1
|
Ochodnicka-Mackovicova K, Mokry M, Haagmans M, Bradley TE, van Noesel CJM, Guikema JEJ. RAG1/2 induces double-stranded DNA breaks at non-Ig loci in the proximity of single sequence repeats in developing B cells. Eur J Immunol 2024; 54:e2350958. [PMID: 39046890 DOI: 10.1002/eji.202350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
In developing B cells, V(D)J gene recombination is initiated by the RAG1/2 endonuclease complex, introducing double-stranded DNA breaks (DSBs) in V, D, and J genes and resulting in the formation of the hypervariable parts of immunoglobulins (Ig). Persistent or aberrant RAG1/2 targeting is a potential threat to genome integrity. While RAG1 and RAG2 have been shown to bind various regions genome-wide, the in vivo off-target DNA damage instigated by RAG1/2 endonuclease remains less well understood. In the current study, we identified regions containing RAG1/2-induced DNA breaks in mouse pre-B cells on a genome-wide scale using a global DNA DSB detection strategy. We detected 1489 putative RAG1/2-dependent DSBs, most of which were located outside the Ig loci. DNA sequence motif analysis showed a specific enrichment of RAG1/2-induced DNA DSBs at GA- and CA-repeats and GC-rich motifs. These findings provide further insights into RAG1/2 off-target activity. The ability of RAG1/2 to introduce DSBs on the non-Ig loci during the endogenous V(D)J recombination emphasizes its genotoxic potential in developing lymphocytes.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Martin Haagmans
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Ted E Bradley
- Core Facility Genomics, Department of Clinical Genetics, Amsterdam University Medical Center, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| |
Collapse
|
2
|
Lebedin M, de la Rosa K. Diversification of Antibodies: From V(D)J Recombination to Somatic Exon Shuffling. Annu Rev Cell Dev Biol 2024; 40:265-281. [PMID: 39356809 DOI: 10.1146/annurev-cellbio-112122-030835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (LAIR1) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (LILRB1) gene that is located in close proximity to LAIR1. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Rangel V, Sterrenberg JN, Garawi A, Mezcord V, Folkerts ML, Calderon SE, Garcia YE, Wang J, Soyfer EM, Eng OS, Valerin JB, Tanjasiri SP, Quintero-Rivera F, Seldin MM, Masri S, Frock RL, Fleischman AG, Pannunzio NR. Increased AID results in mutations at the CRLF2 locus implicated in Latin American ALL health disparities. Nat Commun 2024; 15:6331. [PMID: 39068148 PMCID: PMC11283463 DOI: 10.1038/s41467-024-50537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Activation-induced cytidine deaminase (AID) is a B cell-specific mutator required for antibody diversification. However, it is also implicated in the etiology of several B cell malignancies. Evaluating the AID-induced mutation load in patients at-risk for certain blood cancers is critical in assessing disease severity and treatment options. We have developed a digital PCR (dPCR) assay that allows us to quantify mutations resulting from AID modification or DNA double-strand break (DSB) formation and repair at sites known to be prone to DSBs. Implementation of this assay shows that increased AID levels in immature B cells increase genome instability at loci linked to chromosomal translocation formation. This includes the CRLF2 locus that is often involved in translocations associated with a subtype of acute lymphoblastic leukemia (ALL) that disproportionately affects Hispanics, particularly those with Latin American ancestry. Using dPCR, we characterize the CRLF2 locus in B cell-derived genomic DNA from both Hispanic ALL patients and healthy Hispanic donors and found increased mutations in both, suggesting that vulnerability to DNA damage at CRLF2 may be driving this health disparity. Our ability to detect and quantify these mutations will potentiate future risk identification, early detection of cancers, and reduction of associated cancer health disparities.
Collapse
Affiliation(s)
- Valeria Rangel
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Jason N Sterrenberg
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Aya Garawi
- School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Melissa L Folkerts
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Sabrina E Calderon
- School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Yadhira E Garcia
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Jinglong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eli M Soyfer
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Oliver S Eng
- Division of Surgical Oncology, Department of Surgery, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Jennifer B Valerin
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Sora Park Tanjasiri
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
- Department of Health, Society and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Richard L Frock
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela G Fleischman
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Nicholas R Pannunzio
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Chatzidavid S, Kontandreopoulou CN, Giannakopoulou N, Diamantopoulos PT, Stafylidis C, Kyrtsonis MC, Dimou M, Panayiotidis P, Viniou NA. The Role of Methylation in Chronic Lymphocytic Leukemia and Its Prognostic and Therapeutic Impacts in the Disease: A Systematic Review. Adv Hematol 2024; 2024:1370364. [PMID: 38435839 PMCID: PMC10907108 DOI: 10.1155/2024/1370364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Epigenetic regulation has been thoroughly investigated in recent years and has emerged as an important aspect of chronic lymphocytic leukemia (CLL) biology. Characteristic aberrant features such as methylation patterns and global DNA hypomethylation were the early findings of the research during the last decades. The investigation in this field led to the identification of a large number of genes where methylation features correlated with important clinical and laboratory parameters. Gene-specific analyses investigated methylation in the gene body enhancer regions as well as promoter regions. The findings included genes and proteins involved in key pathways that play central roles in the pathophysiology of the disease. Τhe application of these findings beyond the theoretical understanding can not only lead to the creation of prognostic and predictive models and scores but also to the design of novel therapeutic agents. The following is a review focusing on the present knowledge about single gene/gene promoter methylation or mRNA expression in CLL cases as well as records of older data that have been published in past papers.
Collapse
Affiliation(s)
- Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Thalassemia and Sickle Cell Disease Center, Laikon General Hospital, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marie-Christine Kyrtsonis
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Maria Dimou
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Hematology Department, Iatriko Kentro Palaiou Falirou, Athens, Greece
| |
Collapse
|
5
|
Boehm T, Morimoto R, Trancoso I, Aleksandrova N. Genetic conflicts and the origin of self/nonself-discrimination in the vertebrate immune system. Trends Immunol 2023; 44:372-383. [PMID: 36941153 DOI: 10.1016/j.it.2023.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/22/2023]
Abstract
Genetic conflicts shape the genomes of prokaryotic and eukaryotic organisms. Here, we argue that some of the key evolutionary novelties of adaptive immune systems of vertebrates are descendants of prokaryotic toxin-antitoxin (TA) systems. Cytidine deaminases and RAG recombinase have evolved from genotoxic enzymes to programmable editors of host genomes, supporting the astounding discriminatory capability of variable lymphocyte receptors of jawless vertebrates, as well as immunoglobulins and T cell receptors of jawed vertebrates. The evolutionarily recent lymphoid lineage is uniquely sensitive to mutations of the DNA maintenance methylase, which is an orphaned distant relative of prokaryotic restriction-modification systems. We discuss how the emergence of adaptive immunity gave rise to higher order genetic conflicts between genetic parasites and their vertebrate host.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Ryo Morimoto
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Inês Trancoso
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
6
|
Bushman FD. DNA transposon mechanisms and pathways of genotoxicity. Mol Ther 2023; 31:613-615. [PMID: 36754054 PMCID: PMC10014265 DOI: 10.1016/j.ymthe.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Affiliation(s)
- Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Hoolehan W, Harris JC, Byrum JN, Simpson DA, Rodgers K. An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays. Nucleic Acids Res 2022; 50:11696-11711. [PMID: 36370096 PMCID: PMC9723617 DOI: 10.1093/nar/gkac1038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel assay to evaluate V(D)J recombination activity on thousands of RSSs where the 12-RSS heptamer and adjoining spacer region contained randomized sequences. While the consensus heptamer sequence (CACAGTG) was marginally preferred, V(D)J recombination was highly active on a wide range of non-consensus sequences. Select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site were generally preferred. In addition, while different coding flanks and nonamer sequences affected recombination efficiency, the relative dependency on the purine/pyrimidine motifs in the RSS heptamer remained unchanged. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions.
Collapse
Affiliation(s)
- Walker Hoolehan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Justin C Harris
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Destiny A Simpson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karla K Rodgers
- To whom correspondence should be addressed. Tel: +1 405 271 2227 (Ext 61248);
| |
Collapse
|
8
|
Paranjape AM, Desai SS, Nishana M, Roy U, Nilavar NM, Mondal A, Kumari R, Radha G, Katapadi VK, Choudhary B, Raghavan SC. Nonamer dependent RAG cleavage at CpGs can explain mechanism of chromosomal translocations associated to lymphoid cancers. PLoS Genet 2022; 18:e1010421. [PMID: 36228010 PMCID: PMC9595545 DOI: 10.1371/journal.pgen.1010421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/25/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chromosomal translocations are considered as one of the major causes of lymphoid cancers. RAG complex, which is responsible for V(D)J recombination, can also cleave non-B DNA structures and cryptic RSSs in the genome leading to chromosomal translocations. The mechanism and factors regulating the illegitimate function of RAGs resulting in oncogenesis are largely unknown. Upon in silico analysis of 3760 chromosomal translocations from lymphoid cancer patients, we find that 93% of the translocation breakpoints possess adjacent cryptic nonamers (RAG binding sequences), of which 77% had CpGs in proximity. As a proof of principle, we show that RAGs can efficiently bind to cryptic nonamers present at multiple fragile regions and cleave at adjacent mismatches generated to mimic the deamination of CpGs. ChIP studies reveal that RAGs can indeed recognize these fragile sites on a chromatin context inside the cell. Finally, we show that AID, the cytidine deaminase, plays a significant role during the generation of mismatches at CpGs and reconstitute the process of RAG-dependent generation of DNA breaks both in vitro and inside the cells. Thus, we propose a novel mechanism for generation of chromosomal translocation, where RAGs bind to the cryptic nonamer sequences and direct cleavage at adjacent mismatch generated due to deamination of meCpGs or cytosines.
