1
|
Cheng Y, Manabe I, Hayakawa S, Endo Y, Oishi Y. Caspase-11 contributes to site-1 protease cleavage and SREBP1 activation in the inflammatory response of macrophages. Front Immunol 2023; 14:1009973. [PMID: 36776855 PMCID: PMC9912839 DOI: 10.3389/fimmu.2023.1009973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that control fatty acid and cholesterol metabolism. As the major SREBP isoform in macrophages, SREBP1a is also required for inflammatory and phagocytotic functions. However, it is insufficiently understood how SREBP1a is activated by the innate immune response in macrophages. Here, we show that mouse caspase-11 is a novel inflammatory activator of SREBP1a in macrophages. Upon LPS treatment, caspase-11 was found to promote the processing of site-1 protease (S1P), an enzyme that mediates the cleavage and activation of SREBP1. We also determined that caspase-11 directly associates with S1P and cleaves it at a specific site. Furthermore, deletion of the Casp4 gene, which encodes caspase-11, impaired the activation of S1P and SREBP1 as well as altered the expression of genes regulated by SREBP1 in macrophages. These results demonstrate that the caspase-11/S1P pathway activates SREBP1 in response to LPS, thus regulating subsequent macrophage activation.
Collapse
Affiliation(s)
- Yinglan Cheng
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan,*Correspondence: Ichiro Manabe, ; Yumiko Oishi,
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Japan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Japan,*Correspondence: Ichiro Manabe, ; Yumiko Oishi,
| |
Collapse
|
2
|
Fukuda M, Ogasawara Y, Hayashi H, Inoue K, Sakashita H. Resveratrol Inhibits Proliferation and Induces Autophagy by Blocking SREBP1 Expression in Oral Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238250. [PMID: 36500345 PMCID: PMC9738393 DOI: 10.3390/molecules27238250] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Resveratrol is a polyphenolic antioxidant found in grapes, red wine, and peanuts and has been reported to have anti-neoplastic effects on various cancer types. However, the exact mechanism of its anti-cancer effects in oral cancer is not fully understood and remains controversial. Resveratrol exhibits strong hypolipidemic effects; therefore, we examined its effect on lipid metabolism in oral cancer. Resveratrol significantly reduced cell viability and induced autophagic cell death in oral cancer cells but not in normal cells. This selective effect was accompanied by significantly reduced lipogenesis, which is caused by downregulation of the transcription factor sterol regulatory element-binding protein 1 (SREBP1) gene, followed by downregulation of the epidermal fatty acid-binding protein (E-FABP). It was strongly suggested that resveratrol-induced autophagy resulted from the inhibition of SREBP1-mediated cell survival signaling. Luciferase reporter assay further indicated that resveratrol has a potent and specific inhibitory effect on SREBP1-dependent transactivation. Importantly, resveratrol markedly suppressed the growth of oral cancer cells in an animal xenograft model, without exhibiting apparent cytotoxicity. In conclusion, resveratrol induces autophagy in oral cancer cells by suppressing lipid metabolism through the regulation of SREBP1 expression, which highlights a novel mechanism of the anti-cancer effect of resveratrol.
Collapse
Affiliation(s)
- Masakatsu Fukuda
- Division of Biochemistry, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Saitama 350-0283, Japan
- Correspondence: ; Tel.: +81-49-285-5511; Fax: +81-49-285-6036
| | - Yudai Ogasawara
- Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama 350-0283, Japan
| | - Hiroyasu Hayashi
- Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama 350-0283, Japan
| | - Katsuyuki Inoue
- Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama 350-0283, Japan
| | - Hideaki Sakashita
- Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama 350-0283, Japan
| |
Collapse
|
3
|
Carvalho-Gontijo R, Han C, Zhang L, Zhang V, Hosseini M, Mekeel K, Schnabl B, Loomba R, Karin M, Brenner DA, Kisseleva T. Metabolic Injury of Hepatocytes Promotes Progression of NAFLD and AALD. Semin Liver Dis 2022; 42:233-249. [PMID: 36001995 PMCID: PMC9662188 DOI: 10.1055/s-0042-1755316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nonalcoholic liver disease is a component of metabolic syndrome associated with obesity, insulin resistance, and hyperlipidemia. Excessive alcohol consumption may accelerate the progression of steatosis, steatohepatitis, and fibrosis. While simple steatosis is considered a benign condition, nonalcoholic steatohepatitis with inflammation and fibrosis may progress to cirrhosis, liver failure, and hepatocellular cancer. Studies in rodent experimental models and primary cell cultures have demonstrated several common cellular and molecular mechanisms in the pathogenesis and regression of liver fibrosis. Chronic injury and death of hepatocytes cause the recruitment of myeloid cells, secretion of inflammatory and fibrogenic cytokines, and activation of myofibroblasts, resulting in liver fibrosis. In this review, we discuss the role of metabolically injured hepatocytes in the pathogenesis of nonalcoholic steatohepatitis and alcohol-associated liver disease. Specifically, the role of chemokine production and de novo lipogenesis in the development of steatotic hepatocytes and the pathways of steatosis regulation are discussed.
