1
|
Wu T, Womersley HJ, Wang JR, Scolnick J, Cheow LF. Time-resolved assessment of single-cell protein secretion by sequencing. Nat Methods 2023; 20:723-734. [PMID: 37037998 DOI: 10.1038/s41592-023-01841-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Secreted proteins play critical roles in cellular communication. Methods enabling concurrent measurement of cellular protein secretion, phenotypes and transcriptomes are still unavailable. Here we describe time-resolved assessment of protein secretion from single cells by sequencing (TRAPS-seq). Released proteins are trapped onto the cell surface and probed by oligonucleotide-barcoded antibodies before being simultaneously sequenced with transcriptomes in single cells. We demonstrate that TRAPS-seq helps unravel the phenotypic and transcriptional determinants of the secretion of pleiotropic TH1 cytokines (IFNγ, IL-2 and TNF) in activated T cells. In addition, we show that TRAPS-seq can be used to track the secretion of multiple cytokines over time, uncovering unique molecular signatures that govern the dynamics of single-cell cytokine secretions. Our results revealed that early central memory T cells with CD45RA expression (TCMRA) are important in both the production and maintenance of polyfunctional cytokines. TRAPS-seq presents a unique tool for seamless integration of secretomics measurements with multi-omics profiling in single cells.
Collapse
Affiliation(s)
- Tongjin Wu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Howard John Womersley
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | | | - Jonathan Scolnick
- Singleron Biotechnologies Pte. Ltd., Singapore, Singapore
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Zhang J, Zha Y, Jiao Y, Li Y, Zhang S. Protective role of cezanne in doxorubicin-induced cardiotoxicity by inhibiting autophagy, apoptosis and oxidative stress. Toxicology 2023; 485:153426. [PMID: 36639017 DOI: 10.1016/j.tox.2023.153426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Doxorubicin (DOX) is frequently used in clinical practice for its broad-spectrum effects. However, its benefit is limited by a series of complications, including excessive apoptosis and autophagy of cardiomyocytes, overproduction of reactive oxygen species (ROS) and high level of oxidative stress. As a new protein, OTU domain-containing 7B (OTUD7B), also called Cezanne, has been reported to regulate many pathological processes. However, whether it plays a role in DOX-induced cardiotoxicity is still unclear. We discovered that the Cezanne level was significantly increased in DOX-treated neonatal rat cardiomyocytes (NRCMs) and C57BL/6 J mice hearts. In vitro, the knockdown of Cezanne with adenovirus in NRCMs significantly worsened DOX-induced apoptosis, autophagy and oxidative stress, while Cezanne overexpression showed opposite results. In vivo, the overexpression of Cezanne using cardiomyocyte-targeted adeno-associated virus 9 (AAV9) significantly reduced cardiomyocyte apoptosis, autophagy and oxidative stress level when C57BL/6 J mice were subjected to DOX. Mechanistically, the overexpression of Cezanne significantly reversed the in-activation of the PI3K/AKT/mTOR pathway induced by DOX, while the inhibitors of this pathway abolished the effect of Cezanne, suggesting that the PI3K/AKT/mTOR pathway plays a role in the protective function of Cezanne. These findings indicate that Cezanne could ameliorate DOX-induced cardiotoxicity by attenuating the apoptosis and autophagy of cardiomyocytes and decreasing the level of oxidative stress.
Collapse
Affiliation(s)
- Jiayan Zhang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Yafang Zha
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Yuheng Jiao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Yanyan Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Song Zhang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China.
| |
Collapse
|
3
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
4
|
The resurrection of RIP kinase 1 as an early cell death checkpoint regulator-a potential target for therapy in the necroptosis era. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1401-1411. [PMID: 36171264 PMCID: PMC9534832 DOI: 10.1038/s12276-022-00847-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Receptor-interacting serine threonine protein kinase 1 (RIPK1) has emerged as a central molecular switch in controlling the balance between cell survival and cell death. The pro-survival role of RIPK1 in maintaining cell survival is achieved via its ability to induce NF-κB-dependent expression of anti-apoptotic genes. However, recent advances have identified the pro-death function of RIPK1: posttranslational modifications of RIPK1 in the tumor necrosis factor receptor 1 (TNFR1)-associated complex-I, in the cytosolic complex-IIb or in necrosomes regulate the cytotoxic potential of RIPK1, forming an early cell death checkpoint. Since the kinase activity of RIPK1 is indispensable in RIPK3- and MLKL-mediated necroptosis induction, while it is dispensable in apoptosis, a better understanding of this early cell death checkpoint via RIPK1 might lead to new insights into the molecular mechanisms controlling both apoptotic and necroptotic modes of cell death and help develop novel therapeutic approaches for cancer. Here, we present an emerging view of the regulatory mechanisms for RIPK1 activity, especially with respect to the early cell death checkpoint. We also discuss the impact of dysregulated RIPK1 activity in pathophysiological settings and highlight its therapeutic potential in treating human diseases. Improved understanding of the molecular mechanisms that allow a protein to control the balance between cell survival or early death could reveal new approaches to treating conditions including chronic inflammatory disease and cancer. Gang Min Hur and colleagues at Chungnam National University in Daejeon, South Korea, with Han-Ming Shen at the University of Macau in China, review emerging evidence about how the protein called receptor-interacting serine/threonine-protein kinase 1 (RIPK1) influences whether cells move towards death or survival at a key ‘checkpoint’ in cell development. Cells can undergo a natural process of programmed cell death called apoptosis, die abnormally in a disease process called necroptosis, or survive. RIPK1 appears able to influence which path is chosen depending on which genes it regulates and which proteins it interacts with. Many details are still unclear, and need further investigation.
Collapse
|
5
|
An W, Luong LA, Bowden NP, Yang M, Wu W, Zhou X, Liu C, Niu K, Luo J, Zhang C, Sun X, Poston R, Zhang L, Evans PC, Xiao Q. Cezanne is a critical regulator of pathological arterial remodelling by targeting β-catenin signalling. Cardiovasc Res 2022; 118:638-653. [PMID: 33599243 PMCID: PMC8803089 DOI: 10.1093/cvr/cvab056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/16/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Pathological arterial remodelling including neointimal hyperplasia and atherosclerosis is the main underlying cause for occluding arterial diseases. Cezanne is a novel deubiquitinating enzyme, functioning as a NF-кB negative regulator, and plays a key role in renal inflammatory response and kidney injury induced by ischaemia. Here we attempted to examine its pathological role in vascular smooth muscle cell (VSMC) pathology and arterial remodelling. METHODS AND RESULTS Cezanne expression levels were consistently induced by various atherogenic stimuli in VSMCs, and in remodelled arteries upon injury. Functionally, VSMCs over-expressing wild-type Cezanne, but not the mutated catalytically-inactive Cezanne (C209S), had an increased proliferative ability and mobility, while the opposite was observed in VSMCs with Cezanne knockdown. Surprisingly, we observed no significant effects of Cezanne on VSMC apoptosis, NF-κB signalling, or inflammation. RNA-sequencing and biochemical studies showed that Cezanne drives VSMC proliferation by regulating CCN family member 1 (CCN1) by targeting β-catenin for deubiquitination. Importantly, local correction of Cezanne expression in the injured arteries greatly decreased VSMC proliferation, and prevented arterial inward remodelling. Interestingly, global Cezanne gene deletion in mice led to smaller atherosclerotic plaques, but with a lower level of plaque stability. Translating, we observed a similar role for Cezanne in human VSMCs, and higher expression levels of Cezanne in human atherosclerotic lesions. CONCLUSION Cezanne is a key regulator of VSMC proliferation and migration in pathological arterial remodelling. Our findings have important implications for therapeutic targeting Cezanne signalling and VSMC pathology in vascular diseases.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apoptosis
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Cysteine-Rich Protein 61/genetics
- Cysteine-Rich Protein 61/metabolism
- Disease Models, Animal
- Endopeptidases/genetics
- Endopeptidases/metabolism
- Humans
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/metabolism
- Neointima
- Ubiquitination
- Vascular Remodeling
- Wnt Signaling Pathway
- beta Catenin/genetics
- beta Catenin/metabolism
- Mice
Collapse
Affiliation(s)
- Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Le A Luong
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Neil P Bowden
- Department of Infection, Immunity and Cardiovascular Disease, Bateson Centre, and Insigneo Institute for In Silico Medicine, University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, UK
| | - Mei Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiology, and Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Wu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Xinmiao Zhou
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Luo
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Cheng Zhang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Xiaolei Sun
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Robin Poston
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Li Zhang
- Department of Cardiology, and Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, Bateson Centre, and Insigneo Institute for In Silico Medicine, University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
VSTM1 regulates monocyte/macrophage function via the NF-κB signaling pathway. Open Med (Wars) 2021; 16:1513-1524. [PMID: 34712823 PMCID: PMC8511964 DOI: 10.1515/med-2021-0353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
Objective V-set and transmembrane domain-containing protein 1 (VSTM1) is negatively correlated with inflammation. However, its effect on atherosclerosis (AS) remains largely unexplored. In this study, we aimed to assess the effect of VSTM1 on the biological function of human peripheral blood mononuclear cells /macrophages stimulated by oxidized low-density lipoprotein (ox-LDL). Methods U937 cells were divided into three groups as follows: control group, pLenti-VSTM1 shRNA group (VSTM1 depletion), and pLenti-VSTM1 group (VSTM1 overexpression). Cellular migration, chemotaxis, apoptosis, and secretion of inflammatory factors of monocytes/macrophages stimulated by ox-LDL were studied. Results Overexpression of VSTM1 decreased the proliferation of U937 cells and induced cellular apoptosis. Depletion of VSTM1 enhanced the invasiveness and chemotaxis, increased the inflammatory response, and reduced the incidence of cell necrosis and apoptosis. Nuclear factor κ of B cells (NF-κB) was activated in VSTM1-depleted U937 cells. Conclusion VSTM1 might play an important role in the activation of monocytes/macrophages and participate in the pathogenesis of AS via regulating NF-κB activity.
