1
|
Takahashi S, Maehara M, Nishihara C, Iwata H, Shibutani S. A genome-wide CRISPR-Cas9 knockout screen using dynamin knockout cells identifies Nf2 and Traf3 as genes involved in dynamin-independent endocytosis. Exp Cell Res 2025; 446:114470. [PMID: 39978713 DOI: 10.1016/j.yexcr.2025.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Endocytosis is a fundamental process by which cells take up extracellular materials, including nutrients, growth factors, and pathogens. Although several endocytic pathways, such as clathrin-mediated and caveolin-mediated endocytosis, are well-characterized, other endocytic pathways remain poorly understood. Therefore, in this study, we performed a genome-wide CRISPR-Cas9 screen to elucidate new endocytic pathways using dynamin conditional knockout cells. We identified genes that significantly reduced the cell numbers when knocked out simultaneously with dynamin. Among these, neurofibromin 2 (Nf2) and tumor necrosis factor receptor-associated factor 3 (Traf3), whose relationship with endocytosis was not well understood, were investigated for their roles in endocytosis activity. Nf2 and Traf3 knockout cells exhibited reduced non-specific fluid endocytosis in a dynamin-independent manner. However, Nf2 or Traf3 knockout did not affect the transferrin receptor-mediated endocytosis that depends on clathrin and dynamin. Moreover, Nf2 knockout cells showed reduced cholera toxin uptake in a dynamin-independent manner. Overall, this study highlights the roles of Nf2 and Traf3 in endocytosis.
Collapse
Affiliation(s)
- Sho Takahashi
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Mizuho Maehara
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Chihiro Nishihara
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Hiroyuki Iwata
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
2
|
Xu X, Wang P, Sun H, Xia D, Huang H, Zhang Q, Liu J. Genome-wide identification of the TRAF gene family in humpback grouper (Cromileptes altivelis) and analysis of their expression in response to Vibrio harveyi challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109959. [PMID: 39395597 DOI: 10.1016/j.fsi.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
TRAF (Tumor necrosis factor receptor-associated factor) proteins are key mediators of signal transduction in cell signaling and immune regulation within the toll-like receptor (TLR) and tumor necrosis factor (TNFR) superfamily. Despite the importance of TRAF genes in teleost innate immunity, study on their functions in C. altivelis is limited. This study utilized bioinformatics methods to identify and named eight TRAF genes (CaTRAF2a, CaTRAF2a-like, CaTRAF2b, CaTRAF3, CaTRAF4a, CaTRAF5, CaTRAF6 and CaTRAF7) in C. altivelis. Phylogenetic, syntenic and molecular evolution revealed that all CaTRAF members were evolutionarily conserved in teleost. Domain analysis indicated the presence of a conserved N-terminal RING finger domain in all CaTRAF proteins. Most CaTRAF proteins also featured a MATH domain at the C-terminal, with the exception of CaTRAF7 which contained seven repeat WD40 domains. In addition, qRT-PCR was used to detect the expression patterns of nine different tissues and eight different embryonic development stages of healthy fish, and it was found that there were spatial and tissue specificities among the members. HE staining revealed evident pathological lesions in the tissues post V. harveyi infection. Atrophy and significant bending of the gill lamellae were observed in the gills, while irregular cell shapes, increased fat vacuoles, and enlarged cell volume were noted in the liver. Intestinal tissues displayed thickening of the muscle layer, elongation of intestinal villi, and increased folds. Moreover, the expression of TRAF gene changed significantly after V. harveyi infection. These results would help to clarify the molecular role of CaTRAF gene in the regulation of immune and inflammatory responses in C. altivelis.
Collapse
Affiliation(s)
- Xiaona Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Peng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Huibang Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Dongxue Xia
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Hai Huang
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, China.
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China; Hainan Seed Industry Laboratory, Sanya, China.
| | - Jinxiang Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences / Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China; Hainan Seed Industry Laboratory, Sanya, China.