Collapse
Affiliation(s)
- Raquel Carvalho-Gontijo
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Cuijuan Han
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Lei Zhang
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Vivian Zhang
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla
| | - Kristin Mekeel
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Rohit Loomba
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla
| | - David A. Brenner
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| |
Collapse
|
4
|
IL-37 isoform D acts as an inhibitor of soluble ST2 to boost type 2 immune homeostasis in white adipose tissue. Cell Death Dis 2022; 8:163. [PMID: 35383145 PMCID: PMC8983676 DOI: 10.1038/s41420-022-00960-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
White adipose tissue (WAT) homeostasis substantiated by type 2 immunity is indispensable to counteract obesity and metabolic disorders. IL-33/suppression of tumorigenicity (ST) 2 signaling promotes type 2 response in WAT, while potential regulators remain to be discovered. We identified human IL-37 isoform D (IL-37D) as an effective trigger for ST2-mediated type 2 immune homeostasis in WAT. IL-37D transgene amplified ST2+ immune cells, promoted M2 macrophage polarization and type 2 cytokine secretion in WAT that mediate beiging and inflammation resolution, thereby increasing energy expenditure, reducing obesity and insulin resistance in high-fat diet (HFD)-fed mice. Mechanistically, either endogenous or exogenous IL-37D inhibited soluble ST2 (sST2) production from WAT challenged with HFD or TNF-α. Recombinant sST2 impaired the beneficial effects of IL-37D transgene in HFD-fed mice, characterized by damaged weight loss, insulin action, and type 2 cytokine secretion from WAT. In adipose-derived stem cells, IL-37D inhibited TNF-α-stimulated sST2 expression through IL-1 receptor 8 (IL-1R8)-dependent NF-κB inactivation. Collectively, human IL-37D suppresses sST2 to boost type 2 immune homeostasis in WAT, which may be a promising therapy target for obesity and metabolic disorders.
Collapse
|
5
|
Deng J, Bai X, Tang H, Pang S. DNA damage promotes ER stress resistance through elevation of unsaturated phosphatidylcholine in Caenorhabditis elegans. J Biol Chem 2021; 296:100095. [PMID: 33208465 PMCID: PMC7949029 DOI: 10.1074/jbc.ra120.016083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023] Open
Abstract
DNA damage triggers the cellular adaptive response to arrest proliferation and repair DNA damage; when damage is too severe to be repaired, apoptosis is initiated to prevent the spread of genomic insults. However, how cells endure DNA damage to maintain cell function remains largely unexplored. By using Caenorhabditis elegans as a model, we report that DNA damage elicits cell maintenance programs, including the unfolded protein response of the endoplasmic reticulum (UPRER). Mechanistically, sublethal DNA damage unexpectedly suppresses apoptotic genes in C. elegans, which in turn increases the activity of the inositol-requiring enzyme 1/X-box binding protein 1 (IRE-1/XBP-1) branch of the UPRER by elevating unsaturated phosphatidylcholine. In addition, UPRER activation requires silencing of the lipid regulator skinhead-1 (SKN-1). DNA damage suppresses SKN-1 activity to increase unsaturated phosphatidylcholine and activate UPRER. These findings reveal the UPRER activation as an organismal adaptive response that is important to maintain cell function during DNA damage.
