase and G2/M in knockdown cells were seen. Furthermore, PLCδ4 knockdown increased the percentage of senescent cells, p16INK4A+ and p21Cip1 mRNAs expression, which could explain the impaired cell proliferation. The results show that hPLCδ4 is in involved in cellular proliferation and senescence in hASC.
Collapse
Affiliation(s)
- Marianna Kunrath-Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andrea da Fonseca Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila Cristina Fraga Faraco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alfredo Miranda Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michele Angela Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
37
|
Zhu ZC, Liu JW, Li K, Zheng J, Xiong ZQ. KPNB1 inhibition disrupts proteostasis and triggers unfolded protein response-mediated apoptosis in glioblastoma cells. Oncogene 2018; 37:2936-2952. [PMID: 29520102 PMCID: PMC5978811 DOI: 10.1038/s41388-018-0180-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/28/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
The nuclear import receptor karyopherin β1 (KPNB1) is involved in the nuclear import of most proteins and in the regulation of multiple mitotic events. Upregulation of KPNB1 has been observed in cancers including glioblastoma. Depletion of KPNB1 induces mitotic arrest and apoptosis in cancer cells, but the underlying mechanism is not clearly elucidated. Here, we found that downregulation and functional inhibition of KPNB1 in glioblastoma cells induced growth arrest and apoptosis without apparent mitotic arrest. KPNB1 inhibition upregulated Puma and Noxa and freed Mcl-1-sequestered Bax and Bak, leading to mitochondrial outer membrane permeabilization (MOMP) and apoptosis. Moreover, combination of Bcl-xL inhibitors and KPNB1 inhibition enhanced apoptosis in glioblastoma cells. KPNB1 inhibition promoted cytosolic retention of its cargo and impaired cellular proteostasis, resulting in elevated polyubiquitination, formation of aggresome-like-induced structure (ALIS), and unfolded protein response (UPR). Ubiquitination elevation and UPR activation in KPNB1-deficient cells were reversed by KPNB1 overexpression or inhibitors of protein synthesis but aggravated by inhibitors of autophagy-lysosome or proteasome, indicating that rebalance of cytosolic/nuclear protein distribution and alleviation of protein overload favor proteostasis and cell survival. Chronic activation of eIF2α/ATF4 cascade of UPR was responsible for the upregulation of Puma and Noxa, apoptosis and ABT-263 sensitivity. Taken together, our findings demonstrate that KPNB1 is required for proteostasis maintenance and its inhibition induces apoptosis in glioblastoma cells through UPR-mediated deregulation of Bcl-2 family members.
Collapse
Affiliation(s)
- Zhi-Chuan Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ji-Wei Liu
- School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Kui Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jing Zheng
- School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
38
|
Tumor and circulating biomarkers in patients with second-line hepatocellular carcinoma from the randomized phase II study with tivantinib. Oncotarget 2018; 7:72622-72633. [PMID: 27579536 PMCID: PMC5341932 DOI: 10.18632/oncotarget.11621] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/20/2016] [Indexed: 02/06/2023] Open
Abstract
ARQ 197-215 was a randomized placebo-controlled phase II study testing the MET inhibitor tivantinib in second-line hepatocellular carcinoma (HCC) patients. It identified tumor MET as a key biomarker in HCC.Aim of this research was to study the prognostic and predictive value of tumor (MET, the receptor tyrosine kinase encoded by the homonymous MNNG-HOS transforming gene) and circulating (MET, hepatocyte growth factor [HGF], alpha-fetoprotein [AFP], vascular endothelial growth factor [VEGF]) biomarkers in second-line HCC. Tumor MET-High status was centrally assessed by immunohistochemistry. Circulating biomarkers were centrally analyzed on serum samples collected at baseline and every 4-8 weeks, using medians as cut-off to determine High/Low status. Tumor MET, tested in 77 patients, was more frequently High after (82%) versus before (40%) sorafenib. A significant interaction (p = 0.04) between tivantinib and baseline tumor MET in terms of survival was observed. Baseline circulating MET and HGF (102 patients) High status correlated with shorter survival (HR 0.61, p = 0.03, and HR 0.60, p = 0.02, respectively), while the association between AFP (104 patients) or VEGF (103 patients) status and survival was non-significant. CONCLUSIONS Tumor MET levels were higher in patients treated with sorafenib. Circulating biomarkers such as MET and HGF may be prognostic in second-line HCC. These results need to be confirmed in larger randomized clinical trials.