| |
Collapse
|
3
|
Gissler MC, Stachon P, Wolf D, Marchini T. The Role of Tumor Necrosis Factor Associated Factors (TRAFs) in Vascular Inflammation and Atherosclerosis. Front Cardiovasc Med 2022; 9:826630. [PMID: 35252400 PMCID: PMC8891542 DOI: 10.3389/fcvm.2022.826630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
TNF receptor associated factors (TRAFs) represent a family of cytoplasmic signaling adaptor proteins that regulate, bundle, and transduce inflammatory signals downstream of TNF- (TNF-Rs), interleukin (IL)-1-, Toll-like- (TLRs), and IL-17 receptors. TRAFs play a pivotal role in regulating cell survival and immune cell function and are fundamental regulators of acute and chronic inflammation. Lately, the inhibition of inflammation by anti-cytokine therapy has emerged as novel treatment strategy in patients with atherosclerosis. Likewise, growing evidence from preclinical experiments proposes TRAFs as potent modulators of inflammation in atherosclerosis and vascular inflammation. Yet, TRAFs show a highly complex interplay between different TRAF-family members with partially opposing and overlapping functions that are determined by the level of cellular expression, concomitant signaling events, and the context of the disease. Therefore, inhibition of specific TRAFs may be beneficial in one condition and harmful in others. Here, we carefully discuss the cellular expression and signaling events of TRAFs and evaluate their role in vascular inflammation and atherosclerosis. We also highlight metabolic effects of TRAFs and discuss the development of TRAF-based therapeutics in the future.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- *Correspondence: Dennis Wolf
| | - Timoteo Marchini
- Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
4
|
A QP509L/QP383R-deleted African swine fever virus is highly attenuated in swine but does not confer protection against parental virus challenge. J Virol 2021; 96:e0150021. [PMID: 34613824 PMCID: PMC8754219 DOI: 10.1128/jvi.01500-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
African swine fever (ASF), a devastating infectious disease in swine, severely threatens the global pig farming industry. Disease control has been hampered by the unavailability of vaccines. Here, we report that deletion of the QP509L and QP383R genes (ASFV-ΔQP509L/QP383R) from the highly virulent ASF virus (ASFV) CN/GS/2018 strain results in complete viral attenuation in swine. Animals inoculated with ASFV-ΔQP509L/QP383R at a 104 50% hemadsorbing dose (HAD50) remained clinically normal during the 17-day observational period. All ASFV-ΔQP509L/QP383R-infected animals had low viremia titers and developed a low-level p30-specific antibody response. However, ASFV-ΔQP509L/QP383R did not induce protection against challenge with the virulent parental ASFV CN/GS/2018 isolate. RNA-sequencing analysis revealed that innate immune-related genes (Ifnb, Traf2, Cxcl10, Isg15, Rantes, and Mx1) were significantly lower in ASFV-ΔQP509L/QP383R-infected than in ASFV-infected porcine alveolar macrophages. In addition, ASFV-ΔQP509L/QP383R-infected pigs had low levels of interferon-β (IFN-β) based on enzyme-linked immunosorbent assay (ELISA). These data suggest that deletion of ASFV QP509L/383R reduces virulence but does not induce protection against lethal ASFV challenge. IMPORTANCE African swine fever (ASF) is endemic to several parts of the word, with outbreaks of the disease devastating the swine farming industry; currently, no commercially available vaccine exists. Here, we report that deletion of the previously uncharacterized QP509L and QP383R viral genes completely attenuates virulence in the ASF virus (ASFV) CN/GS/2018 isolate. However, ASFV-ΔQP509L/QP383R-infected animals were not protected from developing an ASF infection after challenge with the virulent parental virus. ASFV-ΔQP509L/QP383R induced lower levels of innate immune-related genes and IFN-β than the parental virus. Our results increase our knowledge of developing an effective and live ASF attenuated vaccine.
Collapse
|
5
|
Struzik J, Szulc-Dąbrowska L, Mielcarska MB, Bossowska-Nowicka M, Koper M, Gieryńska M. First Insight into the Modulation of Noncanonical NF-κB Signaling Components by Poxviruses in Established Immune-Derived Cell Lines: An In Vitro Model of Ectromelia Virus Infection. Pathogens 2020; 9:pathogens9100814. [PMID: 33020446 PMCID: PMC7599462 DOI: 10.3390/pathogens9100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) and macrophages are the first line of antiviral immunity. Viral pathogens exploit these cell populations for their efficient replication and dissemination via the modulation of intracellular signaling pathways. Disruption of the noncanonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling has frequently been observed in lymphoid cells upon infection with oncogenic viruses. However, several nononcogenic viruses have been shown to manipulate the noncanonical NF-κB signaling in different cell types. This study demonstrates the modulating effect of ectromelia virus (ECTV) on the components of the noncanonical NF-κB signaling pathway in established murine cell lines: JAWS II DCs and RAW 264.7 macrophages. ECTV affected the activation of TRAF2, cIAP1, RelB, and p100 upon cell treatment with both canonical and noncanonical NF-κB stimuli and thus impeded DNA binding by RelB and p52. ECTV also inhibited the expression of numerous genes related to the noncanonical NF-κB pathway and RelB-dependent gene expression in the cells treated with canonical and noncanonical NF-κB activators. Thus, our data strongly suggest that ECTV influenced the noncanonical NF-κB signaling components in the in vitro models. These findings provide new insights into the noncanonical NF-κB signaling components and their manipulation by poxviruses in vitro.