Collapse
Affiliation(s)
- Jianhui Deng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Bai
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China.
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
6
|
Microbiota reprogramming for treatment of alcohol-related liver disease. Transl Res 2020; 226:26-38. [PMID: 32687975 PMCID: PMC7572584 DOI: 10.1016/j.trsl.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
In the past decade knowledge has expanded regarding the importance of the gut microbiota in maintaining intestinal homeostasis and overall health. During this same time, we have also gained appreciation for the role of the gut-liver axis in the development of liver diseases. Alcohol overconsumption is one of the leading causes of liver failure globally. However, not all people with alcohol use disorder progress to advanced stages of liver disease. With advances in technology to investigate the gut microbiome and metabolome, we are now beginning to delineate alcohol's effects on the gut microbiome in relation to liver disease. This review presents our current understanding on the role of the gut microbiota during alcohol exposure, and various therapeutic attempts that have been made to reprogram the gut microbiota with the goal of alleviating alcoholic-related liver disease.
Collapse
|
7
|
Kim JY, Garcia-Carbonell R, Yamachika S, Zhao P, Dhar D, Loomba R, Kaufman RJ, Saltiel AR, Karin M. ER Stress Drives Lipogenesis and Steatohepatitis via Caspase-2 Activation of S1P. Cell 2018; 175:133-145.e15. [PMID: 30220454 DOI: 10.1016/j.cell.2018.08.020] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 05/11/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) progresses to nonalcoholic steatohepatitis (NASH) in response to elevated endoplasmic reticulum (ER) stress. Whereas the onset of simple steatosis requires elevated de novo lipogenesis, progression to NASH is triggered by accumulation of hepatocyte-free cholesterol. We now show that caspase-2, whose expression is ER-stress inducible and elevated in human and mouse NASH, controls the buildup of hepatic-free cholesterol and triglycerides by activating sterol regulatory element-binding proteins (SREBP) in a manner refractory to feedback inhibition. Caspase-2 colocalizes with site 1 protease (S1P) and cleaves it to generate a soluble active fragment that initiates SCAP-independent SREBP1/2 activation in the ER. Caspase-2 ablation or pharmacological inhibition prevents diet-induced steatosis and NASH progression in ER-stress-prone mice. Caspase-2 inhibition offers a specific and effective strategy for preventing or treating stress-driven fatty liver diseases, whereas caspase-2-generated S1P proteolytic fragments, which enter the secretory pathway, are potential NASH biomarkers.
Collapse
Affiliation(s)
- Ju Youn Kim
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Ricard Garcia-Carbonell
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Peng Zhao
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Randal J Kaufman
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alan R Saltiel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Guerrini V, Prideaux B, Blanc L, Bruiners N, Arrigucci R, Singh S, Ho-Liang HP, Salamon H, Chen PY, Lakehal K, Subbian S, O’Brien P, Via LE, Barry CE, Dartois V, Gennaro ML. Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog 2018; 14:e1007223. [PMID: 30161232 PMCID: PMC6117085 DOI: 10.1371/journal.ppat.1007223] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Foam cells are lipid-laden macrophages that contribute to the inflammation and tissue damage associated with many chronic inflammatory disorders. Although foam cell biogenesis has been extensively studied in atherosclerosis, how these cells form during a chronic infectious disease such as tuberculosis is unknown. Here we report that, unlike the cholesterol-laden cells of atherosclerosis, foam cells in tuberculous lung lesions accumulate triglycerides. Consequently, the biogenesis of foam cells varies with the underlying disease. In vitro mechanistic studies showed that triglyceride accumulation in human macrophages infected with Mycobacterium tuberculosis is mediated by TNF receptor signaling through downstream activation of the caspase cascade and the mammalian target of rapamycin complex 1 (mTORC1). These features are distinct from the known biogenesis of atherogenic foam cells and establish a new paradigm for non-atherogenic foam cell formation. Moreover, they reveal novel targets for disease-specific pharmacological interventions against maladaptive macrophage responses.
