1
|
Chelico L, Feng Y. In vitro deamination assay to measure the activity and processivity of AID/APOBEC enzymes. Methods Enzymol 2024; 713:69-100. [PMID: 40250961 DOI: 10.1016/bs.mie.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The AID/APOBEC family of enzymes are cytidine/deoxycytidine deaminases that primarily catalyze the deamination of deoxycytidines (dCs) into deoxyuridines (dUs) on single-stranded DNA (ssDNA). In humans, there are 11 members within the family. AID and APOBEC3 (A3) enzymes have been extensively characterized for their ability to introduce promutagenic dUs during antibody gene diversification and intrinsic immune defenses against viruses and retrotransposons, respectively. In order to search for a local dC deamination target to effectively catalyze the deamination reaction, AID/APOBEC enzymes adopt facilitated diffusion as a mechanism to search for the target deamination sites on ssDNA substrates, which includes one-dimensional (1D) movements termed sliding, and three-dimensional (3D) movements termed jumping and intersegment transfer. This type of diffusional mechanism enables AID/APOBEC enzymes to processively scan ssDNA substrates and serves as a key determinant to the mutagenic potential of AID/APOBEC enzymes in vivo. The catalysis and processive ssDNA scanning behaviors of AID/APOBEC enzymes can be assessed using purified proteins and synthetic ssDNA through an in vitro deamination assay. In this Chapter, we describe how to perform deamination assays where DNA scanning mechanisms and processivity can be measured under single-hit conditions using a fluorescently labeled ssDNA substrate. The in vitro deamination assay can also be applied to determine AID/APOBEC activity in cell lysates or in kinetic reactions to determine the specific activity of purified enzymes.
Collapse
Affiliation(s)
- Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Yuqing Feng
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
2
|
Bello A, Hirth G, Voigt S, Tepper S, Jungnickel B. Mechanism and regulation of secondary immunoglobulin diversification. Cell Cycle 2023; 22:2070-2087. [PMID: 37909747 PMCID: PMC10761156 DOI: 10.1080/15384101.2023.2275397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Secondary immunoglobulin diversification by somatic hypermutation and class switch recombination in B cells is instrumental for an adequate adaptive humoral immune response. These genetic events may, however, also introduce aberrations into other cellular genes and thereby cause B cell malignancies. While the basic mechanism of somatic hypermutation and class switch recombination is now well understood, their regulation and in particular the mechanism of their specific targeting to immunoglobulin genes is still rather mysterious. In this review, we summarize the current knowledge on the mechanism and regulation of secondary immunoglobulin diversification and discuss known mechanisms of physiological targeting to immunoglobulin genes and mistargeting to other cellular genes. We summarize open questions in the field and provide an outlook on future research.
Collapse
Affiliation(s)
- Amanda Bello
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Gianna Hirth
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Stefanie Voigt
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Sandra Tepper
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Berit Jungnickel
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
Piazzi M, Bavelloni A, Salucci S, Faenza I, Blalock WL. Alternative Splicing, RNA Editing, and the Current Limits of Next Generation Sequencing. Genes (Basel) 2023; 14:1386. [PMID: 37510291 PMCID: PMC10379330 DOI: 10.3390/genes14071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The advent of next generation sequencing (NGS) has fostered a shift in basic analytic strategies of a gene expression analysis in diverse pathologies for the purposes of research, pharmacology, and personalized medicine. What was once highly focused research on individual signaling pathways or pathway members has, from the time of gene expression arrays, become a global analysis of gene expression that has aided in identifying novel pathway interactions, the discovery of new therapeutic targets, and the establishment of disease-associated profiles for assessing progression, stratification, or a therapeutic response. But there are significant caveats to this analysis that do not allow for the construction of the full picture. The lack of timely updates to publicly available databases and the "hit and miss" deposition of scientific data to these databases relegate a large amount of potentially important data to "garbage", begging the question, "how much are we really missing?" This brief perspective aims to highlight some of the limitations that RNA binding/modifying proteins and RNA processing impose on our current usage of NGS technologies as relating to cancer and how not fully appreciating the limitations of current NGS technology may negatively affect therapeutic strategies in the long run.
Collapse
Affiliation(s)
- Manuela Piazzi
- "Luigi Luca Cavalli-Sforza" Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - William L Blalock
- "Luigi Luca Cavalli-Sforza" Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
4
|
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation of immunoglobulin (Ig) gene variable regions and class switch recombination (CSR) of Ig heavy chain constant regions. Two decades of intensive research has greatly expanded our knowledge of how AID functions in peripheral B cells to optimize antibody responses against infections, while maintaining tight regulation of AID to restrain its activity to protect B cell genomic integrity. The many exciting recent advances in the field include: 1) the first description of AID's molecular structure, 2) remarkable advances in high throughput approaches that precisely track AID targeting genome-wide, and 3) the discovery that the cohesion-mediate loop extrusion mechanism [initially discovered in V(D)J recombination studies] also governs AID-medicated CSR. These advances have significantly advanced our understanding of AID's biochemical properties in vitro and AID's function and regulation in vivo. This mini review will discuss these recent discoveries and outline the challenges and questions that remain to be addressed.
Collapse
|
5
|
Liu Z, Chen S, Lai L, Li Z. Inhibition of base editors with anti-deaminases derived from viruses. Nat Commun 2022; 13:597. [PMID: 35105899 PMCID: PMC8807840 DOI: 10.1038/s41467-022-28300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022] Open
Abstract
Cytosine base editors (CBEs), combining cytidine deaminases with the Cas9 nickase (nCas9), enable targeted C-to-T conversions in genomic DNA and are powerful genome-editing tools used in biotechnology and medicine. However, the overexpression of cytidine deaminases in vivo leads to unexpected potential safety risks, such as Cas9-independent off-target effects. This risk makes the development of deaminase off switches for modulating CBE activity an urgent need. Here, we report the repurpose of four virus-derived anti-deaminases (Ades) that efficiently inhibit APOBEC3 deaminase-CBEs. We demonstrate that they antagonize CBEs by inhibiting the APOBEC3 catalytic domain, relocating the deaminases to the extranuclear region or degrading the whole CBE complex. By rationally engineering the deaminase domain, other frequently used base editors, such as CGBE, A&CBE, A&CGBE, rA1-CBE and ABE8e, can be moderately inhibited by Ades, expanding the scope of their applications. As a proof of concept, the Ades in this study dramatically decrease both Cas9-dependent and Cas9-independent off-target effects of CBEs better than traditional anti-CRISPRs (Acrs). Finally, we report the creation of a cell type-specific CBE-ON switch based on a microRNA-responsive Ade vector, showing its practicality. In summary, these natural deaminase-specific Ades are tools that can be used to regulate the genome-engineering functions of BEs.