Collapse
|
39
|
Papadopoulos N, Lennartsson J, Heldin CH. PDGFRβ translocates to the nucleus and regulates chromatin remodeling via TATA element-modifying factor 1. J Cell Biol 2018; 217:1701-1717. [PMID: 29545370 PMCID: PMC5940298 DOI: 10.1083/jcb.201706118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/05/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
PDGFRβ translocates to the nucleus in a ligand-dependent manner tethered by TATA element–modifying factor 1 (TMF-1). Papadopoulos et al. show that PDGFRβ interacts with TMF-1 and Fer kinase in the nucleus, regulating chromatin remodeling by the SWI–SNF complex and controlling proliferation via a p21-dependent mechanism. Translocation of full-length or fragments of receptors to the nucleus has been reported for several tyrosine kinase receptors. In this paper, we show that a fraction of full-length cell surface platelet-derived growth factor (PDGF) receptor β (PDGFRβ) accumulates in the nucleus at the chromatin and the nuclear matrix after ligand stimulation. Nuclear translocation of PDGFRβ was dependent on PDGF-BB–induced receptor dimerization, clathrin-mediated endocytosis, β-importin, and intact Golgi, occurring in both normal and cancer cells. In the nucleus, PDGFRβ formed ligand-inducible complexes with the tyrosine kinase Fer and its substrate, TATA element–modifying factor 1 (TMF-1). PDGF-BB stimulation decreased TMF-1 binding to the transcriptional regulator Brahma-related gene 1 (Brg-1) and released Brg-1 from the SWI–SNF chromatin remodeling complex. Moreover, knockdown of TMF-1 by small interfering RNA decreased nuclear translocation of PDGFRβ and caused significant up-regulation of the Brg-1/p53-regulated cell cycle inhibitor CDKN1A (encoding p21) without affecting PDGFRβ-inducible immediate-early genes. In conclusion, nuclear interactions of PDGFRβ control proliferation by chromatin remodeling and regulation of p21 levels.
Collapse
Affiliation(s)
- Natalia Papadopoulos
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| | - Johan Lennartsson
- Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biomedicine, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden .,Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Xu Y, Wang K, Yu Q. FRMD6 inhibits human glioblastoma growth and progression by negatively regulating activity of receptor tyrosine kinases. Oncotarget 2018; 7:70080-70091. [PMID: 27661120 PMCID: PMC5342536 DOI: 10.18632/oncotarget.12148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023] Open
Abstract
FRMD6 is an Ezrin/Radixin/Moesin (ERM) family protein and a human homologue of Drosophila expanded (ex). Ex functions in parallel of Drosophila merlin at upstream of the Hippo signaling pathway that controls proliferation, apoptosis, tissue regeneration, and tumorigenesis. Even though the core kinase cascade (MST1/2-Lats1/2-YAP/TAZ) of the Hippo pathway has been well established, its upstream regulators are not well understood. Merlin promotes activation of the Hippo pathway. However, the effect of FRMD6 on the Hippo pathway is controversial. Little is known about how FRMD6 functions and the potential role of FRMD in gliomagenesis and glioblastoma (GBM) progression. We demonstrate for the first time that FRMD6 is down-regulated in human GBM cells and tissues and that increased FRMD6 expression inhibits whereas FRMD6 knockdown promotes GBM cell proliferation/invasion in vitro and GBM growth/progression in vivo. Furthermore, we demonstrate that unlike increased expression of merlin, which enhances the stress induced activation of the Hippo pathway, increased FRMD6 expression displays little effect on the pathway. In contrast, we show that FRMD6 inhibits activation of a couple of receptor tyrosine kinases (RTKs) including c-Met and PDGFR and their downstream Erk and AKT kinases. Moreover, we show that expression of constitutively active c-Met, the TPR-Met fusion protein, largely reverses the anti-GBM effect of FRMD6 in vivo, suggesting that FRMD6 functions at least partially through inhibiting activity of RTKs especially c-Met. These results establish a novel function of FRMD6 in inhibiting human GBM growth and progression and uncover a novel mechanism by which FRMD6 exerts its anti-GBM activity.