Collapse
Affiliation(s)
- Amita M. Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sagar S. Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mayilaadumveettil Nishana
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Namrata M. Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amrita Mondal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Gudapureddy Radha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, India
- * E-mail: (BC); (SCR)
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (BC); (SCR)
| |
Collapse
|
9
|
Worth AN, Palmer VL, Schabla NM, Perry GA, Fraser-Philbin AN, Swanson PC. Receptor editing constrains development of phosphatidyl choline-specific B cells in V H12-transgenic mice. Cell Rep 2022; 39:110899. [PMID: 35705027 DOI: 10.1016/j.celrep.2022.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022] Open
Abstract
B1 B cells reactive to phosphatidyl choline (PtC) exhibit restricted immunoglobulin heavy chain (HC) and light chain (LC) combinations, exemplified by VH12/Vκ4/5H. Two checkpoints are thought to focus PtC+ B cell maturation in VH12-transgenic mice (VH12 mice): V-J rearrangements encoding a "permissive" LC capable of VH12 HC pairing are selected first, followed by positive selection based on PtC binding, often requiring LC receptor editing to salvage PtC- B cells and acquire PtC reactivity. However, evidence obtained from breeding VH12 mice to editing-defective dnRAG1 mice and analyzing LC sequences from PtC+ and PtC- B cell subsets instead suggests that receptor editing functions after initial positive selection to remove PtC+ B cells in VH12 mice. This offers a mechanism to constrain natural, polyreactive B cells to limit their frequency. Sequencing also reveals occasional in-frame hybrid LC genes, reminiscent of type 2 gene replacement, that, testing suggests, arise via a recombination-activating gene (RAG)-independent mechanism.
Collapse
Affiliation(s)
- Alexandra N Worth
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Victoria L Palmer
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - N Max Schabla
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; Shoreline Biosciences, San Diego, CA 92121, USA
| | - Greg A Perry
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Anna N Fraser-Philbin
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
10
|
Abstract
Adaptive immunity in jawed vertebrates relies on the assembly of antigen receptor genes by the recombination activating gene 1 (RAG1)-RAG2 (collectively RAG) recombinase in a reaction known as V(D)J recombination. Extensive biochemical and structural evidence indicates that RAG and V(D)J recombination evolved from the components of a RAG-like (RAGL) transposable element through a process known as transposon molecular domestication. This Review describes recent advances in our understanding of the functional and structural transitions that occurred during RAG evolution. We use the structures of RAG and RAGL enzymes to trace the evolutionary adaptations that yielded a RAG recombinase with exquisitely regulated cleavage activity and a multilayered array of mechanisms to suppress transposition. We describe how changes in modes of DNA binding, alterations in the dynamics of protein-DNA complexes, single amino acid mutations and a modular design likely enabled RAG family enzymes to survive and spread in the genomes of eukaryotes. These advances highlight the insight that can be gained from viewing evolution of vertebrate immunity through the lens of comparative genome analyses coupled with structural biology and biochemistry.
Collapse
|
11
|
Zhang H, Cheng N, Li Z, Bai L, Fang C, Li Y, Zhang W, Dong X, Jiang M, Liang Y, Zhang S, Mi J, Zhu J, Zhang Y, Chen SJ, Zhao Y, Weng XQ, Hu W, Chen Z, Huang J, Meng G. DNA crosslinking and recombination-activating genes 1/2 (RAG1/2) are required for oncogenic splicing in acute lymphoblastic leukemia. Cancer Commun (Lond) 2021; 41:1116-1136. [PMID: 34699692 PMCID: PMC8626599 DOI: 10.1002/cac2.12234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/09/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Background Abnormal alternative splicing is frequently associated with carcinogenesis. In B‐cell acute lymphoblastic leukemia (B‐ALL), double homeobox 4 fused with immunoglobulin heavy chain (DUX4/IGH) can lead to the aberrant production of E‐26 transformation‐specific family related gene abnormal transcript (ERGalt) and other splicing variants. However, the molecular mechanism underpinning this process remains elusive. Here, we aimed to know how DUX4/IGH triggers abnormal splicing in leukemia. Methods The differential intron retention analysis was conducted to identify novel DUX4/IGH‐driven splicing in B‐ALL patients. X‐ray crystallography, small angle X‐ray scattering (SAXS), and analytical ultracentrifugation were used to investigate how DUX4/IGH recognize double DUX4 responsive element (DRE)‐DRE sites. The ERGalt biogenesis and B‐cell differentiation assays were performed to characterize the DUX4/IGH crosslinking activity. To check whether recombination‐activating gene 1/2 (RAG1/2) was required for DUX4/IGH‐driven splicing, the proximity ligation assay, co‐immunoprecipitation, mammalian two hybrid characterizations, in vitro RAG1/2 cleavage, and shRNA knock‐down assays were performed. Results We reported previously unrecognized intron retention events in C‐type lectin domain family 12, member A abnormal transcript (CLEC12Aalt) and chromosome 6 open reading frame 89 abnormal transcript (C6orf89alt), where also harbored repetitive DRE‐DRE sites. Supportively, X‐ray crystallography and SAXS characterization revealed that DUX4 homeobox domain (HD)1‐HD2 might dimerize into a dumbbell‐shape trans configuration to crosslink two adjacent DRE sites. Impaired DUX4/IGH‐mediated crosslinking abolishes ERGalt, CLEC12Aalt, and C6orf89alt biogenesis, resulting in marked alleviation of its inhibitory effect on B‐cell differentiation. Furthermore, we also observed a rare RAG1/2‐mediated recombination signal sequence‐like DNA edition in DUX4/IGH target genes. Supportively, shRNA knock‐down of RAG1/2 in leukemic Reh cells consistently impaired the biogenesis of ERGalt, CLEC12Aalt, and C6orf89alt. Conclusions All these results suggest that DUX4/IGH‐driven DNA crosslinking is required for RAG1/2 recruitment onto the double tandem DRE‐DRE sites, catalyzing V(D)J‐like recombination and oncogenic splicing in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Hao Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Nuo Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Zhihui Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Ling Bai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China.,Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, P. R. China
| | - Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuwen Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Weina Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Xue Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Minghao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Yang Liang
- Department of Hematologic Oncology, State key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Jianqing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Jiang Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Weiguo Hu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China.,Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| | - Jinyan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China.,Biomedical Big Data Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, P. R. China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, P. R. China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, 200025, P. R. China
| |
Collapse
|
12
|
Jakobczyk H, Jiang Y, Debaize L, Soubise B, Avner S, Sérandour AA, Rouger-Gaudichon J, Rio AG, Carroll JS, Raslova H, Gilot D, Liu Z, Demengeot J, Salbert G, Douet-Guilbert N, Corcos L, Galibert MD, Gandemer V, Troadec MB. ETV6-RUNX1 and RUNX1 directly regulate RAG1 expression: one more step in the understanding of childhood B-cell acute lymphoblastic leukemia leukemogenesis. Leukemia 2021; 36:549-554. [PMID: 34535762 PMCID: PMC8807389 DOI: 10.1038/s41375-021-01409-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/14/2022]
Abstract
ETV6-RUNX1 and RUNX1 directly promote RAG1 expression. ETV6-RUNX1 and RUNX1 preferentially bind to the −1200 bp enhancer of RAG1 and the −80 bp promoter of RAG1 gene respectively, and compete for these bindings. ETV6-RUNX1 and RUNX1 induce an excessive RAG recombinase activity. ETV6-RUNX1 participates directly in two events of the multi-hit ALL leukemogenesis: as an initiating event and as an activator of RAG1 expression.
Collapse
Affiliation(s)
- Hélène Jakobczyk
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Yan Jiang
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Lydie Debaize
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | | | - Stéphane Avner
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | | | | | - Anne-Gaëlle Rio
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Hana Raslova
- INSERM, UMR 1287, Gustave Roussy, Université Paris Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale contre le Cancer, Villejuif, France
| | - David Gilot
- INSERM, Université Rennes, CLCC Eugène Marquis, UMR_S 1242, Rennes, France
| | - Ziling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jocelyne Demengeot
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras, Portugal
| | - Gilles Salbert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France
| | - Nathalie Douet-Guilbert
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, Brest, France
| | | | - Marie-Dominique Galibert
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France.,Centre Hospitalier Universitaire de Rennes (CHU-Rennes), Service de Génétique et Génomique Moléculaire, Rennes, France
| | - Virginie Gandemer
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France.,Centre Hospitalier Universitaire de Rennes (CHU-Rennes), Department of pediatric hemato-oncology, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes 1, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, Rennes, France. .,Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France. .,CHRU Brest, Service de génétique, laboratoire de génétique chromosomique, Brest, France.
| |
Collapse
|
13
|
Thomson DW, Shahrin NH, Wang PPS, Wadham C, Shanmuganathan N, Scott HS, Dinger ME, Hughes TP, Schreiber AW, Branford S. Aberrant RAG-mediated recombination contributes to multiple structural rearrangements in lymphoid blast crisis of chronic myeloid leukemia. Leukemia 2020; 34:2051-2063. [PMID: 32076119 DOI: 10.1038/s41375-020-0751-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 11/10/2022]
Abstract
Blast crisis of chronic myeloid leukemia is associated with poor survival and the accumulation of genomic lesions. Using whole-exome and/or RNA sequencing of patients at chronic phase (CP, n = 49), myeloid blast crisis (MBC, n = 19), and lymphoid blast crisis (LBC, n = 20), we found 25 focal gene deletions and 14 fusions in 24 patients in BC. Deletions predominated in LBC (83% of structural variants). Transcriptional analysis identified the upregulation of genes involved in V(D)J recombination, including RAG1/2 and DNTT in LBC. RAG recombination is a reported mediator of IKZF1 deletion. We investigated the extent of RAG-mediated genomic lesions in BC. Molecular hallmarks of RAG activity; DNTT-mediated nucleotide insertions and a RAG-binding motif at structural variants were exclusively found in patients with high RAG expression. Structural variants in 65% of patients in LBC displayed these hallmarks compared with only 5% in MBC. RAG-mediated events included focal deletion and novel fusion of genes associated with hematologic cancer: IKZF1, RUNX1, CDKN2A/B, and RB1. Importantly, 8/8 patients with elevated DNTT at CP diagnosis progressed to LBC by 12 months, potentially enabling early prediction of LBC. This work confirms the central mutagenic role of RAG in LBC and describes potential clinical utility in CML management.