Collapse
Affiliation(s)
- Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
- Correspondence: ; Tel.: +48-22-59-360-61
| | - Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| | - Matylda B. Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| | - Michał Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, A. Pawińskiego 5A, 02-106 Warsaw, Poland;
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| |
Collapse
|
6
|
Li C, Wei J, Zhang X, Sun M, Wu S, Qin Q. Fish TRAF2 promotes innate immune response to RGNNV infection. FISH & SHELLFISH IMMUNOLOGY 2020; 102:108-116. [PMID: 32311458 DOI: 10.1016/j.fsi.2020.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Tumour necrosis factor receptor-associated factors (TRAFs) are key regulatory proteins in the NF-κB signaling pathways. TRAF2 participates in the activation of both canonical and non-canonical NF-κB pathways, which are crucial for cell inflammation and cell survival. To elucidate its function in teleost fish, TRAF2 homologues of yellow grouper (Epinephelus awoara) and golden pompano (Trachinotus ovatus) have been cloned and characterized in this study. The open reading frame (ORF) of grouper TRAF2 (EaTRAF2) consists of 1563 nucleotides encoding a 521 amino acid protein with a predicted molecular mass of 58.70 kDa. The ORF of golden pompano TRAF2 (ToTRAF2) consists of 1563 nucleotides encoding a 521 amino acid protein with a predicted molecular mass of 58.66 kDa EaTRAF2 and ToTRAF2 share 99.23% and 99.42% identity with orange-spotted grouper (Epinephelus coioides) TRAF2 (EcTRAF2), respectively. Quantitative real-time PCR analysis indicated that the expression of EaTRAF2 was increased in grouper spleen (GS) cells after Red-spotted grouper nervous necrosis virus (RGNNV) infection; while the expression of ToTRAF2 was decreased in golden pompano brain (TOGB) cells after RGNNV infection. Both EaTRAF2 and ToTRAF2 were identified as a cytosolic protein and suggested to be associated with vesicles scattering in the cytoplasm. Both EaTRAF2 and ToTRAF2 enhanced RGNNV replication during viral infection in vitro. Further studies showed that EaTRAF2 and ToTRAF2 overexpression decreased the expression levels of interferon associated cytokines and pro-inflammatory factors. Taken together, these results are important for better understanding of the function of TRAF2 in fish and reveal its involvement in host response to immune challenges in RGNNV.
Collapse
Affiliation(s)
- Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Mengshi Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Siting Wu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| |
Collapse
|
7
|
Metabonomic-Transcriptome Integration Analysis on Osteoarthritis and Rheumatoid Arthritis. Int J Genomics 2020; 2020:5925126. [PMID: 31976312 PMCID: PMC6961787 DOI: 10.1155/2020/5925126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose This study is aimed at exploring the potential metabolite/gene biomarkers, as well as the differences between the molecular mechanisms, of osteoarthritis (OA) and rheumatoid arthritis (RA). Methods Transcriptome dataset GSE100786 was downloaded to explore the differentially expressed genes (DEGs) between OA samples and RA samples. Meanwhile, metabolomic dataset MTBLS564 was downloaded and preprocessed to obtain metabolites. Then, the principal component analysis (PCA) and linear models were used to reveal DEG-metabolite relations. Finally, metabolic pathway enrichment analysis was performed to investigate the differences between the molecular mechanisms of OA and RA. Results A total of 976 DEGs and 171 metabolites were explored between OA samples and RA samples. The PCA and linear module analysis investigated 186 DEG-metabolite interactions including Glycogenin 1- (GYG1-) asparagine_54, hedgehog acyltransferase- (HHAT-) glucose_70, and TNF receptor-associated factor 3- (TRAF3-) acetoacetate_35. Finally, the KEGG pathway analysis showed that these metabolites were mainly enriched in pathways like gap junction, phagosome, NF-kappa B, and IL-17 pathway. Conclusions Genes such as HHAT, GYG1, and TRAF3, as well as metabolites including glucose, asparagine, and acetoacetate, might be implicated in the pathogenesis of OA and RA. Metabolites like ethanol and tyrosine might participate differentially in OA and RA progression via the gap junction pathway and phagosome pathway, respectively. TRAF3-acetoacetate interaction may be involved in regulating inflammation in OA and RA by the NF-kappa B and IL-17 pathway.
Collapse
|
8
|
Pedros C, Altman A, Kong KF. Role of TRAFs in Signaling Pathways Controlling T Follicular Helper Cell Differentiation and T Cell-Dependent Antibody Responses. Front Immunol 2018; 9:2412. [PMID: 30405612 PMCID: PMC6204373 DOI: 10.3389/fimmu.2018.02412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Follicular helper T (TFH) cells represent a highly specialized CD4+ T cell subpopulation that supports the generation of germinal centers (GC) and provides B cells with critical signals promoting antibody class switching, generation of high affinity antibodies, and memory formation. TFH cells are characterized by the expression of the chemokine receptor CXCR5, the transcription factor Bcl-6, costimulatory molecules ICOS, and PD-1, and the production of cytokine IL-21. The acquisition of a TFH phenotype is a complex and multistep process that involves signals received through engagement of the TCR along with a multitude of costimulatory molecules and cytokines receptors. Members of the Tumor necrosis factor Receptor Associated Factors (TRAF) represent one of the major classes of signaling mediators involved in the differentiation and functions of TFH cells. TRAF molecules are the canonical adaptor molecules that physically interact with members of the Tumor Necrosis Factor Receptor Superfamily (TNFRSF) and actively modulate their downstream signaling cascades through their adaptor function and/or E3 ubiquitin ligase activity. OX-40, GITR, and 4-1BB are the TRAF-dependent TNFRSF members that have been implicated in the differentiation and functions of TFH cells. On the other hand, emerging data demonstrate that TRAF proteins also participate in signaling from the TCR and CD28, which deliver critical signals leading to the differentiation of TFH cells. More intriguingly, we recently showed that the cytoplasmic tail of ICOS contains a conserved TANK-binding kinase 1 (TBK1)-binding motif that is shared with TBK1-binding TRAF proteins. The presence of this TRAF-mimicking signaling module downstream of ICOS is required to mediate the maturation step during TFH differentiation. In addition, JAK-STAT pathways emanating from IL-2, IL-6, IL-21, and IL-27 cytokine receptors affect TFH development, and crosstalk between TRAF-mediated pathways and the JAK-STAT pathways can contribute to generate integrated signals required to drive and sustain TFH differentiation. In this review, we will introduce the molecular interactions and the major signaling pathways controlling the differentiation of TFH cells. In each case, we will highlight the contributions of TRAF proteins to these signaling pathways. Finally, we will discuss the role of individual TRAF proteins in the regulation of T cell-dependent humoral responses.