Collapse
Affiliation(s)
- Valentina Guerrini
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Landry Blanc
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Natalie Bruiners
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Riccardo Arrigucci
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Sukhwinder Singh
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Hsin Pin Ho-Liang
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Hugh Salamon
- Knowledge Synthesis, Berkeley, CA, United States of America
| | - Pei-Yu Chen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Karim Lakehal
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Paul O’Brien
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Laura E. Via
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| |
Collapse
|
9
|
Wilson CH, Kumar S. Caspases in metabolic disease and their therapeutic potential. Cell Death Differ 2018; 25:1010-1024. [PMID: 29743560 PMCID: PMC5988802 DOI: 10.1038/s41418-018-0111-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Caspases, a family of cysteine-dependent aspartate-specific proteases, are central to the maintenance of cellular and organismal homoeostasis by functioning as key mediators of the inflammatory response and/or apoptosis. Both metabolic inflammation and apoptosis play a central role in the pathogenesis of metabolic disease such as obesity and the progression of nonalcoholic steatohepatisis (NASH) to more severe liver disease. Obesity and nonalcoholic fatty liver disease (NAFLD) are the leading global health challenges associated with the development of numerous comorbidities including insulin resistance, type-2 diabetes and early mortality. Despite the high prevalence, current treatment strategies including lifestyle, dietary, pharmaceutical and surgical interventions, are often limited in their efficacy to manage or treat obesity, and there are currently no clinical therapies for NAFLD/NASH. As mediators of inflammation and cell death, caspases are attractive therapeutic targets for the treatment of these metabolic diseases. As such, pan-caspase inhibitors that act by blocking apoptosis have reached phase I/II clinical trials in severe liver disease. However, there is still a lack of knowledge of the specific and differential functions of individual caspases. In addition, cross-talk between alternate cell death pathways is a growing concern for long-term caspase inhibition. Evidence is emerging of the important cell-death-independent, non-apoptotic functions of caspases in metabolic homoeostasis that may be of therapeutic value. Here, we review the current evidence for roles of caspases in metabolic disease and discuss their potential targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire H Wilson
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| |
Collapse
|
10
|
Gamberi T, Magherini F, Modesti A, Fiaschi T. Adiponectin Signaling Pathways in Liver Diseases. Biomedicines 2018; 6:biomedicines6020052. [PMID: 29735928 PMCID: PMC6027295 DOI: 10.3390/biomedicines6020052] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
In the liver, adiponectin regulates both glucose and lipid metabolism and exerts an insulin-sensitizing effect. The binding of adiponectin with its specific receptors induces the activation of a proper signaling cascade that becomes altered in liver pathologies. This review describes the different signaling pathways in healthy and diseased hepatocytes, also highlighting the beneficial role of adiponectin in autophagy activation and hepatic regeneration.
Collapse
Affiliation(s)
- Tania Gamberi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
| | - Francesca Magherini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
| | - Alessandra Modesti
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
| | - Tania Fiaschi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
| |
Collapse
|
11
|
You M, Jogasuria A, Taylor C, Wu J. Sirtuin 1 signaling and alcoholic fatty liver disease. Hepatobiliary Surg Nutr 2015; 4:88-100. [PMID: 26005675 DOI: 10.3978/j.issn.2304-3881.2014.12.06] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022]
Abstract
Alcoholic fatty liver disease (AFLD) is one of the most prevalent forms of liver disease worldwide and can progress to inflammation (hepatitis), fibrosis/cirrhosis, and ultimately lead to end stage liver injury. The mechanisms, by which ethanol consumption leads to AFLD, are complicated and multiple, and remain incompletely understood. Nevertheless, understanding its pathogenesis will facilitate the development of effective pharmacological or nutritional therapies for treating human AFLD. Chronic ethanol consumption causes steatosis and inflammation in rodents or humans by disturbing several important hepatic transcriptional regulators, including AMP-activated kinase (AMPK), lipin-1, sterol regulatory element binding protein 1 (SREBP-1), PPARγ co-activator-1α (PGC-1α), and nuclear transcription factor-κB (NF-κB). Remarkably, the effects of ethanol on these regulators are mediated in whole or in part by inhibition of a central signaling molecule, sirtuin 1 (SIRT1), which is a nicotinamide adenine dinucleotide (NAD(+), NADH)-dependent class III protein deacetylase. In recent years, SIRT1 has emerged as a pivotal molecule controlling the pathways of hepatic lipid metabolism, inflammatory responses and in the development of AFLD in rodents and in humans. Ethanol-mediated SIRT1 inhibition suppresses or stimulates the activities of above described transcriptional regulators and co-regulators, thereby deregulating diverse lipid metabolism and inflammatory response pathways including lipogenesis, fatty acid β-oxidation, lipoprotein uptake and secretion and expression of pro-inflammatory cytokines in the liver. This review aims to highlight our current understanding of SIRT1 regulatory mechanisms and its response to ethanol-induced toxicity, thus, affirming significant role of SIRT1 signaling in the development of AFLD.