Collapse
Affiliation(s)
- Zhiquan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Siyu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL), Guangzhou, 510005, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
6
|
Sakhtemani R, Perera MLW, Hübschmann D, Siebert R, Lawrence M, Bhagwat A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:5145-5157. [PMID: 35524550 PMCID: PMC9122604 DOI: 10.1093/nar/gkac296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Activation-induced deaminase (AID) is a DNA-cytosine deaminase that mediates maturation of antibodies through somatic hypermutation and class-switch recombination. While it causes mutations in immunoglobulin heavy and light chain genes and strand breaks in the switch regions of the immunoglobulin heavy chain gene, it largely avoids causing such damage in the rest of the genome. To help understand targeting by human AID, we expressed it in repair-deficient Escherichia coli and mapped the created uracils in the genomic DNA using uracil pull-down and sequencing, UPD-seq. We found that both AID and the human APOBEC3A preferentially target tRNA genes and transcription start sites, but do not show preference for highly transcribed genes. Unlike A3A, AID did not show a strong replicative strand bias or a preference for hairpin loops. Overlapping uracilation peaks between these enzymes contained binding sites for a protein, FIS, that helps create topological domains in the E. coli genome. To confirm whether these findings were relevant to B cells, we examined mutations from lymphoma and leukemia genomes within AID-preferred sequences. These mutations also lacked replicative strand bias or a hairpin loop preference. We propose here a model for how AID avoids causing mutations in the single-stranded DNA found within replication forks.
Collapse
Affiliation(s)
- Ramin Sakhtemani
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | - Daniel Hübschmann
- Molecular Precision Oncology Program, National Center for Tumor Diseases, Heidelberg and German Cancer Research Center, Heidelberg, Germany
- Heidelberg Institute for Stem cell Technology and Experimental Medicine, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Michael S Lawrence
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Ashok S Bhagwat
- To whom correspondence should be addressed. Tel: +1 734 425 1749; Fax: +1 313 577 8822, 443;
| |
Collapse
|
7
|
Arbab M, Shen MW, Mok B, Wilson C, Matuszek Ż, Cassa CA, Liu DR. Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell 2020; 182:463-480.e30. [PMID: 32533916 PMCID: PMC7384975 DOI: 10.1016/j.cell.2020.05.037] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
Although base editors are widely used to install targeted point mutations, the factors that determine base editing outcomes are not well understood. We characterized sequence-activity relationships of 11 cytosine and adenine base editors (CBEs and ABEs) on 38,538 genomically integrated targets in mammalian cells and used the resulting outcomes to train BE-Hive, a machine learning model that accurately predicts base editing genotypic outcomes (R ≈ 0.9) and efficiency (R ≈ 0.7). We corrected 3,388 disease-associated SNVs with ≥90% precision, including 675 alleles with bystander nucleotides that BE-Hive correctly predicted would not be edited. We discovered determinants of previously unpredictable C-to-G, or C-to-A editing and used these discoveries to correct coding sequences of 174 pathogenic transversion SNVs with ≥90% precision. Finally, we used insights from BE-Hive to engineer novel CBE variants that modulate editing outcomes. These discoveries illuminate base editing, enable editing at previously intractable targets, and provide new base editors with improved editing capabilities.
Collapse
Affiliation(s)
- Mandana Arbab
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Max W Shen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Beverly Mok
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Wilson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Żaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher A Cassa
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
Liu X, Meng FL. Generation of Genomic Alteration from Cytidine Deamination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:49-64. [DOI: 10.1007/978-981-13-0593-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Adolph MB, Love RP, Feng Y, Chelico L. Enzyme cycling contributes to efficient induction of genome mutagenesis by the cytidine deaminase APOBEC3B. Nucleic Acids Res 2017; 45:11925-11940. [PMID: 28981865 PMCID: PMC5714209 DOI: 10.1093/nar/gkx832] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The single-stranded DNA cytidine deaminases APOBEC3B, APOBEC3H haplotype I, and APOBEC3A can contribute to cancer through deamination of cytosine to form promutagenic uracil in genomic DNA. The enzymes must access single-stranded DNA during the dynamic processes of DNA replication or transcription, but the enzymatic mechanisms enabling this activity are not known. To study this, we developed a method to purify full length APOBEC3B and characterized it in comparison to APOBEC3A and APOBEC3H on substrates relevant to cancer mutagenesis. We found that the ability of an APOBEC3 to cycle between DNA substrates determined whether it was able to efficiently deaminate single-stranded DNA produced by replication and single-stranded DNA bound by replication protein A (RPA). APOBEC3 deaminase activity during transcription had a size limitation that inhibited APOBEC3B tetramers, but not APOBEC3A monomers or APOBEC3H dimers. Altogether, the data support a model in which the availability of single-stranded DNA is necessary, but alone not sufficient for APOBEC3-induced mutagenesis in cells because there is also a dependence on the inherent biochemical properties of the enzymes. The biochemical properties identified in this study can be used to measure the mutagenic potential of other APOBEC enzymes in the genome.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Adolph MB, Ara A, Feng Y, Wittkopp CJ, Emerman M, Fraser JS, Chelico L. Cytidine deaminase efficiency of the lentiviral viral restriction factor APOBEC3C correlates with dimerization. Nucleic Acids Res 2017; 45:3378-3394. [PMID: 28158858 PMCID: PMC5389708 DOI: 10.1093/nar/gkx066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/24/2017] [Indexed: 01/28/2023] Open
Abstract