Collapse
Affiliation(s)
- Christophe Pedros
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Kok-Fai Kong
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| |
Collapse
|
9
|
Li L, Fan H, Song Z, Liu X, Bai J, Jiang P. Encephalomyocarditis virus 2C protein antagonizes interferon-β signaling pathway through interaction with MDA5. Antiviral Res 2018; 161:70-84. [PMID: 30312637 DOI: 10.1016/j.antiviral.2018.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Encephalomyocarditis virus (EMCV) is one of the most important picornavirus. It infects many mammalian species and causes encephalitis, myocarditis, neurologic diseases, diabetes and reproductive disorders in pigs. And it evolves mechanisms for escaping innate immune responses. But the viral pathogenesis has not been understood completely. In this study, we firstly found that EMCV protein 2C is a strong IFN-β antagonist that interacts with MDA5 to inhibit induction of the IFN-β signal pathway. The mutations in amino acid residue V26 of 2C decrease the inhibition of IFN-β promoter activity and lost the ability to interact with MDA5, compared with wild type 2C protein. The rescued viruses with mutations in 2C (rV26A and rK25-3A) induced significantly higher IFN-β mRNA and protein levels in PK-15, HEK-293A and N2a cells, compared to wild type EMCV and the repaired viruses rV26A(R) and rK25-3A(R). These data indicate that the amino acid residue V26 of EMCV 2C plays important roles in inhibiting type I IFN production by interacting with MDA5.
Collapse
Affiliation(s)
- Liang Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongbao Song
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewei Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Struzik J, Szulc-Dąbrowska L. Manipulation of Non-canonical NF-κB Signaling by Non-oncogenic Viruses. Arch Immunol Ther Exp (Warsz) 2018; 67:41-48. [PMID: 30196473 PMCID: PMC6433803 DOI: 10.1007/s00005-018-0522-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Nuclear factor (NF)-κB is a major regulator of antiviral response. Viral pathogens exploit NF-κB activation pathways to avoid cellular mechanisms that eliminate the infection. Canonical (classical) NF-κB signaling, which regulates innate immune response, cell survival and inflammation, is often manipulated by viral pathogens that can counteract antiviral response. Oncogenic viruses can modulate not only canonical, but also non-canonical (alternative) NF-κB activation pathways. The non-canonical NF-κB signaling is responsible for adaptive immunity and plays a role in lymphoid organogenesis, B cell development, as well as bone metabolism. Thus, non-canonical NF-κB activation has been linked to lymphoid malignancies. However, some data strongly suggest that the non-canonical NF-κB activation pathway may also function in innate immunity and is modulated by certain non-oncogenic viruses. Collectively, these findings show the importance of studying the impact of different groups of viral pathogens on alternative NF-κB activation. This mini-review focuses on the influence of non-oncogenic viruses on the components of non-canonical NF-κB signaling.
Collapse
Affiliation(s)
- Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| |
Collapse
|
11
|
de Seabra Rodrigues Dias IR, Mok SWF, Gordillo-Martínez F, Khan I, Hsiao WWL, Law BYK, Wong VKW, Liu L. The Calcium-Induced Regulation in the Molecular and Transcriptional Circuitry of Human Inflammatory Response and Autoimmunity. Front Pharmacol 2018; 8:962. [PMID: 29358919 PMCID: PMC5766673 DOI: 10.3389/fphar.2017.00962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis synovial fibroblasts (RASFs) are fundamental effector cells in RA driving the joint inflammation and deformities. Celastrol is a natural compound that exhibits a potent anti-arthritic effect promoting endoplasmic reticulum (ER) stress mediated by intracellular calcium (Ca2+) mobilization. Ca2+ is a second messenger regulating a variety of cellular processes. We hypothesized that the compound, celastrol, affecting cytosolic Ca2+ mobilization could serve as a novel strategy to combat RA. To address this issue, celastrol was used as a molecular tool to assay the inflammatory gene expression profile regulated by Ca2+. We confirmed that celastrol treatment mobilized cytosolic Ca2+ in patient-derived RASFs. It was found that 23 genes out of 370 were manipulated by Ca2+ mobilization using an inflammatory and autoimmunity PCR array following independent quantitative PCR validation. Most of the identified genes were downregulated and categorized into five groups corresponding to their cellular responses participating in RA pathogenesis. Accordingly, a signaling network map demonstrating the possible molecular circuitry connecting the functions of the products of these genes was generated based on literature review. In addition, a bioinformatics analysis revealed that celastrol-induced Ca2+ mobilization gene expression profile showed a novel mode of action compared with three FDA-approved rheumatic drugs (methotrexate, rituximab and tocilizumab). To the best of our knowledge, this is a pioneer work charting the Ca2+ signaling network on the regulation of RA-associated inflammatory gene expression.