Collapse
Affiliation(s)
- Min You
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Alvin Jogasuria
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Charles Taylor
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jiashin Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
12
|
Wang TN, Chen X, Li R, Gao B, Mohammed-Ali Z, Lu C, Yum V, Dickhout JG, Krepinsky JC. SREBP-1 Mediates Angiotensin II-Induced TGF-β1 Upregulation and Glomerular Fibrosis. J Am Soc Nephrol 2014; 26:1839-54. [PMID: 25398788 DOI: 10.1681/asn.2013121332] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
Angiotensin II is an important mediator of CKD of diverse etiology. A common pathologic feature of CKD is glomerular fibrosis, a central mediator of which is the profibrotic cytokine TGF-β. The mechanisms underlying the induction of TGF-β and matrix by angiotensin II are not completely understood. Recent studies showed that overexpression of the transcription factor SREBP-1 induces glomerular sclerosis and that angiotensin II can activate SREBP-1 in tubular cells. We thus studied whether SREBP-1 is activated by angiotensin II and mediates angiotensin II-induced profibrogenic responses in primary rat mesangial cells. Treatment of cells with angiotensin II induced the upregulation and activation of SREBP-1. Angiotensin II-induced activation of SREBP-1 required signaling through the angiotensin II type I receptor and activation of PI3K/Akt in addition to the chaperone SCAP and protease S1P. Notably, angiotensin II-induced endoplasmic reticulum stress was identified as a key mediator of Akt-SREBP-1 activation, and inhibition of endoplasmic reticulum stress or SREBP-1 prevented angiotensin II-induced SREBP-1 binding to the TGF-β promoter, TGF-β upregulation, and downstream fibronectin upregulation. Endoplasmic reticulum stress alone, however, did not induce TGF-β upregulation despite activating SREBP-1. Although not required for SREBP-1 activation by angiotensin II, EGF receptor signaling was necessary for activation of the SREBP-1 cotranscription factor Sp1, which provided a required second signal for TGF-β upregulation. In vivo, endoplasmic reticulum stress and SREBP-1-dependent effects were induced in glomeruli of angiotensin II-infused mice, and administration of the SREBP inhibitor fatostatin prevented angiotensin II-induced TGF-β upregulation and matrix accumulation. SREBP-1 and endoplasmic reticulum stress thus provide potential novel therapeutic targets for the treatment of CKD.