Collapse
|
7
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
8
|
Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K, Gustad LT, Maes M. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med 2020; 18:305. [PMID: 33070778 PMCID: PMC7570030 DOI: 10.1186/s12916-020-01749-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. MAIN TEXT Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. CONCLUSIONS Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | | | - Lisa Olive
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
| | - Andre Carvalho
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Ken Walder
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Lise Tuset Gustad
- Department of Circulation and medical imaging, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Michael Maes
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
9
|
Pirri D, Fragiadaki M, Evans PC. Diabetic atherosclerosis: is there a role for the hypoxia-inducible factors? Biosci Rep 2020; 40:BSR20200026. [PMID: 32816039 PMCID: PMC7441368 DOI: 10.1042/bsr20200026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a major cause of mortality worldwide and is driven by multiple risk factors, including diabetes. Diabetes is associated with either an insulin deficiency in its juvenile form or with insulin resistance and obesity in Type 2 diabetes mellitus, and the latter is clustered with other comorbidities to define the metabolic syndrome. Diabetes and metabolic syndrome are complex pathologies and are associated with cardiovascular risk via vascular inflammation and other mechanisms. Several transcription factors are activated upon diabetes-driven endothelial dysfunction and drive the progression of atherosclerosis. In particular, the hypoxia-inducible factor (HIF) transcription factor family is a master regulator of endothelial biology and is raising interest in the field of atherosclerosis. In this review, we will present an overview of studies contributing to the understanding of diabetes-driven atherosclerosis, integrating the role of HIF in this disease with the knowledge of its functions in metabolic syndrome and diabetic scenario.
Collapse
Affiliation(s)
- Daniela Pirri
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
| | - Paul C. Evans
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
| |
Collapse
|
10
|
Rius-Pérez S, Pérez S, Martí-Andrés P, Monsalve M, Sastre J. Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation. Antioxid Redox Signal 2020; 33:145-165. [PMID: 31856585 DOI: 10.1089/ars.2019.7975] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Nuclear factor kappa B (NF-κB) is a master regulator of the inflammatory response and represents a key regulatory node in the complex inflammatory signaling network. In addition, selective NF-κB transcriptional activity on specific target genes occurs through the control of redox-sensitive NF-κB interactions. Recent Advances: The selective NF-κB response is mediated by redox-modulated NF-κB complexes with ribosomal protein S3 (RPS3), Pirin (PIR). cAMP response element-binding (CREB)-binding protein (CBP)/p300, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), early growth response protein 1 (EGR-1), and SP-1. NF-κB is cooperatively coactivated with AP-1, STAT3, EGR-1, and SP-1 during the inflammatory process, whereas NF-κB complexes with CBP/p300 and PGC-1α regulate the expression of antioxidant genes. PGC-1α may act as selective repressor of phospho-p65 toward interleukin-6 (IL-6) in acute inflammation. p65 and nuclear factor erythroid 2-related factor 2 (NRF2) compete for binding to coactivator CBP/p300 playing opposite roles in the regulation of inflammatory genes. S-nitrosylation or tyrosine nitration favors the recruitment of specific NF-κB subunits to κB sites. Critical Issues: NF-κB is a redox-sensitive transcription factor that forms specific signaling complexes to regulate selectively the expression of target genes in acute inflammation. Protein-protein interactions with coregulatory proteins, other transcription factors, and chromatin-remodeling proteins provide transcriptional specificity to NF-κB. Furthermore, different NF-κB subunits may form distinct redox-sensitive homo- and heterodimers with distinct affinities for κB sites. Future Directions: Further research is required to elucidate the whole NF-κB interactome to fully characterize the complex NF-κB signaling network in redox signaling, inflammation, and cancer.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Pablo Martí-Andrés
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Nolan RA, Reeb KL, Rong Y, Matt SM, Johnson HS, Runner K, Gaskill PJ. Dopamine activates NF-κB and primes the NLRP3 inflammasome in primary human macrophages. Brain Behav Immun Health 2019; 2. [PMID: 33665636 PMCID: PMC7929492 DOI: 10.1016/j.bbih.2019.100030] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induction of innate immune genes in the brain is thought to be a major factor in the development of addiction to substances of abuse. As the major component of the innate immune system in the brain, aberrant activation of myeloid cells such as macrophages and microglia due to substance use may mediate neuroinflammation and contribute to the development of addiction. All addictive drugs modulate the dopaminergic system and our previous studies have identified dopamine as a pro-inflammatory modulator of macrophage function. However, the mechanism that mediates this effect is currently unknown. Inflammatory activation of macrophages and induction of cytokine production is often mediated by the transcription factor NF-κB, and prior studies have shown that dopamine can modulate NF-κB activity in T-cells and other non-immune cell lines. Here we demonstrated that dopamine can activate NF-κB in primary human macrophages, resulting in the induction of its downstream targets including the NLRP3 inflammasome and the inflammatory cytokine IL-1β. These data also indicate that dopamine primes but does not activate the NLRP3 inflammasome in human macrophages. Activation of NF-κB was required for dopamine-mediated increases in IL-1β, as an inhibitor of NF-κB was able to abrogate the effects of dopamine on production of these cytokines. Connecting an increase in extracellular dopamine to NF-κB activation and inflammation suggests specific intracellular targets that could be used to ameliorate the inflammatory impact of dopamine in neuroinflammatory conditions associated with myeloid cell activation such as addiction. Dopamine exposure primes, but does not activate the NLRP3 inflammasome. Inflammasome priming can be mediated, at least partially, by a dopamine-induced increase in the activation and nuclear translocation of NF-κB in primary human macrophages. Dopamine additively increases the impact of cytomegalovirus on NF-κB activation in macrophages. Dopamine priming increases IL-1β release in response to inflammasome activation.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - Y Rong
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - H S Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| |
Collapse
|
12
|
The function and regulation of OTU deubiquitinases. Front Med 2019; 14:542-563. [PMID: 31884527 DOI: 10.1007/s11684-019-0734-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.