The seven APOBEC3 (A3) enzymes in primates restrict HIV/SIV replication to differing degrees by deaminating cytosine in viral (−)DNA, which forms promutagenic uracils that inactivate the virus. A polymorphism in human APOBEC3C (A3C) that encodes an S188I mutation increases the enzymatic activity of the protein and its ability to restrict HIV-1, and correlates with increased propensity to form dimers. However, other hominid A3C proteins only have an S188, suggesting they should be less active like the common form of human A3C. Nonetheless, here we demonstrate that chimpanzee and gorilla A3C have approximately equivalent activity to human A3C I188 and that chimpanzee and gorilla A3C form dimers at the same interface as human A3C S188I, but through different amino acids. For each of these hominid A3C enzymes, dimerization enables processivity on single-stranded DNA and results in higher levels of mutagenesis during reverse transcription in vitro and in cells. For increased mutagenic activity, formation of a dimer was more important than specific amino acids and the dimer interface is unique from other A3 enzymes. We propose that dimerization is a predictor of A3C enzyme activity.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anjuman Ara
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cristina J Wittkopp
- Department of Microbiology, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Science and California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Budzko L, Jackowiak P, Kamel K, Sarzynska J, Bujnicki JM, Figlerowicz M. Mutations in human AID differentially affect its ability to deaminate cytidine and 5-methylcytidine in ssDNA substrates in vitro. Sci Rep 2017. [PMID: 28634398 PMCID: PMC5478644 DOI: 10.1038/s41598-017-03936-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is known for its established role in antibody production. AID induces the diversification of antibodies by deaminating deoxycytidine (C) within immunoglobulin genes. The capacity of AID to deaminate 5-methyldeoxycytidine (5 mC) and/or 5-hydroxymethyldeoxycytidine (5 hmC), and consequently AID involvement in active DNA demethylation, is not fully resolved. For instance, structural determinants of AID activity on different substrates remain to be identified. To better understand the latter issue, we tested how mutations in human AID (hAID) influence its ability to deaminate C, 5 mC, and 5 hmC in vitro. We showed that each of the selected mutations differentially affects hAID’s ability to deaminate C and 5 mC. At the same time, we did not observe hAID activity on 5 hmC. Surprisingly, we found that the N51A hAID mutant, with no detectable activity on C, efficiently deaminated 5 mC, which may suggest different requirements for C and 5 mC deamination. Homology modeling and molecular dynamics simulations revealed that the pattern of enzyme-substrate recognition is one of the important factors determining enzyme activity on C and 5 mC. Consequently, we have proposed mechanisms that explain why wild type hAID more efficiently deaminates C than 5 mC in vitro and why 5 hmC is not deaminated.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Karol Kamel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109, Warsaw, Poland.,Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland. .,Institute of Computing Science, Poznan University of Technology, Piotrowo 3A, 60-965, Poznan, Poland.
| |
Collapse
|
12
|
Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes. PLoS Genet 2015; 11:e1005217. [PMID: 25941824 PMCID: PMC4420506 DOI: 10.1371/journal.pgen.1005217] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells. Genomes of tumors are heavily enriched with mutations. Some of these mutations are distributed non-randomly, forming mutational clusters. Editing cytosine deaminases from APOBEC superfamily are responsible for the formation of many of these clusters. We have expressed APOBEC enzyme in diploid yeast cells and found that most of the mutations occur in the beginning of the active genes, where transcription starts. Clusters of mutations overlapped with promoters/transcription start sites. This is likely due to the weaker protection of ssDNA, an ultimate APOBEC deaminase enzyme target, in the beginning of the genes. This hypothesis was reinforced by the finding that inactivation of Sub1 transcription initiation factor, which is found predominantly in the regions of transcription initiation, leads to further increase in mutagenesis in the beginning of the genes. Interestingly, the total number of mutations in the genomes of Sub1-deficient clones did not change, despite the 100-fold decrease in frequency of mutants in a reporter gene. Thus, the drastic change in genome-wide distribution of mutations can be caused by inactivation of a single gene. We propose that the loss of ssDNA protection factors causes formation of mutation clusters in human cancer.
Collapse
|
13
|
Palmeri A, Ausiello G, Ferrè F, Helmer-Citterich M, Gherardini PF. A Proteome-wide Domain-centric Perspective on Protein Phosphorylation. Mol Cell Proteomics 2014; 13:2198-212. [PMID: 24830415 PMCID: PMC4159644 DOI: 10.1074/mcp.m114.039990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 01/18/2023] Open
Abstract
Phosphorylation is a widespread post-translational modification that modulates the function of a large number of proteins. Here we show that a significant proportion of all the domains in the human proteome is significantly enriched or depleted in phosphorylation events. A substantial improvement in phosphosites prediction is achieved by leveraging this observation, which has not been tapped by existing methods. Phosphorylation sites are often not shared between multiple occurrences of the same domain in the proteome, even when the phosphoacceptor residue is conserved. This is partly because of different functional constraints acting on the same domain in different protein contexts. Moreover, by augmenting domain alignments with structural information, we were able to provide direct evidence that phosphosites in protein-protein interfaces need not be positionally conserved, likely because they can modulate interactions simply by sitting in the same general surface area.
Collapse
Affiliation(s)
- Antonio Palmeri
- From the ‡Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Gabriele Ausiello
- From the ‡Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Fabrizio Ferrè
- From the ‡Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Manuela Helmer-Citterich
- From the ‡Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Pier Federico Gherardini
- From the ‡Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| |
Collapse
|
14
|
Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 2014; 122:1-57. [PMID: 24507154 PMCID: PMC4150736 DOI: 10.1016/b978-0-12-800267-4.00001-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as "Ch genes", e.g., Cγ, Cɛ, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming.
Collapse
Affiliation(s)
- Allysia J Matthews
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Simin Zheng
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lauren J DiMenna
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
15
|
Waisertreiger ISR, Liston VG, Menezes MR, Kim HM, Lobachev KS, Stepchenkova EI, Tahirov TH, Rogozin IB, Pavlov YI. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:699-724. [PMID: 23055184 PMCID: PMC3893020 DOI: 10.1002/em.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ϵ, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair.