Collapse
Affiliation(s)
- Tony N Wang
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Xing Chen
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Renzhong Li
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | - Chao Lu
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Victoria Yum
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | - Joan C Krepinsky
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Chen G, Wang T, Uttarwar L, vanKrieken R, Li R, Chen X, Gao B, Ghayur A, Margetts P, Krepinsky JC. SREBP-1 is a novel mediator of TGFβ1 signaling in mesangial cells. J Mol Cell Biol 2014; 6:516-30. [DOI: 10.1093/jmcb/mju041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
14
|
Ringseis R, Gessner DK, Eder K. Molecular insights into the mechanisms of liver-associated diseases in early-lactating dairy cows: hypothetical role of endoplasmic reticulum stress. J Anim Physiol Anim Nutr (Berl) 2014; 99:626-45. [DOI: 10.1111/jpn.12263] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/10/2014] [Indexed: 12/14/2022]
Affiliation(s)
- R. Ringseis
- Institute of Animal Nutrition and Nutrition Physiology; Justus-Liebig-University Giessen; Giessen Germany
| | - D. K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology; Justus-Liebig-University Giessen; Giessen Germany
| | - K. Eder
- Institute of Animal Nutrition and Nutrition Physiology; Justus-Liebig-University Giessen; Giessen Germany
| |
Collapse
|
15
|
Takahashi Y, Shinoda A, Furuya N, Harada E, Arimura N, Ichi I, Fujiwara Y, Inoue J, Sato R. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triacylglyceride accumulation. PLoS One 2013; 8:e64605. [PMID: 23734208 PMCID: PMC3667186 DOI: 10.1371/journal.pone.0064605] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
Sterol regulatory element-binding protein-1 (SREBP-1) has been thought to be a critical factor that assists adipogenesis. During adipogenesis SREBP-1 stimulates lipogenic gene expression, and peroxisome proliferator-activated receptor γ (PPARγ) enhances perilipin (plin) gene expression, resulting in generating lipid droplets (LDs) to store triacylglycerol (TAG) in adipocytes. Plin coats adipocyte LDs and protects them from lipolysis. Here we show in white adipose tissue (WAT) of plin-/- mice that nuclear active SREBP-1 and its target gene expression, but not nuclear SREBP-2, significantly decreased on attenuated LD formation. When plin-/- mouse embryonic fibroblasts (MEFs) differentiated into adipocytes, attenuated LDs were formed and nuclear SREBP-1 decreased, but enforced plin expression restored them to their original state. Since LDs are largely derived from the endoplasmic reticulum (ER), alterations in the ER cholesterol content were investigated during adipogenesis of 3T3-L1 cells. The ER cholesterol greatly reduced in differentiated adipocytes. The ER cholesterol level in plin-/- WAT was significantly higher than that of wild-type mice, suggesting that increased LD formation caused a change in ER environment along with a decrease in cholesterol. When GFP-SREBP-1 fusion proteins were exogenously expressed in 3T3-L1 cells, a mutant protein lacking the S1P cleavage site was poorly processed during adipogenesis, providing evidence of the increased canonical pathway for SREBP processing in which SREBP-1 is activated by two cleavage enzymes in the Golgi. Therefore, LD biogenesis may create the ER microenvironment favorable for SREBP-1 activation. We describe the novel interplay between LD formation and SREBP-1 activation through a positive feedback loop.
Collapse
Affiliation(s)
- Yu Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Shinoda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Norihiko Furuya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Eri Harada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoto Arimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuyo Ichi
- Department of Nutrition and Food Science, Ochanomizu University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Nutrition and Food Science, Ochanomizu University, Tokyo, Japan
| | - Jun Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
hnRNP A1 mediates the activation of the IRES-dependent SREBP-1a mRNA translation in response to endoplasmic reticulum stress. Biochem J 2013; 449:543-53. [PMID: 23106379 DOI: 10.1042/bj20120906] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A growing amount of evidence suggests the involvement of ER (endoplasmic reticulum) stress in lipid metabolism and in the development of some liver diseases such as steatosis. The transcription factor SREBP-1 (sterol-regulatory-element-binding protein 1) modulates the expression of several enzymes involved in lipid synthesis. Previously, we showed that ER stress increased the SREBP-1a protein level in HepG2 cells, by inducing a cap-independent translation of SREBP-1a mRNA, through an IRES (internal ribosome entry site), located in its leader region. In the present paper, we report that the hnRNP A1 (heterogeneous nuclear ribonucleoprotein A1) interacts with 5'-UTR (untranslated region) of SREBP-1a mRNA, as an ITAF (IRES trans-acting factor), regulating SREBP-1a expression in HepG2 cells and in primary rat hepatocytes. Overexpression of hnRNP A1 in HepG2 cells and in rat hepatocytes increased both the SREBP-1a IRES activity and SREBP-1a protein level. Knockdown of hnRNP A1 by small interfering RNA reduced either the SREBP-1a IRES activity or SREBP-1a protein level. hnRNP A1 mediates the increase of SREBP-1a protein level and SREBP-1a IRES activity in Hep G2 cells and in rat hepatocytes upon tunicamycin- and thapsigargin-induced ER stress. The induced ER stress triggered the cytosolic relocation of hnRNP A1 and caused the increase in hnRNP A1 bound to the SREBP-1a 5'-UTR. These data indicate that hnRNP A1 participates in the IRES-dependent translation of SREBP-1a mRNA through RNA-protein interaction. A different content of hnRNP A1 was found in the nuclei from high-fat-diet-fed mice liver compared with standard-diet-fed mice liver, suggesting an involvement of ER stress-mediated hnRNP A1 subcellular redistribution on the onset of metabolic disorders.