Collapse
|
13
|
Feng S, Fragiadaki M, Souilhol C, Ridger V, Evans PC. Response by Feng et al to Letter Regarding Article, "Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites". Arterioscler Thromb Vasc Biol 2019; 37:e199-e200. [PMID: 29162601 DOI: 10.1161/atvbaha.117.310341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shuang Feng
- Department of Infection, Immunity and Cardiovascular Disease the Bateson Centre and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease the Bateson Centre and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease the Bateson Centre and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease the Bateson Centre and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease the Bateson Centre and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Wu D, Hamanaka RB, Fang Y, Mutlu GM. Letter by Wu et al Regarding Article, "Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites". Arterioscler Thromb Vasc Biol 2019; 37:e197-e198. [PMID: 29162600 DOI: 10.1161/atvbaha.117.310335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- David Wu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, IL
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, IL
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, IL
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, IL
| |
Collapse
|
15
|
Yin Z, Yang L, Wu F, Fan J, Xu J, Jin Y, Yang G. Reactive Oxygen Species-Mediated Cezanne Inactivation by Oxidation of its Catalytic Cysteine Residue in Hepatocellular Carcinoma. Oncol Res 2019; 27:1069-1077. [PMID: 31072419 PMCID: PMC7848393 DOI: 10.3727/096504019x15566157027506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cysteine oxidation occurs at the active site of deubiquitinases (DUBs) during many biologic signaling cascades. Here we report that hepatocellular carcinoma cells (HCCs) generated higher levels of endogenous reactive oxygen species (ROS). This elevated ROS production was inhibited by NADPH oxidase inhibitor diphenylene iodonium (DPI) and mitochondria electron chain inhibitor rotenone in HCC cells. Moreover, we found that H2O2 could activate NF-κB-dependent inflammatory effect through increased induction of matrix metalloproteinase 2 (MMP2), MMP9, and intercellular adhesion molecule 1 (ICAM1) expression levels. In addition, we found that H2O2 could prolong NF-κB activation by suppressing the negative regulatory functions of Cezanne in HCC cells. Ubiquitin-derived thiol-reactive probe (HA-UbVME) assay and biotin-tagged 1,3-cyclohexadione derivative (DCP-Bio1) assay showed that H2O2 has the capacity to inhibit the catalytic activity of Cezanne, and the reducing agent, DTT, could reactivate the Cezanne deubiquitinating enzyme activity. Taken all together, these findings demonstrated an important role for oxidation of Cezanne by ROS in regulation of the inflammatory effect of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lin Yang
- Oncology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Feng Wu
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jinshuo Fan
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Juanjuan Xu
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yang Jin
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
16
|
Kim JG, Choi KC, Hong CW, Park HS, Choi EK, Kim YS, Park JB. Tyr42 phosphorylation of RhoA GTPase promotes tumorigenesis through nuclear factor (NF)-κB. Free Radic Biol Med 2017; 112:69-83. [PMID: 28712859 DOI: 10.1016/j.freeradbiomed.2017.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 01/01/2023]
Abstract
Dysregulation of reactive oxygen species (ROS) levels is implicated in the pathogenesis of several diseases, including cancer. However, the molecular mechanisms for ROS in tumorigenesis have not been well established. In this study, hydrogen peroxide activated nuclear factor-κB (NF-κB) and RhoA GTPase. In particular, we found that hydrogen peroxide lead to phosphorylation of RhoA at Tyr42 via tyrosine kinase Src. Phospho-Tyr42 (p-Tyr42) residue of RhoA is a binding site for Vav2, a guanine nucleotide exchange factor (GEF), which then activates p-Tyr42 form of RhoA. P-Tyr42 RhoA then binds to IκB kinase γ (IKKγ), leading to IKKβ activation. Furthermore, RhoA WT and phospho-mimic RhoA, RhoA Y42E, both promoted tumorigenesis, whereas the dephospho-mimic RhoA, RhoA Y42F suppressed it. In addition, hydrogen peroxide induced NF-κB activation and cell proliferation, along with expression of c-Myc and cyclin D1 in the presence of RhoA WT and RhoA Y42E, but not RhoA Y42F. Indeed, levels of p-Tyr42 Rho, p-Src, and p-65 are significantly increased in human breast cancer tissues and show correlations between each of the two components. Conclusively, the posttranslational modification of as RhoA p-Tyr42 may be essential for promoting tumorigenesis in response to generation of ROS.
Collapse
Affiliation(s)
- Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Kyoung-Chan Choi
- Department of Pathology, Chuncheon Sacred Hospital Hallym University, Chuncheon 24252, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Gyeongsangbuk-do 41944, Republic of Korea
| | - Hwee-Seon Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea; Department of Microbiology, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea; Institute of Cell Differentiation and Ageing, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea.
| |
Collapse
|
17
|
To M, Swallow EB, Akashi K, Haruki K, Natanek SA, Polkey MI, Ito K, Barnes PJ. Reduced HDAC2 in skeletal muscle of COPD patients. Respir Res 2017; 18:99. [PMID: 28526090 PMCID: PMC5438490 DOI: 10.1186/s12931-017-0588-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Background Skeletal muscle weakness in chronic obstructive pulmonary disease (COPD) is an important predictor of poor prognosis, but the molecular mechanisms of muscle weakness in COPD have not been fully elucidated. The aim of this study was to investigate the role of histone deacetylases(HDAC) in skeletal muscle weakness in COPD. Methods and results Twelve COPD patients, 8 smokers without COPD (SM) and 4 healthy non-smokers (NS) were recruited to the study. HDAC2 protein expression in quadriceps muscle biopsies of COPD patients (HDAC2/β-actin: 0.59 ± 0.34) was significantly lower than that in SM (1.9 ± 1.1, p = 0.0007) and NS (1.2 ± 0.7, p = 0.029). HDAC2 protein in skeletal muscle was significantly correlated with forced expiratory volume in 1 s % predicted (FEV1 % pred) (rs = 0.53, p = 0.008) and quadriceps maximum voluntary contraction force (MVC) (rs = 0.42, p = 0.029). HDAC5 protein in muscle biopsies of COPD patients (HDAC5/β-actin: 0.44 ± 0.26) was also significantly lower than that in SM (1.29 ± 0.39, p = 0.0001) and NS (0.98 ± 0.43, p = 0.020). HDAC5 protein in muscle was significantly correlated with FEV1 % pred (rs = 0.64, p = 0.0007) but not with MVC (rs = 0.30, p = 0.180). Nuclear factor-kappa B (NF-κB) DNA binding activity in muscle biopsies of COPD patients (10.1 ± 7.4) was significantly higher than that in SM (3.9 ± 7.3, p = 0.020) and NS (1.0 ± 1.2, p = 0.004and significantly correlated with HDAC2 decrease (rs = −0.59, p = 0.003) and HDAC5 (rs = 0.050, p = 0.012). HDAC2 knockdown by RNA interference in primary skeletal muscle cells caused an increase in NF-κB activity, NF-κB acetylation and basal tumour necrosis factor (TNF)-α production, as well as progressive cell death through apoptosis. Conclusion Skeletal muscle weakness in COPD may result from HDAC2 down-regulation in skeletal muscle via acetylation and activation of NF-κB. The restoration of HDAC2 levels might be a therapeutic target for improving skeletal muscle weakness in COPD. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0588-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masako To
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY, UK.,Department of Laboratory Medicine, Dokkyo Medical University Koshigaya Hospital, 2-1-50 Minami-Koshigaya, Koshigaya-City, Saitama, 343-8555, Japan
| | - Elisabeth B Swallow
- NIHR Respiratory Biomedical Research Unit at the Royal Brompton and Harefield Foundation Trust & Imperial College, London, UK
| | - Kenich Akashi
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY, UK
| | - Kosuke Haruki
- Department of Laboratory Medicine, Dokkyo Medical University Koshigaya Hospital, 2-1-50 Minami-Koshigaya, Koshigaya-City, Saitama, 343-8555, Japan
| | - S Amanda Natanek
- NIHR Respiratory Biomedical Research Unit at the Royal Brompton and Harefield Foundation Trust & Imperial College, London, UK.,Molecular Medicine, National Heart and Lung institute, Imperial College London, London, SW7 2AZ, UK
| | - Michael I Polkey
- NIHR Respiratory Biomedical Research Unit at the Royal Brompton and Harefield Foundation Trust & Imperial College, London, UK
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY, UK
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY, UK.
| |
Collapse
|
18
|
Szoltysek K, Walaszczyk A, Janus P, Kimmel M, Widlak P. Irradiation with UV-C inhibits TNF-α-dependent activation of the NF-κB pathway in a mechanism potentially mediated by reactive oxygen species. Genes Cells 2016; 22:45-58. [PMID: 27976481 DOI: 10.1111/gtc.12455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/30/2016] [Indexed: 12/25/2022]
Abstract
Pathways depending on the NF-κB transcription factor are essential components of cellular response to stress. Plethora of stimuli modulating NF-κB includes inflammatory signals, ultraviolet radiation (UV) and reactive oxygen species (ROS), yet interference between different factors affecting NF-κB remains relatively understudied. Here, we aim to characterize the influence of UV radiation on TNF-α-induced activity of the NF-κB pathway. We document inhibition of TNF-α-induced activation of NF-κB and subsequent suppression of NF-κB-regulated genes in cells exposed to UV-C several hours before TNF-α stimulation. Accumulation of ROS and subsequent activation of NRF2, p53, AP-1 and NF-κB-dependent pathways, with downstream activation of antioxidant mechanisms (e.g., SOD2 and HMOX1 expression), is observed in the UV-treated cells. Moreover, NF-κB inhibition is not observed if generation of UV-induced ROS is suppressed by chemical antioxidants. It is noteworthy that stimulation with TNF-α also generates a wave of ROS, which is suppressed in cells pre-treated by UV. We postulate that irradiation with UV-C activates antioxidant mechanisms, which in turn affect ROS-mediated activation of NF-κB by TNF-α. Considering a potential cross talk between p53 and NF-κB, we additionally compare observed effects in p53-proficient and p53-deficient cells and find the UV-mediated suppression of TNF-α-activated NF-κB in both types of cells.