Collapse
Affiliation(s)
| | - Simon W F Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Flora Gordillo-Martínez
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wendy W L Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Y K Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent K W Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
12
|
Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. ACTA ACUST UNITED AC 2017. [PMID: 29527458 DOI: 10.1007/s40495-017-0117-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review presents an overview of the current knowledge of TRAF molecules in inflammation with an emphasis on available human evidence and direct in vivo evidence of mouse models that demonstrate the contribution of TRAF molecules in the pathogenesis of inflammatory diseases. Recent Findings The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic proteins was initially identified as signaling adaptors that bind directly to the intracellular domains of receptors of the TNF-R superfamily. It is now appreciated that TRAF molecules are widely employed in signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Most of these signaling pathways have been linked to inflammation, and therefore TRAF molecules were expected to regulate inflammation and inflammatory responses since their discovery in 1990s. However, direct in vivo evidence of TRAFs in inflammation and especially in inflammatory diseases had been lacking for many years, partly due to the difficulty imposed by early lethality of TRAF2-/-, TRAF3-/-, and TRAF6-/- mice. With the creation of conditional knockout and lineage-specific transgenic mice of different TRAF molecules, our understanding about TRAFs in inflammation and inflammatory responses has rapidly advanced during the past decade. Summary Increasing evidence indicates that TRAF molecules are versatile and indispensable regulators of inflammation and inflammatory responses and that aberrant expression or function of TRAFs contributes to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Pharmacology, Anhui Medical University, Meishan Road 81st, Shushan District, Hefei, Anhui province, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Member, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
13
|
Prause M, Berchtold LA, Urizar AI, Hyldgaard Trauelsen M, Billestrup N, Mandrup-Poulsen T, Størling J. TRAF2 mediates JNK and STAT3 activation in response to IL-1β and IFNγ and facilitates apoptotic death of insulin-producing β-cells. Mol Cell Endocrinol 2016; 420:24-36. [PMID: 26610752 DOI: 10.1016/j.mce.2015.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022]
Abstract
Interleukin-1β (IL-1β) and interferon-γ (IFNγ) contribute to type 1 diabetes (T1D) by inducing β-cell death. Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins are adaptors that transduce signaling from a variety of membrane receptors including cytokine receptors. We show here that IL-1β and IFNγ upregulate the expression of TRAF2 in insulin-producing INS-1E cells and isolated rat pancreatic islets. siRNA-mediated knockdown (KD) of TRAF2 in INS-1E cells reduced IL-1β-induced phosphorylation of JNK1/2, but not of p38 or ERK1/2 mitogen-activated protein kinases. TRAF2 KD did not modulate NFκB activation by cytokines, but reduced cytokine-induced inducible nitric oxide synthase (iNOS) promotor activity and expression. We further observed that IFNγ-stimulated phosphorylation of STAT3 required TRAF2. KD of TRAF2 or STAT3 reduced cytokine-induced caspase 3/7 activation, but, intriguingly, potentiated cytokine-mediated loss of plasma membrane integrity and augmented the number of propidium iodide-positive cells. Finally, we found that TRAF2 KD increased cytokine-induced production of reactive oxygen species (ROS). In summary, our data suggest that TRAF2 is an important mediator of IL-1β and IFNγ signaling in pancreatic β-cells.
Collapse
Affiliation(s)
- Michala Prause
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Adrian Berchtold
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Ibarra Urizar
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hyldgaard Trauelsen
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark.
| |
Collapse
|
14
|
Clarke JN, Davies LK, Calvert JK, Gliddon BL, Shujari WHA, Aloia AL, Helbig KJ, Beard MR, Pitson SM, Carr JM. Reduction in sphingosine kinase 1 influences the susceptibility to dengue virus infection by altering antiviral responses. J Gen Virol 2015; 97:95-109. [PMID: 26541871 DOI: 10.1099/jgv.0.000334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sphingosine kinase (SK) 1 is a host kinase that enhances some viral infections. Here we investigated the ability of SK1 to modulate dengue virus (DENV) infection in vitro. Overexpression of SK1 did not alter DENV infection; however, targeting SK1 through chemical inhibition resulted in reduced DENV RNA and infectious virus release. DENV infection of SK1⁻/ ⁻ murine embryonic fibroblasts (MEFs) resulted in inhibition of infection in an immortalized line (iMEF) but enhanced infection in primary MEFs (1°MEFs). Global cellular gene expression profiles showed expected innate immune mRNA changes in DENV-infected WT but no induction of these responses in SK1⁻/⁻ iMEFs. Reverse transciption PCR demonstrated a low-level induction of IFN-β and poor induction of mRNA for the interferon-stimulated genes (ISGs) viperin, IFIT1 and CXCL10 in DENV-infected SK1⁻/⁻ compared with WT iMEFs. Similarly, reduced induction of ISGs was observed in SK1⁻/⁻ 1°MEFs, even in the face of high-level DENV replication. In both iMEFs and 1°MEFs, DENV infection induced production of IFN-β protein. Additionally, higher basal levels of antiviral factors (IRF7, CXCL10 and OAS1) were observed in uninfected SK1⁻/⁻ iMEFs but not 1°MEFs. This suggests that, in this single iMEF line, lack of SK1 upregulates the basal levels of factors that may protect cells against DENV infection. More importantly, regardless of the levels of DENV replication, all cells that lacked SK1 produced IFN-β but were refractory to induction of ISGs such as viperin, IFIT1 and CXCL10. Based on these findings, we propose new roles for SK1 in affecting innate responses that regulate susceptibility to DENV infection.