Collapse
Affiliation(s)
- Daniel W Thomson
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Nur Hezrin Shahrin
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Paul P S Wang
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - Carol Wadham
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Naranie Shanmuganathan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington Campus, Sydney, NSW, Australia
| | - Timothy P Hughes
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andreas W Schreiber
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia.
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia.
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
14
|
Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia. Cancer Genet 2020; 243:52-72. [PMID: 32302940 DOI: 10.1016/j.cancergen.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Clinical management and risk stratification of B-lymphoblastic leukemia/ lymphoma (B-ALL/LBL) depend largely on identification of chromosomal abnormalities obtained using conventional cytogenetics and Fluorescence In Situ Hybridization (FISH) testing. In the last few decades, testing algorithms have been implemented to support an optimal risk-oriented therapy, leading to a large improvement in overall survival. In addition, large scale genomic studies have identified multiple aberrations of prognostic significance that are not routinely tested by existing modalities. However, as chromosomal microarray analysis (CMA) and next-generation sequencing (NGS) technologies are increasingly used in clinical management of hematologic malignancies, these abnormalities may be more readily detected. In this article, we have compiled a comprehensive, evidence-based review of the current B-ALL literature, focusing on known and published subtypes described to date. More specifically, we describe the role of various testing modalities in the diagnosis, prognosis, and therapeutic relevance. In addition, we propose a testing algorithm aimed at assisting laboratories in the most effective detection of the underlying genomic abnormalities.
Collapse
|
15
|
HIV Tat induces a prolonged MYC relocalization next to IGH in circulating B-cells. Leukemia 2017; 31:2515-2522. [PMID: 28360415 DOI: 10.1038/leu.2017.106] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
With combined antiretroviral therapy (cART), the risk for HIV-infected individuals to develop a non-Hodgkin lymphoma is diminished. However, the incidence of Burkitt lymphoma (BL) remains strikingly elevated. Most BL present a t(8;14) chromosomal translocation which must take place at a time of spatial proximity between the translocation partners. The two partner genes, MYC and IGH, were found colocalized only very rarely in the nuclei of normal peripheral blood B-cells examined using 3D-FISH while circulating B-cells from HIV-infected individuals whose exhibited consistently elevated levels of MYC-IGH colocalization. In vitro, incubating normal B-cells from healthy donors with a transcriptionally active form of the HIV-encoded Tat protein rapidly activated transcription of the nuclease-encoding RAG1 gene. This created DNA damage, including in the MYC gene locus which then moved towards the center of the nucleus where it sustainably colocalized with IGH up to 10-fold more frequently than in controls. In vivo, this could be sufficient to account for the elevated risk of BL-specific chromosomal translocations which would occur following DNA double strand breaks triggered by AID in secondary lymph nodes at the final stage of immunoglobulin gene maturation. New therapeutic attitudes can be envisioned to prevent BL in this high risk group.
Collapse
|
16
|
Sundaresh A, Williams O. Mechanism of ETV6-RUNX1 Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:201-216. [PMID: 28299659 DOI: 10.1007/978-981-10-3233-2_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The t(12;21)(p13;q22) translocation is the most frequently occurring single genetic abnormality in pediatric leukemia. This translocation results in the fusion of the ETV6 and RUNX1 genes. Since its discovery in the 1990s, the function of the ETV6-RUNX1 fusion gene has attracted intense interest. In this chapter, we will summarize current knowledge on the clinical significance of ETV6-RUNX1, the experimental models used to unravel its function in leukemogenesis, the identification of co-operating mutations and the mechanisms responsible for their acquisition, the function of the encoded transcription factor and finally, the future therapeutic approaches available to mitigate the associated disease.
Collapse
Affiliation(s)
- Aishwarya Sundaresh
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Owen Williams
- Cancer section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK.
| |
Collapse
|
17
|
Ford AM, Greaves M. ETV6-RUNX1 + Acute Lymphoblastic Leukaemia in Identical Twins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:217-228. [PMID: 28299660 DOI: 10.1007/978-981-10-3233-2_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute leukaemia is the major subtype of paediatric cancer with a cumulative risk of 1 in 2000 for children up to the age of 15 years. Childhood acute lymphoblastic leukaemia (ALL) is a biologically and clinically diverse disease with distinctive subtypes; multiple chromosomal translocations exist within the subtypes and each carries its own prognostic relevance. The most common chromosome translocation observed is the t(12;21) that results in an in-frame fusion between the first five exons of ETV6 (TEL) and almost the entire coding region of RUNX1 (AML1).The natural history of childhood ALL is almost entirely clinically silent and is well advanced at the point of diagnosis. It has, however, been possible to backtrack this process through molecular analysis of appropriate clinical samples: (i) leukaemic clones in monozygotic twins that are either concordant or discordant for ALL; (ii) archived neonatal blood spots or Guthrie cards from individuals who later developed leukaemia; and (iii) stored, viable cord blood cells.Here, we outline our studies on the aetiology and pathology of childhood ALL that provide molecular evidence for a monoclonal, prenatal origin of ETV6-RUNX1+ leukaemia in monozygotic identical twins. We provide mechanistic support for the concept that altered patterns of infection during early childhood can deliver the necessary promotional drive for the progression of ETV6-RUNX1+ pre-leukaemic cells into a postnatal overt leukaemia.
Collapse
Affiliation(s)
- Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| |
Collapse
|
18
|
Passagem-Santos D, Bonnet M, Sobral D, Trancoso I, Silva JG, Barreto VM, Athanasiadis A, Demengeot J, Pereira-Leal JB. RAG Recombinase as a Selective Pressure for Genome Evolution. Genome Biol Evol 2016; 8:3364-3376. [PMID: 27979968 PMCID: PMC5203794 DOI: 10.1093/gbe/evw261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The RAG recombinase is a domesticated transposable element co-opted in jawed vertebrates to drive the process of the so-called V(D)J recombination, which is the hallmark of the adaptive immune system to produce antigen receptors. RAG targets, namely, the Recombination Signal Sequences (RSS), are rather long and degenerated sequences, which highlights the ability of the recombinase to interact with a wide range of target sequences, including outside of antigen receptor loci. The recognition of such cryptic targets by the recombinase threatens genome integrity by promoting aberrant DNA recombination, as observed in lymphoid malignancies. Genomes evolution resulting from RAG acquisition is an ongoing discussion, in particular regarding the counter-selection of sequences resembling the RSS and the modifications of epigenetic regulation at these potential cryptic sites. Here, we describe a new bioinformatics tool to map potential RAG targets in all jawed vertebrates. We show that our REcombination Classifier (REC) outperforms the currently available tool and is suitable for full genomes scans from species other than human and mouse. Using the REC, we document a reduction in density of potential RAG targets at the transcription start sites of genes co-expressed with the rag genes and marked with high levels of the trimethylation of the lysine 4 of the histone 3 (H3K4me3), which correlates with the retention of functional RAG activity after the horizontal transfer.
Collapse
Affiliation(s)
| | - M Bonnet
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - D Sobral
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - I Trancoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - J G Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - V M Barreto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - J Demengeot
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
19
|
Daga A, Ansari A, Pandya M, Shah K, Patel S, Rawal R, Umrania V. Significant Role of Segmental Duplications and SIDD Sites in Chromosomal Translocations of Hematological Malignancies: A Multi-parametric Bioinformatic Analysis. Interdiscip Sci 2016; 10:467-475. [PMID: 27896663 DOI: 10.1007/s12539-016-0203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
Recurrent non-random chromosomal translocations are hallmark characteristics of leukemogenesis, and however, molecular mechanisms underlying these rearrangements are less explored. The fundamental question is, why and how chromosomes break and reunite so precisely in the genome. Meticulous understanding of mechanism leading to chromosomal rearrangement can be achieved by characterizing breakpoints. To address this hypothesis, a novel multi-parametric computational approach for characterization of major leukemic translocations within and around breakpoint region was performed. To best of our knowledge, this bioinformatic analysis is unique in finding the presence of segmental duplications (SDs) flanking breakpoints of all major leukemic translocation. Breakpoint islands (BpIs) were analyzed for stress-induced duplex destabilization (SIDD) sites along with other complex genomic architecture and physicochemical properties. Our study distinctly emphasizes on the probable correlative role of SDs, SIDD sites and various genomic features in the occurrence of breakpoints. Further, it also highlights potential features which may be playing a crucial role in causing double-strand breaks, leading to translocation.