Collapse
Affiliation(s)
- Katarzyna Szoltysek
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, Gliwice, Poland
| | - Anna Walaszczyk
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, Gliwice, Poland
| | - Patryk Janus
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, Gliwice, Poland.,Systems Engineering Group, Silesian University of Technology, Akademicka 16, Gliwice, Poland
| | - Marek Kimmel
- Systems Engineering Group, Silesian University of Technology, Akademicka 16, Gliwice, Poland.,Departments of Statistics and Bioengineering, Rice University, 6100 Main Street, Houston, TX, USA
| | - Piotr Widlak
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze Armii Krajowej 15, Gliwice, Poland
| |
Collapse
|
19
|
Kumar A, Shalmanova L, Hammad A, Christmas SE. Induction of IL-8(CXCL8) and MCP-1(CCL2) with oxidative stress and its inhibition with N-acetyl cysteine (NAC) in cell culture model using HK-2 cell. Transpl Immunol 2016; 35:40-6. [DOI: 10.1016/j.trim.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 11/17/2022]
|
20
|
Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing. Sci Rep 2016; 6:20328. [PMID: 26846883 PMCID: PMC4742856 DOI: 10.1038/srep20328] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
Skin wounds need to be repaired rapidly after injury to restore proper skin barrier function. Hydrogen peroxide (H2O2) is a conserved signaling factor that has been shown to promote a variety of skin wound repair processes, including immune cell migration, angiogenesis and sensory axon repair. Despite growing research on H2O2 functions in wound repair, the downstream signaling pathways activated by this reactive oxygen species in the context of injury remain largely unknown. The goal of this study was to provide a comprehensive analysis of gene expression changes in the epidermis upon exposure to H2O2 concentrations known to promote wound repair. Comparative transcriptome analysis using RNA-seq data from larval zebrafish and previously reported microarray data from a human epidermal keratinocyte line shows that H2O2 activates conserved cell migration, adhesion, cytoprotective and anti-apoptotic programs in both zebrafish and human keratinocytes. Further assessment of expression characteristics and signaling pathways revealed the activation of three major H2O2–dependent pathways, EGF, FOXO1, and IKKα. This study expands on our current understanding of the clinical potential of low-level H2O2 for the promotion of epidermal wound repair and provides potential candidates in the treatment of wound healing deficits.
Collapse
|
21
|
Kesarwala AH, Krishna MC, Mitchell JB. Oxidative stress in oral diseases. Oral Dis 2016; 22:9-18. [PMID: 25417961 PMCID: PMC4442080 DOI: 10.1111/odi.12300] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 01/10/2023]
Abstract
Oxidative species, including reactive oxygen species (ROS), are components of normal cellular metabolism and are required for intracellular processes as varied as proliferation, signal transduction, and apoptosis. In the situation of chronic oxidative stress, however, ROS contribute to various pathophysiologies and are involved in multiple stages of carcinogenesis. In head and neck cancers specifically, many common risk factors contribute to carcinogenesis via ROS-based mechanisms, including tobacco, areca quid, alcohol, and viruses. Given their widespread influence on the process of carcinogenesis, ROS and their related pathways are attractive targets for intervention. The effects of radiation therapy, a central component of treatment for nearly all head and neck cancers, can also be altered via interfering with oxidative pathways. These pathways are also relevant to the development of many benign oral diseases. In this review, we outline how ROS contribute to pathophysiology with a focus toward head and neck cancers and benign oral diseases, describing potential targets and pathways for intervention that exploit the role of oxidative species in these pathologic processes.
Collapse
Affiliation(s)
- Aparna H. Kesarwala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
22
|
Elliott PR, Komander D. Regulation of Met1-linked polyubiquitin signalling by the deubiquitinase OTULIN. FEBS J 2015; 283:39-53. [PMID: 26503766 PMCID: PMC4765238 DOI: 10.1111/febs.13547] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/25/2015] [Accepted: 10/02/2015] [Indexed: 12/25/2022]
Abstract
Modification of proteins with Met1‐linked ‘linear’ ubiquitin chains has emerged as a key regulatory signal to control inflammatory signalling via the master regulator, the transcription factor nuclear factor κB (NF‐κB). While the assembly machinery, the linear ubiquitin chain assembly complex (LUBAC), and receptors for this ubiquitin chain type have been known for years, it was less clear which deubiquitinating enzymes (DUBs) hydrolyse Met1 linkages specifically. In 2013, two labs reported the previously unannotated protein FAM105B/OTULIN to be this missing Met1 linkage‐specific DUB. Structural studies have revealed how OTULIN achieves its remarkable specificity, employing a mechanism of ubiquitin‐assisted catalysis in which a glutamate residue on the substrate complements the active site of the enzyme. The specificity of OTULIN enables it to regulate global levels of Met1‐linked polyubiquitin in cells. This ability led to investigations of NF‐κB activation from new angles, and also revealed involvement of Met1‐polyubiquitin in Wnt signalling. Interestingly, OTULIN directly interacts with LUBAC, and this interaction is dynamic and can be regulated by OTULIN phosphorylation. This provides a new paradigm for how individual linkage types can be regulated by dedicated enzyme complexes mediating assembly and removal. Here we review what has been learned about OTULIN's mechanism, regulation and function, discuss the open questions in the field, and discuss how DUBs regulate the NF‐κB response.
Collapse
Affiliation(s)
- Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
23
|
Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, Bao W, Pavlidis S, Barnes PJ, Kanerva J, Bittner A, Rao N, Murphy MP, Kirkham PA, Chung KF, Adcock IM. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2015; 136:769-80. [PMID: 25828268 PMCID: PMC4559140 DOI: 10.1016/j.jaci.2015.01.046] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 01/11/2023]
Abstract
Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD.
Collapse
Affiliation(s)
- Coen H Wiegman
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - Charalambos Michaeloudes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Gulammehdi Haji
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Priyanka Narang
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Colin J Clarke
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Kirsty E Russell
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Wuping Bao
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | - Peter J Barnes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | - Anton Bittner
- Janssen Research & Development LLC, San Diego, Calif
| | - Navin Rao
- Janssen Research & Development LLC, San Diego, Calif
| | | | - Paul A Kirkham
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
24
|
Zhang T, Tang M, Kong L, Li H, Zhang T, Xue Y, Pu Y. Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:73-82. [PMID: 25463220 DOI: 10.1016/j.jhazmat.2014.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Carbon nanotubes (CNTs) are widely used in industry and biomedicine. While several studies have focused on biological matters, attempts to systematically elucidate the toxicity mechanisms of CNTs are limited. The aim of the present study was to evaluate and compare the cytotoxicity of raw multi-walled carbon nanotubes (MWCNTs) and MWCNTs functionalized with carboxylation (MWCNTs-COOH) or polyethylene glycol (MWCNTs-PEG) in murine macrophages. Our results show that only MWCNTs-COOH and raw MWCNTs alter the oxidative potential of macrophages by increasing reactive oxygen species and the expression of pro-inflammatory factors in both a concentration- and surface coating-dependent manner. The data suggest that compare with raw MWCNTs and MWCNTs-PEG, the MWCNTs-COOH produces a significant increase in ROS generation, interruption of ATP synthesis, and activation of the MAPK and NF-κB signaling pathways, which in turn upregulates IL-1β, IL-6, TNF-α, and iNOS to trigger cell death. These findings suggest that contributory cellar uptake caused by physicochemical factors rather than residual metal catalysts plays a role in ROS-mediated pro-inflammatory responses in vitro.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Han Li
- Department of Material Science and Engineering, National Key Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210032, China.
| | - Tao Zhang
- Department of Material Science and Engineering, National Key Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210032, China.
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| |
Collapse
|
25
|
Enesa K, Moll HP, Luong L, Ferran C, Evans PC. A20 suppresses vascular inflammation by recruiting proinflammatory signaling molecules to intracellular aggresomes. FASEB J 2015; 29:1869-78. [PMID: 25667218 DOI: 10.1096/fj.14-258533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/24/2014] [Indexed: 12/16/2022]
Abstract
A20 protects against pathologic vascular remodeling by inhibiting the inflammatory transcription factor NF-κB. A20's function has been attributed to ubiquitin editing of receptor-interacting protein 1 (RIP1) to influence activity/stability. The validity of this mechanism was tested using a murine model of transplant vasculopathy and human cells. Mouse C57BL/6 aortae transduced with adenoviruses containing A20 (or β-galactosidase as a control) were allografted into major histocompatibility complex-mismatched BALB/c mice. Primary endothelial cells, smooth muscle cells, or transformed epithelial cells (all human) were transfected with wild-type A20 or with catalytically inactive mutants as a control. NF-κB activity and intracellular localization of RIP1 was monitored by reporter gene assay, immunofluorescent staining, and Western blotting. Native and catalytically inactive versions of A20 had similar inhibitory effects on NF-κB activity (-70% vs. -76%; P > 0.05). A20 promoted localization of RIP1 to insoluble aggresomes in murine vascular allografts and in human cells (53% vs. 0%) without altering RIP1 expression, and this process was increased by the assembly of polyubiquitin chains (87% vs. 28%; P < 0.05). A20 captures polyubiquitinated signaling intermediaries in insoluble aggresomes, thus reducing their bioavailability for downstream NF-κB signaling. This novel mechanism contributes to protection from vasculopathy in transplanted organs treated with exogenous A20.