Collapse
Affiliation(s)
- Jennifer N Clarke
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Lorena K Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Julie K Calvert
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Wisam H Al Shujari
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Amanda L Aloia
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Karla J Helbig
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Michael R Beard
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Jillian M Carr
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
15
|
Petersen SL, Chen TT, Lawrence DA, Marsters SA, Gonzalvez F, Ashkenazi A. TRAF2 is a biologically important necroptosis suppressor. Cell Death Differ 2015; 22:1846-57. [PMID: 25882049 DOI: 10.1038/cdd.2015.35] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/11/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)-driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)-previously implicated in apoptosis suppression-also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα-driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.
Collapse
Affiliation(s)
- S L Petersen
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - T T Chen
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - D A Lawrence
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - S A Marsters
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - F Gonzalvez
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - A Ashkenazi
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
16
|
So T, Nagashima H, Ishii N. TNF Receptor-Associated Factor (TRAF) Signaling Network in CD4 + T-Lymphocytes. TOHOKU J EXP MED 2015; 236:139-54. [DOI: 10.1620/tjem.236.139] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine
| | - Hiroyuki Nagashima
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine
| |
Collapse
|
17
|
Rowe AM, Murray SE, Raué HP, Koguchi Y, Slifka MK, Parker DC. A cell-intrinsic requirement for NF-κB-inducing kinase in CD4 and CD8 T cell memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:3663-72. [PMID: 24006459 PMCID: PMC3815446 DOI: 10.4049/jimmunol.1301328] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NF-κB-inducing kinase [(NIK), MAP3K14] is an essential kinase linking a subset of TNFR family members to the noncanonical NF-κB pathway. To assess the cell-intrinsic role of NIK in murine T cell function, we generated mixed bone marrow chimeras using bone marrow from NIK knockout (KO) and wild-type (WT) donor mice and infected the chimeras with lymphocytic choriomeningitis virus (LCMV). The chimeras possess an apparently normal immune system, including a mixture of NIK KO and WT T cells, and the virus was cleared normally. Comparison of the NIK KO and WT CD4 and CD8 T cell responses at 8 d post infection revealed modest but significant differences in the acute response. In both CD4 and CD8 compartments, relatively fewer activated (CD44(hi)) NIK KO T cells were present, but within the CD44(hi) population, a comparable percentage of the activated cells produced IFN-γ in response to ex vivo stimulation with antigenic LCMV peptides, although IL-7R expression was reduced in the NIK KO CD8 T cells. Assessment of the LCMV-specific memory at 65 d post infection revealed many more LCMV-specific WT memory T cells than NIK KO memory T cells in both the CD4 and the CD8 compartments, although the small number of surviving NIK KO memory T cells responded to secondary challenge with virus. These results demonstrate a cell-intrinsic requirement for NIK in the generation and/or maintenance of memory T cells in response to acute viral infection.
Collapse
Affiliation(s)
- Alexander M. Rowe
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 07239
| | - Susan E. Murray
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 07239
| | - Hans-Peter Raué
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Yoshinobu Koguchi
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 07239
| | - Mark K. Slifka
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 07239
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - David C. Parker
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 07239
| |
Collapse
|
18
|
Bagchi P, Bhowmick R, Nandi S, Kant Nayak M, Chawla-Sarkar M. Rotavirus NSP1 inhibits interferon induced non-canonical NFκB activation by interacting with TNF receptor associated factor 2. Virology 2013; 444:41-4. [PMID: 23890813 DOI: 10.1016/j.virol.2013.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/25/2013] [Accepted: 07/03/2013] [Indexed: 11/28/2022]
Abstract
TNF receptor associated factor 2 (TRAF2) plays a very important role in cellular innate immune as well as inflammatory responses. Previous studies have reported TRAF2 mediated regulation of TNF and Interferon (IFN) induced canonical and non-canonical activation of NFκB. In this study, we show that rotavirus NSP1 targets TRAF2 to regulate IFN induced non-canonical NFκB activation. Here we found that rotavirus Non-Structural Protein-1 (NSP1) interacts with TRAF2 and degrades it in a proteasome dependent manner. C-terminal part of NSP1 was sufficient for interacting with TRAF2 but it alone could not degrade TRAF2. This inhibition of interferon mediated non-canonical NFκB activation by NSP1 may modulate inflammatory cytokine production after rotavirus infection to help the virus propagation.