Collapse
Affiliation(s)
- Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Victoria G. Liston
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Miriam R. Menezes
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD 20894, U.S.A
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Youri. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| |
Collapse
|
16
|
Wijesinghe P, Bhagwat AS. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res 2012; 40:9206-17. [PMID: 22798497 PMCID: PMC3467078 DOI: 10.1093/nar/gks685] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The AID/APOBEC family of enzymes in higher vertebrates converts cytosines in DNA or RNA to uracil. They play a role in antibody maturation and innate immunity against viruses, and have also been implicated in the demethylation of DNA during early embryogenesis. This is based in part on reported ability of activation-induced deaminase (AID) to deaminate 5-methylcytosines (5mC) to thymine. We have reexamined this possibility for AID and two members of human APOBEC3 family using a novel genetic system in Escherichia coli. Our results show that while all three genes show strong ability to convert C to U, only APOBEC3A is an efficient deaminator of 5mC. To confirm this, APOBEC3A was purified partially and used in an in vitro deamination assay. We found that APOBEC3A can deaminate 5mC efficiently and this activity is comparable to its C to U deamination activity. When the DNA-binding segment of AID was replaced with the corresponding segment from APOBEC3A, the resulting hybrid had much higher ability to convert 5mC to T in the genetic assay. These and other results suggest that the human AID deaminates 5mC’s only weakly because the 5-methyl group fits poorly in its DNA-binding pocket.
Collapse
|
17
|
Vuong BQ, Chaudhuri J. Combinatorial mechanisms regulating AID-dependent DNA deamination: interacting proteins and post-translational modifications. Semin Immunol 2012; 24:264-72. [PMID: 22771392 DOI: 10.1016/j.smim.2012.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Protective humoral immune responses result from immunoglobulin (Ig) diversification reactions that proceed through programmed DNA double-strand breaks and mutations in developing or mature B cells. While primary Ig diversity is dependent on V(D)J recombination and the RAG proteins, secondary diversification is achieved through class switch recombination (CSR) and somatic hypermutation (SHM), which require AID (activation induced deaminase). Because aberrant AID activity can result in mutations in non-Ig loci and DNA translocations between the Ig locus and non-Ig genes, the activity of AID must be stringently regulated. AID mRNA expression is regulated transcriptionally by cytokine stimulation and post-transcriptionally by miRNAs. AID activity is regulated by post-translational modifications, subcellular localization, and interaction with other proteins. All of these molecular mechanisms have evolved to specifically induce AID-dependent mutations and DNA double-strand breaks at the Ig loci to promote maximal Ig gene diversification while limiting the access of this mutator to non-Ig regions.
Collapse
Affiliation(s)
- Bao Q Vuong
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, 1275 York Avenue, New York, NY 10065, United States.
| | | |
Collapse
|
18
|
Mu Y, Prochnow C, Pham P, Chen XS, Goodman MF. A structural basis for the biochemical behavior of activation-induced deoxycytidine deaminase class-switch recombination-defective hyper-IgM-2 mutants. J Biol Chem 2012; 287:28007-16. [PMID: 22715099 DOI: 10.1074/jbc.m112.370189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hyper-IgM syndrome type 2 stems from mutations in activation-induced deoxycytidine deaminase (AID) that abolish immunoglobulin class-switch recombination, causing an accumulation of IgM and absence of IgG, IgA, and IgE isotypes. Although hyper-IgM syndrome type 2 is rare, the 23 missense mutations identified in humans span almost the entire gene for AID resulting in a recessive phenotype. Using high resolution x-ray structures for Apo3G-CD2 as a surrogate for AID, we identify three classes of missense mutants as follows: catalysis (class I), substrate interaction (class II), and structural integrity (class III). Each mutant was expressed and purified from insect cells and compared biochemically to wild type (WT) AID. Four point mutants retained catalytic activity at 1/3rd to 1/200th the level of WT AID. These "active" point mutants mimic the behavior of WT AID for motif recognition specificity, deamination spectra, and high deamination processivity. We constructed a series of C-terminal deletion mutants (class IV) that retain catalytic activity and processivity for deletions ≤18 amino acids, with ΔC(10) and ΔC(15) having 2-3-fold higher specific activities than WT AID. Deleting 19 C-terminal amino acids inactivates AID. WT AID and active and inactive point mutants bind cooperatively to single-stranded DNA (Hill coefficients ∼1.7-3.2) with microscopic dissociation constant values (K(A)) ranging between 10 and 250 nm. Active C-terminal deletion mutants bind single-stranded DNA noncooperatively with K(A) values similar to wild type AID. A structural analysis is presented that shows how localized defects in different regions of AID can contribute to loss of catalytic function.
Collapse
Affiliation(s)
- Yunxiang Mu
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | | | | | |
Collapse
|
19
|
Gazumyan A, Bothmer A, Klein IA, Nussenzweig MC, McBride KM. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv Cancer Res 2012; 113:167-90. [PMID: 22429855 PMCID: PMC4353630 DOI: 10.1016/b978-0-12-394280-7.00005-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA damage, rearrangement, and mutation of the human genome are the basis of carcinogenesis and thought to be avoided at all costs. An exception is the adaptive immune system where lymphocytes utilize programmed DNA damage to effect antigen receptor diversification. Both B and T lymphocytes diversify their antigen receptors through RAG1/2 mediated recombination, but B cells undergo two additional processes--somatic hypermutation (SHM) and class-switch recombination (CSR), both initiated by activation-induced cytidine deaminase (AID). AID deaminates cytidines in DNA resulting in U:G mismatches that are processed into point mutations in SHM or double-strand breaks in CSR. Although AID activity is focused at Immunoglobulin (Ig) gene loci, it also targets a wide array of non-Ig genes including oncogenes associated with lymphomas. Here, we review the molecular basis of AID regulation, targeting, and initiation of CSR and SHM, as well as AID's role in generating chromosome translocations that contribute to lymphomagenesis.