Collapse
Affiliation(s)
- Karine Enesa
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Herwig P Moll
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Le Luong
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Christiane Ferran
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Paul C Evans
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
26
|
Drews O, Taegtmeyer H. Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies. Antioxid Redox Signal 2014; 21:2322-43. [PMID: 25133688 PMCID: PMC4241867 DOI: 10.1089/ars.2013.5823] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Novel therapeutic strategies to treat heart failure are greatly needed. The ubiquitin-proteasome system (UPS) affects the structure and function of cardiac cells through targeted degradation of signaling and structural proteins. This review discusses both beneficial and detrimental consequences of modulating the UPS in the heart. RECENT ADVANCES Proteasome inhibitors were first used to test the role of the UPS in cardiac disease phenotypes, indicating therapeutic potential. In early cardiac remodeling and pathological hypertrophy with increased proteasome activities, proteasome inhibition prevented or restricted disease progression and contractile dysfunction. Conversely, enhancing proteasome activities by genetic manipulation, pharmacological intervention, or ischemic preconditioning also improved the outcome of cardiomyopathies and infarcted hearts with impaired cardiac and UPS function, which is, at least in part, caused by oxidative damage. CRITICAL ISSUES An understanding of the UPS status and the underlying mechanisms for its potential deregulation in cardiac disease is critical for targeted interventions. Several studies indicate that type and stage of cardiac disease influence the dynamics of UPS regulation in a nonlinear and multifactorial manner. Proteasome inhibitors targeting all proteasome complexes are associated with cardiotoxicity in humans. Furthermore, the type and dosage of proteasome inhibitor impact the pathogenesis in nonuniform ways. FUTURE DIRECTIONS Systematic analysis and targeting of individual UPS components with established and innovative tools will unravel and discriminate regulatory mechanisms that contribute to and protect against the progression of cardiac disease. Integrating this knowledge in drug design may reduce adverse effects on the heart as observed in patients treated with proteasome inhibitors against noncardiac diseases, especially cancer.
Collapse
Affiliation(s)
- Oliver Drews
- 1 Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology , Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
27
|
Nakajima S, Kitamura M. Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med 2013; 65:162-174. [PMID: 23792277 DOI: 10.1016/j.freeradbiomed.2013.06.020] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022]
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that plays a crucial role in coordinating innate and adaptive immunity, inflammation, and apoptotic cell death. NF-κB is activated by various inflammatory stimuli including peptide factors and infectious microbes. It is also known as a redox-sensitive transcription factor activated by reactive oxygen species (ROS). Over the past decades, various investigators focused on the role of ROS in the activation of NF-κB by cytokines and lipopolysaccharides. However, recent studies also suggested that ROS have the potential to repress NF-κB activity. Currently, it is not well addressed how ROS regulate activity of NF-κB in a bidirectional fashion. In this paper, we summarize evidence for positive and negative regulation of NF-κB by ROS, possible redox-sensitive targets for NF-κB signaling, and mechanisms underlying biphasic and bidirectional influences of ROS on NF-κB, especially focusing on a role of ROS-mediated induction of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Shimokato 1110, Chuo, Yamanashi 409-3898, Japan
| | - Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Shimokato 1110, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
28
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
29
|
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93:1289-315. [PMID: 23899565 DOI: 10.1152/physrev.00002.2013] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ubiquitylation is a major posttranslational modification that controls most complex aspects of cell physiology. It is reversed through the action of a large family of deubiquitylating enzymes (DUBs) that are emerging as attractive therapeutic targets for a number of disease conditions. Here, we provide a comprehensive analysis of the complement of human DUBs, indicating structural motifs, typical cellular copy numbers, and tissue expression profiles. We discuss the means by which specificity is achieved and how DUB activity may be regulated. Generically DUB catalytic activity may be used to 1) maintain free ubiquitin levels, 2) rescue proteins from ubiquitin-mediated degradation, and 3) control the dynamics of ubiquitin-mediated signaling events. Functional roles of individual DUBs from each of five subfamilies in specific cellular processes are highlighted with an emphasis on those linked to pathological conditions where the association is supported by whole organism models. We then specifically consider the role of DUBs associated with protein degradative machineries and the influence of specific DUBs upon expression of receptors and channels at the plasma membrane.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, and Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
30
|
Hakim A, Barnes PJ, Adcock IM, Usmani OS. Importin‐7 mediates glucocorticoid receptor nuclear import and is impaired by oxidative stress, leading to glucocorticoid insensitivity. FASEB J 2013; 27:4510-9. [DOI: 10.1096/fj.12-222604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amir Hakim
- National Heart and Lung InstituteImperial College London and Royal Brompton HospitalLondonUK
| | - Peter J. Barnes
- National Heart and Lung InstituteImperial College London and Royal Brompton HospitalLondonUK
| | - Ian M. Adcock
- National Heart and Lung InstituteImperial College London and Royal Brompton HospitalLondonUK
| | - Omar S. Usmani
- National Heart and Lung InstituteImperial College London and Royal Brompton HospitalLondonUK
| |
Collapse
|
31
|
Franchini AM, Hunt D, Melendez JA, Drake JR. FcγR-driven release of IL-6 by macrophages requires NOX2-dependent production of reactive oxygen species. J Biol Chem 2013; 288:25098-25108. [PMID: 23857584 DOI: 10.1074/jbc.m113.474106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of the FcγR via antigen containing immune complexes can lead to the generation of reactive oxygen species, which are potent signal transducing molecules. However, whether ROS contribute to FcγR signaling has not been studied extensively. We set out to elucidate the role of NADPH oxidase-generated ROS in macrophage activation following FcγR engagement using antigen-containing immune complexes. We hypothesized that NOX2 generated ROS is necessary for propagation of downstream FcγR signaling and initiation of the innate immune response. Following exposure of murine bone marrow-derived macrophages (BMDMs) to inactivated Francisella tularensis (iFt)-containing immune complexes, we observed a significant increase in the innate inflammatory cytokine IL-6 at 24 h compared with macrophages treated with Ft LVS-containing immune complexes. Ligation of the FcγR by opsonized Ft also results in significant ROS production. Macrophages lacking the gp91(phox) subunit of NOX2 fail to produce ROS upon FcγR ligation, resulting in decreased Akt phosphorylation and a reduction in the levels of IL-6 compared with wild type macrophages. Similar results were seen following infection of BMDMs with catalase deficient Ft that fail to scavenge hydrogen peroxide. In conclusion, our findings demonstrate that ROS participate in elicitation of an effective innate immune in response to antigen-containing immune complexes through FcγR.
Collapse
Affiliation(s)
- Anthony M Franchini
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and
| | - Danielle Hunt
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and
| | - J Andres Melendez
- the College of Nanoscale Science and Engineering, University at Albany-State University of New York, Albany, New York 12203
| | - James R Drake
- From the Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208 and.
| |
Collapse
|
32
|
|
33
|
Luong LA, Fragiadaki M, Smith J, Boyle J, Lutz J, Dean JLE, Harten S, Ashcroft M, Walmsley SR, Haskard DO, Maxwell PH, Walczak H, Pusey C, Evans PC. Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination. Circ Res 2013; 112:1583-91. [PMID: 23564640 DOI: 10.1161/circresaha.111.300119] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE Hypoxia followed by reoxygenation promotes inflammation by activating nuclear factor κB transcription factors in endothelial cells (ECs). This process involves modification of the signaling intermediary tumor necrosis factor receptor-associated factor 6 with polyubiquitin chains. Thus, cellular mechanisms that suppress tumor necrosis factor receptor-associated factor 6 ubiquitination are potential therapeutic targets to reduce inflammation in hypoxic tissues. OBJECTIVE In this study, we tested the hypothesis that endothelial activation in response to hypoxia-reoxygenation can be influenced by Cezanne, a deubiquitinating enzyme that cleaves ubiquitin from specific modified proteins. METHODS AND RESULTS Studies of cultured ECs demonstrated that hypoxia (1% oxygen) induced Cezanne via p38 mitogen-activated protein kinase-dependent transcriptional and post-transcriptional mechanisms. Hypoxia-reoxygenation had minimal effects on proinflammatory signaling in unmanipulated ECs but significantly enhanced Lys63 polyubiquitination of tumor necrosis factor receptor-associated factor 6, activation of nuclear factor κB, and expression of inflammatory genes after silencing of Cezanne. Thus, although hypoxia primed cells for inflammatory activation, it simultaneously induced Cezanne, which impeded signaling to nuclear factor κB by suppressing tumor necrosis factor receptor-associated factor 6 ubiquitination. Similarly, ischemia induced Cezanne in the murine kidney in vascular ECs, glomerular ECs, podocytes, and epithelial cells, and genetic deletion of Cezanne enhanced renal inflammation and injury in murine kidneys exposed to ischemia followed by reperfusion. CONCLUSIONS We conclude that inflammatory responses to ischemia are controlled by a balance between ubiquitination and deubiquitination, and that Cezanne is a key regulator of this process. Our observations have important implications for therapeutic targeting of inflammation and injury during ischemia-reperfusion.