Collapse
Affiliation(s)
- Aditi Daga
- Department of Microbiology, MVM Science College, Saurashtra University, Near Under Bridge, Kalawad Road, Rajkot, Gujarat, 360007, India
| | - Afzal Ansari
- BIT Virtual Institute of Bioinformatics (GCRI Node), GSBTM, Gandhinagar, Gujarat, India
- BIT Virtual Institute of Bioinformatics (GCRI Node), Division of Medicinal Chemistry and Pharmacogenomics, The Gujarat Cancer and Research Institute, NCH Campus, Asarwa, Ahmedabad, Gujarat, 380016, India
| | - Medha Pandya
- Department of Bioinformatics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, 364022, India
- Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, 364022, India
| | - Krupa Shah
- Division of Medicinal Chemistry and Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer and Research Institute, NCH Campus, Asarwa, Ahmedabad, Gujarat, 380016, India
| | - Shanaya Patel
- Division of Medicinal Chemistry and Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer and Research Institute, NCH Campus, Asarwa, Ahmedabad, Gujarat, 380016, India
| | - Rakesh Rawal
- Division of Medicinal Chemistry and Pharmacogenomics, Department of Cancer Biology, The Gujarat Cancer and Research Institute, NCH Campus, Asarwa, Ahmedabad, Gujarat, 380016, India.
| | - Valentina Umrania
- Department of Microbiology, MVM Science College, Saurashtra University, Near Under Bridge, Kalawad Road, Rajkot, Gujarat, 360007, India
| |
Collapse
|
20
|
Bolland DJ, Koohy H, Wood AL, Matheson LS, Krueger F, Stubbington MJT, Baizan-Edge A, Chovanec P, Stubbs BA, Tabbada K, Andrews SR, Spivakov M, Corcoran AE. Two Mutually Exclusive Local Chromatin States Drive Efficient V(D)J Recombination. Cell Rep 2016; 15:2475-87. [PMID: 27264181 PMCID: PMC4914699 DOI: 10.1016/j.celrep.2016.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/01/2016] [Accepted: 05/02/2016] [Indexed: 12/02/2022] Open
Abstract
Variable (V), diversity (D), and joining (J) (V(D)J) recombination is the first determinant of antigen receptor diversity. Understanding how recombination is regulated requires a comprehensive, unbiased readout of V gene usage. We have developed VDJ sequencing (VDJ-seq), a DNA-based next-generation-sequencing technique that quantitatively profiles recombination products. We reveal a 200-fold range of recombination efficiency among recombining V genes in the primary mouse Igh repertoire. We used machine learning to integrate these data with local chromatin profiles to identify combinatorial patterns of epigenetic features that associate with active VH gene recombination. These features localize downstream of VH genes and are excised by recombination, revealing a class of cis-regulatory element that governs recombination, distinct from expression. We detect two mutually exclusive chromatin signatures at these elements, characterized by CTCF/RAD21 and PAX5/IRF4, which segregate with the evolutionary history of associated VH genes. Thus, local chromatin signatures downstream of VH genes provide an essential layer of regulation that determines recombination efficiency. VDJ-seq enables precise quantification of antibody V(D)J recombination products Two distinct cis-regulatory designs characterize actively recombining V genes Putative recombination regulatory elements map downstream of mouse Igh V genes Recombination regulatory architecture reflects the V genes’ evolutionary history
Collapse
Affiliation(s)
- Daniel J Bolland
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Hashem Koohy
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Andrew L Wood
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Louise S Matheson
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michael J T Stubbington
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Amanda Baizan-Edge
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Peter Chovanec
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Bryony A Stubbs
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kristina Tabbada
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon R Andrews
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Anne E Corcoran
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
21
|
Raveendran D, Raghavan SC. Biochemical Characterization of Nonamer Binding Domain of RAG1 Reveals its Thymine Preference with Respect to Length and Position. Sci Rep 2016; 6:19091. [PMID: 26742581 PMCID: PMC4705477 DOI: 10.1038/srep19091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
RAG complex consisting of RAG1 and RAG2 is a site-specific endonuclease responsible for the generation of antigen receptor diversity. It cleaves recombination signal sequence (RSS), comprising of conserved heptamer and nonamer. Nonamer binding domain (NBD) of RAG1 plays a central role in the recognition of RSS. To investigate the DNA binding properties of the domain, NBD of murine RAG1 was cloned, expressed and purified. Electrophoretic mobility shift assays showed that NBD binds with high affinity to nonamer in the context of 12/23 RSS or heteroduplex DNA. NBD binding was specific to thymines when single stranded DNA containing poly A, C, G or T were used. Biolayer interferometry studies showed that poly T binding to NBD was robust and comparable to that of 12RSS. More than 23 nt was essential for NBD binding at homothymidine stretches. On a double-stranded DNA, NBD could bind to A:T stretches, but not G:C or random sequences. Although NBD is indispensable for sequence specific activity of RAGs, external supplementation of purified nonamer binding domain to NBD deleted cRAG1/cRAG2 did not restore its activity, suggesting that the overall domain architecture of RAG1 is important. Therefore, we define the sequence requirements of NBD binding to DNA.
Collapse
Affiliation(s)
- Deepthi Raveendran
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
22
|
Histone reader BRWD1 targets and restricts recombination to the Igk locus. Nat Immunol 2015; 16:1094-103. [PMID: 26301565 PMCID: PMC4575638 DOI: 10.1038/ni.3249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
B lymphopoiesis requires that immunoglobulin genes be accessible to the RAG1-RAG2 recombinase. However, the RAG proteins bind widely to open chromatin suggesting that additional mechanisms must restrict RAG-mediated DNA cleavage. Here, we demonstrate developmental downregulation of interleukin 7 (IL-7) receptor signaling in small pre-B cells induced expression of the bromodomain family member BRWD1, which was recruited to a specific epigenetic landscape at Igk dictated by pre-BCR-dependent Erk activation. BRWD1 enhanced RAG recruitment, increased gene accessibility and positioned nucleosomes 5′ to each Jκ recombination signal sequence. BRWD1 thus targets recombination to Igk and places recombination within the context of signaling cascades that control B cell development. Our findings provide a paradigm in which, at any particular antigen receptor locus, specialized mechanisms enforce lineage and stage specific recombination.
Collapse
|
23
|
Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination. Mol Cell Biol 2015; 35:3701-13. [PMID: 26303526 DOI: 10.1128/mcb.00219-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
V(D)J recombination is initiated by the binding of the RAG1 and RAG2 proteins to recombination signal sequences (RSSs) that consist of conserved heptamer and nonamer sequences separated by a spacer of either 12 or 23 bp. Here, we used RAG-inducible pro-B v-Abl cell lines in conjunction with chromatin immunoprecipitation to better understand the protein and RSS requirements for RAG recruitment to chromatin. Using a catalytic mutant form of RAG1 to prevent recombination, we did not observe cooperation between RAG1 and RAG2 in their recruitment to endogenous Jκ gene segments over a 48-h time course. Using retroviral recombination substrates, we found that RAG1 was recruited inefficiently to substrates lacking an RSS or containing a single RSS, better to substrates with two 12-bp RSSs (12RSSs) or two 23-bp RSSs (23RSSs), and more efficiently to a substrate with a 12/23RSS pair. RSS mutagenesis demonstrated a major role for the nonamer element in RAG1 binding, and correspondingly, a cryptic RSS consisting of a repeat of CA dinucleotides, which poorly re-creates the nonamer, was ineffective in recruiting RAG1. Our findings suggest that 12RSS-23RSS cooperation (the "12/23 rule") is important not only for regulating RAG-mediated DNA cleavage but also for the efficiency of RAG recruitment to chromatin.
Collapse
|
24
|
Abstract
The modular, noncontiguous architecture of the antigen receptor genes necessitates their assembly through V(D)J recombination. This program of DNA breakage and rejoining occurs during early lymphocyte development, and depends on the RAG1 and RAG2 proteins, whose collaborative endonuclease activity targets specific DNA motifs enriched in the antigen receptor loci. This essential gene shuffling reaction requires lymphocytes to traverse several developmental stages wherein DNA breakage is tolerated, while minimizing the expense to overall genome integrity. Thus, RAG activity is subject to stringent temporal and spatial regulation. The RAG proteins themselves also contribute autoregulatory properties that coordinate their DNA cleavage activity with target chromatin structure, cell cycle status, and DNA repair pathways. Even so, lapses in regulatory restriction of RAG activity are apparent in the aberrant V(D)J recombination events that underlie many lymphomas. In this review, we discuss the current understanding of the RAG endonuclease, its widespread binding in the lymphocyte genome, its noncleavage activities that restrain its enzymatic potential, and the growing evidence of its evolution from an ancient transposase.