Collapse
Affiliation(s)
- Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | | | | | | | | |
Collapse
|
20
|
Lada AG, Waisertreiger ISR, Grabow CE, Prakash A, Borgstahl GEO, Rogozin IB, Pavlov YI. Replication protein A (RPA) hampers the processive action of APOBEC3G cytosine deaminase on single-stranded DNA. PLoS One 2011; 6:e24848. [PMID: 21935481 PMCID: PMC3174200 DOI: 10.1371/journal.pone.0024848] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/19/2011] [Indexed: 11/25/2022] Open
Abstract
Background Editing deaminases have a pivotal role in cellular physiology. A notable member of this superfamily, APOBEC3G (A3G), restricts retroviruses, and Activation Induced Deaminase (AID) generates antibody diversity by localized deamination of cytosines in DNA. Unconstrained deaminase activity can cause genome-wide mutagenesis and cancer. The mechanisms that protect the genomic DNA from the undesired action of deaminases are unknown. Using the in vitro deamination assays and expression of A3G in yeast, we show that replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA) binding protein, severely inhibits the deamination activity and processivity of A3G. Principal Findings/Methodology We found that mutations induced by A3G in the yeast genomic reporter are changes of a single nucleotide. This is unexpected because of the known property of A3G to catalyze multiple deaminations upon one substrate encounter event in vitro. The addition of recombinant RPA to the oligonucleotide deamination assay severely inhibited A3G activity. Additionally, we reveal the inverse correlation between RPA concentration and the number of deaminations induced by A3G in vitro on long ssDNA regions. This resembles the “hit and run” single base substitution events observed in yeast. Significance Our data suggest that RPA is a plausible antimutator factor limiting the activity and processivity of editing deaminases in the model yeast system. Because of the similar antagonism of yeast RPA and human RPA with A3G in vitro, we propose that RPA plays a role in the protection of the human genome cell from A3G and other deaminases when they are inadvertently diverged from their natural targets. We propose a model where RPA serves as one of the guardians of the genome that protects ssDNA from the destructive processive activity of deaminases by non-specific steric hindrance.
Collapse
Affiliation(s)
- Artem G. Lada
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Corinn E. Grabow
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Aishwarya Prakash
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
21
|
Barreto VM, Magor BG. Activation-induced cytidine deaminase structure and functions: a species comparative view. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:991-1007. [PMID: 21349283 DOI: 10.1016/j.dci.2011.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/09/2011] [Accepted: 02/16/2011] [Indexed: 05/30/2023]
Abstract
In the ten years since the discovery of activation-induced cytidine deaminase (AID) there has been considerable effort to understand the mechanisms behind this enzyme's ability to target and modify immunoglobulin genes leading to somatic hypermutation and class switch recombination. While the majority of research has focused on mouse and human models of AID function, work on other species, from lamprey to rabbit and sheep, has taught us much about the scope of functions of the AID mutator. This review takes a species-comparative approach to what has been learned about the AID mutator enzyme and its role in humoral immunity.
Collapse
|
22
|
Demorest ZL, Li M, Harris RS. Phosphorylation directly regulates the intrinsic DNA cytidine deaminase activity of activation-induced deaminase and APOBEC3G protein. J Biol Chem 2011; 286:26568-75. [PMID: 21659520 DOI: 10.1074/jbc.m111.235721] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The beneficial effects of DNA cytidine deamination by activation-induced deaminase (AID; antibody gene diversification) and APOBEC3G (retrovirus restriction) are tempered by probable contributions to carcinogenesis. Multiple regulatory mechanisms serve to minimize this detrimental outcome. Here, we show that phosphorylation of a conserved threonine attenuates the intrinsic activity of activation-induced deaminase (Thr-27) and APOBEC3G (Thr-218). Phospho-null alanine mutants maintain intrinsic DNA deaminase activity, whereas phospho-mimetic glutamate mutants are inactive. The phospho-mimetic variants fail to mediate isotype switching in activated mouse splenic B lymphocytes or suppress HIV-1 replication in human T cells. Our data combine to suggest a model in which this critical threonine acts as a phospho-switch that fine-tunes the adaptive and innate immune responses and helps protect mammalian genomic DNA from procarcinogenic lesions.
Collapse
Affiliation(s)
- Zachary L Demorest
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
23
|
Feng Y, Chelico L. Intensity of deoxycytidine deamination of HIV-1 proviral DNA by the retroviral restriction factor APOBEC3G is mediated by the noncatalytic domain. J Biol Chem 2011; 286:11415-26. [PMID: 21300806 DOI: 10.1074/jbc.m110.199604] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
APOBEC3G is a single-stranded (ss) DNA deaminase that restricts replication of HIV-1 by inducing viral genome mutagenesis through deamination of cytosine to uracil on HIV-1 cDNA. APOBEC3G has polydisperse oligomeric states and deaminates ssDNA processively through jumping and sliding. APOBEC3G has a catalytically inactive N-terminal CD1 domain that mediates processivity and an active C-terminal CD2 domain that catalyzes deaminations. Here, we assess the determinants of APOBEC3G deamination efficiency mediated by the CD1 domain by comparing native APOBEC3G and two CD1 mutants, a monomeric mutant (F126A/W127A) and a clinical mutant associated with high viral loads (H186R). Biochemical assays on ssDNA or partially dsDNA and with a reconstituted HIV replication system demonstrate that both mutants of Apo3G have altered DNA scanning properties in either jumping (F126A/W127A) or sliding (H186R), which results in decreased abilities to induce mutagenesis during reverse transcription. The data reveal a functionality for Apo3G oligomers in deamination and provide the first biochemical characterization of the clinical mutant H186R. The data demonstrate that the balance between the jumping and sliding of Apo3G is needed for efficient mutational inactivation of HIV-1.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
24
|
Amino-terminal phosphorylation of activation-induced cytidine deaminase suppresses c-myc/IgH translocation. Mol Cell Biol 2010; 31:442-9. [PMID: 21135131 DOI: 10.1128/mcb.00349-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates class switch recombination and somatic hypermutation of immunoglobulin genes (Ig) in B lymphocytes. However, AID also produces off-target DNA damage, including mutations in oncogenes and double-stranded breaks that can serve as substrates for oncogenic chromosomal translocations. AID is strictly regulated by a number of mechanisms, including phosphorylation at serine 38 and threonine 140, which increase activity. Here we show that phosphorylation can also suppress AID activity in vivo. Serine 3 is a novel phospho-acceptor which, when mutated to alanine, leads to increased class switching and c-myc/IgH translocations without affecting AID levels or catalytic activity. Conversely, increasing AID phosphorylation specifically on serine 3 by interfering with serine/threonine protein phosphatase 2A (PP2A) leads to decreased class switching. We conclude that AID activity and its oncogenic potential can be downregulated by phosphorylation of serine 3 and that this process is controlled by PP2A.