Collapse
Affiliation(s)
- Le A Luong
- Department of Cardiovascular Science, University of Sheffield, Sheffield S10 2RX, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kulathu Y, Garcia FJ, Mevissen TE, Busch M, Arnaudo N, Carroll KS, Barford D, Komander D. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat Commun 2013; 4:1569. [PMID: 23463012 PMCID: PMC4176832 DOI: 10.1038/ncomms2567] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/28/2013] [Indexed: 12/23/2022] Open
Abstract
Protein ubiquitination is a highly versatile post-translational modification that regulates as diverse processes as protein degradation and kinase activation. Deubiquitinases hydrolyse ubiquitin modifications from proteins and are hence key regulators of the ubiquitin system. Ovarian tumour deubiquitinases comprise a family of fourteen human enzymes, many of which regulate cellular signalling pathways. Ovarian tumour deubiquitinases are cysteine proteases that cleave polyubiquitin chains in vitro and in cells, but little is currently known about their regulation. Here we show that ovarian tumour deubiquitinases are susceptible to reversible oxidation of the catalytic cysteine residue. High-resolution crystal structures of the catalytic domain of A20 in four different oxidation states reveal that the reversible form of A20 oxidation is a cysteine sulphenic acid intermediate, which is stabilised by the architecture of the catalytic centre. Using chemical tools to detect sulphenic acid intermediates, we show that many ovarian tumour deubiquitinases undergo reversible oxidation upon treatment with H2O2, revealing a new mechanism to regulate deubiquitinase activity.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Division of Protein and Nucleic Acids Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - Francisco J. Garcia
- Department of Chemistry, The Scripps Research Institute, Scripps Florida 120 Scripps Way, Jupiter, FL 33458, USA
| | - Tycho E.T. Mevissen
- Division of Protein and Nucleic Acids Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - Martin Busch
- Division of Protein and Nucleic Acids Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - Nadia Arnaudo
- Division of Protein and Nucleic Acids Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research Institute, Scripps Florida 120 Scripps Way, Jupiter, FL 33458, USA
| | - David Barford
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - David Komander
- Division of Protein and Nucleic Acids Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| |
Collapse
|
35
|
Kavanagh DPJ, Yemm AI, Alexander JS, Frampton J, Kalia N. Enhancing the adhesion of hematopoietic precursor cell integrins with hydrogen peroxide increases recruitment within murine gut. Cell Transplant 2012; 22:1485-99. [PMID: 22889470 DOI: 10.3727/096368912x653192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) migrate to injury sites and aid in tissue repair. However, clinical success is poor and is partially due to limited HSC recruitment. We hypothesized that HSC pretreatment with H2O2 would enhance their recruitment to injured gut. As HSCs are rare cells, the number of primary cells obtained from donors is often inadequate for functional experiments. To circumvent this, in this study we utilized a functionally relevant cell line, HPC-7. Anesthetized mice were subjected to intestinal ischemia-reperfusion (IR) injury, and HPC-7 recruitment was examined intravitally. Adhesion to endothelial cells (ECs), injured gut sections, and ICAM-1/VCAM-1 protein were also quantitated in vitro. H2O2 pretreatment significantly enhanced HPC-7 recruitment to injured gut in vivo. A concomitant reduction in pulmonary adhesion was also observed. Enhanced adhesion was also observed in all in vitro models. Increased clustering of α4 and β2 integrins, F-actin polymerization, and filopodia formation were observed in pretreated HPC-7s. Importantly, H2O2 did not reduce HPC-7 viability or proliferative ability. HPC-7 recruitment to injured gut can be modulated by H2O2 pretreatment. This may be through increasing the affinity or avidity of surface integrins that mediate HPC-7 homing to injured sites or through stimulating the migratory apparatus. Strategies that enhance hematopoietic stem/progenitor cell recruitment may ultimately affect their therapeutic efficacy.
Collapse
Affiliation(s)
- Dean P J Kavanagh
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
36
|
Kabesch M, Adcock IM. Epigenetics in asthma and COPD. Biochimie 2012; 94:2231-41. [PMID: 22874820 DOI: 10.1016/j.biochi.2012.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
Abstract
Epigenetic mechanisms are likely to play a role in many complex diseases, the extent of which we only beginning to understand. COPD and asthma are two respiratory diseases subject to strong environmental influences depending on underlying genetic susceptibility. Epigenetic mechanisms such as DNA methylation, histone modification and microRNA may be involved in these processes by modulating environmental effects to influence disease development. Given their demonstrated modifiable nature, epigenetic mechanisms may open new possibilities for therapeutic intervention. Here we give an overview of recent developments in the field of respiratory epigenetics in relation to asthma and COPD in the context of our current understanding of mechanisms leading to such diseases.
Collapse
Affiliation(s)
- Michael Kabesch
- Department of Pediatric Pneumology, Hannover Medical School, Allergy and Neonatology, Hannover, Germany.
| | | |
Collapse
|
37
|
Walczak H. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol Rev 2012; 244:9-28. [PMID: 22017428 DOI: 10.1111/j.1600-065x.2011.01066.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor necrosis factor (TNF) is crucial for innate immunity, but deregulated TNF signaling also plays an eminent role in the pathogenesis of many chronic inflammatory diseases and cancer-related inflammation. The signals that mediate both the beneficial and the harmful effects of TNF are initiated when TNF binds to its receptors on the surface of target cells. TNF receptor 1 (TNFR1) is ubiquitously expressed, whereas TNFR2 is mainly expressed on lymphocytes and endothelial cells. This review focuses on the molecular and physiological consequences of the interaction of TNF with TNFR1. The different outcomes of TNF signaling originate at the apical signaling complex that forms when TNF binds to TNFR1, the TNFR1 signaling complex (TNF-RSC). By integrating recently gained insight on the functional importance of the presence of different types of ubiquitination in the TNF-RSC, including linear ubiquitin linkages generated by the linear ubiquitin chain assembly complex (LUBAC), with the equally recent elucidation of the mode in which ubiquitin-binding domains interact with specific di-ubiquitin linkages, this review develops a new concept for the way the concerted action of different ubiquitination events enables the TNF-RSC to generate its signaling output in a spatio-temporally controlled manner. Finally, it will be explained how these new findings and the emerging concept of differential ubiquitination governing the TNF-RSC may impact future research on the molecular mechanism of TNF signaling and the function of this cytokine in normal physiology, chronic inflammation, and cancer.
Collapse
Affiliation(s)
- Henning Walczak
- Tumour Immunology Unit, Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
38
|
Hänzelmann P, Schäfer A, Völler D, Schindelin H. Structural insights into functional modes of proteins involved in ubiquitin family pathways. Methods Mol Biol 2012; 832:547-76. [PMID: 22350912 DOI: 10.1007/978-1-61779-474-2_39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The conjugation of ubiquitin and related modifiers to selected proteins represents a general mechanism to alter the function of these protein targets, thereby increasing the complexity of the cellular proteome. Ubiquitylation is catalyzed by a hierarchical enzyme cascade consisting of ubiquitin activating, ubiquitin conjugating, and ubiquitin ligating enzymes, and their combined action results in a diverse topology of ubiquitin-linkages on the modified proteins. Counteracting this machinery are various deubiquitylating enzymes while ubiquitin recognition in all its facets is accomplished by numerous ubiquitin-binding elements. In the following chapter, we attempt to provide an overview on enzymes involved in ubiquitylation as well as the removal of ubiquitin and proteins involved in the recognition and binding of ubiquitin from a structural biologist's perspective.
Collapse
Affiliation(s)
- Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
39
|
Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2011; 31:2373-88. [PMID: 21996736 DOI: 10.1038/onc.2011.443] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.