Collapse
Affiliation(s)
- Yin Xu
- Department of Oncological Sciences Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaiqiang Wang
- Department of Oncological Sciences Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qin Yu
- Department of Oncological Sciences Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
41
|
Khamphaya T, Chukijrungroat N, Saengsirisuwan V, Mitchell-Richards KA, Robert ME, Mennone A, Nathanson MH, Weerachayaphorn J, Weerachayaphorn J. Nonalcoholic fatty liver disease impairs expression of the type II inositol 1,4,5-trisphosphate receptor. Hepatology 2018; 67:560-574. [PMID: 29023819 PMCID: PMC5893412 DOI: 10.1002/hep.29588] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/07/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. It may result in several types of liver problems, including impaired liver regeneration (LR), but the mechanism for this is unknown. Because LR depends on calcium signaling, we examined the effects of NAFLD on expression of the type II inositol 1,4,5-trisphosphate receptor (ITPR2), the principle calcium release channel in hepatocytes. ITPR2 promoter activity was measured in Huh7 and HepG2 cells. ITPR2 and c-Jun protein levels were evaluated in Huh7 cells, in liver tissue from a rat model of NAFLD, and in liver biopsy specimens of patients with simple steatosis and nonalcoholic steatohepatitis (NASH). LR was assessed in wild-type and Itpr2 knockout (Itpr2-/- ) mice following 67% hepatectomy. Cell proliferation was examined in ITPR2-knockout HepG2 cells generated by the CRISPR/Cas9 system. c-Jun dose dependently decreased activity of the human ITPR2 promoter. c-Jun expression was increased and ITPR2 was decreased in fat-loaded Huh7 cells and in livers of rats fed a high-fat, high-fructose diet. Overexpression of c-Jun reduced protein and mRNA expression of ITPR2 in Huh7 cells, whereas knockdown of c-Jun prevented the decrease of ITPR2 in fat-loaded Huh7 cells. ITPR2 expression was decreased and c-Jun was increased in liver biopsies of patients with steatosis and NASH compared to controls. ITPR2-knockout cells exhibited less nuclear calcium signaling and cell proliferation than control cells. LR assessed by Ki-67 and proliferating cell nuclear antigen was markedly decreased in Itpr2-/- mice. Conclusion: Fatty liver induces a c-Jun-mediated decrease in ITPR2 in hepatocytes. This may account for the impaired LR that occurs in NAFLD. (Hepatology 2018;67:560-574).
Collapse
Affiliation(s)
- Tanaporn Khamphaya
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natsasi Chukijrungroat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Vitoon Saengsirisuwan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Marie E. Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Albert Mennone
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven 06519, Connecticut, USA
| | - Michael H. Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven 06519, Connecticut, USA,Corresponding Authors: Michael H. Nathanson, M.D., Ph.D., Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA. Phone: (+1) 203-785-7312; Fax: (+1) 203-785-7273, ; Jittima Weerachayaphorn, Ph.D., Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand. Phone: (+66) 2201-5514; Fax: (+66) 2354-7154, ,
| | - Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand,Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven 06519, Connecticut, USA,Corresponding Authors: Michael H. Nathanson, M.D., Ph.D., Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA. Phone: (+1) 203-785-7312; Fax: (+1) 203-785-7273, ; Jittima Weerachayaphorn, Ph.D., Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand. Phone: (+66) 2201-5514; Fax: (+66) 2354-7154, ,
| | - Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
42
|
Absent and abundant MET immunoreactivity is associated with poor prognosis of patients with oral and oropharyngeal squamous cell carcinoma. Oncotarget 2017; 7:13167-81. [PMID: 26909606 PMCID: PMC4914349 DOI: 10.18632/oncotarget.7534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022] Open
Abstract
Although the receptor tyrosine kinase (RTK) MET is widely expressed in head and neck squamous cell carcinoma (HNSCC), its prognostic value remains unclear. This might be due to the use of a variety of antibodies and scoring systems. Here, the reliability of five commercial C-terminal MET antibodies (D1C2, CVD13, SP44, C-12 and C-28) was evaluated before examining the prognostic value of MET immunoreactivity in HNSCC. Using cancer cell lines, it was shown that D1C2 and CVD13 specifically detect MET under reducing, native and formalin-fixed paraffin-embedded (FFPE) conditions. Immunohistochemical staining of routinely FFPE oral SCC with D1C2 and CVD13 demonstrated that D1C2 is most sensitive in the detection of membranous MET. Examination of membranous D1C2 immunoreactivity with 179 FFPE oral and oropharyngeal SCC – represented in a tissue microarray – illustrated that staining is either uniform (negative or positive) across tumors or differs between a tumor's center and periphery. Ultimately, statistical analysis revealed that D1C2 uniform staining is significantly associated with poor 5-year overall and disease free survival of patients lacking vasoinvasive growth (HR = 3.019, p < 0.001; HR = 2.559, p < 0.001). These findings might contribute to reliable stratification of patients eligible for treatment with biologicals directed against MET.