Collapse
|
25
|
Nagaoka H, Tran TH, Kobayashi M, Aida M, Honjo T. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity. Int Immunol 2010; 22:227-35. [DOI: 10.1093/intimm/dxq023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Metzner M, Schuh W, Roth E, Jäck HM, Wabl M. Two forms of activation-induced cytidine deaminase differing in their ability to bind agarose. PLoS One 2010; 5:e8883. [PMID: 20111710 PMCID: PMC2811734 DOI: 10.1371/journal.pone.0008883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/17/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Activation-induced cytidine deaminase (AID) is a B-cell-specific DNA mutator that plays a key role in the formation of the secondary antibody repertoire in germinal center B cells. In the search for binding partners, protein coimmunoprecipitation assays are often performed, generally with agarose beads. METHODOLOGY/PRINCIPAL FINDINGS We found that, regardless of whether cell lysates containing exogenous or endogenous AID were examined, one of two mouse AID forms bound to agarose alone. CONCLUSIONS/SIGNIFICANCE These binding characteristics may be due to the known post-translational modifications of AID; they may also need to be considered in coimmunoprecipitation experiments to avoid false-positive results.
Collapse
Affiliation(s)
- Mirjam Metzner
- Nikolaus-Fiebiger Center, Department of Internal Medicine III, Division of Molecular Immunology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
27
|
Wang M, Rada C, Neuberger MS. Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID. ACTA ACUST UNITED AC 2010; 207:141-53. [PMID: 20048284 PMCID: PMC2812546 DOI: 10.1084/jem.20092238] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-affinity antibodies are generated by somatic hypermutation with nucleotide substitutions introduced into the IgV in a semirandom fashion, but with intrinsic mutational hotspots strategically located to optimize antibody affinity maturation. The process is dependent on activation-induced deaminase (AID), an enzyme that can deaminate deoxycytidine in DNA in vitro, where its activity is sensitive to the identity of the 5'-flanking nucleotide. As a critical test of whether such DNA deamination activity underpins antibody diversification and to gain insight into the extent to which the antibody mutation spectrum is dependent on the intrinsic substrate specificity of AID, we investigated whether it is possible to change the IgV mutation spectrum by altering AID's active site such that it prefers a pyrimidine (rather than a purine) flanking the targeted deoxycytidine. Consistent with the DNA deamination mechanism, B cells expressing the modified AID proteins yield altered IgV mutation spectra (exhibiting a purine-->pyrimidine shift in flanking nucleotide preference) and altered hotspots. However, AID-catalyzed deamination of IgV targets in vitro does not yield the same degree of hotspot dominance to that observed in vivo, indicating the importance of features beyond AID's active site and DNA local sequence environment in determining in vivo hotspot dominance.
Collapse
Affiliation(s)
- Meng Wang
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, England, UK
| | | | | |
Collapse
|
28
|
Prochnow C, Bransteitter R, Chen XS. APOBEC deaminases-mutases with defensive roles for immunity. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:893-902. [PMID: 19911124 DOI: 10.1007/s11427-009-0133-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G.
Collapse
Affiliation(s)
- Courtney Prochnow
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
29
|
Chelico L, Pham P, Petruska J, Goodman MF. Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem 2009; 284:27761-27765. [PMID: 19684020 DOI: 10.1074/jbc.r109.052449] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) and APOBEC3G catalyze deamination of cytosine to uracil on single-stranded DNA, thereby setting in motion a regulated hypermutagenic process essential for human well-being. However, if regulation fails, havoc ensues. AID plays a central role in the synthesis of high affinity antibodies, and APOBEC3G inactivates human immunodeficiency virus-1. This minireview highlights biochemical and structural properties of AID and APOBEC3G, showing how studies using the purified enzymes provide valuable insight into the considerably more complex biology governing antibody generation and human immunodeficiency virus inactivation.
Collapse
Affiliation(s)
- Linda Chelico
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910
| | - Phuong Pham
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910
| | - John Petruska
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910
| | - Myron F Goodman
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089-2910.
| |
Collapse
|
30
|
Casellas R, Yamane A, Kovalchuk AL, Potter M. Restricting activation-induced cytidine deaminase tumorigenic activity in B lymphocytes. Immunology 2009; 126:316-28. [PMID: 19302140 DOI: 10.1111/j.1365-2567.2008.03050.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA breaks play an essential role in germinal centre B cells as intermediates to immunoglobulin class switching, a recombination process initiated by activation-induced cytidine deaminase (AID). Immunoglobulin gene hypermutation is likewise catalysed by AID but is believed to occur via single-strand DNA breaks. When improperly repaired, AID-mediated lesions can promote chromosomal translocations (CTs) that juxtapose the immunoglobulin loci to heterologous genomic sites, including oncogenes. Two of the most studied translocations are the t(8;14) and T(12;15), which deregulate cMyc in human Burkitt's lymphomas and mouse plasmacytomas, respectively. While a complete understanding of the aetiology of such translocations is lacking, recent studies using diverse mouse models have shed light on two important issues: (1) the extent to which non-specific or AID-mediated DNA lesions promote CTs, and (2) the safeguard mechanisms that B cells employ to prevent AID tumorigenic activity. Here we review these advances and discuss the usage of pristane-induced mouse plasmacytomas as a tool to investigate the origin of Igh-cMyc translocations and B-cell tumorigenesis.
Collapse
Affiliation(s)
- Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
31
|
Basu U, Franklin A, Schwer B, Cheng HL, Chaudhuri J, Alt FW. Regulation of activation-induced cytidine deaminase DNA deamination activity in B-cells by Ser38 phosphorylation. Biochem Soc Trans 2009; 37:561-8. [PMID: 19442251 PMCID: PMC3540414 DOI: 10.1042/bst0370561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human and mouse Ig genes are diversified in mature B-cells by distinct processes known as Ig heavy-chain CSR (class switch recombination) and Ig variable-region exon SHM (somatic hypermutation). These DNA-modification processes are initiated by AID (activation-induced cytidine deaminase), a DNA cytidine deaminase predominantly expressed in activated B-cells. AID is post-transcriptionally regulated via multiple mechanisms, including microRNA regulation, nucleocytoplasmic shuttling, ubiquitination and phosphorylation. Among these regulatory processes, AID phosphorylation at Ser(38) has been a focus of particularly intense study and debate. In the present paper, we discuss recent biochemical and mouse genetic studies that begin to elucidate the functional significance of AID Ser(38) phosphorylation in the context of the evolution of this mode of AID regulation and the potential roles that it may play in activated B-cells during a normal immune response.