Collapse
Affiliation(s)
- J M Fraile
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
40
|
ROS-induced ZNF580 expression: a key role for H2O2/NF-κB signaling pathway in vascular endothelial inflammation. Mol Cell Biochem 2011; 359:183-91. [PMID: 21830064 DOI: 10.1007/s11010-011-1013-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/27/2011] [Indexed: 01/14/2023]
Abstract
ZNF580, a newly found C2H2 zinc finger transcription factor, was first described by Zhang (GenBank ID: AF184939). Emerging evidence has suggested that reactive oxygen species (ROS) play an important role in redox-sensitive signal transduction, and the vascular endothelium plays a critical role in the vascular inflammatory response. In this communication, we present evidence for the potential role of ZNF580 in hydrogen peroxide (H2O2)-regulated inflammation-related signaling pathways. In a human endothelial cell hybridoma line (EA.hy926), ZNF580 levels were markedly upregulated with H2O2 stimulation in different concentrations (0-400 μM) and at different time-points (0-6 h). H2O2 promoted the rapid translocation of p65 from the cytoplasm into the nucleus according to immunocytochemistry staining. In subsequent research, inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC, a selective chemical inhibitor of NF-κB) was shown to block the upregulated expression of ZNF580 that was induced by H2O2. Furthermore, transient transfection of ZNF580 resulted in an increase of the pro-inflammatory cytokine interleukin-8 (IL-8) 3.01±0.05 folds according to real-time RT-PCR and ELISA assays, which also showed significantly enhanced motility of human acute monocytic leukemia cells (THP-1). These results suggest that H2O2 upregulates the expression of ZNF580 via the NF-κB signaling pathway, and overexpression of ZNF580 plays a critical role in augmenting the release of pro-inflammatory cytokine IL-8.
Collapse
|
41
|
Zaravinos A, Lambrou GI, Boulalas I, Delakas D, Spandidos DA. Identification of common differentially expressed genes in urinary bladder cancer. PLoS One 2011; 6:e18135. [PMID: 21483740 PMCID: PMC3070717 DOI: 10.1371/journal.pone.0018135] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/26/2011] [Indexed: 12/20/2022] Open
Abstract
Background Current diagnosis and treatment of urinary bladder cancer (BC) has shown great progress with the utilization of microarrays. Purpose Our goal was to identify common differentially expressed (DE) genes among clinically relevant subclasses of BC using microarrays. Methodology/Principal Findings BC samples and controls, both experimental and publicly available datasets, were analyzed by whole genome microarrays. We grouped the samples according to their histology and defined the DE genes in each sample individually, as well as in each tumor group. A dual analysis strategy was followed. First, experimental samples were analyzed and conclusions were formulated; and second, experimental sets were combined with publicly available microarray datasets and were further analyzed in search of common DE genes. The experimental dataset identified 831 genes that were DE in all tumor samples, simultaneously. Moreover, 33 genes were up-regulated and 85 genes were down-regulated in all 10 BC samples compared to the 5 normal tissues, simultaneously. Hierarchical clustering partitioned tumor groups in accordance to their histology. K-means clustering of all genes and all samples, as well as clustering of tumor groups, presented 49 clusters. K-means clustering of common DE genes in all samples revealed 24 clusters. Genes manifested various differential patterns of expression, based on PCA. YY1 and NFκB were among the most common transcription factors that regulated the expression of the identified DE genes. Chromosome 1 contained 32 DE genes, followed by chromosomes 2 and 11, which contained 25 and 23 DE genes, respectively. Chromosome 21 had the least number of DE genes. GO analysis revealed the prevalence of transport and binding genes in the common down-regulated DE genes; the prevalence of RNA metabolism and processing genes in the up-regulated DE genes; as well as the prevalence of genes responsible for cell communication and signal transduction in the DE genes that were down-regulated in T1-Grade III tumors and up-regulated in T2/T3-Grade III tumors. Combination of samples from all microarray platforms revealed 17 common DE genes, (BMP4, CRYGD, DBH, GJB1, KRT83, MPZ, NHLH1, TACR3, ACTC1, MFAP4, SPARCL1, TAGLN, TPM2, CDC20, LHCGR, TM9SF1 and HCCS) 4 of which participate in numerous pathways. Conclusions/Significance The identification of the common DE genes among BC samples of different histology can provide further insight into the discovery of new putative markers.
Collapse
Affiliation(s)
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, University of Athens, Athens, Greece
| | - Ioannis Boulalas
- Laboratory of Virology, Medical School, University of Crete, Crete, Greece
- Department of Urology, Asklipieio General Hospital, Athens, Greece
| | - Dimitris Delakas
- Department of Urology, Asklipieio General Hospital, Athens, Greece
| | | |
Collapse
|
42
|
Yoshimura K, Miyamoto Y, Yasuhara R, Maruyama T, Akiyama T, Yamada A, Takami M, Suzawa T, Tsunawaki S, Tachikawa T, Baba K, Kamijo R. Monocarboxylate transporter-1 is required for cell death in mouse chondrocytic ATDC5 cells exposed to interleukin-1beta via late phase activation of nuclear factor kappaB and expression of phagocyte-type NADPH oxidase. J Biol Chem 2011; 286:14744-52. [PMID: 21372137 DOI: 10.1074/jbc.m111.221259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-1β (IL-1β) induces cell death in chondrocytes in a nitric oxide (NO)- and reactive oxygen species (ROS)-dependent manner. In this study, increased production of lactate was observed in IL-1β-treated mouse chondrocytic ATDC5 cells prior to the onset of their death. IL-1β-induced cell death in ATDC5 cells was suppressed by introducing an siRNA for monocarboxylate transporter-1 (MCT-1), a lactate transporter distributed in plasma and mitochondrial inner membranes. Mct-1 knockdown also prevented IL-1β-induced expression of phagocyte-type NADPH oxidase (NOX-2), an enzyme specialized for production of ROS, whereas it did not have an effect on inducible NO synthase. Suppression of IL-1β-induced cell death by Nox-2 siRNA indicated that NOX-2 is involved in cell death. Phosphorylation and degradation of inhibitor of κBα (IκBα) from 5 to 20 min after the addition of IL-1β was not affected by Mct-1 siRNA. In addition, IκBα was slightly decreased after 12 h of incubation with IL-1β, and the decrease was prominent after 36 h, whereas activation of p65/RelA was observed from 12 to 48 h after exposure to IL-1β. These changes were not seen in Mct-1-silenced cells. Forced expression of IκBα super repressor as well as treatment with the IκB kinase inhibitor BAY 11-7082 suppressed NOX-2 expression. Furthermore, Mct-1 siRNA lowered the level of ROS generated after 15-h exposure to IL-1β, whereas a ROS scavenger, N-acetylcysteine, suppressed both late phase degradation of IκBα and Nox-2 expression. These results suggest that MCT-1 contributes to NOX-2 expression via late phase activation of NF-κB in a ROS-dependent manner in ATDC5 cells exposed to IL-1β.
Collapse
Affiliation(s)
- Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Evans PC. The influence of sulforaphane on vascular health and its relevance to nutritional approaches to prevent cardiovascular disease. EPMA J 2011. [PMID: 23199123 PMCID: PMC3405367 DOI: 10.1007/s13167-011-0064-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxidation of low-density lipoproteins (LDL) promotes atherosclerosis by enhancing vascular inflammation and foam cell formation. The corollary is that diets that stimulate endogenous anti-oxidants may protect against atherosclerosis. This review focuses on sulforaphane, an isothiocyanate derived from green vegetables, which induces multiple anti-oxidant enzymes via activation of a transcription factor called Nrf2. Although studies of cultured cells and experimental animals revealed that sulforaphane can suppress inflammatory activation of vascular cells, the potential beneficial effects of sulforaphane in atherosclerosis have not been studied directly. A deeper understanding of vascular responses to sulforaphane may inform nutritional approaches to prevent vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Paul C Evans
- British Heart Foundation, Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 ONN UK
| |
Collapse
|
44
|
Ivison SM, Wang C, Himmel ME, Sheridan J, Delano J, Mayer ML, Yao Y, Kifayet A, Steiner TS. Oxidative stress enhances IL-8 and inhibits CCL20 production from intestinal epithelial cells in response to bacterial flagellin. Am J Physiol Gastrointest Liver Physiol 2010; 299:G733-41. [PMID: 20595617 DOI: 10.1152/ajpgi.00089.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal epithelial cells act as innate immune sentinels, as the first cells that encounter diarrheal pathogens. They use pattern recognition molecules such as the Toll-like receptors (TLRs) to identify molecular signals found on microbes but not host cells or food components. TLRs cannot generally distinguish the molecular signals on pathogenic bacteria from those found in commensals, yet under healthy conditions epithelial immune responses are kept in check. We hypothesized that, in the setting of tissue damage or stress, intestinal epithelial cells would upregulate their responses to TLR ligands to reflect the greater need for immediate protection against pathogens. We treated Caco-2 cells with the TLR5 agonist flagellin in the presence or absence of H(2)O(2) and measured chemokine production and intracellular signaling pathways. H(2)O(2) increased flagellin-induced IL-8 (CXCL8) production in a dose-dependent manner. This was associated with synergistic phosphorylation of p38 MAP kinase and with prolonged I-kappaB degradation and NF-kappaB activation. The H(2)O(2)-mediated potentiation of IL-8 production required the activity of p38, tyrosine kinases, phospholipase Cgamma, and intracellular calcium, but not protein kinase C or protein kinase D. H(2)O(2) prolonged and augmented NF-kappaB activation by flagellin. In contrast to IL-8, CCL20 (MIP3alpha) production by flagellin was reduced by H(2)O(2), and this effect was not calcium dependent. Oxidative stress biases intestinal epithelial responses to flagellin, leading to increased production of IL-8 and decreased production of CCL20. This suggests that epithelial cells are capable of sensing the extracellular environment and adjusting their antimicrobial responses accordingly.