Collapse
|
43
|
Abstract
Breast cancer affects approximately 1 in 8 women, and it is estimated that over 246,660 women in the USA will be diagnosed with breast cancer in 2016. Breast cancer mortality has decline over the last two decades due to early detection and improved treatment. Over the last few years, there is mounting evidence to demonstrate the prominent role of receptor tyrosine kinases (RTKs) in tumor initiation and progression, and targeted therapies against the RTKs have been developed, evaluated in clinical trials, and approved for many cancer types, including breast cancer. However, not all breast cancers are the same as evidenced by the multiple subtypes of the disease, with some more aggressive than others, showing differential treatment response to different types of drugs. Moreover, in addition to canonical signaling from the cell surface, many RTKs can be trafficked to various subcellular compartments, e.g., the multivesicular body and nucleus, where they carry out critical cellular functions, such as cell proliferation, DNA replication and repair, and therapeutic resistance. In this review, we provide a brief summary on the role of a selected number of RTKs in breast cancer and describe some mechanisms of resistance to targeted therapies.
Collapse
Affiliation(s)
- Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan.,Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. .,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
44
|
Nuclear Met promotes hepatocellular carcinoma tumorigenesis and metastasis by upregulation of TAK1 and activation of NF-κB pathway. Cancer Lett 2017; 411:150-161. [PMID: 28989054 DOI: 10.1016/j.canlet.2017.09.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
Presence of Met receptor tyrosine kinase in the nucleus of cells has been reported. However, the functions of Met which expresses in the nucleus (nMet) remain elusive. In this study, we found that nMet was increased in 89% of HCC tumorous tissues when compared with the corresponding non-tumorous liver tissues. nMet expression increased progressively along HCC development and significantly correlated with cirrhosis, poorer cellular differentiation, venous invasion, late stage HCC and poorer overall survival. Western blot analysis revealed that nMet is a 48-kDa protein comprising the carboxyl terminal of Met receptor. Induced expression of nMet promoted HCC cell growth, migration and invasiveness in vitro and tumorigenesis and pulmonary metastasis in vivo. Luciferase assay showed that nMet activated NF-κB pathway. Indeed, p-IKKα/β and nuclear p-p65 were higher in nMet stable cells than in the control cells. Perturbation of TAK1/NF-κB axis abrogated the aggressiveness of HCC cells, both in vitro and in vivo. In conclusion, nMet was overexpressed and as a potential prognostic biomarker of HCC. Functionally, nMet accelerated HCC tumorigenesis and metastasis via the activation of TAK1/NF-κB pathway.
Collapse
|
45
|
Michalopoulos GK. Hepatostat: Liver regeneration and normal liver tissue maintenance. Hepatology 2017; 65:1384-1392. [PMID: 27997988 DOI: 10.1002/hep.28988] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
In contrast to all other organs, liver-to-body-weight ratio needs to be maintained always at 100% of what is required for body homeostasis. Adjustment of liver size to 100% of what is required for homeostasis has been called "hepatostat." Removal of a portion of any other organ is followed with local regeneration of a limited degree, but it never attempts to reach 100% of the original size. The complex mechanisms involved in this uniquely hepatic process encompass a variety of regenerative pathways that are specific to different types of injury. The most studied form of liver regeneration (LR) is that occurring after loss of hepatocytes in a single acute injury, such as rodent LR after two-thirds partial hepatectomy or administration of damaging chemicals (CCl4 , acetaminophen, etc.). Alternative regenerative pathways become activated when normal regeneration is thwarted and trigger the appearance of "progenitor" cells. Chronic loss of hepatocytes is associated with regenerative efforts characterized by continual hepatocyte proliferation and often has adverse consequences (development of cirrhosis or liver cancer). Even though a very few hepatocytes proliferate at any given time in normal liver, the mechanisms involved in the maintenance of liver weight by this slow process in the absence of liver injury are not as well understood. (Hepatology 2017;65:1384-1392).