Collapse
Affiliation(s)
- Uttiya Basu
- Howard Hughes Medical Institute, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
32
|
V-region mutation in vitro, in vivo, and in silico reveal the importance of the enzymatic properties of AID and the sequence environment. Proc Natl Acad Sci U S A 2009; 106:8629-34. [PMID: 19443686 DOI: 10.1073/pnas.0903803106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The somatic hypermutation of Ig variable regions requires the activity of activation-induced cytidine deaminase (AID) which has previously been shown to preferentially deaminate WRC (W = A/T, R = A/G) motif hot spots in in vivo and in vitro assays. We compared mutation profiles of in vitro assays for the 3' flanking intron of VhJ558-Jh4 region to previously reported in vivo profiles for the same region in the Msh2(-/-)Ung(-/-) mice that lack base excision and mismatch repair. We found that the in vitro and in vivo mutation profiles were highly correlated for the top (nontranscribed) strand, while for the bottom (transcribed) strand the correlation is far lower. We used an in silico model of AID activity to elucidate the relative importance of motif targeting in vivo. We found that the mutation process entails substantial complexity beyond motif targeting, a large part of which is captured in vitro. To elucidate the contribution of the sequence environment to the observed differences between the top and bottom strands, we analyzed intermutational distances. The bottom strand shows an approximately exponential distribution of distances in vivo and in vitro, as expected from a null model. However, the top strand deviates strongly from this distribution in that mutations approximately 50 nucleotides apart are greatly reduced, again both in vivo and in vitro, illustrating an important strand asymmetry. While we have confirmed that AID targeting of hot and cold spots is a key part of the mutation process, our results suggest that the sequence environment plays an equally important role.
Collapse
|
33
|
Shen HM, Poirier MG, Allen MJ, North J, Lal R, Widom J, Storb U. The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription. ACTA ACUST UNITED AC 2009; 206:1057-71. [PMID: 19380635 PMCID: PMC2715043 DOI: 10.1084/jem.20082678] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The activation-induced cytidine deaminase (AID) initiates somatic hypermutation, class-switch recombination, and gene conversion of immunoglobulin genes. In vitro, AID has been shown to target single-stranded DNA, relaxed double-stranded DNA, when transcribed, or supercoiled DNA. To simulate the in vivo situation more closely, we have introduced two copies of a nucleosome positioning sequence, MP2, into a supercoiled AID target plasmid to determine where around the positioned nucleosomes (in the vicinity of an ampicillin resistance gene) cytidine deaminations occur in the absence or presence of transcription. We found that without transcription nucleosomes prevented cytidine deamination by AID. However, with transcription AID readily accessed DNA in nucleosomes on both DNA strands. The experiments also showed that AID targeting any DNA molecule was the limiting step, and they support the conclusion that once targeted to DNA, AID acts processively in naked DNA and DNA organized within transcribed nucleosomes.
Collapse
Affiliation(s)
- Hong Ming Shen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Chelico L, Pham P, Goodman MF. Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci 2009; 364:583-93. [PMID: 19022738 DOI: 10.1098/rstb.2008.0195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activation-induced (cytidine) deaminase (AID) efficiently introduces multiple and diversified deaminations in immunoglobulin (Ig) variable and switch regions. Here, we review studies of AID, and the APOBEC family member, APOBEC3G, demonstrating that both enzymes introduce multiple deaminations by processive action on single-stranded DNA and that deaminations occur stochastically at hot- and cold-spot targets. In a more detailed analysis of AID, we examine phosphorylation-null mutants, particularly, S38A and S43P. S43P mutant AID has been identified in a patient with hyper-IgM immunodeficiency syndrome. The phosphorylation-null mutants have essentially the same specific activity, processivity and ability to undergo transcription-dependent deamination compared with wild-type (WT) AID. Although the phosphorylation-null mutants still deaminate 5'-WRC hot spots, the mutant deamination spectra differ from WT AID. The mutants strongly prefer two motifs, 5'AGC and 5'GGC, which are disfavoured by WT AID. Differences in deamination specificities can be attributed primarily to the replacement of Ser rather than to the absence of phosphorylation. The 5'GGC motif occurs with exceptionally high frequency on the non-transcribed strand of human switch regions, IgG4 and IgE. The potential for S43P to catalyse large numbers of aberrant deaminations in switch region sequences suggests a possible relationship between non-canonical AID deamination specificity and a loss of antibody diversification.
Collapse
Affiliation(s)
- Linda Chelico
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | |
Collapse
|
35
|
Basu U, Franklin A, Alt FW. Post-translational regulation of activation-induced cytidine deaminase. Philos Trans R Soc Lond B Biol Sci 2009; 364:667-73. [PMID: 19010772 DOI: 10.1098/rstb.2008.0194] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The assembled immunoglobulin genes in the B cells of mice and humans are altered by distinct processes known as class switch recombination (CSR) and somatic hypermutation, leading to diversification of the antibody repertoire. These two DNA modification processes are initiated by the B cell-specific protein factor activation-induced cytidine deaminase (AID). AID is post-translationally modified by phosphorylation at multiple sites, although functional significance during CSR has been implicated only for phosphorylation at serine-38 (S38). Although multiple laboratories have demonstrated that AID function is regulated via phosphorylation at S38, the precise biological role of S38 phosphorylation has been a topic of debate. Here, we discuss our interpretation of the significance of AID regulation via phosphorylation and also discuss how this form of AID regulation may have evolved in higher organisms.
Collapse
Affiliation(s)
- Uttiya Basu
- Howard Hughes Medical Institute, The Children's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
36
|
Hackney JA, Misaghi S, Senger K, Garris C, Sun Y, Lorenzo MN, Zarrin AA. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv Immunol 2009; 101:163-89. [PMID: 19231595 DOI: 10.1016/s0065-2776(08)01005-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As part of the adaptive immune response, B cells alter their functional immunoglobulin (Ig) receptor genes through somatic hypermutation (SHM) and/or class switch recombination (CSR) via processes that are initiated by activation induced cytidine deaminase (AID). These genetic modifications are targeted at specific sequences known as Variable (V) and Switch (S) regions. Here, we analyze and review the properties and function of AID target sequences across species and compare them with non-Ig sequences, including known translocation hotspots. We describe properties of the S sequences, and discuss species and isotypic differences among S regions. Common properties of SHM and CSR target sequences suggest that evolution of S regions might involve the duplication and selection of SHM hotspots.