Collapse
|
25
|
Javadekar SM, Raghavan SC. Snaps and mends: DNA breaks and chromosomal translocations. FEBS J 2015; 282:2627-45. [PMID: 25913527 DOI: 10.1111/febs.13311] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/29/2015] [Accepted: 04/23/2015] [Indexed: 01/11/2023]
Abstract
Integrity in entirety is the preferred state of any organism. The temporal and spatial integrity of the genome ensures continued survival of a cell. DNA breakage is the first step towards creation of chromosomal translocations. In this review, we highlight the factors contributing towards the breakage of chromosomal DNA. It has been well-established that the structure and sequence of DNA play a critical role in selective fragility of the genome. Several non-B-DNA structures such as Z-DNA, cruciform DNA, G-quadruplexes, R loops and triplexes have been implicated in generation of genomic fragility leading to translocations. Similarly, specific sequences targeted by proteins such as Recombination Activating Genes and Activation Induced Cytidine Deaminase are involved in translocations. Processes that ensure the integrity of the genome through repair may lead to persistence of breakage and eventually translocations if their actions are anomalous. An insufficient supply of nucleotides and chromatin architecture may also play a critical role. This review focuses on a range of events with the potential to threaten the genomic integrity of a cell, leading to cancer.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
Daga A, Ansari A, Rawal R, Umrania V. Characterization of chromosomal translocation breakpoint sequences in solid tumours: "an in silico analysis". Open Med Inform J 2015; 9:1-8. [PMID: 25972994 PMCID: PMC4421838 DOI: 10.2174/1874431101509010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/19/2015] [Accepted: 02/28/2015] [Indexed: 01/07/2023] Open
Abstract
Chromosomal translocations that results in formation and activation of fusion oncogenes are observed in numerous solid malignancies since years back. Expression of fusion kinases in these cancers drives the initiation & progression that ultimately leads to tumour development and thus comes out to be clinically imperative in terms of diagnosis and treatment of cancer. Nonetheless, molecular mechanisms beneath these translocations remained unexplored consequently limiting our knowledge of carcinogenesis and hence is the current field where further research is required. The issue of prime focus is the precision with which the chromosomes breaks and reunites within genome. Characterization of Genomic sequences located at Breakpoint region may direct us towards the thorough understanding of mechanism leading to chromosomal rearrangement. A unique computational multi-parametric analysis was performed for characterization of genomic sequence within and around breakpoint region. This study turns out to be novel as it reveals the occurrence of Segmental Duplications flanking the breakpoints of all translocation. Breakpoint Islands were also investigated for the presence of other intricate genomic architecture and various physico-chemical parameters. Our study particularly highlights the probable role of SDs and specific genomic features in precise chromosomal breakage. Additionally, it pinpoints the potential features that may be significant for double-strand breaks leading to chromosomal rearrangements.
Collapse
Affiliation(s)
- Aditi Daga
- Department of Microbiology, MVM Science College, Saurashtra University, Rajkot, Gujarat, India
| | - Afzal Ansari
- BIT Virtual Institute of Bioinformatics (GCRI Node), GSBTM, Gandhinagar, Gujarat, India
| | - Rakesh Rawal
- Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Valentina Umrania
- Department of Microbiology, MVM Science College, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|
27
|
Synapsis alters RAG-mediated nicking at Tcrb recombination signal sequences: implications for the “beyond 12/23” rule. Mol Cell Biol 2014; 34:2566-80. [PMID: 24797073 DOI: 10.1128/mcb.00411-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
At the Tcrb locus, Vβ-to-Jβ rearrangement is permitted by the 12/23 rule but is not observed in vivo, a restriction termed the “beyond 12/23” rule (B12/23 rule). Previous work showed that Vβ recombination signal sequences (RSSs) do not recombine with Jβ RSSs because Jβ RSSs are crippled for either nicking or synapsis. This result raised the following question: how can crippled Jβ RSSs recombine with Dβ RSSs? We report here that the nicking of some Jβ RSSs can be substantially stimulated by synapsis with a 3′Dβ1 partner RSS. This result helps to reconcile disagreement in the field regarding the impact of synapsis on nicking. Furthermore, our data allow for the classification of Tcrb RSSs into two major categories: those that nick quickly and those that nick slowly in the absence of a partner. Slow-nicking RSSs can be stimulated to nick more efficiently upon synapsis with an appropriate B12/23 partner, and our data unexpectedly suggest that fast-nicking RSSs can be inhibited for nicking upon synapsis with an inappropriate partner. These observations indicate that the RAG proteins exert fine control over every step of V(D)J cleavage and support the hypothesis that initial RAG binding can occur on RSSs with either 12- or 23-bp spacers (12- or 23-RSSs, respectively).
Collapse
|
28
|
Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J, Alexandrov LB, Van Loo P, Cooke SL, Marshall J, Martincorena I, Hinton J, Gundem G, van Delft FW, Nik-Zainal S, Jones DR, Ramakrishna M, Titley I, Stebbings L, Leroy C, Menzies A, Gamble J, Robinson B, Mudie L, Raine K, O’Meara S, Teague JW, Butler AP, Cazzaniga G, Biondi A, Zuna J, Kempski H, Muschen M, Ford AM, Stratton MR, Greaves M, Campbell PJ. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet 2014; 46:116-25. [PMID: 24413735 PMCID: PMC3960636 DOI: 10.1038/ng.2874] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/13/2013] [Indexed: 12/16/2022]
Abstract
The ETV6-RUNX1 fusion gene, found in 25% of childhood acute lymphoblastic leukemia (ALL) cases, is acquired in utero but requires additional somatic mutations for overt leukemia. We used exome and low-coverage whole-genome sequencing to characterize secondary events associated with leukemic transformation. RAG-mediated deletions emerge as the dominant mutational process, characterized by recombination signal sequence motifs near breakpoints, incorporation of non-templated sequence at junctions, ∼30-fold enrichment at promoters and enhancers of genes actively transcribed in B cell development and an unexpectedly high ratio of recurrent to non-recurrent structural variants. Single-cell tracking shows that this mechanism is active throughout leukemic evolution, with evidence of localized clustering and reiterated deletions. Integration of data on point mutations and rearrangements identifies ATF7IP and MGA as two new tumor-suppressor genes in ALL. Thus, a remarkably parsimonious mutational process transforms ETV6-RUNX1-positive lymphoblasts, targeting the promoters, enhancers and first exons of genes that normally regulate B cell differentiation.
Collapse
Affiliation(s)
| | | | - Yilong Li
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - David C Wedge
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Jose Tubio
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Peter Van Loo
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Human Genetics, VIB and University of Leuven, Leuven, Belgium
| | - Susanna L Cooke
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - John Marshall
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Jonathan Hinton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Gunes Gundem
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Frederik W van Delft
- Institute for Cancer Research, Sutton, London, UK
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne, UK
| | | | - David R Jones
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Ian Titley
- Institute for Cancer Research, Sutton, London, UK
| | - Lucy Stebbings
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Catherine Leroy
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Andrew Menzies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - John Gamble
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Ben Robinson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Laura Mudie
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Keiran Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Sarah O’Meara
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Jon W Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Adam P Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Hospital San Gerardo, Via Pergolesi, 33, 20052 Monza (Mi), Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Hospital San Gerardo, Via Pergolesi, 33, 20052 Monza (Mi), Italy
| | - Jan Zuna
- CLIP, Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Helena Kempski
- Paediatric Malignancy Unit, CBL Level 2, Molecular Haematology & Cancer Biology Unit, Camelia Botnar Laboratories, Level 2, Great Ormond Street Hospital for Children & UCL Institute of Child Health, Great Ormond Street, London WC1N 3JH
| | - Markus Muschen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA
| | | | | | - Mel Greaves
- Institute for Cancer Research, Sutton, London, UK
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Addenbrooke’s NHS Foundation Trust, Cambridge, UK
- University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Riordan JD, Dupuy AJ. Domesticated transposable element gene products in human cancer. Mob Genet Elements 2013; 3:e26693. [PMID: 24251072 DOI: 10.4161/mge.26693] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/24/2013] [Accepted: 10/03/2013] [Indexed: 11/19/2022] Open
Abstract
The adaptation of transposable elements inserted within the genome to serve novel functions in a host cell, a process known as molecular domestication, is a widespread phenomenon in nature. Around fifty protein-coding genes in humans have arisen through this mechanism. Functional characterization of these domesticated genes has revealed involvement in a multitude of diverse cellular processes. Some of these functions are related to cellular activities and pathways known to be involved in cancer development. In this mini-review we discuss such roles of domesticated genes that may be aberrantly regulated in human cancer, as well as studies that have identified disrupted expression in tumors. We also describe studies that have provided definitive experimental evidence for transposable element-derived gene products in promoting tumorigenesis.
Collapse
Affiliation(s)
- Jesse D Riordan
- Department of Anatomy & Cell Biology; Roy J. & Lucille A. Carver College of Medicine; University of Iowa; Iowa City, IA USA
| | | |
Collapse
|
30
|
G-quadruplex structures formed at the HOX11 breakpoint region contribute to its fragility during t(10;14) translocation in T-cell leukemia. Mol Cell Biol 2013; 33:4266-81. [PMID: 24001773 DOI: 10.1128/mcb.00540-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K(+)-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.
Collapse
|
31
|
Nishana M, Raghavan SC. Role of recombination activating genes in the generation of antigen receptor diversity and beyond. Immunology 2013; 137:271-81. [PMID: 23039142 DOI: 10.1111/imm.12009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 01/18/2023] Open
Abstract
V(D)J recombination is the process by which antibody and T-cell receptor diversity is attained. During this process, antigen receptor gene segments are cleaved and rejoined by non-homologous DNA end joining for the generation of combinatorial diversity. The major players of the initial process of cleavage are the proteins known as RAG1 (recombination activating gene 1) and RAG2. In this review, we discuss the physiological function of RAGs as a sequence-specific nuclease and its pathological role as a structure-specific nuclease. The first part of the review discusses the basic mechanism of V(D)J recombination, and the last part focuses on how the RAG complex functions as a sequence-specific and structure-specific nuclease. It also deals with the off-target cleavage of RAGs and its implications in genomic instability.