Collapse
|
46
|
Sergin I, Jong YJI, Harmon SK, Kumar V, O'Malley KL. Sequences within the C Terminus of the Metabotropic Glutamate Receptor 5 (mGluR5) Are Responsible for Inner Nuclear Membrane Localization. J Biol Chem 2017; 292:3637-3655. [PMID: 28096465 DOI: 10.1074/jbc.m116.757724] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
Traditionally, G-protein-coupled receptors (GPCR) are thought to be located on the cell surface where they transmit extracellular signals to the cytoplasm. However, recent studies indicate that some GPCRs are also localized to various subcellular compartments such as the nucleus where they appear required for various biological functions. For example, the metabotropic glutamate receptor 5 (mGluR5) is concentrated at the inner nuclear membrane (INM) where it mediates Ca2+ changes in the nucleoplasm by coupling with Gq/11 Here, we identified a region within the C-terminal domain (amino acids 852-876) that is necessary and sufficient for INM localization of the receptor. Because these sequences do not correspond to known nuclear localization signal motifs, they represent a new motif for INM trafficking. mGluR5 is also trafficked to the plasma membrane where it undergoes re-cycling/degradation in a separate receptor pool, one that does not interact with the nuclear mGluR5 pool. Finally, our data suggest that once at the INM, mGluR5 is stably retained via interactions with chromatin. Thus, mGluR5 is perfectly positioned to regulate nucleoplasmic Ca2+in situ.
Collapse
Affiliation(s)
- Ismail Sergin
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Yuh-Jiin I Jong
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Steven K Harmon
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Vikas Kumar
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Karen L O'Malley
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
47
|
Brand TM, Iida M, Corrigan KL, Braverman CM, Coan JP, Flanigan BG, Stein AP, Salgia R, Rolff J, Kimple RJ, Wheeler DL. RETRACTED: The receptor tyrosine kinase AXL mediates nuclear translocation of the epidermal growth factor receptor. Sci Signal 2017; 10:10/460/eaag1064. [PMID: 28049763 PMCID: PMC7094775 DOI: 10.1126/scisignal.aag1064] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a therapeutic target in patients with various cancers. Unfortunately, resistance to EGFR-targeted therapeutics is common. Previous studies identified two mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Nuclear translocation of EGFR bypasses the inhibitory effects of cetuximab, and the receptor tyrosine kinase AXL mediates cetuximab resistance by maintaining EGFR activation and downstream signaling. Thus, we hypothesized that AXL mediated the nuclear translocation of EGFR in the setting of cetuximab resistance. Cetuximab-resistant clones of non-small cell lung cancer in culture and patient-derived xenografts in mice had increased abundance of AXL and nuclear EGFR (nEGFR). Cellular fractionation analysis, super-resolution microscopy, and electron microscopy revealed that genetic loss of AXL reduced the accumulation of nEGFR. SRC family kinases (SFKs) and HER family ligands promote the nuclear translocation of EGFR. We found that AXL knockdown reduced the expression of the genes encoding the SFK family members YES and LYN and the ligand neuregulin-1 (NRG1). AXL knockdown also decreased the interaction between EGFR and the related receptor HER3 and accumulation of HER3 in the nucleus. Overexpression of LYN and NRG1 in cells depleted of AXL resulted in accumulation of nEGFR, rescuing the deficit induced by lack of AXL. Collectively, these data uncover a previously unrecognized role for AXL in regulating the nuclear translocation of EGFR and suggest that AXL-mediated SFK and NRG1 expression promote this process.