Collapse
|
17
|
Uttarwar L, Gao B, Ingram AJ, Krepinsky JC. SREBP-1 activation by glucose mediates TGF-β upregulation in mesangial cells. Am J Physiol Renal Physiol 2012; 302:F329-41. [DOI: 10.1152/ajprenal.00136.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. Recent studies showed that overexpression of the transcription factor sterol-responsive element-binding protein (SREBP)-1 induces pathology reminiscent of diabetic nephropathy, and SREBP-1 upregulation was observed in diabetic kidneys. We thus studied whether SREBP-1 is activated by high glucose (HG) and mediates its profibrogenic responses. In primary rat mesangial cells, HG activated SREBP-1 by 30 min, seen by the appearance of its cleaved nuclear form (nSREBP-1), EMSA, and by activation of an SREBP-1 response element (SRE)-driven green fluorescent protein construct. Activation was dose dependent and not induced by an osmotic control. Site 1 protease was required, since its inhibition by AEBSF prevented SREBP-1 activation. SCAP, the ER-associated chaperone for SREBP-1, was also necessary since its inhibitor fatostatin also blocked SREBP-1 activation. Signaling through the EGFR/phosphatidylinositol 3-kinase (PI3K) pathway, which we previously showed mediates HG-induced TGF-β1 upregulation, and through RhoA, were upstream of SREBP-1 activation (Wu D, Peng F, Zhang B, Ingram AJ, Gao B, Krepinsky JC. Diabetologia 50: 2008–2018, 2007; Wu D, Peng F, Zhang B, Ingram AJ, Kelly DJ, Gilbert RE, Gao B, Krepinsky JC. J Am Soc Nephrol 20: 554–566, 2009). Fatostatin and AEBSF prevented HG-induced TGF-β1 upregulation by Northern blot analysis, and HG-induced TGF-β1 promoter activation was inhibited by both fatostatin and dominant negative SREBP-1a. Chromatin immunoprecipitation analysis confirmed that HG led to SREBP-1 binding to the TGF-β1 promoter in a region containing a putative SREBP-1 binding site (SRE). Thus HG-induced SREBP-1 activation requires EGFR/PI3K/RhoA signaling and SCAP-mediated transport to the Golgi for its proteolytic cleavage. Activated SREBP-1 binds to the TGF-β promoter, resulting in TGF-β1 upregulation in response to HG. SREBP-1 thus provides a potential novel therapeutic target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Lalita Uttarwar
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | - Joan C. Krepinsky
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
18
|
Abstract
Alcoholic fatty liver is a major risk factor for advanced liver injuries such as steatohepatitis, fibrosis, and cirrhosis. While the underlying mechanisms are multiple, the development of alcoholic fatty liver has been attributed to a combined increase in the rate of de novo lipogenesis and a decrease in the rate of fatty acid oxidation in animal liver. Among various transcriptional regulators, the hepatic SIRT1 (sirtuin 1)-AMPK (AMPK-activated kinase) signaling system represents a central target for the action of ethanol in the liver. Adiponectin is one of the adipocyte-derived adipokines with potent lipid-lowering properties. Growing evidence has demonstrated that the development of alcoholic fatty liver is associated with reduced circulating adiponectin levels, decreased hepatic adiponectin receptor expression, and impaired hepatic adiponectin signaling. Adiponectin confers protection against alcoholic fatty liver via modulation of complex hepatic signaling pathways largely controlled by the central regulatory system, SIRT1-AMPK axis. This review aims to integrate the current research findings of ethanol-mediated dysregulation of adiponectin and its receptors and to provide a comprehensive point of view for understanding the role of adiponectin signaling in the development of alcoholic fatty liver.
Collapse
Affiliation(s)
- Min You
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, Box 8, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|