Collapse
Affiliation(s)
- Parikshit Bagchi
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | | | | | | | | |
Collapse
|
19
|
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, New Jersey 08854.
| |
Collapse
|
20
|
Xie YF, Cui YB, Hui XW, Wang L, Ma XL, Chen H, Wang X, Huang BR. Interaction of IFNλR1 with TRAF6 regulates NF-κB activation and IFNλR1 stability. J Cell Biochem 2012; 113:3371-9. [PMID: 22644879 DOI: 10.1002/jcb.24213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IFNλR1 is a member of the class II cytokine receptor family, and it associates with IL-10R2 to form a functional receptor complex, IFNλR. This receptor complex transduces signals from IFNλs (IFNλ1, IFNλ2, and IFNλ3), promoting antiviral and antiproliferative activities similar to those of type I IFNs. In an effort to further understand signal transduction through IFNλR1, we used bioinformatics analysis and identified a tumor necrosis factor receptor-associated factor 6 (TRAF6)-binding motif in the intracellular domain of IFNλR1. In subsequent immunoprecipitation and GST pull-down assays, IFNλR1 was shown to immunoprecipitate with TRAF6 and was pulled down by GST-TRAF6. Endogenous IFNλR1 and TRAF-6 interaction implies that these proteins really interact in the cells. This interaction was abrogated upon mutation of the TRAF6-binding motif in IFNλR1. Furthermore, the interaction between IFNλR1 and TRAF6 inhibited TRAF6-induced NF-κB activation, likely due to a reduction in TRAF6 autoubiquitination. Moreover, co-expression of IFNλR1 with TRAF6 significantly increased the stability of IFNλR1, thereby prolonging its half-life and enhancing its steady-state level in cultured cells.
Collapse
Affiliation(s)
- Yun-Fei Xie
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Interferon cytokine family members shape the immune response to protect the host from both pathologic infections and tumorigenesis. To mediate their physiologic function, interferons evoke a robust and complex signal transduction pathway that leads to the induction of interferon-stimulated genes with both proinflammatory and antiviral functions. Numerous mechanisms exist to tightly regulate the extent and duration of these cellular responses. Among such mechanisms, the post-translational conjugation of ubiquitin polypeptides to protein mediators of interferon signaling has emerged as a crucially important mode of control. In this mini-review, we highlight recent advances in our understanding of these ubiquitin-mediated mechanisms, their exploitation by invading viruses, and their possible utilization for medical intervention.
Collapse
Affiliation(s)
- Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Comparative Oncology Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| |
Collapse
|
22
|
Carr JM, Mahalingam S, Bonder CS, Pitson SM. Sphingosine kinase 1 in viral infections. Rev Med Virol 2012; 23:73-84. [PMID: 22639116 DOI: 10.1002/rmv.1718] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/24/2022]
Abstract
Sphingosine kinase 1 (SphK1) is an enzyme that phosphorylates the lipid sphingosine to generate sphingosine-1-phosphate (S1P). S1P can act intracellularly as a signaling molecule and extracellularly as a receptor ligand. The SphK1/S1P axis has well-described roles in cell signaling, the cell death/survival decision, the production of a pro-inflammatory response, immunomodulation, and control of vascular integrity. Agents targeting the SphK1/S1P axis are being actively developed as therapeutics for cancer and immunological and inflammatory disorders. Control of cell death/survival and pro-inflammatory immune responses is central to the pathology of infectious disease, and we can capitalize on the knowledge provided by investigations of SphK1/S1P in cancer and immunology to assess its application to selected human infections. We have herein reviewed the growing literature relating viral infections to changes in SphK1 and S1P. SphK1 activity is reportedly increased following human cytomegalovirus and respiratory syncytial virus infections, and elevated SphK1 enhances influenza virus infection. In contrast, SphK1 activity is reduced in bovine viral diarrhea virus and dengue virus infections. Sphingosine analogs that modulate S1P receptors have proven useful in animal models in alleviating influenza virus infection but have shown no benefit in simian human immunodeficiency virus and lymphocytic choriomeningitis virus infections. We have rationalized a role for SphK1/S1P in dengue virus, chikungunya virus, and Ross River virus infections, on the basis of the biology and the pathology of these diseases. The increasing number of effective SphK1 and S1P modulating agents currently in development makes it timely to investigate these roles with the potential for developing modulators of SphK1 and S1P for novel anti-viral therapies.
Collapse
Affiliation(s)
- Jillian M Carr
- Microbiology and Infectious Diseases, Flinders Medical Science and Technology, School of Medicine, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
23
|
Vázquez N, Schmeisser H, Dolan MA, Bekisz J, Zoon KC, Wahl SM. Structural variants of IFNα preferentially promote antiviral functions. Blood 2011; 118:2567-77. [PMID: 21757613 PMCID: PMC3167361 DOI: 10.1182/blood-2010-12-325027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 06/25/2011] [Indexed: 12/22/2022] Open
Abstract
IFNα, a cytokine with multiple functions in innate and adaptive immunity and a potent inhibitor of HIV, exerts antiviral activity, in part, by enhancing apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (APOBEC3) family members. Although IFNα therapy is associated with reduced viral burden, this cytokine also mediates immune dysfunction and toxicities. Through detailed mapping of IFNα receptor binding sites, we generated IFNα hybrids and mutants and determined that structural changes in the C-helix alter the ability of IFN to limit retroviral activity. Selective IFNα constructs differentially block HIV replication and their directional magnitude of inhibition correlates with APOBEC3 levels. Importantly, certain mutants exhibited reduced toxicity as reflected by induced indoleamine 2,3-dioxygenase (IDO), suggesting discreet and shared intracellular signaling pathways. Defining IFN structure and function relative to APOBEC and other antiviral genes may enable design of novel IFN-related molecules preserving beneficial antiviral roles while minimizing negative effects.