Collapse
Affiliation(s)
- Toni M. Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Kelsey L. Corrigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Cara M. Braverman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - John P. Coan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Bailey G. Flanigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Andrew P. Stein
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research. City of Hope Comprehensive Cancer Center. 1500 East Duarte Road, Duarte, CA, 91010
| | - Jana Rolff
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA,Corresponding author.
| |
Collapse
|
48
|
Srivastava AK, Navas T, Herrick WG, Hollingshead MG, Bottaro DP, Doroshow JH, Parchment RE. Effective implementation of novel MET pharmacodynamic assays in translational studies. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:3. [PMID: 28164088 DOI: 10.21037/atm.2016.12.78] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MET tyrosine kinase (TK) dysregulation is significantly implicated in many types of cancer. Despite over 20 years of drug development to target MET in cancers, a pure anti-MET therapeutic has not yet received market approval. The failure of two recently concluded phase III trials point to a major weakness in biomarker strategies to identify patients who will benefit most from MET therapies. The capability to interrogate oncogenic mutations in MET via circulating tumor DNA (ctDNA) provides an important advancement in identification and stratification of patients for MET therapy. However, a wide range in type and frequency of these mutations suggest there is a need to carefully link these mutations to MET dysregulation, at least in proof-of-concept studies. In this review, we elaborate how we can utilize recently developed and validated pharmacodynamic biomarkers of MET not only to show target engagement, but more importantly to quantitatively measure MET dysregulation in tumor tissues. The MET assay endpoints provide evidence of both canonical and non-canonical MET signaling, can be used as "effect markers" to define biologically effective doses (BEDs) for molecularly targeted drugs, confirm mechanism-of-action in testing combination of drugs, and establish whether a diagnostic test is reporting MET dysregulation. We have established standard operating procedures for tumor biopsy collections to control pre-analytical variables that have produced valid results in proof-of-concept studies. The reagents and procedures are made available to the research community for potential implementation on multiple platforms such as ELISA, quantitative immunofluorescence assay (qIFA), and immuno-MRM assays.
Collapse
Affiliation(s)
- Apurva K Srivastava
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tony Navas
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - William G Herrick
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Melinda G Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Donald P Bottaro
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ralph E Parchment
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
49
|
Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration. PLoS One 2016; 11:e0165371. [PMID: 27992423 PMCID: PMC5167550 DOI: 10.1371/journal.pone.0165371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration.
Collapse
|
50
|
Lo CM, Lo JC, Sato PY, Yeung TL, Mok SC, Yip KP. Monitoring of ovarian cancer cell invasion in real time with frequency-dependent impedance measurement. Am J Physiol Cell Physiol 2016; 311:C1040-C1047. [PMID: 27784677 PMCID: PMC5504434 DOI: 10.1152/ajpcell.00211.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/18/2016] [Indexed: 01/10/2023]
Abstract
The conventional approach to assessing cancer invasion is primarily for end-point analysis, which does not provide temporal information on the invasion process or any information on the interactions between invading cells and the underlying adherent cells. To alleviate these limitations, the present study exploited electric cell-substrate impedance sensing (ECIS) to monitor the invasion of ovarian cancer cells (SKOV-3) through an adherent monolayer of human umbilical vein endothelial cells (HUVECs). Impedance was measured at 4 kHz of AC voltage or was measured as a function of AC frequency (25 Hz to 60 kHz). By measuring impedance at 4-kHz AC, we found that the invasion of SKOV-3 cells through the HUVEC monolayer was manifested as a rapid decrease in transendothelial electrical resistance in real time. The invasion was augmented in the presence of hepatocyte growth factor (HGF). The enhancing effect of HGF was attenuated by c-Met inhibitor (SU11274). By measuring the frequency-dependent impedance of SKOV-3 cells over time, we found that HGF-enhanced SKOV-3 cell invasion was accomplished with reduced junctional resistance (Rb), increased average cell-substrate separation (h), and increased micromotion. SU11274 attenuated the effects of HGF on Rb, h, and micromotion in the SKOV-3 monolayer. SU11274 also increased the barrier function of the HUVEC monolayer by increasing Rb and decreasing h In conclusion, this study demonstrated an improved method for monitoring and studying the interactions between cancer cells and the underlying adherent cells during invasion in real time. Alterations in cellular biophysical properties (Rb, h) associated with cancer transendothelial invasion were detected.
Collapse
Affiliation(s)
- Chun-Min Lo
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Jun-Chih Lo
- Graduate Institute of Natural Healing Sciences, Nanhua University, Chia-Yi, Taiwan
| | - Priscila Y Sato
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; and
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|