Collapse
|
32
|
A non-B DNA can replace heptamer of V(D)J recombination when present along with a nonamer: implications in chromosomal translocations and cancer. Biochem J 2013; 448:115-25. [PMID: 22891626 DOI: 10.1042/bj20121031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The RAG (recombination-activating gene) complex is responsible for the generation of antigen receptor diversity by acting as a sequence-specific nuclease. Recent studies have shown that it also acts as a structure-specific nuclease. However, little is known about the factors regulating this activity at the genomic level. We show in the present study that the proximity of a V(D)J nonamer to heteroduplex DNA significantly increases RAG cleavage and binding efficiencies at physiological concentrations of MgCl(2). The position of the nonamer with respect to heteroduplex DNA was important, but not orientation. A spacer length of 18 bp between the nonamer and mismatch was optimal for RAG-mediated DNA cleavage. Mutations to the sequence of the nonamer and deletion of the nonamer-binding domain of RAG1 reinforced the role of the nonamer in the enhancement in RAG cleavage. Interestingly, partial mutation of the nonamer did not significantly reduce RAG cleavage on heteroduplex DNA, suggesting that even cryptic nonamers were sufficient to enhance RAG cleavage. More importantly, we show that the fragile region involved in chromosomal translocations associated with BCL2 (B-cell lymphoma 2) can be cleaved by RAGs following a nonamer-dependent mechanism. Hence our results from the present study suggest that a non-B DNA can replace the heptamer of RSS (recombination signal sequence) when present adjacent to nonamers, explaining the generation of certain chromosomal translocations in lymphoid malignancies.
Collapse
|
33
|
Gopalakrishnan V, Raghavan SC. Sequence and structural basis for chromosomal fragility during translocations in cancer. Future Oncol 2012; 8:1121-34. [DOI: 10.2217/fon.12.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chromosomal aberration is considered to be one of the major characteristic features in many cancers. Chromosomal translocation, one type of genomic abnormality, can lead to deregulation of critical genes involved in regulating important physiological functions such as cell proliferation and DNA repair. Although chromosomal translocations were thought to be random events, recent findings suggest that certain regions in the human genome are more susceptible to breakage than others. The possibility of deviation from the usual B-DNA conformation in such fragile regions has been an active area of investigation. This review summarizes the factors that contribute towards the fragility of these regions in the chromosomes, such as DNA sequences and the role of different forms of DNA structures. Proteins responsible for chromosomal fragility, and their mechanism of action are also discussed. The effect of positioning of chromosomes within the nucleus favoring chromosomal translocations and the role of repair mechanisms are also addressed.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
34
|
Begum NA, Honjo T. Evolutionary comparison of the mechanism of DNA cleavage with respect to immune diversity and genomic instability. Biochemistry 2012; 51:5243-56. [PMID: 22712724 DOI: 10.1021/bi3005895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is generally assumed that the genetic mechanism for immune diversity is unique and distinct from that for general genome diversity, in part because of the high efficiency and strict regulation of immune diversity. This expectation was partially met by the discovery of RAG1 and -2, which catalyze V(D)J recombination to generate the immune repertoire of B and T lymphocyte receptors. RAG1 and -2 were later shown to be derived from a transposon. On the other hand, activation-induced cytidine deaminase (AID), which mediates both somatic hypermutation (SHM) and the class-switch recombination (CSR) of the immunoglobulin genes, evolved earlier than RAG1 and -2 in jawless vertebrates. This review compares immune diversity and general genome diversity from an evolutionary perspective, shedding light on the roles of DNA-cleaving enzymes and target recognition markers. This comparison revealed that AID-mediated SHM and CSR share the cleaving enzyme topoisomerase 1 with transcription-associated mutation (TAM) and triplet contraction, which is involved in many genetic diseases. These genome-altering events appear to target DNA with non-B structure, which is induced by the inefficient correction of the excessive supercoiling that is caused by active transcription. Furthermore, an epigenetic modification on chromatin (histone H3K4 trimethylation) is used as a mark for DNA cleavage sites in meiotic recombination, V(D)J recombination, CSR, and SHM. We conclude that acquired immune diversity evolved via the appearance of an AID orthologue that utilized a preexisting mechanism for genomic instability, such as TAM.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
35
|
Onozawa M, Aplan PD. Illegitimate V(D)J recombination involving nonantigen receptor loci in lymphoid malignancy. Genes Chromosomes Cancer 2012; 51:525-35. [PMID: 22334400 PMCID: PMC3323722 DOI: 10.1002/gcc.21942] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/10/2012] [Indexed: 11/09/2022] Open
Abstract
V(D)J recombination of antigen receptor loci (IGH, IGK, IGL, TCRA, TCRB, TCRG, and TCRD) is an essential mechanism that confers enormous diversity to the mammalian immune system. However, there are now at least six examples of intrachromosomal interstitial deletions caused by aberrant V(D)J recombination between nonantigen receptor loci; five of out these six are associated with lymphoid malignancy. The SIL-SCL fusion and deletions of CDKN2A, IKZF1, Notch1, and Bcl11b are all associated with lymphoid malignancy. These interstitial deletions seem to be species specific, as the deletions seen in mice are not seen in humans; the converse is true as well. Nucleotide sequence analysis of these rearrangements reveals the hallmarks of V(D)J recombination, including site specificity near cryptic heptamer signal sequences, exonucleolytic "nibbling" at the junction site, and nontemplated "N"-region nucleotide insertion at the junction site. Two of these interstitial deletions (murine Notch1 and Bcl11b deletions) have been detected, at low frequency, in tissues from healthy mice with no evidence of malignancy, similar to the finding of chromosomal translocations in the peripheral blood or tonsils of healthy individuals. The contention that these are mediated via V(D)J recombination is strengthened by in vivo assays using extrachromosomal substrates, and chromatin immunoprecipitation-sequence analysis which shows Rag2 binding at the sites of rearrangement. Although the efficiency of these "illegitimate" recombination events is several orders of magnitude less than that at bona fide antigen receptor loci, the consequence of such deletions, namely activation of proto-oncogenes or deletion of tumor suppressor genes, is devastating, and a major cause for lymphoid malignancy.
Collapse
Affiliation(s)
- Masahiro Onozawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD
| |
Collapse
|
36
|
Katapadi VK, Nambiar M, Raghavan SC. Potential G-quadruplex formation at breakpoint regions of chromosomal translocations in cancer may explain their fragility. Genomics 2012; 100:72-80. [PMID: 22659239 DOI: 10.1016/j.ygeno.2012.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/13/2012] [Accepted: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Genetic alterations like point mutations, insertions, deletions, inversions and translocations are frequently found in cancers. Chromosomal translocations are one of the most common genomic aberrations associated with nearly all types of cancers especially leukemia and lymphoma. Recent studies have shown the role of non-B DNA structures in generation of translocations. In the present study, using various bioinformatic tools, we show the propensity of formation of different types of altered DNA structures near translocation breakpoint regions. In particular, we find close association between occurrence of G-quadruplex forming motifs and fragile regions in almost 70% of genes involved in rearrangements in lymphoid cancers. However, such an analysis did not provide any evidence for the occurrence of G-quadruplexes at the close vicinity of translocation breakpoint regions in nonlymphoid cancers. Overall, this study will help in the identification of novel non-B DNA targets that may be responsible for generation of chromosomal translocations in cancer.
Collapse
Affiliation(s)
- Vijeth K Katapadi
- Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India
| | | | | |
Collapse
|
37
|
The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination. PLoS Genet 2012; 8:e1002675. [PMID: 22570620 PMCID: PMC3343088 DOI: 10.1371/journal.pgen.1002675] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/13/2012] [Indexed: 01/09/2023] Open
Abstract
Class-switch recombination (CSR), induced by activation-induced cytidine deaminase (AID), can be divided into two phases: DNA cleavage of the switch (S) regions and the joining of the cleaved ends of the different S regions. Here, we show that the DSIF complex (Spt4 and Spt5), a transcription elongation factor, is required for CSR in a switch-proficient B cell line CH12F3-2A cells, and Spt4 and Spt5 carry out independent functions in CSR. While neither Spt4 nor Spt5 is required for transcription of S regions and AID, expression array analysis suggests that Spt4 and Spt5 regulate a distinct subset of transcripts in CH12F3-2A cells. Curiously, Spt4 is critically important in suppressing cryptic transcription initiating from the intronic Sμ region. Depletion of Spt5 reduced the H3K4me3 level and DNA cleavage at the Sα region, whereas Spt4 knockdown did not perturb the H3K4me3 status and S region cleavage. H3K4me3 modification level thus correlated well with the DNA breakage efficiency. Therefore we conclude that Spt5 plays a role similar to the histone chaperone FACT complex that regulates H3K4me3 modification and DNA cleavage in CSR. Since Spt4 is not involved in the DNA cleavage step, we suspected that Spt4 might be required for DNA repair in CSR. We examined whether Spt4 or Spt5 is essential in non-homologous end joining (NHEJ) and homologous recombination (HR) as CSR utilizes general repair pathways. Both Spt4 and Spt5 are required for NHEJ and HR as determined by assay systems using synthetic repair substrates that are actively transcribed even in the absence of Spt4 and Spt5. Taken together, Spt4 and Spt5 can function independently in multiple transcription-coupled steps of CSR. Class switch recombination (CSR) in B cells is required for interaction with different effector molecules while retaining the affinity for the same antigens. CSR mechanism involves the orchestrated steps of transcription, DNA break, and repair of the target loci. Within the cells, these processes occur at the chromatin level—involving DNA, histones, and their associated post-translational modifications (PTMs). Transcription factors associated with RNA Polymerase II complex often have regulatory roles in chromatin maintenance, which in turn might regulate the process of DNA cleavage and repair. Here we report that the transcription factor DSIF complex (Spt4 and Spt5) is critically required for CSR. The absence of either Spt4 or Spt5 blocked CSR. Interestingly, Spt4 and Spt5, although previously thought to work as a complex, can function independently of each other at several nodes of CSR, namely transcription regulation, DNA break formation, and histone PTM maintenance, exemplified by H3K4me3. The importance of H3K4me3 unifies three programmed recombinations—CSR, VDJ, and meiotic—in their reliance on this modification for their respective DNA cleavage formations. Moreover, Spt4 and Spt5 are required for DNA repair, another critical aspect of CSR, suggesting that the DNA repair steps of CSR may be coupled with transcription.