Collapse
Affiliation(s)
- Nancy Vázquez
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Seo YJ, Alexander S, Hahm B. Does cytokine signaling link sphingolipid metabolism to host defense and immunity against virus infections? Cytokine Growth Factor Rev 2011; 22:55-61. [PMID: 21251870 PMCID: PMC3053577 DOI: 10.1016/j.cytogfr.2010.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingosine 1-phosphate (S1P)-metabolizing enzymes regulate the level of bioactive sphingolipids that have curative potential. Recently, S1P-metabolizing enzymes such as sphingosine kinase 1 and S1P lyase were shown to regulate influenza virus replication and the virus-induced cytopathogenicity. The mechanism appeared to employ a JAK/STAT type I interferon signaling pathway that induces anti-viral status. Further, sphingosine analogs altered cytokine responses upon influenza virus infection. This article focuses on recent discoveries about the sphingolipid system that influences on host protection from viral virulence and the involvement of cytokine signaling in its underlying mechanisms. Deciphering the steps of this pathway could help us envision how the modulation of sphingolipid metabolism can be applied as a therapeutic approach to overcome infectious diseases.
Collapse
Affiliation(s)
- Young-Jin Seo
- Departments of Surgery & Molecular Microbiology and Immunology, Center for Cellular and Molecular Immunology, Virology Center, University of Missouri-Columbia, Columbia, MO 65212
| | - Stephen Alexander
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65212
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, Center for Cellular and Molecular Immunology, Virology Center, University of Missouri-Columbia, Columbia, MO 65212
| |
Collapse
|
25
|
The alpha/beta interferon receptor provides protection against influenza virus replication but is dispensable for inflammatory response signaling. J Virol 2009; 84:2027-37. [PMID: 19939913 DOI: 10.1128/jvi.01595-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The innate immune response provides the first line of defense against foreign pathogens by responding to molecules that are a signature of a pathogenic infection. Certain RNA viruses, such as influenza virus, produce double-stranded RNA as an intermediate during the replication life cycle, which activates pathogen recognition receptors capable of inducing interferon production. By engaging interferon receptors, interferon activates the JAK-STAT pathway and results in the positive feedback of interferon production, amplifying the response to viral infection. To examine how deficiencies in interferon signaling affect the cellular response to infection, we performed influenza virus infections of mouse embryonic fibroblasts lacking the alpha/beta interferon receptor, the gamma interferon receptor, or both. In the absence of the alpha/beta interferon receptor, we observed increased viral replication but decreased activation of PKR, Stat1, and NF-kappaB; the presence or absence of the gamma interferon receptor did not exhibit discernible differences in these readouts. Analysis of gene expression profiles showed that while cells lacking the alpha/beta interferon receptor exhibited decreased levels of transcription of antiviral genes, genes related to inflammatory and apoptotic responses were transcribed to levels similar to those of cells containing the receptor. These results indicate that while the alpha/beta interferon receptor is needed to curb viral replication, it is dispensable for the induction of certain inflammatory and apoptotic genes. We have identified potential pathways, via interferon regulatory factor 3 (IRF3) activation or Hoxa13, Polr2a, Nr4a1, or Ing1 induction, that contribute to this redundancy. This study illustrates another way in which the host has evolved to establish several overlapping mechanisms to respond to viral infections.
Collapse
|
26
|
Yuan S, Liu T, Huang S, Wu T, Huang L, Liu H, Tao X, Yang M, Wu K, Yu Y, Dong M, Xu A. Genomic and functional uniqueness of the TNF receptor-associated factor gene family in amphioxus, the basal chordate. THE JOURNAL OF IMMUNOLOGY 2009; 183:4560-8. [PMID: 19752230 DOI: 10.4049/jimmunol.0901537] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The TNF-associated factor (TRAF) family, the crucial adaptor group in innate immune signaling, increased to 24 in amphioxus, the oldest lineage of the Chordata. To address how these expanded molecules evolved to adapt to the changing TRAF mediated signaling pathways, here we conducted genomic and functional comparisons of four distinct amphioxus TRAF groups with their human counterparts. We showed that lineage-specific duplication and rearrangement were responsible for the expansion of amphioxus TRAF1/2 and 3 lineages, whereas TRAF4 and 6 maintained a relatively stable genome and protein structure. Amphioxus TRAF1/2 and 3 molecules displayed various expression patterns in response to microbial infection, and some of them can attenuate the NF-kappaB activation mediated by human TRAF2 and 6. Amphioxus TRAF4 presented two unique functions: activation of the NF-kappaB pathway and involvement in somite formation. Although amphioxus TRAF6 was conserved in activating NF-kappaB pathway for antibacterial defense, the mechanism was not the same as that observed in humans. In summary, our findings reveal the evolutionary uniqueness of the TRAF family in this basal chordate, and suggest that genomic duplication and functional divergence of the TRAF family are important for the current form of the TRAF-mediated signaling pathways in humans.
Collapse
Affiliation(s)
- Shaochun Yuan
- State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|