Collapse
Affiliation(s)
- Jason A Hackney
- Genentech, Immunology Discovery Group, South San Francisco, California 94080, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Basu U, Wang Y, Alt FW. Evolution of phosphorylation-dependent regulation of activation-induced cytidine deaminase. Mol Cell 2008; 32:285-91. [PMID: 18951095 PMCID: PMC2597080 DOI: 10.1016/j.molcel.2008.08.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/15/2008] [Accepted: 08/20/2008] [Indexed: 01/23/2023]
Abstract
Interaction of activation-induced cytidine deaminase (AID) with replication protein A (RPA) has been proposed to promote AID access to transcribed double-stranded (ds) DNA during immunoglobulin light chain and heavy chain class switch recombination (CSR). Mouse AID (mAID) interaction with RPA and transcription-dependent dsDNA deamination in vitro requires protein kinase A (PKA) phosphorylation at serine 38 (S38), and normal mAID CSR activity depends on S38. However, zebrafish AID (zAID) catalyzes robust CSR in mouse cells despite lacking an S38-equivalent PKA site. Here, we show that aspartate 44 (D44) in zAID provides similar in vitro and in vivo functionality as mAID S38 phosphorylation. Moreover, introduction of a PKA site into a zAID D44 mutant made it PKA dependent for in vitro activities and restored normal CSR activity. Based on these findings, we generated mAID mutants that similarly function independently of S38 phosphorylation. Comparison of bony fish versus amphibian and mammalian AIDs suggests evolutionary divergence from constitutive to PKA-regulated RPA/AID interaction.
Collapse
Affiliation(s)
- Uttiya Basu
- Howard Hughes Medical Institute, The Children's Hospital, Harvard Medical School, and the Immune Disease Institute, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
38
|
McBride KM, Gazumyan A, Woo EM, Schwickert TA, Chait BT, Nussenzweig MC. Regulation of class switch recombination and somatic mutation by AID phosphorylation. ACTA ACUST UNITED AC 2008; 205:2585-94. [PMID: 18838546 PMCID: PMC2571933 DOI: 10.1084/jem.20081319] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates somatic mutation and class switch recombination in B lymphocytes by introducing uracil:guanine mismatches into DNA. Repair pathways process these mismatches to produce point mutations in the Ig variable region or double-stranded DNA breaks in the switch region DNA. However, AID can also produce off-target DNA damage, including mutations in oncogenes. Therefore, stringent regulation of AID is required for maintaining genomic stability during maturation of the antibody response. It has been proposed that AID phosphorylation at serine 38 (S38) regulates its activity, but this has not been tested in vivo. Using a combination of mass spectrometry and immunochemical approaches, we found that in addition to S38, AID is also phosphorylated at position threonine 140 (T140). Mutation of either S38 or T140 to alanine does not impact catalytic activity, but interferes with class switching and somatic hypermutation in vivo. This effect is particularly pronounced in haploinsufficient mice where AID levels are limited. Although S38 is equally important for both processes, T140 phosphorylation preferentially affects somatic mutation, suggesting that posttranslational modification might contribute to the choice between hypermutation and class switching.
Collapse
Affiliation(s)
- Kevin M McBride
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
39
|
Dissociation of in vitro DNA deamination activity and physiological functions of AID mutants. Proc Natl Acad Sci U S A 2008; 105:15866-71. [PMID: 18832469 DOI: 10.1073/pnas.0806641105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the DNA cleavage that initiates both somatic hypermutation (SHM) and class switch recombination (CSR) of the Ig gene. Two alternative mechanisms of DNA cleavage by AID have been proposed: RNA editing and DNA deamination. In support of the latter, AID has DNA deamination activity in cell-free systems that is assumed to represent its physiological function. To test this hypothesis, we generated various mouse AID mutants and compared their DNA deamination, CSR, and SHM activities. Here, we compared DNA deamination, CSR, and SHM activities of various AID mutants and found that most of their CSR or SHM activities were disproportionate with their DNA deamination activities. Specifically, we identified a cluster of mutants (H48A, L49A, R50A, and N51A) with low DNA deamination activity but relatively intact CSR activity. Of note is an AID mutant (N51A) that retained CSR function but lost DNA deamination activity. In addition, an APOBEC1 mutation at N57, homologous to N51 of AID, also abolished DNA deamination activity but retained RNA editing activity. These results indicate that DNA deamination activity does not represent the physiological function of AID.
Collapse
|
40
|
Pham P, Zhang K, Goodman MF. Hypermutation at A/T sites during G.U mismatch repair in vitro by human B-cell lysates. J Biol Chem 2008; 283:31754-62. [PMID: 18786917 DOI: 10.1074/jbc.m805524200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Somatic hypermutation in the variable regions of immunoglobulin genes is required to produce high affinity antibody molecules. Somatic hypermutation results by processing G.U mismatches generated when activation-induced cytidine deaminase (AID) deaminates C to U. Mutations at C/G sites are targeted mainly at deamination sites, whereas mutations at A/T sites entail error-prone DNA gap repair. We used B-cell lysates to analyze salient features of somatic hypermutation with in vitro mutational assays. Tonsil and hypermutating Ramos B-cells convert C-->U in accord with AID motif specificities, whereas HeLa cells do not. Using tonsil cell lysates to repair a G.U mismatch, A/T and G/C targeted mutations occur about equally, whereas Ramos cell lysates make fewer mutations at A/T sites (approximately 24%) compared with G/C sites (approximately 76%). In contrast, mutations in HeLa cell lysates occur almost exclusively at G/C sites (> 95%). By recapitulating two basic features of B-cell-specific somatic hypermutation, G/C mutations targeted to AID hot spot motifs and elevated A/T mutations dependent on error-prone processing of G.U mispairs, these cell free assays provide a practical method to reconstitute error-prone mismatch repair using purified B-cell proteins.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | |
Collapse
|