Collapse
|
38
|
Honjo T, Kobayashi M, Begum N, Kotani A, Sabouri S, Nagaoka H. The AID dilemma: infection, or cancer? Adv Cancer Res 2012; 113:1-44. [PMID: 22429851 DOI: 10.1016/b978-0-12-394280-7.00001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation-induced cytidine deaminase (AID), which is both essential and sufficient for forming antibody memory, is also linked to tumorigenesis. AID is found in many B lymphomas, in myeloid leukemia, and in pathogen-induced tumors such as adult T cell leukemia. Although there is no solid evidence that AID causes human tumors, AID-transgenic and AID-deficient mouse models indicate that AID is both sufficient and required for tumorigenesis. Recently, AID's ability to cleave DNA has been shown to depend on topoisomerase 1 (Top1) and a histone H3K4 epigenetic mark. When the level of Top1 protein is decreased by AID activation, it induces irreversible cleavage in highly transcribed targets. This finding and others led to the idea that there is an evolutionary link between meiotic recombination and class switch recombination, which share H3K4 trimethyl, topoisomerase, the MRN complex, mismatch repair family proteins, and exonuclease 3. As Top1 has recently been shown to be involved in many transcription-associated genome instabilities, it is likely that AID took advantage of basic genome instability or diversification to evolve its mechanism for immune diversity. AID targets are therefore not highly specific to immunoglobulin genes and are relatively abundant, although they have strict requirements for transcription-induced H3K4 trimethyl modification and repetitive sequences prone to forming non-B structures. Inevitably, AID-dependent cleavage takes place in nonimmunoglobulin targets and eventually causes tumors. However, battles against infection are waged in the context of acute emergencies, while tumorigenesis is rather a chronic, long-term process. In the interest of survival, vertebrates must have evolved AID to prevent infection despite its long-term risk of causing tumorigenesis.
Collapse
|
39
|
Naik AK, Raghavan SC. Differential reaction kinetics, cleavage complex formation, and nonamer binding domain dependence dictate the structure-specific and sequence-specific nuclease activity of RAGs. J Mol Biol 2011; 415:475-88. [PMID: 22119487 DOI: 10.1016/j.jmb.2011.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the "nonamer binding region," which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
40
|
Mechanistic basis for RAG discrimination between recombination sites and the off-target sites of human lymphomas. Mol Cell Biol 2011; 32:365-75. [PMID: 22064481 DOI: 10.1128/mcb.06187-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During V(D)J recombination, RAG targeting to correct sites versus off-target sites relies on both DNA sequence features and on chromatin marks. Kinetic analysis using the first highly active full-length purified RAG1/RAG2 complexes has now allowed us to define the important catalytic features of this complex. We found that the overall rate of nicking, but not hairpinning, is critical for the discrimination between correct (optimal) versus off-target (suboptimal) sites used in human T-cell lymphomas, and we show that the C-terminal portion of RAG2 is required for this. This type of kinetic analysis permits us to analyze only the catalytically active RAG complex, in contrast to all other methods, which are unavoidably confounded by mixture with inactive RAG complexes. Moreover, we can distinguish the two major features of any enzymatic catalysis: the binding constant (K(D)) and the catalytic turnover rate, k(cat). Beyond a minimal essential threshold of heptamer quality, further suboptimal heptamer deviations primarily reduce the catalytic rate constant k(cat) for nicking. Suboptimal nonamers reduce not only the binding of the RAG complex to the recombination site (K(D)) but also the catalytic rate constant, consistent with a tight interaction between the RAG complex and substrate during catalysis. These features explain many aspects of RAG physiology and pathophysiology.
Collapse
|
41
|
Numata M, Nagata K. Synergistic requirement of orphan nonamer-like elements and DNA bending enhanced by HMGB1 for RAG-mediated nicking at cryptic 12-RSS but not authentic 12-RSS. Genes Cells 2011; 16:879-95. [PMID: 21740486 DOI: 10.1111/j.1365-2443.2011.01534.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
V(D)J recombination is initiated by the specific binding of the recombination activating gene (RAG) complex to the heptamer and nonamer elements within recombination signal sequence (RSS). The break points associated with some chromosomal translocations contain cryptic RSSs, and mistargeting of RAG proteins to these less conserved elements could contribute to an aberrant V(D)J recombination. Recently, we found RAG-dependent recombination in the hotspots of TEL-AML1 t(12;21)(p13;q22) chromosomal translocation by an extrachromosomal recombination assay. Here, we describe using in vitro cleavage assays that RAG proteins directly bind to and introduce nicks into TEL and AML1 translocation regions, which contain several heptamer-like sequences. The cryptic nicking site within the TEL fragment was cleaved by RAG proteins essentially depending on a 12-RSS framework, and the nicking activity was enhanced synergistically by both HMGB1 and orphan nonamer-like (NL) sequences, which do not possess counterpart heptamers. In addition, we found that DNA bending stimulated by HMGB1 is indispensable for the HMGB1- and orphan NL element-dependent enhancement of RAG-mediated nicking at the cryptic 12-RSS. Collectively, we would propose the mechanism of HMGB1-dependent enhancement of RAG-mediated nicking at a cryptic RSS through enhanced DNA bending.
Collapse
Affiliation(s)
- Masashi Numata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | |
Collapse
|
42
|
Numata M, Saito S, Nagata K. RAG-dependent recombination at cryptic RSSs within TEL–AML1 t(12;21)(p13;q22) chromosomal translocation region. Biochem Biophys Res Commun 2010; 402:718-24. [DOI: 10.1016/j.bbrc.2010.10.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
|
43
|
Merelli I, Guffanti A, Fabbri M, Cocito A, Furia L, Grazini U, Bonnal RJ, Milanesi L, McBlane F. RSSsite: a reference database and prediction tool for the identification of cryptic Recombination Signal Sequences in human and murine genomes. Nucleic Acids Res 2010; 38:W262-7. [PMID: 20478831 PMCID: PMC2896083 DOI: 10.1093/nar/gkq391] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombination signal sequences (RSSs) flanking V, D and J gene segments are recognized and cut by the VDJ recombinase during development of B and T lymphocytes. All RSSs are composed of seven conserved nucleotides, followed by a spacer (containing either 12 ± 1 or 23 ± 1 poorly conserved nucleotides) and a conserved nonamer. Errors in V(D)J recombination, including cleavage of cryptic RSS outside the immunoglobulin and T cell receptor loci, are associated with oncogenic translocations observed in some lymphoid malignancies. We present in this paper the RSSsite web server, which is available from the address http://www.itb.cnr.it/rss. RSSsite consists of a web-accessible database, RSSdb, for the identification of pre-computed potential RSSs, and of the related search tool, DnaGrab, which allows the scoring of potential RSSs in user-supplied sequences. This latter algorithm makes use of probability models, which can be recasted to Bayesian network, taking into account correlations between groups of positions of a sequence, developed starting from specific reference sets of RSSs. In validation laboratory experiments, we selected 33 predicted cryptic RSSs (cRSSs) from 11 chromosomal regions outside the immunoglobulin and TCR loci for functional testing.
Collapse
Affiliation(s)
- Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, via Fratelli Cervi 93, 20090 Segrate, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Arnal SM, Holub AJ, Salus SS, Roth DB. Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways. Nucleic Acids Res 2010; 38:2944-54. [PMID: 20139091 PMCID: PMC2875030 DOI: 10.1093/nar/gkp1252] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
V(D)J recombination entails double-stranded DNA cleavage at the antigen receptor loci by the RAG1/2 proteins, which recognize conserved recombination signal sequences (RSSs) adjoining variable (V), diversity (D) and joining (J) gene segments. After cleavage, RAG1/2 remain associated with the coding and signal ends (SE) in a post-cleavage complex (PCC), which is critical for their proper joining by classical non-homologous end joining (NHEJ). Certain mutations in RAG1/2 destabilize the PCC, allowing DNA ends to access inappropriate repair pathways such as alternative NHEJ, an error-prone pathway implicated in chromosomal translocations. The PCC is thus thought to discourage aberrant rearrangements by controlling repair pathway choice. Since interactions between RAG1/2 and the RSS heptamer element are especially important in forming the RAG-SE complex, we hypothesized that non-consensus heptamer sequences might affect PCC stability. We find that certain non-consensus heptamers, including a cryptic heptamer implicated in oncogenic chromosomal rearrangements, destabilize the PCC, allowing coding and SEs to be repaired by non-standard pathways, including alternative NHEJ. These data suggest that some non-consensus RSS, frequently present at chromosomal translocations in lymphoid neoplasms, may promote genomic instability by a novel mechanism, disabling the PCC’s ability to restrict repair pathway choice.