Collapse
Affiliation(s)
- Sabine M Ivison
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Cardiovascular pathologies are still the primary cause of death worldwide. The molecular mechanisms behind these pathologies have not been fully elucidated. Unravelling them will bring us closer to therapeutic strategies to prevent or treat cardiovascular disease. One of the major transcription factors that has been linked to both cardiovascular health and disease is NF-kappaB (nuclear factor kappaB). The NF-kappaB family controls multiple processes, including immunity, inflammation, cell survival, differentiation and proliferation, and regulates cellular responses to stress, hypoxia, stretch and ischaemia. It is therefore not surprising that NF-kappaB has been shown to influence numerous cardiovascular diseases including atherosclerosis, myocardial ischaemia/reperfusion injury, ischaemic preconditioning, vein graft disease, cardiac hypertrophy and heart failure. The function of NF-kappaB is largely dictated by the genes that it targets for transcription and varies according to stimulus and cell type. Thus NF-kappaB has divergent functions and can protect cardiovascular tissues from injury or contribute to pathogenesis depending on the cellular and physiological context. The present review will focus on recent studies on the function of NF-kappaB in the cardiovascular system.
Collapse
|
46
|
Abstract
Removal of ubiquitin from modified proteins is an important process to regulate the ubiquitin system. Roughly 100 dedicated enzymes for this purpose, the deubiquitinases, exist in human cells and are intricately involved in a wide variety of cellular processes, although many enzymes remain unstudied to date. The deubiquitinases consist of five enzyme families that contain USP, OTU, UCH, Josephin, or JAMM/MPN+ domains providing catalytic activity. We now understand the catalytic mechanisms of all deubiquitinase families from structural work and more importantly, have obtained insight into an unanticipated variety of ways to exercise specificity. It emerges that deubiquitinases exploit the entire complexity of the ubiquitin system by recognizing their substrates, particular ubiquitin chain linkages and even the position within a ubiquitin chain. This chapter describes the mechanisms of deubiquitination and the different layers of deubiquitinase specificity. The individual deubiquitinase families are discussed with a focus on structure, regulation and specificity features for selected enzymes.
Collapse
Affiliation(s)
- David Komander
- Protein and Nucleic Acid Chemistry Division, Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK,
| |
Collapse
|
47
|
IL-8 production by macrophages is synergistically enhanced when cigarette smoke is combined with TNF-alpha. Biochem Pharmacol 2009; 79:698-705. [PMID: 19874800 DOI: 10.1016/j.bcp.2009.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 01/16/2023]
Abstract
Macrophages are key inflammatory cells in chronic obstructive pulmonary disease (COPD). The pathophysiology of cigarette smoke-induced lung emphysema is complex but there is a clear role for reactive oxygen species (ROS, such as peroxynitrite), tumor necrosis factor (TNF-alpha) and interleukin (IL)-8. We investigated whether TNF-alpha or cigarette smoke medium (CSM) alone or in combination induces the production of IL-8 by human macrophages or monocyte lymphoma U937. CSM and TNF-alpha induce a dose- and time-dependent increase in IL-8 production. Interestingly, when sub-threshold concentrations of CSM and TNF-alpha were co-incubated, a 1500% increase in IL-8 production was observed compared to either of the compounds alone. Similar results were obtained with TNF-alpha and the peroxynitrite donor SIN-1. Moreover, the overproduction of IL-8 was associated with an enhanced increase in the translocation of NF-kappaB and an enhanced decrease in glutathione levels. Preincubation of the cells with antioxidants, such as N-acetyl-L-cysteine (NAC), prevented the overproduction of IL-8 and activation of NF-kappaB. In conclusion, CSM exposure of macrophages up-regulates the expression and the production of IL-8 via reactive oxygen species and NF-kappaB activation. Moreover, CSM dramatically enhances the production of IL-8 in combination with TNF-alpha. Based upon the strong synergistic action, a combination therapy directed against ROS and TNF-alpha could be a new approach to stop the progression in lung damage during emphysema.
Collapse
|
48
|
Oliveira-Marques V, Marinho HS, Cyrne L, Antunes F. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid Redox Signal 2009; 11:2223-43. [PMID: 19496701 DOI: 10.1089/ars.2009.2601] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydrogen peroxide (H2O2) has been implicated in the regulation of the transcription factor NF-kappaB, a key regulator of the inflammatory process and adaptive immunity. However, no consensus exists regarding the regulatory role played by H2O2. We discuss how the experimental methodologies used to expose cells to H2O2 produce inconsistent results that are difficult to compare, and how the steady-state titration with H2O2 emerges as an adequate tool to overcome these problems. The redox targets of H2O2 in the NF-kappaB pathway--from the membrane to the post-translational modifications in both NF-kappaB and histones in the nucleus--are described. We also review how H2O2 acts as a specific regulator at the level of the single gene, and briefly discuss the implications of this regulation for human health in the context of kappaB polymorphisms. In conclusion, after near 30 years of research, H2O2 emerges not as an inducer of NF-kappaB, but as an agent able to modulate the activation of the NF-kappaB pathway by other agents. This modulation is generic at the level of the whole pathway but specific at the level of the single gene. Therefore, H2O2 is a fine-tuning regulator of NF-kappaB-dependent processes, as exemplified by its dual regulation of inflammation.
Collapse
Affiliation(s)
- Virgínia Oliveira-Marques
- Grupo de Bioquímica dos Oxidantes e Antioxidantes, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | |
Collapse
|
49
|
Gloire G, Piette J. Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal 2009; 11:2209-22. [PMID: 19203223 DOI: 10.1089/ars.2009.2463] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The transcription factor NF-kappaB controls the expression of hundreds of genes involved in the regulation of the immune/inflammatory response, development, and apoptosis. In resting cells, NF-kappaB proteins are sequestered in the cytoplasm through their tight association with IkappaB proteins. NF-kappaB activation relies on the signal-induced IkappaB phosphorylation and degradation, thereby allowing the nuclear translocation of NF-kappaB proteins. In the nucleus, several post-translational modifications of NF-kappaB and chromatin remodeling of target genes are mandatory for NF-kappaB DNA binding and full transcription. Since 1991, reactive oxygen species (ROS) have been implicated in NF-kappaB activation. ROS enhance the cytoplasmic signaling pathways leading to NF-kappaB nuclear translocation, but reduction/oxidation (redox) also controls several key steps in the nuclear phase of the NF-kappaB program, including chromatin remodeling, recruitment of co-activators, and DNA binding. Here we describe the redox regulation of NF-kappaB activity in the nucleus.
Collapse
Affiliation(s)
- Geoffrey Gloire
- GIGA-Research (B34), Unit of Signal Transduction, Laboratory of Virology and Immunology, University of Liège, Liège, Belgium
| | | |
Collapse
|
50
|
Abstract
Ubiquitylation is a reversible protein modification that is implicated in many cellular functions. Recently, much progress has been made in the characterization of a superfamily of isopeptidases that remove ubiquitin: the deubiquitinases (DUBs; also known as deubiquitylating or deubiquitinating enzymes). Far from being uniform in structure and function, these enzymes display a myriad of distinct mechanistic features. The small number (<100) of DUBs might at first suggest a low degree of selectivity; however, DUBs are subject to multiple layers of regulation that modulate both their activity and their specificity. Due to their wide-ranging involvement in key regulatory processes, these enzymes might provide new therapeutic targets.
Collapse
|