Collapse
Affiliation(s)
- Suzzette M Arnal
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
45
|
Brandt VL, Roth DB. Recent insights into the formation of RAG-induced chromosomal translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:32-45. [PMID: 19731799 DOI: 10.1007/978-1-4419-0296-2_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Chromosomal translocations are found in many types of tumors, where they may be either a cause or a result of malignant transformation. In lymphoid neoplasms, however, it is dear that pathogenesis is initiated by any of a number of recurrent DNA rearrangements. These particular translocations typically place an oncogene under the regulatory control of an Ig or TCR gene promoter, dysregulating cell growth, differentiation, or apoptosis. Given that physiological DNA rearrangements (V(D)J and class switch recombination) are integral to lymphocyte development, it is critical to understand how genomic stability is maintained during these processes. Recent advances in our understanding of DNA damage signaling and repair have provided clues to the kinds of mechanisms that lead to V(D)J-mediated translocations. In turn, investigations into the regulation of V(D)J joining have illuminated a formerly obscure pathway of DNA repair known as alternative NHEJ, which is error-prone and frequently involved in translocations. In this chapter we consider recent advances in our understanding of the functions of the RAG proteins, RAG interactions with DNA repair pathways, damage signaling and chromosome biology, all of which shed light on how mistakes at different stages of V(D)J recombination might lead to leukemias and lymphomas.
Collapse
Affiliation(s)
- Vicky L Brandt
- Department of Pathology and Program in Molecular Pathogenesis, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
46
|
H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol Cell 2009; 34:535-44. [PMID: 19524534 DOI: 10.1016/j.molcel.2009.05.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/31/2009] [Accepted: 05/18/2009] [Indexed: 01/19/2023]
Abstract
The PHD finger of the RAG2 polypeptide of the RAG1/RAG2 complex binds to the histone H3 modification, trimethylated lysine 4 (H3K4me3), and in some manner increases V(D)J recombination. In the absence of biochemical studies of H3K4me3 on purified RAG enzyme activity, the precise role of H3K4me3 remains unclear. Here, we find that H3K4me3 stimulates purified RAG enzymatic activity at both the nicking (2- to 5-fold) and hairpinning (3- to 11-fold) steps of V(D)J recombination. Remarkably, this stimulation can be achieved with free H3K4me3 peptide (in trans), indicating that H3K4me3 functions via two distinct mechanisms. It not only tethers the RAG enzyme complex to a region of DNA, but it also induces a substantial increase in the catalytic turnover number (k(cat)) of the RAG complex. The H3K4me3 catalytic stimulation applies to suboptimal cryptic RSS sites located at H3K4me3 peaks that are critical in the inception of human T cell acute lymphoblastic lymphomas.
Collapse
|
47
|
Wright SM, Woo YH, Alley TL, Shirley BJ, Akeson EC, Snow KJ, Maas SA, Elwell RL, Foreman O, Mills KD. Complex oncogenic translocations with gene amplification are initiated by specific DNA breaks in lymphocytes. Cancer Res 2009; 69:4454-60. [PMID: 19435904 DOI: 10.1158/0008-5472.can-08-4515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. Whereas chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double-strand break repair in suppression of oncogenic genome instability, the genomic elements required for chromosome rearrangements, especially complex lesions, have not been elucidated. Using a mouse model of B-lineage lymphoma, characterized by complicon formation involving the immunoglobulin heavy chain (Igh) locus and the c-myc oncogene, we have now investigated the requirement for specific genomic segments as donors for complex rearrangements. We now show that specific DNA double-strand breaks, occurring within a narrow segment of Igh, are necessary to initiate complicon formation. By contrast, neither specific DNA breaks nor the powerful intronic enhancer Emu are required for complicon-independent oncogenesis. This study is the first to delineate mechanisms of complex versus simple instability and the first to identify specific chromosomal elements required for complex chromosomal aberrations. These findings will illuminate genomic cancer susceptibility and risk factors.
Collapse
|
48
|
Zhang M, Swanson PC. HMGB1/2 can target DNA for illegitimate cleavage by the RAG1/2 complex. BMC Mol Biol 2009; 10:24. [PMID: 19317908 PMCID: PMC2666730 DOI: 10.1186/1471-2199-10-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 03/24/2009] [Indexed: 01/09/2023] Open
Abstract
Background V(D)J recombination is initiated in antigen receptor loci by the pairwise cleavage of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins via a nick-hairpin mechanism. The RSS contains highly conserved heptamer (consensus: 5'-CACAGTG) and nonamer (consensus: 5'-ACAAAAACC) motifs separated by either 12- or 23-base pairs of poorly conserved sequence. The high mobility group proteins HMGB1 and HMGB2 (HMGB1/2) are highly abundant architectural DNA binding proteins known to promote RAG-mediated synapsis and cleavage of consensus recombination signals in vitro by facilitating RSS binding and bending by the RAG1/2 complex. HMGB1/2 are known to recognize distorted DNA structures such as four-way junctions, and damaged or modified DNA. Whether HMGB1/2 can promote RAG-mediated DNA cleavage at sites lacking a canonical RSS by targeting or stabilizing structural distortions is unclear, but is important for understanding the etiology of chromosomal translocations involving antigen receptor genes and proto-oncogene sequences that do not contain an obvious RSS-like element. Results Here we identify a novel DNA breakpoint site in the plasmid V(D)J recombination substrate pGG49 (bps6197) that is cleaved by the RAG proteins via a nick-hairpin mechanism. The bps6197 sequence lacks a recognizable heptamer at the breakpoint (5'-CCTGACG-3') but contains a nonamer-like element (5'-ACATTAACC-3') 30 base pairs from the cleavage site. We find that RAG-mediated bps6197 cleavage is promoted by HMGB1/2, requiring both HMG-box domains to be intact to facilitate RAG-mediated cleavage, and is stimulated by synapsis with a 12-RSS. A dyad-symmetric inverted repeat sequence lying 5' to the breakpoint is implicated as a target for HMGB1/2 activity. Conclusion We have identified a novel DNA sequence, called bps6197, that supports standard V(D)J-type cleavage despite the absence of an apparent heptamer motif. Efficient RAG-mediated bps6197 cleavage requires the presence of HMGB1/2, is stimulated by synapsis with a 12-RSS partner, and is directed in part by an inverted repeat sequence adjacent to the DNA cleavage site. These results have important implications for understanding how the RAG proteins can introduce a DNA double-strand break at DNA sequences that do not contain an obvious heptamer-like motif.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE, USA.
| | | |
Collapse
|
49
|
Tsai AG, Lu H, Raghavan SC, Muschen M, Hsieh CL, Lieber MR. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 2008; 135:1130-42. [PMID: 19070581 DOI: 10.1016/j.cell.2008.10.035] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/29/2008] [Accepted: 10/21/2008] [Indexed: 12/16/2022]
Abstract
We have assembled, annotated, and analyzed a database of over 1700 breakpoints from the most common chromosomal rearrangements in human leukemias and lymphomas. Using this database, we show that although the CpG dinucleotide constitutes only 1% of the human genome, it accounts for 40%-70% of breakpoints at pro-B/pre-B stage translocation regions-specifically, those near the bcl-2, bcl-1, and E2A genes. We do not observe CpG hotspots in rearrangements involving lymphoid-myeloid progenitors, mature B cells, or T cells. The stage specificity, lineage specificity, CpG targeting, and unique breakpoint distributions at these cluster regions may be explained by a lesion-specific double-strand breakage mechanism involving the RAG complex acting at AID-deaminated methyl-CpGs.
Collapse
Affiliation(s)
- Albert G Tsai
- Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, MC9176, Los Angeles, CA 90089-9176, USA
| | | | | | | | | | | |
Collapse
|
50
|
Longo NS, Grundy GJ, Lee J, Gellert M, Lipsky PE. An activation-induced cytidine deaminase-independent mechanism of secondary VH gene rearrangement in preimmune human B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7825-34. [PMID: 19017972 DOI: 10.4049/jimmunol.181.11.7825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
V(H) replacement is a form of IgH chain receptor editing that is believed to be mediated by recombinase cleavage at cryptic recombination signal sequences (cRSS) embedded in V(H) genes. Whereas there are several reports of V(H) replacement in primary and transformed human B cells and murine models, it remains unclear whether V(H) replacement contributes to the normal human B cell repertoire. We identified V(H)-->V(H)(D)J(H) compound rearrangements from fetal liver, fetal bone marrow, and naive peripheral blood, all of which involved invading and recipient V(H)4 genes that contain a cryptic heptamer, a 13-bp spacer, and nonamer in the 5' portion of framework region 3. Surprisingly, all pseudohybrid joins lacked the molecular processing associated with typical V(H)(D)J(H) recombination or nonhomologous end joining. Although inefficient compared with a canonical recombination signal sequences, the V(H)4 cRSS was a significantly better substrate for in vitro RAG-mediated cleavage than the V(H)3 cRSS. It has been suggested that activation-induced cytidine deamination (AICDA) may contribute to V(H) replacement. However, we found similar secondary rearrangements using V(H)4 genes in AICDA-deficient human B cells. The data suggest that V(H)4 replacement in preimmune human B cells is mediated by an AICDA-independent mechanism resulting from inefficient but selective RAG activity.
Collapse
Affiliation(s)
- Nancy S Longo
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Diabetes andDigestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1560, USA
| | | | | | | | | |
Collapse
|